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DE GROOT, RICHTER & T HROCKMORTON: VALUATION RISK REVALUED

1 INTRODUCTION

In standard asset pricing models, uncertainty enters through the supply side of the economy, either

through endowment shocks in a Lucas (1978) tree model or productivity shocks in a production

economy model. Recently, several papers introduced demandside uncertainty or “valuation risk”

as a potential explanation of key asset pricing puzzles (Albuquerque et al., 2016, 2015; Creal and

Wu, 2017; Maurer, 2012; Nakata and Tanaka, 2016; Schorfheide et al., 2018). In macroeconomic

parlance, valuation risk is typically referred to as a discount factor or time preference shock.1

The literature contends valuation risk is an important determinant of key asset pricing moments

when it is embedded in Epstein and Zin (1991) recursive preferences. We show the success of val-

uation risk rests on an undesirable asymptote that permeates the determination of asset prices. The

influence of the asymptote is easily identified in a stylized model. In that model, an intertemporal

elasticity of substitution (IES) marginally above one predicts an arbitrarily large equity premium

and an arbitrarily low risk-free rate, while an IES slightlybelow one predicts the opposite results.

The asymptote significantly affects equilibrium outcomes even when the IES is well above unity.

In a business cycle model, de Groot et al. (2018) show that with Epstein-Zin preferences, time-

varying weights in a CES time-aggregator must sum to1 to prevent an undesirable asymptote from

determining equilibrium outcomes. The current specification in the literature fails to impose this

restriction. de Groot et al. (2018) propose an alternative (henceforth, the “revised specification”)

that eliminates the asymptote and ensures that preferencesare well-defined when the IES is one.2

This paper makes two key contributions to the literature. First, it analytically shows the change

to the preference specification profoundly alters the equilibrium determination of asset prices. For

example, the same IES and risk aversion (RA) parameters can lead to very different values for

the equity premium and risk-free rate and comparative statics, such as the response of the equity

premium to the IES, switch sign. Second, it empirically re-evaluates of the role of valuation risk

in explaining asset pricing and cash-flow moments. We find after estimating a sequence of models

under the revised specification, the role and contribution of valuation risk change dramatically.

For intuition, consider the log-stochastic discount factor (SDF) under Epstein-Zin preferences

m̂t+1 = θ log β + θ(ât − ωât+1)− (θ/ψ)∆ĉt+1 + (θ − 1)r̂y,t+1, (1)

where the first, third, and fourth terms—the subjective discount factor (β), log-consumption growth

(∆ĉt+1), and the log-return on the endowment (r̂y,t+1)—are all standard in this class of asset pricing

models. The second term captures valuation risk, whereât is a time preference shock. In the

current literature,ω = 0. Once we revise the preferences and re-derive the log-SDF, we findω = β.

1Time preference shocks have been widely used in the macro literature (e.g., Christiano et al. (2011); Eggertsson
and Woodford (2003); Justiniano and Primiceri (2008); Rotemberg and Woodford (1997); Smets and Wouters (2003)).

2Rapach and Tan (2018) estimate a production asset pricing model with the specification in de Groot et al. (2018).
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When we apply this single alteration to the model, the asset pricing predictions are starkly different.

The asymptote in the current valuation risk specification isrelated to the preference parameter

θ ≡ (1 − γ)/(1 − 1/ψ) that enters the log-SDF, whereγ is RA andψ is the IES. Under constant

relative risk aversion (CRRA) preferences,γ = 1/ψ. In this case,θ = 1 and the log-SDF becomes

m̂t+1 = log β + (ât − ωât+1)−∆ĉt+1/ψ. (2)

The return on the endowment drops out of (1), so the log-SDF is simply composed of the subjective

discount factor and consumption growth terms. The advantage of Epstein-Zin preferences is that

they decoupleγ andψ, so it is possible to simultaneously have high RA and a high IES. However,

there is a nonlinear relationship betweenθ andψ, as shown infigure 1. A vertical asymptote

occurs atψ = 1: θ tends to infinity asψ approaches1 from below while the opposite occurs as

ψ approaches1 from above. When the IES equals1, θ is undefined. In addition to the vertical

asymptote inθ, there is also a horizontal asymptote at1− γ as the IES becomes perfectly elastic.
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Figure 1: Preference parameterθ in the stochastic discount factor from a model with Epstein-Zin preferences.

Under Epstein and Zin (1989) preferences and the generalization in de Groot et al. (2018) to

include valuation risk, the asymptote infigure 1does not affect asset prices. There is a well-defined

equilibrium when the IES equals1 and asset prices are robust to small variations in the IES. Con-

tinuity is preserved because the weights in the time-aggregator always sum to unity. An alternative

interpretation is that the time-aggregator maintains the well-known property that a CES aggregator

tends to a Cobb-Douglas aggregator as the elasticity approaches1. The current specification vio-

lates the restriction on the weights so the limiting properties of the CES aggregator break down. As

a result, the asymptote permeates key asset pricing moments, even when the IES is well above1.

Taken at face value, the asymptote that occurs with the current specification can resolve the

equity premium (Mehra and Prescott, 1985) and risk-free rate (Weil, 1989) puzzles in our baseline
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model withi.i.d. cash-flow risk. When we revise the preference specification to satisfy the restric-

tion, valuation risk has a smaller role, RA is implausibly high, and the puzzles resurface because

there is no longer an asymptote. However, when estimating a sequence of long-run risk models

using a simulated method of moments procedure, we find valuation risk under the revised specifi-

cation consistently improves the ability of the models to match asset price and cash-flow dynamics.

We begin by estimating the Bansal and Yaron (2004) long-run risk model (without time-varying

uncertainty) without valuation risk and find it significantly under-predicts the standard deviation

of the risk-free rate, even when these moments are targeted.When we introduce valuation risk, it

accounts for roughly40% of the equity premium, but at the expense of over-predictingthe standard

deviation of the risk-free rate. After targeting the risk-free rate dynamics, valuation risk only ac-

counts for about5% of the equity premium. Therefore, we find it is crucial to target these dynamics

to accurately measure the contribution of valuation risk. While valuation risk (with or without the

targeted risk-free rate moments) improves the fit of the long-run risk model, the model still fails

a test of over-identifying restrictions. This is because the model fairs poorly in matching the low

predictability of consumption growth from the price-dividend ratio, the high standard deviation of

dividend growth, and the weak correlation between dividendgrowth and equity returns in the data.

We consider two extensions that improve the model’s fit: (1) an interaction term between valu-

ation and cash-flow risk (a proxy for general equilibrium demand effects) following Albuquerque

et al. (2016) (henceforth, “Demand” model) and (2) stochastic volatility on cash-flow risk as in

Bansal and Yaron (2004) (henceforth, “SV” model). In a horserace between these extensions, we

find the Demand model wins and passes the over-identifying restrictions test at the5% level. How-

ever, the two extensions are complements and the combined model passes the test at the10% level.

This is because the demand extension lowers the correlationbetween dividend growth and equity

returns, while the SV extension offsets the effect of highervaluation risk on risk-free rate dynamics.

It is common in the asset pricing literature to estimate models using a simulated method of

moments procedure (eg., Adam et al., 2016; Albuquerque et al., 2016; Andreasen and Jørgensen,

2019). We build on the existing methodology in two ways. One,we run Monte Carlo estimations

of the model and calculate standard errors using different sequences of shocks, whereas estimates

in the literature are typically based on a particular sequence of shocks. This approach allows us

to obtain more precise estimates and account for differences between the asymptotic and sampling

distributions of the parameters. Two, we use a rigorous two-step procedure to find the global

optimum that uses simulated annealing to obtain candidate draws and then recursively applies a

nonlinear solver to each of the candidates. We find that without applying such rigor to this class of

models, the algorithm would settle on local optima and potentially lead to incorrect inferences.

Links to the Literature This paper builds on the growing literature that examines the role of valu-

ation risk in asset pricing models. Maurer (2012) and Albuquerque et al. (2016) were the first. They
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adopt the current preference specification and find valuation risk accounts for key asset pricing

moments, such as the equity premium. Albuquerque et al. (2016) also focus on resolving the cor-

relation puzzle (Campbell and Cochrane, 1999). Schorfheide et al. (2018) use a Bayesian mixed-

frequency approach that allows them to target entire time series, rather than specific moments.

They focus on one model with three SV processes. We examine in-depth the role of valuation risk

by estimating a sequence of increasingly rich models. A notable difference from our results is that

Schorfheide et al. (2018) find a limited role for the general equilibrium demand channel. Creal

and Wu (2017) focus on bond premia. They also use the current specification, but valuation risk

is tied to consumption and inflation and does not have an independent stochastic element. They

find the slope of the yield curve is largely explained by valuation risk, but they estimate an IES of

1.02. Nakata and Tanaka (2016) study term premia in a New Keynesian model, adopt the current

specification, and use an IES below one. This generates a negative term premia, consistent with our

analytical results. In contrast with the literature, Rapach and Tan (2018) use the revised preferences

and estimate a real business cycle model. They find valuationrisk can still explain a large portion

of the term premium because demand shocks interact with the production side of the economy.

The paper proceeds as follows.Section 2describes the baseline model and the current and

revised preference specifications.Section 3analytically shows why asset prices depend so dramat-

ically on the way valuation risk enters the Epstein-Zin utility function. Section 4describes the data

and estimation methodology.Section 5quantifies the effects of the valuation risk specification in

our baseline model withi.i.d. cash-flow risk.Section 6estimates the standard long-run risk model

with and without valuation risk.Section 7extends the long-run risk model to include valuation

risk shocks to cash-flow growth and stochastic volatility oncash-flow risk.Section 8concludes.

2 BASELINE ASSET-PRICING MODEL

We begin by describing our baseline model. Each periodt denotes1 month. There are two assets:

an endowment share,s1,t, that pays income,yt, and is in fixed unit supply, and an equity share,s2,t,

that pays dividends,dt, and is in zero net supply. The agent chooses{ct, s1,t, s2,t}
∞

t=0 to maximize

UC
t = [(1− β)c

(1−γ)/θ
t + aCt β(Et[(U

C
t+1)

1−γ])1/θ]θ/(1−γ), 1 6= ψ > 0, (3)

as used in the current (C) asset pricing literature, or

UR
t =







[(1− aRt β)c
(1−γ)/θ
t + aRt β(Et[(U

R
t+1)

1−γ])1/θ]θ/(1−γ), for 1 6= ψ > 0,

c
1−aRt β
t (Et[(U

R
t+1)

1−γ])a
R
t β/(1−γ), for ψ = 1,

(4)

as in the revised (R) specification of de Groot et al. (2018), whereEt is the mathematical expec-

tation operator conditional on information available in period t. The time-preference shocks are
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denotedaCt > 0 and0 < aRt < 1/β.3,4 The key difference between the preferences is as follows:

The time-varying weights of the time-aggregator in(3), (1−β) andaCt β, do

not sum to1, whereas the weights in(4), (1− aRt β) andaRt β, do sum to1.

The representative agent’s choices are constrained by the flow budget constraint given by

ct + py,ts1,t + pd,ts2,t = (py,t + yt)s1,t−1 + (pd,t + dt)s2,t−1, (5)

wherepy,t andpd,t are the endowment and dividend claim prices. The optimalityconditions imply

Et[m
j
t+1ry,t+1] = 1, ry,t+1 ≡ (py,t+1 + yt+1)/py,t, (6)

Et[m
j
t+1rd,t+1] = 1, rd,t+1 ≡ (pd,t+1 + dt+1)/pd,t, (7)

wherej ∈ {C,R}, ry,t+1 andrd,t+1 are the gross returns on the endowment and dividend claims,

mC
t+1 ≡ aCt β

(
ct+1

ct

)
−1/ψ ( (V C

t+1)
1−γ

Et[(V
C
t+1)

1−γ]

)1− 1

θ

, (8)

mR
t+1 ≡ aRt β

(
1− aRt+1β

1− aRt β

)(
ct+1

ct

)
−1/ψ ( (V R

t+1)
1−γ

Et[(V
R
t+1)

1−γ]

)1− 1

θ

, (9)

andV j
t is the value function that solves the agent’s constrained optimization problem.

To permit an approximate analytical solution, we rewrite (6) and (7) as follows

Et[exp(m̂
j
t+1 + r̂y,t+1)] = 1, (10)

Et[exp(m̂
j
t+1 + r̂d,t+1)] = 1, (11)

wherem̂j
t+1 is defined in (1) andât ≡ âCt ≈ âRt /(1 − β) so the shocks in the current and revised

models are directly comparable. The common time preferenceshock,̂at+1, evolves according to

ât+1 = ρaât + σaεa,t+1, εa,t+1 ∼ N(0, 1), (12)

where0 ≤ ρa < 1 is the persistence of the process,σa ≥ 0 is the shock standard deviation, and a

hat denotes a log variable. We then apply a Campbell and Shiller (1988) approximation to obtain

r̂y,t+1 = κy0 + κy1ẑy,t+1 − ẑy,t +∆ŷt+1, (13)

r̂d,t+1 = κd0 + κd1ẑd,t+1 − ẑd,t +∆d̂t+1, (14)

3Kollmann (2016) introduces a time-varying discount factorin an Epstein-Zin setting similar to our formulation. In
that setup, the discount factor is a function of endogenously determined consumption rather than a stochastic process.

4In the literature,aCt typically hits current utility, rather than the risk aggregator. However, with a small change in
the timing convention of the preference shock, (3) is isomorphic to the specification used in the literature. We use the
specification in (3) because it better facilitates a comparison with the revised preferences. SeeAppendix Afor details.
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whereẑy,t+1 is the log price-endowment ratio,ẑd,t+1 is the log price-dividend ratio, and

κy0 ≡ log(1 + exp(ẑy))− κy1ẑy, κy1 ≡ exp(ẑy)/(1 + exp(ẑy)), (15)

κd0 ≡ log(1 + exp(ẑd))− κd1ẑd, κd1 ≡ exp(ẑd)/(1 + exp(ẑd)), (16)

are constants that are functions of the steady-state price-endowment and price-dividend ratios.

To close the model, the processes for log-endowment and log-dividend growth are given by

∆ŷt+1 = µy + σyεy,t+1, εy,t+1 ∼ N(0, 1), (17)

∆d̂t+1 = µd + πdyσyεy,t+1 + ψdσyεd,t+1, εd,t+1 ∼ N(0, 1), (18)

whereµy andµd are the steady-state growth rates,σy ≥ 0 andψdσy ≥ 0 are the shock standard

deviations, andπdy captures the covariance between consumption and dividend growth. Asset

market clearing impliess1,t = 1 ands2,t = 0, so the resource constraint is given byĉt = ŷt.

Equilibrium includes sequences of quantities{ĉt}
∞

t=0, prices{m̂t+1, ẑy,t, ẑd,t, r̂y,t+1, r̂d,t+1}
∞

t=0

and exogenous variables{∆ŷt+1,∆d̂t+1, ât+1}
∞

t=0 that satisfy (1), (10)-(14), (17), (18), and the re-

source constraint, given the state of the economy,{ât}, and sequences of shocks,{εy,t, εd,t, εa,t}
∞

t=1.

We posit the following solutions for the price-endowment and price-dividend ratios:

ẑy,t = ηy0 + ηy1ât, ẑd,t = ηd0 + ηd1ât, (19)

whereẑy = ηy0 andẑd = ηd0. We solve the model with the method of undetermined coefficients.

Appendix Bderives the SDF, a Campbell-Shiller approximation, the solution, and key asset prices.

3 INTUITION

This section develops intuition for why the valuation risk specification has such large effects on

the model predictions. To simplify the exposition, we consider different stylized shock processes.

3.1 CONVENTIONAL MODEL First, it is useful to review the role of Epstein-Zin preferences and

the separation of the RA and IES parameters in matching the risk-free rate and equity premium. For

simplicity, we remove valuation risk (σa = 0) and assume endowment/dividend risk is perfectly

correlated (ψd = 0; πdy = 1). The average risk-free rate and average equity premium aregiven by

E[r̂f ] = − log β + µy/ψ + ((1/ψ − γ)(1− γ)− γ2)σ2
y/2, (20)

E[ep] = γσ2
y , (21)

where the first term in (20) is the subjective discount factor, the second term accounts for endow-

ment growth, and the third term accounts for precautionary savings. Endowment growth creates

6
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an incentive for agents to borrow in order to smooth consumption. Since both assets are in fixed

supply, the risk-free rate must be elevated to deter borrowing. When the IES,ψ, is high, agents are

willing to accept higher consumption growth so the interestrate required to dissuade borrowing is

lower. Therefore, the model requires a fairly high IES to match the low risk-free rate in the data.

With CRRA preferences, higher RA lowers the IES and pushes upthe risk-free rate. With

Epstein-Zin preferences, these parameters are independent, so a high IES can lower the risk-free

rate without lowering RA. Notice the equity premium only depends on RA. Therefore, the model

generates a low risk-free rate and modest equity premium with sufficiently high RA and IES param-

eter values. Of course, there is an upper bound on what constitute reasonable RA and IES values,

which is the source of the risk-free rate and equity premium puzzles. Other prominent features such

as long-run risk and stochastic volatility à la Bansal and Yaron (2004) help resolve these puzzles.

3.2 VALUATION RISK MODEL Now consider an example where we remove cash flow risk

(σy = 0; µy = µd) and also assume the time preference shocks arei.i.d. (ρa = 0). Under these

assumptions, the assets are identical so(κy0, κy1, ηy0, ηy1) = (κd0, κd1, ηd0, ηd1) ≡ (κ0, κ1, η0, η1).

Current Specification We first solve the model with the current preferences, so the SDF is given

by (1) with ω = 0. In this case, the average risk-free rate and average equitypremium are given by

E[r̂f ] = − log β + µy/ψ + (θ − 1)κ21η
2
1σ

2
a/2, (22)

E[ep] = (1− θ)κ21η
2
1σ

2
a. (23)

It is also straightforward to show the log-price-dividend ratio is given bŷzt = η0 + ât (i.e., the

loading on the preference shock,η1, is 1). Therefore, when the agent becomes more patient andât

rises, the price-dividend ratio rises one-for-one on impact and returns to the stationary equilibrium

in the next period. Sinceη1 is independent of the IES, there is no endogenous mechanism that pre-

vents the asymptote inθ from influencing the risk-free rate or equity premium. It is easy to see from

(16) that0 < κ1 < 1. Therefore,θ dominates the average risk-free rate and average equity pre-

mium when the IES is near1. The following result describes the comparative statics with the IES:

Asψ approaches1 from above,θ tends to−∞. As a result, the average

risk-free rate tends to−∞ while the average equity premium tends to+∞.

This key finding illustrates why valuation risk seems like such an attractive feature for resolving

the risk-free rate and equity premium puzzles. As the IES tends to1 from above,θ becomes in-

creasingly negative, which dominates other determinants of the risk-free rate and equity premium.

In particular, with an IES slightly above1, the asymptote inθ causes the average risk-free rate to

become arbitrarily small, while making the average equity premium arbitrarily large. Bizarrely, an

7
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IES marginally below1 (a popular value in the macro literature), generates the opposite predic-

tions. As the IES approaches infinity,θ − 1 tends toγ. Therefore, even when the IES is far above

1, the last term in (22) and (23) is scaled byγ and can still have a meaningful effect on asset prices.

An IES equal to1 is a key value in the asset pricing literature. For example, it is the basis

of the “risk-sensitive” preferences in Hansen and Sargent (2008, section 14.3). Therefore, it is a

desirable property for small perturbations around an IES of1 to not materially alter the predictions

of the model. A well-known example of where this property holds is the standard Epstein-Zin asset

pricing model without valuation risk. Even though the log-SDF as written in (2) is undefined when

the IES equals1, both the risk-free rate and the equity premium in (20) and (21) are well-defined.

Revised Specification Next we solve the model with the revised preferences, so the SDF is given

by (1) with ω = β. In this case, the average risk-free rate and average equityrisk premium become

E[r̂f ] = − log β + µy/ψ + ((θ − 1)κ21η
2
1 − θβ2)σ2

a/2, (24)

E[ep] = ((1− θ)κ1η1 + θβ)κ1η1σ
2
a. (25)

Relative to the current specification, the preference shockloading,η1, is unchanged. However,

both asset prices include a new term that captures the directeffect of valuation risk on current util-

ity, so a rise inat that makes the agent more patient raises the value of future certainty equivalent

consumption and lowers the value of present consumption. The asymptote occurs with the current

specification because it does not account for the effect of valuation risk on current consumption.

With the revised preferences,κ1 = β whenψ = 1, so the terms involvingθ cancel out and the

asymptote disappears.5 Valuation risk lowers the average risk-free rate byβ2σ2
a/2 and raises the

average equity return by the same amount. Therefore, the average equity premium equalsβ2σ2
a,

which is invariant to the level of RA. Whenψ > 1, κ1 > β, so an increase in RA lowers the risk-

free rate and raises the equity return. Asψ → ∞, the equity premium with revised specification

relative to the current specification equals1+β(1−γ)/(γκ1). This means the disparity between the

predictions of the two models grows as RA increases. As a consequence, the revised preferences

would require much larger RA to generate the same equity premium as the current preferences.

Expected utility With CRRA preferences (γ = 1/ψ), the specifications in (3) and (4) reduce to

UC
t = Et

∑
∞

j=0(1− β)(
∏j

i=1 a
C
t+i−1)β

jc1−γt+j /(1− γ),

UR
t = Et

∑
∞

j=0(1− βaRt+j)(
∏j

i=1 a
R
t+i−1)β

jc1−γt+j /(1− γ).

5Noticeκ1 is a function of the steady-state price-dividend ratio,zd. When the IES is1, zd = β/(1− β), which is
equivalent to its value absent any risk. Therefore, when theIES is1, valuation risk has no effect on the price-dividend
ratio. This result points to a connection with income and substitution effects, which usually cancel when the IES is1.
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There is no longer an asymptote with the current preferencesbecauseθ = 1with CRRA utility. The

current and revised specifications also generate identicalimpulse responses to a time preference

shock sinceη1 = 1. However, the two specifications still have different assetpricing implications.

Under the current specification, valuation risk has no effect on the risk-free rate and there is no

equity premium. With the revised specification, the presence of valuation risk lowers the average

risk-free rate byβ2σ2
a/2 and the average equity premium equalsβ2σ2

a, just like when the IES equals

unity with Epstein-Zin preferences. Therefore, the two expected utility specifications are not in-

terchangeable, but the quantitative differences are insignificant. We can also conclude that the

asymptote and stark differences in asset prices between thetwo Epstein-Zin preference specifica-

tions come through the continuation value,Vt+1, in the SDF, which drops out with expected utility.
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Figure 2: Equilibrium outcomes in the model without cash flowrisk (σy = 0; µy = µd) andi.i.d. preference shocks
(ρa = 0) under the current (C) and revised (R) preference specifications. We setβ = 0.9975, γ = 10, andσa = 0.005.

3.3 ILLUSTRATION Our analytical results show the way a time preference shock enters Epstein-

Zin utility determines whether the asymptote inθ shows up in equilibrium outcomes.Figure 2illus-

trates our results by plotting the average risk-free rate, the average equity premium, andκ1 (i.e., the

marginal response of the price-dividend ratio on the equityreturn). We focus on the setting insec-

tion 3.2and plot the results under both preferences with and withoutendowment/dividend growth.

With the current preferences, the average risk-free rate and average equity premium exhibit a

vertical asymptote when the IES is1, regardless of whetherµy is positive. As a result, the risk-free

rate approaches positive infinity as the IES approaches1 from below and negative infinity as the

IES approaches1 from above. The equity premium has the same comparative statics with the oppo-

site sign, except there is a horizontal asymptote as the IES approaches infinity. These results occur

because the current specification misses the direct effect of valuation risk on current consumption.6

6Pohl et al. (2018) find the errors from a Campbell-Shiller approximation of the nonlinear model can significantly
affect equilibrium outcomes.Appendix Cshows the undesirable asymptote also occurs in the fully nonlinear model.
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In contrast, with the revised preferences the average risk-free rate and average equity premium

are continuous in the IES, regardless of the value ofµy. Whenµy = 0, the endowment stream is

constant. This means the agent is indifferent about the timing of when the preference uncertainty is

resolved, so bothκ1 and the average equity premium are independent of the IES. Whenµy > 0, the

agent’s incentive to smooth consumption interacts with uncertainty about how (s)he will value the

higher future endowment stream.7 When the IES is large, the agent has a stronger preference for

an early resolution of uncertainty, so the equity premium rises as a result of the valuation risk (see

thefigure 2inset). Therefore, the qualitative relationship between the IES and the equity premium

has different signs under the current and revised specifications. However, the increase in the equity

premium is quantitatively small and converges to a level significantly below the value with the

current preferences. It is this difference in the sign and magnitude of the relationship between the

IES and the equity premium that will explain many of the empirical results in subsequent sections.

4 DATA AND ESTIMATION METHODS

We construct our data using the procedure in Bansal and Yaron(2004), Beeler and Campbell

(2012), Bansal et al. (2016), and Schorfheide et al. (2018).The moments are based on five time

series from 1929 to 2017: real per capita consumption expenditures on nondurables and services,

the real equity return, real dividends, the real risk-free rate, and the price-dividend ratio. Nominal

equity returns are calculated with the CRSP value-weightedreturn on stocks. We obtain data with

and without dividends to back out a time series for nominal dividends. Both series are converted to

real series using the consumer price index (CPI). The nominal risk-free rate is based on the CRSP

yield-to-maturity on90-day Treasury bills. We first convert the nominal series to a real series using

the CPI. Then we construct anex-antereal rate by regressing theex-postreal rate on the nominal

rate and inflation over the last year. The consumption data isannual. To match this frequency, the

monthly asset pricing data are converted to annual time series using the last month of each year.

Using the annual time series, our target moments,Ψ̂D
T , are estimated with a two-step General-

ized Method of Moments (GMM) estimator, whereT = 87 is the sample size.8 Given the GMM

estimates, the model is estimated with Simulated Method of Moments (SMM). For parameteri-

zationθ and shocksE , we solve the model and simulate itR = 1,000 times forT periods. The

model-implied analogues of the target moments are the median moments across theR simulations,

Ψ̄M
R,T (θ, E). The parameter estimates,θ̂, are obtained by minimizing the following loss function:

J(θ, E) = [Ψ̂D
T − Ψ̄M

R,T (θ, E)]
′[Σ̂DT (1 + 1/R)]−1[Ψ̂D

T − Ψ̄M
R,T (θ, E)],

whereΣ̂DT is the diagonal of the GMM estimate of the variance-covariance matrix. We use Monte

7Andreasen and Jørgensen (2019) show how to decouple the agent’s timing attitude from the RA and IES values.
8In total, there are89 periods in our sample, but we lose one period for growth ratesand one for serial correlations.
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Carlo methods to calculate the standard errors on the parameter estimates. For different sequences

of shocks, we re-estimate the structural modelNs = 500 times and report the mean and(5, 95) per-

centiles.Appendix DandAppendix Eprovide more details about our data and estimation method.

The baseline model targets15 moments: the means and standard deviations of consumption

growth, dividend growth, equity returns, the risk-free rate, and the price-dividend ratio, the correla-

tion between dividend growth and consumption growth, the autocorrelations of the price-dividend

ratio and risk-free rate, and the cross-correlations of consumption growth, dividend growth, and eq-

uity returns. These targets are common in the literature andthe same as Albuquerque et al. (2016),

except we exclude5- and10-year correlations between equity returns and cash-flow growth. We

omit the long-run correlations to allow a longer sample thatincludes the Great Depression period.

Many elements of our estimation procedure are common in the asset pricing literature. In

particular, we use a limited information approach to match empirical targets. We use SMM to ac-

count for short-sample bias that can occur because asset pricing models often have very persistent

processes. To improve on the current methodology, we repeatthe estimation procedure for many

different shock sequences. The estimations are run in parallel on a supercomputer. The literature

typically estimates the model once based on a particular sequence of shocks and then uses the Delta

method to compute standard errors. While our approach has a much higher computational burden,

it makes our estimates independent of the seed and generatesmore precise standard errors.9 The

estimates allow us to numerically approximate the samplingdistribution of our model’s parameters

and test whether our parameter estimates are significantly different across models. We also obtain

a distribution ofJ values, which determine whether a model provides a significant improvement in

fit over another model, and the corresponding p-values from atest of over-identifying restrictions.10

5 ESTIMATED BASELINE MODEL

This section takes the baseline model from section 2 and compares the estimates from the current

and revised preference specifications. We fix the IES to2.5, which is near the upper end of the

plausible range of values in the literature.11 This restriction helps us compare the estimates from

the two preference specifications because the model fit, as measured by theJ value, is insensitive

to the value of the IES in the revised specification, but the unconstrained global minimum prefers

an implausibly high IES. For example, theJ value is only one decimal point lower with an IES

9We estimate29 variants of our model. Since each variant is estimated500 times, there are14,500 total estimations.
The estimations are run in Fortran and the time per estimation ranges from1-24 hours depending on model complexity.

10The test statistic is given bŷJs = J(θ̂, Es), whereEs denotes a matrix of shocks given seeds. J(θ̂, E) converges
to aχ2 distribution withNm − Np degrees of freedom, whereNm is the number of empirical targets andNp is the
number of estimated parameters. The model passes the test ifthe loss,Ĵs, is less than the desired significance level
of theχ2 distribution, or, in other words, if the corresponding p-value is greater than the desired value. We report the
mean and(5, 95) percentiles of the p-values across the seeds to determine whether a model reliably passes the test.

11Estimation results withψ = 2 andψ = 1.5 for each specification considered below are included inAppendix F.
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equal to10. Therefore, we are left with estimating nine parameters to match15 empirical targets.

Table 1shows the parameter estimates and moments. For each parameter, we report the average

and(5, 95) percentiles across500 estimations of the model. For each moment, we report the mean

and t-statistic for the null hypothesis that a model-implied moment equals its empirical counterpart.

The squared value of each moment’s t-statistic provides itsmarginal contribution to theJ value.

In both specifications, the data prefers a very persistent valuation risk process withρa > 0.98.12

In the current specification, the risk aversion parameter,γ, is 1.55. In the revised specification

γ = 74.23, which is well outside what is considered acceptable in the asset pricing literature.13

Both specifications generate a sizable equity premium (the estimates are about1% lower than the

empirical equity premium) and a near zero risk-free rate. However, they significantly under-predict

the standard deviation of dividend growth and over-predictthe autocorrelation of the risk-free rate.

Using the analytical expressions for the average risk-freerate and equity premium (see (53)

and (54) in Appendix B), it is possible to break down the fraction of each moment that is explained

by cash-flow and valuation risk.14 With the current specification valuation risk explains98.9%

and99.2% of the risk-free rate and the equity premium, whereas with the revised preferences it

explains only63.1% and79.0%. Since the estimate of the cash-flow shock standard deviation is

unchanged, cash-flow risk has a bigger role in explaining theequity premium due to higher RA.

The revised specification has a significantly poorer fit than the current specification (J = 48.0

vs. J = 29.3), although both specifications fail the over-identifying restrictions test. The poorer fit

is mostly due to the model significantly over-predicting thevolatility of the risk-free rate and under-

predicting the volatilities of the price-dividend ratio and equity return. The intuition is as follows.

In the revised specification, risk-free rate volatility is relatively more sensitive to valuation risk

than equity return volatility. Since the volatility of equity returns is higher than the volatility of the

risk-free rate in the data, valuation risk alone does not allow the model to match these moments.

Dividend growth volatility, however, cannot rise to compensate for the lack of the equity return

volatility because the target correlation between equity returns and dividend growth is near zero.

The revised preferences not only have a worse fit, but the riskaversion parameter is implausibly

large. When we restrictγ to a maximum of10—the upper end of the values used in the asset pricing

12The estimate of the valuation risk shock standard deviation, σa, is two orders of magnitude larger in the revised
specification than the current specification. Recall that the valuation risk term in the SDF is given byât−ωât+1. When
the valuation risk shock isi.i.d., the estimates of the shock standard deviation are very similar. However, as the persis-
tence increases with the revised preferences,SDt[ât − ωât+1] shrinks, soσa rises to compensate for the extra term.

13Mehra and Prescott (1985, p. 154) state that “Any of the abovecited studies. . . constitute ana priori justification
for restricting the value of [RA] to be a maximum of ten, as we do in this study.” Weil (1989, p. 411) describesγ = 40
as “implausibly” high. Swanson (2012) shows thatγ does not equate to risk aversion when agents have a labor margin.
Therefore, only in production economies canγ be reasonably above10, where it is common to see values around100.

14The mean risk-free rate is given byE[r̂f,t] = α1 + α2σ
2
a + α3σ

2
y and the mean equity premium is given by

E[ept] = α4σ
2
a + α5σ

2
y for some function of model parametersαi, i ∈ {1, . . . , 5}. Therefore, the contribution of

valuation risk to the risk-free rate and equity premium is given byα2σ
2
a/(α2σ

2
a + α3σ

2
y) andα4σ

2
a/(α4σ

2
a + α5σ

2
y).
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Parameter Current Revised Revised Max RA

γ 1.55 74.23 10.00
(1.52, 1.58) (70.95, 77.47) (10.00, 10.00)

β 0.9977 0.9957 0.9973
(0.9976, 0.9978) (0.9956, 0.9957) (0.9972, 0.9973)

ρa 0.9968 0.9899 0.9879
(0.9965, 0.9971) (0.9896, 0.9902) (0.9876, 0.9882)

σa 0.00031 0.03547 0.03880
(0.00030, 0.00033) (0.03491, 0.03596) (0.03832, 0.03927)

µy 0.0016 0.0016 0.0017
(0.0016, 0.0016) (0.0016, 0.0016) (0.0017, 0.0017)

µd 0.0015 0.0021 0.0010
(0.0015, 0.0016) (0.0020, 0.0021) (0.0009, 0.0010)

σy 0.0058 0.0058 0.0058
(0.0057, 0.0058) (0.0057, 0.0059) (0.0057, 0.0060)

ψd 1.54 0.97 1.09
(1.43, 1.64) (0.87, 1.07) (0.97, 1.19)

πdy 0.815 0.436 0.617
(0.764, 0.872) (0.400, 0.472) (0.562, 0.674)

J 29.27 47.98 55.55
(28.62, 29.98) (47.62, 48.35) (54.93, 56.11)

pval 0.000 0.000 0.000
(0.000, 0.000) (0.000, 0.000) (0.000, 0.000)

(a) Average and(5, 95) percentiles of the parameter estimates. TheJ-test has6 degrees of freedom. The IES is2.5.

Moment Data Current Revised Revised Max RA

E[∆c] 1.89 1.89 1.94 2.01
(0.00) (0.18) (0.49)

E[∆d] 1.47 1.84 2.47 1.17
(0.38) (1.04) (−0.32)

E[rd] 6.51 5.46 5.59 4.06
(−0.66) (−0.58) (−1.53)

E[rf ] 0.25 0.25 0.36 1.06
(0.00) (0.18) (1.32)

E[zd] 3.42 3.45 3.49 3.56
(0.18) (0.47) (1.02)

SD[∆c] 1.99 1.99 2.00 2.00
(0.00) (0.01) (0.02)

SD[∆d] 11.09 3.47 2.13 2.49
(−2.79) (−3.28) (−3.14)

SD[rd] 19.15 18.41 13.65 13.44
(−0.39) (−2.90) (−3.01)

SD[rf ] 2.72 3.21 3.69 3.86
(0.96) (1.92) (2.25)

SD[zd] 0.45 0.46 0.25 0.23
(0.22) (−3.16) (−3.49)

AC[rf ] 0.68 0.95 0.90 0.88
(4.12) (3.36) (3.14)

AC[zd] 0.89 0.92 0.85 0.83
(0.64) (−0.85) (−1.30)

Corr[∆c,∆d] 0.54 0.47 0.41 0.50
(−0.32) (−0.59) (−0.19)

Corr[∆c, rd] 0.05 0.09 0.06 0.09
(0.57) (0.23) (0.61)

Corr[∆d, rd ] 0.07 0.19 0.15 0.18
(1.41) (1.03) (1.38)

(b) Data and average model-implied moments. The t-statistics are shown in parentheses.

Table 1: Baseline model. Revised Max RA imposes that the riskaversion parameter,γ, cannot exceed10.
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literature—the fit deteriorates further (J = 55.6 vs. 48.0). The primary source of the poorer fit is

the larger estimate of the risk-free rate (1.1% vs. 0.4%) and lower equity return (4.1% vs. 5.6%).

Overall, our results demonstrate that introducing valuation risk to the baseline model in its

revised form does not resolve the equity premium and risk-free rate puzzles. The rest of the paper

re-examines whether revised valuation risk has a significant role in richer asset pricing models.

6 ESTIMATED LONG-RUN RISK MODEL

Long-run risk provides a well-known resolution to many asset pricing puzzles. This section intro-

duces this feature into our baseline model and re-examines the marginal contribution of valuation

risk with the revised preferences. To introduce long-run risk, we modify (17) and (18) as follows:

∆ŷt+1 = µy + x̂t + σyεy,t+1, εy,t+1 ∼ N(0, 1), (26)

∆d̂t+1 = µd + φdx̂t + πdyσyεy,t+1 + ψdσyεd,t+1, εd,t+1 ∼ N(0, 1), (27)

x̂t+1 = ρxx̂t + ψxσyεx,t+1, εx,t+1 ∼ N(0, 1), (28)

where the specification of the persistent component,x̂t, follows Bansal and Yaron (2004). We

apply the same estimation procedure as the baseline model, except there are three additional pa-

rameters,φd, ρx, andψx. We also match up to five additional moments: the autocorrelations of

consumption growth, dividend growth, and the equity returnand two predictability moments—the

correlations of consumption growth and the equity premium with the lagged price-dividend ratio.15

Once again, we find the model prefers an extremely high IES even though it does not signifi-

cantly lower theJ value. As a result, we continue to set the IES to2.5 and estimate the remaining

parameters. The parameter estimates are reported intable 2and the moments are shown intable 3.

The tables show the results for four variants of the same model: with and without targeting the

standard deviation and autocorrelation of the risk-free rate and with and without valuation risk.

We begin with the long-run risk model without valuation riskand without the risk-free rate

moments (column 1). This is a typical model estimated in the literature. The model fails to pass

the over-identifying restrictions test at the5% level, signalling that the standard long-run risk model

is insufficient to adequately describe the behavior of assetprices and cash flows. The parameter

estimates are similar to the estimates in the literature. Inparticular, the data required a small but

very persistent shock that generates risk in long-run cash-flow growth (ρx = .9988; ψx = 0.0260).

The literature typically excludes the standard deviation and autocorrelation of the risk-free

when estimating the long-run risk model because the model does not generate sufficient volatility

(a standard deviation of0.51 vs. 2.72 in the data) and over-predicts the autocorrelation (0.96 vs.

15Long-run risk adds one additional state variable,x̂t. Following the guess and verify procedure applied to the base-
line model, we use Mathematica to solve for unknown coefficients in the price-endowment and price-dividend ratios.
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OmitsSD[rf ] & AC[rf ] All Moments

Parameter No VR Revised No VR Revised

γ 2.58 2.63 2.70 2.54
(2.31, 2.84) (2.35, 2.93) (2.41, 2.96) (2.25, 2.83)

β 0.9990 0.9980 0.9990 0.9989
(0.9989, 0.9991) (0.9979, 0.9982) (0.9988, 0.9991) (0.9987, 0.9990)

ρa − 0.9802 − 0.9548
(0.9800, 0.9835) (0.9531, 0.9565)

σa − 0.0476 − 0.0167
(0.0452, 0.0498) (0.0161, 0.0173)

µy 0.0016 0.0016 0.0016 0.0016
(0.0014, 0.0017) (0.0014, 0.0018) (0.0015, 0.0017) (0.0014, 0.0017)

µd 0.0013 0.0013 0.0014 0.0013
(0.0009, 0.0016) (0.0009, 0.0016) (0.0012, 0.0017) (0.0009, 0.0016)

σy 0.0041 0.0041 0.0049 0.0041
(0.0040, 0.0042) (0.0039, 0.0043) (0.0048, 0.0050) (0.0040, 0.0042)

ψd 3.25 2.78 3.05 3.17
(3.02, 3.47) (2.53, 3.02) (2.83, 3.25) (2.92, 3.41)

πdy 0.588 0.813 0.122 0.666
(0.322, 0.868) (0.547, 1.120) (−0.200, 0.418) (0.416, 0.916)

φd 2.30 1.55 2.15 2.19
(2.07, 2.51) (1.44, 1.68) (1.94, 2.34) (1.97, 2.43)

ρx 0.9988 0.9994 0.9977 0.9990
(0.9983, 0.9992) (0.9992, 0.9995) (0.9969, 0.9985) (0.9985, 0.9994)

ψx 0.0260 0.0261 0.0314 0.0255
(0.0247, 0.0274) (0.0248, 0.0274) (0.0292, 0.0335) (0.0242, 0.0269)

J 20.55 14.29 56.48 19.59
(19.80, 21.30) (13.86, 14.72) (55.64, 57.39) (18.96, 20.27)

pval 0.009 0.027 0.000 0.012
(0.006, 0.011) (0.023, 0.031) (0.000, 0.000) (0.009, 0.015)

df 8 6 10 8

Table 2: Long-run risk model. Average and(5, 95) percentiles of the parameter estimates. The IES is2.5.

0.68 in the data). Even when these two moments are targeted, as shown in column 3, long-run

cash-flow risk is unable to significantly improve on these moments (the standard deviation rises to

0.68 and the autocorrelation falls to0.95). The standard long-run risk model also fairs poorly on

three additional moments: (1) the standard deviation of dividend growth (too low), (2) the corre-

lation between dividend growth and the return on equity (toohigh), and (3) the predictability of

consumption growth (too high). All of them are significantlydifferent from their empirical targets.

Adding valuation risk (columns 2 and 4) significantly improves the fit of the model. With the

restricted set of moments, theJ value declines from20.6 to 14.3. More importantly, the p-value

from the over-identifying restrictions test rises from0.01 to 0.03, even though the valuation risk

model contains two more parameters than the standard model (6 degrees of freedom instead of8).

Unlike cash-flow risk, valuation risk directly affects the time-series properties of the risk-free

rate, which makes it important to target these moments in theestimation. In column 2, the model

includes valuation risk but targets neither the standard deviation nor the autocorrelation of the risk-

free rate. As a result, the estimated model significantly over-predicts both moments (the standard

deviation is5.48 vs. 2.72 in the data and the autocorrelation is0.84 vs. 0.68 in the data). How-
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OmitsSD[rf ] & AC[rf ] All Moments

Moment Data No VR Revised No VR Revised

E[∆c] 1.89 1.89 1.89 1.89 1.89
(0.00) (0.03) (−0.01) (0.00)

E[∆d] 1.47 1.53 1.54 1.71 1.50
(0.06) (0.07) (0.25) (0.03)

E[rd] 6.51 6.33 6.44 5.82 6.43
(−0.11) (−0.05) (−0.43) (−0.05)

E[rf ] 0.25 0.26 0.26 0.26 0.25
(0.01) (0.01) (0.01) (0.00)

E[zd] 3.42 3.42 3.40 3.41 3.42
(0.00) (−0.18) (−0.07) (0.00)

SD[∆c] 1.99 1.92 1.96 2.40 1.91
(−0.14) (−0.07) (0.84) (−0.16)

SD[∆d] 11.09 5.59 4.64 6.38 5.42
(−2.01) (−2.36) (−1.72) (−2.07)

SD[rd] 19.15 18.15 19.75 18.92 18.21
(−0.53) (0.32) (−0.12) (−0.50)

SD[rf ] 2.72 0.51 5.48 0.68 2.82
(−4.36) (5.43) (−4.03) (0.19)

SD[zd] 0.45 0.53 0.46 0.51 0.52
(1.29) (0.10) (0.98) (1.14)

AC[∆c] 0.53 0.43 0.46 0.48 0.43
(−1.07) (−0.74) (−0.59) (−1.07)

AC[∆d] 0.19 0.27 0.20 0.31 0.26
(0.76) (0.12) (1.16) (0.65)

AC[rd] −0.01 0.00 −0.05 0.00 −0.01
(0.17) (−0.44) (0.08) (0.02)

AC[rf ] 0.68 0.96 0.84 0.95 0.69
(4.33) (2.47) (4.21) (0.14)

AC[zd] 0.89 0.94 0.90 0.93 0.94
(1.05) (0.29) (0.83) (1.00)

Corr[∆c,∆d] 0.54 0.48 0.51 0.44 0.49
(−0.28) (−0.14) (−0.46) (−0.23)

Corr[∆c, rd] 0.05 0.07 0.06 0.08 0.07
(0.32) (0.18) (0.50) (0.29)

Corr[∆d, rd ] 0.07 0.24 0.19 0.28 0.23
(2.07) (1.44) (2.53) (1.96)

Corr[ep, zd,−1] −0.16 −0.17 −0.13 −0.14 −0.17
(−0.04) (0.38) (0.25) (−0.01)

Corr[∆c, zd,−1] 0.19 0.66 0.59 0.69 0.65
(2.67) (2.30) (2.85) (2.64)

Table 3: Long-run risk model. Data and average model-implied moments. The t-statistic is in parentheses.

ever, once these moments are targeted in the estimation (column 4), the standard deviation of the

risk-free rate is2.82 and the autocorrelation of the risk-free rate is0.69, consistent with the data.

In both columns 2 and 4, the model closely matches the mean risk-free rate and equity return.

However, the contribution of valuation risk is quite different across the different sets of moments.

Recall that in the baseline model, valuation risk explains asizable majority of the risk-free rate and

equity premium. In column 2, valuation risk has a smaller butstill meaningful contribution (48.2%

of the risk-free rate and 38.9% of the equity premium). In column 4, however, it explains very

little of these moments (8.8% and 5.1%) because the model requires smaller and less persistent

valuation risk shocks in order to match the dynamics of the risk-free rate. These results show that
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valuation risk does not unilaterally resolve the risk-freerate and equity premium puzzles, but the

overall fit of the model indicates that it has a meaningful role in matching asset pricing moments.

Despite the improvements in fit, the long-run risk model withvaluation risk still performs

poorly on the three moments listed above. Furthermore, all four specifications fail to pass the over-

identifying restrictions test at the5% level. The next section tries to address these shortcomings.

7 ESTIMATED EXTENDED LONG-RUN RISK MODEL

We consider two extensions to the long-run risk model. First, we allow valuation risk shocks to

directly affect cash-flow growth, in addition to their effect on asset prices through the SDF (hence-

forth, the “Demand” shock model). This feature is similar toa discount factor shock in a production

economy model. For example, in the workhorse New Keynesian model, an increase in the discount

factor looks like a negative demand shock that lowers interest rates, inflation, and consumption.

Therefore, it provides another potential mechanism for valuation risk to help fit the data, especially

the correlation moments. Following Albuquerque et al. (2016), we modify (26) and (27) as follows:

∆ŷt+1 = µy + x̂t + σyεy,t+1 + πyaσaεa,t+1, (29)

∆d̂t+1 = µd + φdx̂t + πdaσaεa,t+1, (30)

whereπya andπda determine the covariances between valuation risk shocks and cash-flow growth.16

Second, we add stochastic volatility to cash-flow risk following Bansal and Yaron (2004)

(henceforth, the “SV” model). SV introduces time-varying uncertainty. Bansal et al. (2016) show

SV leads to a significant improvement in fit. An important question is therefore whether the pres-

ence of SV will affect the role of valuation risk. To introduce SV, we modify (26)-(28) as follows:

∆ŷt+1 = µy + x̂t + σy,tεy,t+1, (31)

∆d̂t+1 = µd + φdx̂t + πdyσy,tεy,t+1 + ψdσy,tεd,t+1, (32)

x̂t+1 = ρxx̂t + ψxσy,tεx,t+1, (33)

σ2
y,t+1 = σ2

y + ρσy(σ
2
y,t − σ2

y) + νyεσy,t+1, (34)

whereρσy is the persistence of the SV process andνy is the standard deviation of the SV shock.

Tables 4and5 present the estimates from three versions of the extended long-run risk model:

(1) the SV model without valuation risk (columns 1 and 4), (2)the demand shock model (columns

2 and 5), and (3) the combination of the demand shock and SV models (columns 3 and 6). In each

case, we report the results including and excluding the standard deviation and autocorrelation of

the risk-free rate as targeted moments, but we focus on the estimates from the full set of moments.

16With the inclusion ofπya andπda, πdy andψd are both redundant so we excluded them from the estimation.

17



DE GROOT, RICHTER & T HROCKMORTON: VALUATION RISK REVALUED

OmitsSD[rf ] & AC[rf ] All Moments

Ptr No VR+SV Demand Demand+SV No VR+SV Demand Demand+SV

γ 2.47 4.44 7.27 2.58 3.22 6.51
(2.29, 2.65) (4.08, 4.86) (4.02, 11.81) (2.41, 2.74) (2.99, 3.42) (5.14, 8.05)

β 0.9989 0.9989 0.9981 0.9982 0.9991 0.9980
(0.9987, 0.9990) (0.9989, 0.9990) (0.9974, 0.9987) (0.9981, 0.9983) (0.9990, 0.9991) (0.9977, 0.9983)

ρa − 0.9873 0.9894 − 0.9594 0.9930
(0.9863, 0.9899) (0.9845, 0.9923) (0.9576, 0.9614) (0.9921, 0.9936)

σa − 0.0375 0.0339 − 0.0185 0.0288
(0.0351, 0.0398) (0.0306, 0.0367) (0.0179, 0.0193) (0.0275, 0.0296)

µy 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016
(0.0015, 0.0016) (0.0015, 0.0016) (0.0015, 0.0016) (0.0014, 0.0017) (0.0015, 0.0016) (0.0015, 0.0016)

µd 0.0015 0.0015 0.0015 0.0013 0.0015 0.0015
(0.0014, 0.0017) (0.0013, 0.0017) (0.0013, 0.0017) (0.0010, 0.0016) (0.0012, 0.0016) (0.0014, 0.0017)

σy 0.0026 0.0039 0.0014 0.0008 0.0041 0.0006
(0.0009, 0.0041) (0.0037, 0.0041) (0.0002, 0.0029) (0.0004, 0.0014) (0.0039, 0.0042) (0.0001, 0.0013)

ψd 3.41 − − 2.99 − −
(3.09, 3.79) (2.79, 3.19)

πdy 0.658 − − 0.771 − −
(0.280, 1.066) (0.503, 1.049)

φd 2.19 3.36 3.17 1.90 2.69 2.84
(1.97, 2.42) (3.14, 3.61) (2.66, 3.52) (1.81, 2.00) (2.54, 2.85) (2.65, 2.99)

ρx 0.9973 0.9947 0.9949 0.9992 0.9975 0.9958
(0.9966, 0.9980) (0.9937, 0.9954) (0.9938, 0.9962) (0.9989, 0.9994) (0.9971, 0.9980) (0.9952, 0.9965)

ψx 0.0308 0.0393 0.0382 0.0255 0.0306 0.0358
(0.0280, 0.0337) (0.0358, 0.0416) (0.0346, 0.0418) (0.0241, 0.0269) (0.0285, 0.0313) (0.0334, 0.0385)

πya − −0.041 −0.044 − −0.055 −0.049
(−0.050, −0.031) (−0.059, −0.030) (−0.074, −0.038) (−0.064, −0.033)

πda − −0.738 −0.817 − −1.036 −0.877
(−0.767, −0.713) (−0.874, −0.771) (−1.068, −1.003) (−0.905, −0.852)

ρσy
0.9971 − 0.7011 0.9630 − 0.7708

(0.9952, 0.9985) (0.1619, 0.9739) (0.9589, 0.9668) (0.5997, 0.8794)

νy 3.0e−6 − 2.2e−5 1.2e−5 − 2.7e−5
(1.4e−6, 4.6e−6) (7.1e−6, 3.6e−5) (1.1e−5, 1.4e−5) (2.0e−5, 3.5e−5)

J 15.48 9.47 8.71 18.09 13.52 9.25
(14.88, 16.05) (9.11, 9.85) (7.82, 9.27) (17.38, 18.81) (12.98, 14.04) (8.85, 9.66)

pval 0.017 0.149 0.070 0.021 0.096 0.161
(0.014, 0.021) (0.131, 0.168) (0.055, 0.098) (0.016, 0.026) (0.081, 0.113) (0.140, 0.182)

df 6 6 4 8 8 6

Table 4: Extended long-run risk models. Average and(5, 95) percentiles of the parameter estimates. The IES is2.5.

A key finding is that all three extensions improve on the p-values from the simpler long-run

risk models in the previous section. Adding SV to the model without valuation risk increases the

p-value from near zero (table 2, column 3) to0.02 (table 4, column 4).17 The estimated SV process

is very persistent (ρσy = 0.9630) and the shock is statistically significant, consistent with the

literature. The improved fit largely occurs because SV helpsmatch the risk-free rate dynamics (the

standard deviation is2.54 vs. 2.72 in the data and the autocorrelation is0.69 vs. 0.68 in the data).

The Demand model increases the p-value from0.012 (table 2, column 4) to0.096 (table 4,

column 5). Thus, the Demand model easily passes the over-identifying restrictions test at the5%

17The No VR+SV model is the same model BKY estimate. In that paper, the model passes the over-identifying
restrictions test at the5% level, while in our case it does not. The key difference is that BKY do not target the
correlations between cash-flows and the equity return. Whenwe exclude these moments, our p-value jumps to0.15.
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OmitsSD[rf ] & AC[rf ] All Moments

Moment Data No VR+SV Demand Demand+SV No VR+SV Demand Demand+SV

E[∆c] 1.89 1.88 1.89 1.89 1.90 1.87 1.89
(−0.04) (0.00) (0.01) (0.05) (−0.08) (0.02)

E[∆d] 1.47 1.84 1.78 1.79 1.58 1.74 1.83
(0.38) (0.32) (0.33) (0.11) (0.28) (0.38)

E[rd] 6.51 6.11 5.61 5.67 6.68 5.81 5.78
(−0.25) (−0.56) (−0.53) (0.10) (−0.44) (−0.46)

E[rf ] 0.25 0.23 0.26 0.26 0.13 0.36 0.19
(−0.04) (0.01) (0.00) (−0.21) (0.17) (−0.11)

E[zd] 3.42 3.41 3.39 3.39 3.41 3.40 3.39
(−0.12) (−0.22) (−0.24) (−0.07) (−0.16) (−0.21)

SD[∆c] 1.99 1.91 1.98 1.99 2.01 1.98 2.09
(−0.16) (−0.03) (0.00) (0.03) (−0.04) (0.21)

SD[∆d] 11.09 5.65 10.62 10.54 5.28 7.60 9.68
(−1.99) (−0.17) (−0.20) (−2.12) (−1.28) (−0.51)

SD[rd] 19.15 19.54 18.93 19.07 18.71 18.31 18.69
(0.21) (−0.11) (−0.04) (−0.23) (−0.44) (−0.24)

SD[rf ] 2.72 1.00 3.37 3.25 2.54 2.97 2.69
(−3.39) (1.28) (1.05) (−0.36) (0.49) (−0.07)

SD[zd] 0.45 0.47 0.47 0.46 0.51 0.50 0.48
(0.36) (0.32) (0.21) (0.91) (0.81) (0.46)

AC[∆c] 0.53 0.46 0.43 0.44 0.44 0.43 0.45
(−0.78) (−1.04) (−0.99) (−0.97) (−1.07) (−0.92)

AC[∆d] 0.19 0.26 0.17 0.16 0.24 0.21 0.17
(0.64) (−0.22) (−0.35) (0.45) (0.20) (−0.24)

AC[rd] −0.01 −0.01 0.02 −0.02 −0.03 0.02 −0.03
(0.04) (0.32) (−0.07) (−0.26) (0.32) (−0.20)

AC[rf ] 0.68 0.93 0.88 0.82 0.69 0.71 0.70
(3.93) (3.13) (2.13) (0.08) (0.49) (0.25)

AC[zd] 0.89 0.92 0.90 0.90 0.93 0.93 0.91
(0.53) (0.24) (0.15) (0.87) (0.81) (0.41)

Corr[∆c,∆d] 0.54 0.49 0.54 0.53 0.51 0.49 0.51
(−0.21) (0.02) (−0.05) (−0.13) (−0.24) (−0.11)

Corr[∆c, rd] 0.05 0.07 0.11 0.10 0.06 0.09 0.10
(0.30) (0.88) (0.81) (0.18) (0.59) (0.79)

Corr[∆d, rd ] 0.07 0.22 0.03 0.04 0.21 0.13 0.06
(1.88) (−0.42) (−0.37) (1.72) (0.79) (−0.06)

Corr[ep, zd,−1] −0.16 −0.27 −0.10 −0.12 −0.23 −0.14 −0.12
(−1.05) (0.72) (0.45) (−0.65) (0.26) (0.42)

Corr[∆c, zd,−1] 0.19 0.57 0.62 0.61 0.65 0.66 0.62
(2.19) (2.45) (2.39) (2.63) (2.66) (2.47)

Table 5: Extended long-run risk model. Data and average model-implied moments. The t-statistic is in parentheses.

level. Consistent with the predictions of a production economy model,πya andπda are negative in

the estimation. More specifically, a positive valuation risk shock, which makes households more

patient, reduces consumption and dividend growth. In a direct horse race between the SV model

and the Demand model, which have the same number of parameters, the Demand model wins. The

superior fit of the Demand model comes from the fact that it better matches the high volatility of

dividend growth and the low correlation between dividend growth and equity returns. The model

is better able to match these moments because the volatilityof dividend growth increases withπda
while partially offsetting the positive relationship between valuation risk and the return on equity.

The Demand+SV model (column 6) increases the p-value to0.161, passing the over-identifying
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restrictions test at the10% level. This result reveals that the two extensions to the long-run risk

model are complements, rather than substitutes, which is not obviousa priori because both features

help match risk-free rate dynamics. It also occurs even though the two additional parameters in the

model reduce the degrees of freedom and the critical value for the over-identifying restrictions test.

The model continues to fail on one key moment: the predictability of consumption growth

given the price dividend ratio (i.e.,Corr[∆c, zd,−1]) remains too high (0.62 vs. 0.19 in the data).

The overall improvement in fit occurs because the Demand+SV model does a much better job

matching dividend growth dynamics. Specifically, it bettermatches the standard deviation of div-

idend growth (9.68 vs. 11.09 in the data) and the weak correlation between dividend growth and

equity returns (0.06 vs. 0.07 in the data). In this model, valuation risk has a bigger role than in the

Demand model (ρa = 0.993 vs. ρa = 0.959; σa = 0.0288 vs. σa = 0.0185), while the SV process

is not as persistent (ρσy = 0.771 vs. ρσy = 0.963) as in the No VR+SV model. Also,σy is signif-

icantly smaller, so the contribution of consumption growthvolatility from pure endowment risk is

smaller when compared to the Demand model. The Demand model has trouble matching dividend

growth dynamics while simultaneously matching risk-free rate dynamics. An expanded role of

valuation risk is crucial for matching dividend growth dynamics. Without SV, this is not possible

because it would cause the model to miss on the risk-free ratedynamics. Introducing SV, however,

permits a lowerσy, which helps offset the effect of valuation risk on the risk-free rate dynamics.

8 CONCLUSION

The way valuation risk enters Epstein-Zin recursive utility has important implications. Under the

current specification in the literature, an undesirable asymptote in the parameter space permeates

equilibrium outcomes. The asymptote occurs as the IES approaches unity, but it profoundly affects

asset prices even when the IES is well above one. As a consequence, the asymptote perversely

allows valuation risk alone to explain the historically lowrisk-free rate and high equity premium.

Once we revise the preferences to remove the undesirable asymptote, valuation risk has a much

smaller role in resolving the equity premium and risk-free rate puzzles. However, we find valuation

risk still plays an important role in matching the standard deviation and autocorrelation of the risk-

free rate. Furthermore, allowing valuation risk to directly affect cash-flow growth, similar to a

production economy model, adds a source of volatility that significantly improves the empirical fit

and helps match the standard deviation of dividend growth and its correlation with equity returns.
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A I SOMORPHICREPRESENTATIONS OF THECURRENT SPECIFICATION

In the current literature, the preference shock typically hits current utility. If, for simplicity, we

abstract from Epstein-Zin preferences, then the value function and Euler equation are given by

Vt = αtu(ct) + βEt[Vt+1], (35)

βEt[(αt+1/αt)u
′(ct+1)/u

′(ct)ry,t+1] = 1. (36)

The shock follows∆α̂t+1 = ρ∆α̂t + σαεt, so the change inαt is known at timet. Alternatively, if

the preference shock hits future consumption, the value function and Euler equation are given by

Vt = u(ct) + atβEt[Vt+1], (37)

atβEt[u
′(ct+1)/u

′(ct)ry,t+1] = 1. (38)

If the shock followsât = ρât−1 + σaεt, the two specifications are isomorphic because setting

at ≡ αt+1/αt in (38) yields (36). We use the second specification because it is easier to compare

the current and revised preferences when the shock always shows up in the Euler equation in levels.

B ANALYTICAL DERIVATIONS

Stochastic Discount Factor The value function for specificationj ∈ {C,R} is given by

V j
t = max[wj1,tc

(1−γ)/θ
t + wj2,t(Et[(V

j
t+1)

1−γ])1/θ]θ/(1−γ)

− λt(ct + py,ts1,t + pd,ts2,t − (py,t + yt)s1,t−1 − (pd,t + dt)s2,t−1),

wherewC1,t = 1−β,wR1,t = 1−aRt β,wC2,t = aCt β, andwR2,t = aRt β. The optimality conditions imply

wj1,t(V
j
t )

1/ψc
−1/ψ
t = λt, (39)

wj2,t(V
j
t )

1/ψ(Et[(V
j
t+1)

1−γ ])1/θ−1Et[(V
j
t+1)

−γ(∂V j
t+1/∂s1,t)] = λtpy,t, (40)

wj2,t(V
j
t )

1/ψ(Et[(V
j
t+1)

1−γ])1/θ−1Et[(V
j
t+1)

−γ(∂V j
t+1/∂s2,t)] = λtpd,t, (41)

where∂V j
t /∂s1,t−1 = λt(py,t + yt) and∂V j

t /∂s2,t−1 = λt(pd,t + dt) by the envelope theorem.

Updating the envelope conditions and combining (39)-(41) generates (8) and (9) in the main text.
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Following Epstein and Zin (1991), we posit the following minimum state variable solution:

V j
t = ξ1,ts1,t−1 + ξ2,ts2,t−1 and ct = ξ3,ts1,t−1 + ξ4,ts2,t−1. (42)

whereξ is a vector of unknown coefficients. The envelope conditionscombined with (39) imply

ξ1,t = wj1,t(V
j
t )

1/ψc
−1/ψ
t (py,t + yt), (43)

ξ2,t = wj1,t(V
j
t )

1/ψc
−1/ψ
t (pd,t + dt). (44)

Multiplying the respective conditions bys1,t−1 ands2,t−1 and then adding yields

V j
t = wj1,t(V

j
t )

1/ψc
−1/ψ
t ((py,t + yt)s1,t−1 + (pd,t + dt)s2,t−1), (45)

which after plugging in the budget constraint, (5), and imposing equilibrium can be written as

(V j
t )

(1−γ)/θ = wj1,tc
−1/ψ
t (ct + py,ts1,t + pd,ts2,t) = wj1,tc

−1/ψ
t (ct + py,t). (46)

Therefore, the optimal value function is given by

wj1,tc
−1/ψ
t py,t = wj2,t(Et[(V

j
t+1)

1−γ ])1/θ. (47)

Solving (46) for V j
t and (47) for Et[(V

j
t+1)

1−γ ] and then plugging into (8) and (9) implies

mj
t+1 = (xjt )

θ(ct+1/ct)
−θ/ψrθ−1

y,t+1, (48)

wherexjt ≡ wj2tw
j
1t+1/w

j
1t. Taking logs of (48) yields (1), given the following definitions:

x̂Ct = β̂ + âCt ,

x̂Rt = β̂ + âRt + log(1− β exp(âRt+1))− log(1− β exp(âRt )) ≈ β̂ + (âRt − βâRt+1)/(1− β),

andât ≡ âCt = âRt /(1− β) so the preference shocks in the current and revised models are directly

comparable. It immediately follows thatx̂jt = β̂+ât−ω
jât+1 as in (1), whereωC = 0 andωR = β.

Campbell-Shiller Approximation The return on the endowment is approximated by

r̂y,t+1 = log(yt+1(py,t+1/yt+1) + yt+1)− log(yt(py,t/yt))

= log(exp(ẑy,t+1) + 1)− ẑy,t +∆ŷt+1

≈ log(exp(ẑy) + 1) + exp(ẑy)(ẑy,t+1 − ẑy)/(1 + exp(ẑy))− ẑy,t +∆ŷt+1

= κy0 + κy1ẑy,t+1 − ẑy,t +∆ŷt+1.

The derivation for the equity return,r̂d,t+1, is analogous to the return on the endowment.
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Model Solution We use a guess and verify method. For the endowment claim, we obtain

0 = log(Et[exp(m̂t+1 + r̂y,t+1)])

= log(Et[exp(θβ̂ + θ(ât − ωj ât+1) + θ(1− 1/ψ)∆ŷt+1 + θ(κy0 + κy1ẑy,t+1 − ẑy,t))])

= log

(

Et

[

exp

(

θβ̂ + θ(ât − ωj ât+1) + θ(1− 1/ψ)(µy + σyεy,t+1)

+θκy0 + θκy1(ηy0 + ηy1ât+1)− θ(ηy0 + ηy1ât)

)])

= log




Et




exp






θβ̂ + θ(1− 1/ψ)µy + θ(κy0 + ηy0(κy1 − 1))

+θ(1− ωjρa + ηy1(κy1ρa − 1))ât

+θ(1− 1/ψ)σyεy,t+1 + θ(κy1ηy1 − ωj)σaεa,t+1
















= θβ̂ + θ(1− 1/ψ)µy + θ(κy0 + ηy0(κy1 − 1)) + θ2

2 (1− 1/ψ)2σ2y

+ θ2

2 (κy1ηy1 − ωj)2σ2a + θ(1− ωjρa + ηy1(κy1ρa − 1))ât,

where the last equality follows from the log-normality ofexp(εy,t+1) andexp(εa,t+1).

After equating coefficients, we obtain the following exclusion restrictions:

β̂ + (1− 1/ψ)µy + (κy0 + ηy0(κy1 − 1)) + θ
2
((1− 1/ψ)2σ2

y + (κy1ηy1 − ωj)2σ2
a) = 0, (49)

1− ωjρa + ηy1(κy1ρa − 1) = 0. (50)

For the dividend claim, we obtain

0 = log(Et[exp(m̂t+1 + r̂d,t+1)])

= log

(

Et

[

exp

(

θβ̂ + θ(ât − ωj ât+1) + (θ(1− 1/ψ) − 1)∆ŷt+1 +∆d̂t+1

+(θ − 1)(κy0 + κy1ẑy,t+1 − ẑy,t) + (κd0 + κd1ẑd,t+1 − ẑd,t)

)])

= log









Et









exp









θβ̂ + (θ(1− 1/ψ) − 1)µy + µd

+(θ − 1)(κy0 + ηy0(κy1 − 1)) + (κd0 + ηd0(κd1 − 1))

+(θ(1− ωjρa) + (θ − 1)ηy1(κy1ρa − 1) + ηd1(κd1ρa − 1))ât

(πdy − γ)σyεy,t+1 + ((θ − 1)κy1ηy1 + κd1ηd1 − θωj)σaεa,t+1 + ψdσyεd,t+1

























= θβ̂ + (θ(1− 1/ψ) − 1)µy + µd + (θ − 1)(κy0 + ηy0(κy1 − 1)) + (κd0 + ηd0(κd1 − 1))

+ (θ(1− ωjρa) + (θ − 1)ηy1(κy1ρa − 1) + ηd1(κd1ρa − 1))ât

+ 1
2((πdy − γ)2σ2y + ((θ − 1)κy1ηy1 + κd1ηd1 − θωj)2σ2a + ψ2

dσ
2
y).

Once again, equating coefficients implies the following exclusion restrictions:

θβ̂ + (θ(1− 1/ψ)− 1)µy + µd + (θ − 1)(κy0 + ηy0(κy1 − 1)) + (κd0 + ηd0(κd1 − 1))

+1
2
((πdy − γ)2σ2

y + ((θ − 1)κy1ηy1 + κd1ηd1 − θωj)2σ2
a + ψ2

dσ
2
y) = 0, (51)

θ(1− ωjρa) + (θ − 1)ηy1(κy1ρa − 1) + ηd1(κd1ρa − 1) = 0. (52)

Equations (49)-(52), along with (15) and (16), form a system of8 equations and8 unknowns.
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Asset Prices Given the coefficients, we can solve for the risk free rate. The Euler equation implies

r̂f,t = − log(Et[exp(m̂t+1)]) = −Et[m̂t+1]−
1
2
Vart[m̂t+1],

since the risk-free rate is known at time-t. The pricing kernel is given by

m̂t+1 = θβ̂ + θ(ât − ωjât+1)− (θ/ψ)∆ŷt+1 + (θ − 1)r̂y,t+1

= θβ̂ + θ(ât − ωjât+1)− γ∆ŷt+1 + (θ − 1)(κy0 + κy1ẑy,t+1 − ẑy,t)

= θβ̂ − γµy + (θ − 1)(κy0 + ηy0(κy1 − 1)) + (θ(1− ωj) + (θ − 1)ηy1(κy1ρa − 1))ât

+ ((θ − 1)κy1ηy1 − θωj)σaεa,t+1 − γσyεy,t+1

= θβ̂ − γµy + (θ − 1)(κy0 + ηy0(κy1 − 1)) + (1− ωjρa)ât

+ ((θ − 1)κy1ηy1 − θωj)σaεa,t+1)− γσyεy,t+1,

where the last line follows from imposing (50). Therefore, the risk-free rate is given by

r̂f,t = γµy − θβ̂ − (θ − 1)(κy0 + ηy0(κy1 − 1))− (1− ωjρa)ât

− 1
2
γ2σ2

y −
1
2
((θ − 1)κy1ηy1 − θωj)2σ2

a.

Note that̂rf,t = log(Et[exp(r̂f,t)]). After plugging in (49), we obtain

r̂f,t = µy/ψ − β̂ − (1− ωjρa)ât +
1
2((θ − 1)κ2y1η

2
y1 − θ(ωj)2)σ2a +

1
2((1/ψ − γ)(1− γ)− γ2)σ2y .

Therefore, the unconditional expected risk-free rate is given by

E[r̂f ] = −β̂ + µy/ψ + 1
2
((θ − 1)κ2y1η

2
y1 − θ(ωj)2)σ2

a +
1
2
((1/ψ − γ)(1− γ)− γ2)σ2

y . (53)

We can also derive an expression for the equity premium,Et[ept+1], which given by

log(Et[exp(r̂d,t+1 − r̂f,t)]) = Et[r̂d,t+1]− r̂f,t +
1
2
Vart[r̂d,t+1] = −Covt[m̂t+1, r̂d,t+1],

where the last equality stems from the Euler equation,Et[m̂t+1+r̂d,t+1]+
1
2
Vart[m̂t+1+r̂d,t+1] = 0.

We already solved for the SDF, so the last step is to solve for the equity return, which given by

r̂d,t+1 = κd0 + κd1ẑd,t+1 − ẑd,t +∆d̂t+1

= κd0 + κd1(ηd0 + ηd1ât+1)− (ηd0 + ηd1ât) + ∆d̂t+1

= µd + κd0 + ηd0(κd1 − 1) + ηd1(κd1ρa − 1)ât + κd1ηd1σaεa,t+1 + πdyσyεy,t+1 + ψdσyεd,t+1.

Therefore, the unconditional equity premium can be writtenas

E[ep] = γπdyσ
2
y + (θωj + (1− θ)κy1ηy1)κd1ηd1σ

2
a. (54)
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B.1 SPECIAL CASE 1 (σa = ψd = 0 & πdy = 1) In this case, there is no valuation risk (ât = 0)

and cash flow risk is perfectly correlated (∆ŷt+1 = µy + σyεy,t+1; ∆d̂t+1 = µd + σyεy,t+1). Under

these two assumptions, it is easy to see that (53) and (54) reduce to (20) and (21) in the main text.

B.2 SPECIAL CASE 2 (σy = 0, ρa = 0, & µy = µd) In this case, there is no cash flow

risk (∆ŷt+1 = ∆d̂t+1 = µy) and the time preference shocks arei.i.d. (ât+1 = σaεa,t+1). Un-

der these two assumptions, the return on the endowment and dividend claims are identical, so

{κy0, κy1, ηy0, ηy1} = {κd0, κd1, ηd0, ηd1} ≡ {κ0, κ1, η0, η1}. Therefore, (53) and (54) reduce to

(22) and (23) for the current specification and (24) and (25) for the revised specification.

The exclusion restriction, (50), impliesη1 = 1 so (49) simplifies to

0 = β̂ + (1− 1/ψ)µy + κ0 + η0(κ1 − 1) + θ
2
(κ1 − ωj)2σ2

a. (55)

First, recall that0 < κ1 < 1. Therefore, the asymptote inθ will permeate the solution with the

current preferences (ωC = 0). However, with the revised preferences (ωR = β), we guess and

verify thatκ1 = β whenψ = 1. In this case, (55) reduces tôβ + κ0 + η0(β − 1) = 0. Combining

with (15), this restriction implies thatη0 = log β−log(1−β) andκ0 = −(1−β) log(1−β)−β log β.

Plugging the expressions forη0, κ0, andκ1 back into (15) and (55) verifies our initial guess forκ1.

C NONLINEAR MODEL ASYMPTOTE

Assumingµt+1 ≡ yt+1/yt = dt+1/dt, the (nonlinear) Euler equation is given by

zt =
atβ

1− χjatβ

(
Et[((1− χjat+1β)µ

1−1/ψ
t+1 (1 + zt+1))

θ

︸ ︷︷ ︸
xt+1

]
)1/θ

, (56)

whereχC = 0 andχR = 1. Notice the asymptote disappears ifSD(xt+1) → 0 asψ → 1. The

main text focuses on results from a Campbell and Shiller (1988) approximation of the model. In

this appendix, we demonstrate three noteworthy results using the model’s exact, nonlinear, form.

One, consider the case without valuation risk, soat = 1 for all t. The Euler equation reduces to

zt = β(Et[(µ
1−1/ψ
t+1 (1 + zt+1))

θ])1/θ. (57)

Whenψ = 1, we guess and verify thatzt = β/(1−β), so the price-dividend ratio is constant. This

is the well know result that when the IES is1, the income and substitution effects of a change in

endowment growth offset. Therefore, the price-dividend ratio does not respond to cash flow risk.

Two, consider the case whenat is stochastic under the revised preferences (χR = 1) and either

ψ = 1 (CRRA preferences) orµt = 1 for all t (no cash-flow growth). In both cases, we guess

and verify thatzt = atβ/(1− atβ). The price dividend ratio is time-varying but independent of θ.
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Therefore, an asymptote does not affect equilibrium outcomes. The agent is certainty-equivalent.

Three, consider what happens under the current preferences(χC = 0), which do not account for

the offsetting movements in1−atβ. To obtain a closed-form solution for any IES, we assumeµt =

µ and the preference shock evolves according tolog(1 + at+1η) = σεt+1, whereεt+1 is standard

normal. Under these assumptions, we guess and verify that the price-dividend ratio is given by

zt = atη = atβµ
1−1/ψ exp(θσ2/2). (58)

In this case,θ appears in the price-dividend ratio, so the asymptote affects equilibrium outcomes.

These results prove that the asymptote is not due to a Campbell-Shiller approximation of the model.

D DATA SOURCES

We drew from the following data sources to estimate our models:

1. [RCONS] Per Capita Real PCE (excluding durables): Annual, chained 2012 dollars.

Source: Bureau of Economic Analysis, National Income and Product Accounts, Table 7.1.

2. [RETD] Value-Weighted Return (including dividends): Monthly. Source: Wharton Re-

search Data Services, CRSP Stock Market Indexes (CRSP ID: VWRETD).

3. [RETX] Value-Weighted Return (excluding dividends): Monthly. Source: Wharton Re-

search Data Services, CRSP Stock Market Indexes (CRSP ID: VWRETX).

4. [CPI] Consumer Price Index for All Urban Consumers: Monthly, not seasonally ad-

justed, index 1982-1984=100. Source: Bureau of Labor Statistics (FRED ID: CPIAUCNS).

5. [RFR] Risk-free Rate: Monthly, annualized yield calculated from nominal price.Source:

Wharton Research Data Services, CRSP Treasuries, Risk-free Series (CRSP ID: TMYTM).

We applied the following transformations to the above data sources:

1. Annual Per Capita Real Consumption Growth (annual frequency):

∆ĉt = 100 log(RCONSt/RCONSt−1)

2. Annual Real Dividend Growth (monthly frequency):

P1928M1 = 100, Pt = Pt−1(1 +RETXt), Dt = (RETDt − RETXt)Pt−1,

dt =
∑t

i=t−11Di/CPIt, ∆d̂t = 100 log(dt/dt−12)

3. Annual Real Equity Return (monthly frequency):

πmt = log(CPIt/CPIt−1), r̂d,t = 100
∑t

i=t−11(log(1 +RETDi)− πmi )
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4. Annual Real Risk-free Rate (monthly frequency):

rfrt = RFRt − log(CPIt+3/CPIt), πqt = log(CPIt/CPIt−12)/4,

r̂f,t = 400(β̂0 + β̂1RFRt + β̂2π
q
t ),

whereβ̂j are the OLS estimates in a regression of theex-postreal rate,rfr, on the nominal

rate,RFR, and lagged inflation,πq. The fitted values are estimates of theex-antereal rate.

5. Price-Dividend Ratio (monthly frequency):

ẑd,t = log(Pt/
∑t

i=t−11Di)

We use December of each year to convert each of the monthly time series to an annual frequency.

E ESTIMATION METHOD

The estimation procedure has two stages. The first stage estimates moments in the data using a 2-

step Generalized Method of Moments (GMM) estimator with a Newey and West (1987) weighting

matrix with 10 lags. The second stage is a Simulated Method of Moments (SMM)procedure that

searches for a parameter vector that minimizes the distancebetween the GMM estimates in the

data and short-sample predictions of the model, weighted bythe diagonal of the GMM estimate of

the variance-covariance matrix. The second stage is repeated for many different draws of shocks

to obtain a sampling distribution for each parameter. The following steps outline the algorithm:

1. Use GMM to estimate the moments,Ψ̂D
T , and the diagonal of the covariance matrix,Σ̂DT .

2. Use SMM to estimate the structural asset pricing model. Given a random seed,s, draw a

T -period sequence of shocks for each shock in the model. Denote the shock matrixEsT (e.g.,

in the baseline modelEsT = [εsy,t, ε
s
d,t, ε

s
a,t]

T
t=1). Fors ∈ {1, . . . , Ns}, run the following steps:

(a) Specify a guess,̂θ0, for the Np estimated parameters and the parameter variance-

covariance matrix,ΣP , which is initialized as a diagonal matrix.

(b) Use simulated annealing to minimize the loss function.

i. For i ∈ {0, . . . , Nd}, repeat the following steps:

A. Draw a candidate vector of parameters,θ̂candi , where

θ̂candi ∼







θ̂0 for i = 0,

N(θ̂i−1, c0ΣP ) for i > 0.
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We setc to target an acceptance rate of30%. For the revised preferences, we

restrict θ̂candi so thatβ exp(4(1 − β)
√

σ2
a/(1− ρ2a)) < 1. This ensures the

utility function weights are positive in99.997% of the simulated observations.

B. Solve the Campbell-Shiller approximation of the model givenθ̂candi .

C. GivenEsT (r), simulate the monthly modelR times forT periods. We draw

initial states,̂a0, from N(0, σ2
a/(1 − ρ2a)). For each repetitionr, calculate the

moments,ΨM
T (θ̂candi , EsT (r)), the same way they are calculated in the data.

D. Calculate the median moments across theR simulations,Ψ̄M
R,T (θ̂

cand
i , EsT ) =

median{ΨM
T (θ̂candi , EsT (r))}

R
r=1, and evaluate the loss function:

Js,candi = [Ψ̂D
T − Ψ̄M

R,T (θ̂
cand
i , EsT )]

′[Σ̂DT (1 + 1/R)]−1[Ψ̂D
T − Ψ̄M

R,T (θ̂
cand
i , EsT )].

E. Accept or reject the candidate draw according to

(θ̂si , J
s
i ) =







(θ̂candi , Js,candi ) if i = 0,

(θ̂candi , Js,candi ) if min(1, exp(Jsi−1 − Js,candi )/c1) > û,

(θ̂i−1, J
s
i−1) otherwise,

wherec1 is the temperature and̂u is a draw from a uniform distribution. The

lower the temperature, the more likely it is that the candidate draw is rejected.

ii. Find the parameter draŵθsmin that corresponds tomin{Jsi }
Nd
i=1, and updateΣsP .

A. Discard the firstNd/2 draws. Stack the remaining draws in aNd/2 × Np

matrix,Θ̂s, and definẽΘs = Θ̂s − 1Nd/2×1

∑Nd
i=Nd/2

θ̂si /(Nd/2).

B. CalculateΣs,upP = (Θ̃s)′Θ̃s/(Nd/2).

(c) Repeat the previous stepNSMM times, initializing at draŵθ0 = θ̂smin and covariance

matrix ΣP = Σs,upP . Gradually decrease the temperature. Of all the draws, find the

lowestNJ J values, denoted{Js,jguess}
NJ
j=1, and the corresponding draws,{θs,jguess}

NJ
j=1.

(d) Forj ∈ {1, . . . , NJ}, minimize the same loss function with MATLAB’sfminsearch

starting atθs,jguess. The resulting minimum iŝθs,jmin with a loss function value ofJs,jmin. Re-

peat, each time updating the guess, untilJs,jguess−J
s,j
min < 0.001. The parameter estimates

reported in the tables in the main paper, denotedθ̂s, correspond tomin{Js,jmin}
NJ
j=1.

3. The set of SMM parameter estimates{θ̂s}Nss=1 approximate the joint sampling distribution of

the parameters. We report its mean,θ̄ =
∑Ns

s=1 θ̂
s/Ns, and(5, 95) percentiles.

For all model specifications, the results in the main paper are based onNs = 500, R = 1,000,

Nd = 20,000,NSMM = 5, andNJ = 50. Np, c0, and the temperatures,c1, are model-specific.
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F ESTIMATION ROBUSTNESS

F.1 BASELINE MODEL (ψ = 2.0)

Parameter Current Revised Revised Max RA

γ 1.46 75.79 10.00
(1.44, 1.48) (72.61, 79.16) (10.00, 10.00)

β 0.9978 0.9957 0.9974
(0.9977, 0.9980) (0.9956, 0.9958) (0.9974, 0.9975)

ρa 0.9968 0.9899 0.9877
(0.9965, 0.9971) (0.9896, 0.9902) (0.9874, 0.9880)

σa 0.00031 0.03554 0.03907
(0.00030, 0.00033) (0.03504, 0.03605) (0.03864, 0.03955)

µy 0.0016 0.0016 0.0017
(0.0016, 0.0016) (0.0016, 0.0016) (0.0017, 0.0017)

µd 0.0015 0.0020 0.0010
(0.0015, 0.0016) (0.0020, 0.0021) (0.0009, 0.0010)

σy 0.0058 0.0058 0.0058
(0.0057, 0.0058) (0.0057, 0.0059) (0.0057, 0.0060)

ψd 1.54 0.97 1.07
(1.43, 1.63) (0.88, 1.07) (0.96, 1.18)

πdy 0.816 0.438 0.606
(0.765, 0.870) (0.405, 0.475) (0.550, 0.668)

J 29.27 48.09 56.08
(28.62, 29.98) (47.73, 48.47) (55.47, 56.67)

pval 0.000 0.000 0.000
(0.000, 0.000) (0.000, 0.000) (0.000, 0.000)

(a) Average and(5, 95) percentiles of the parameter estimates. TheJ-test has6 degrees of freedom. The IES is2.0.

Moment Data Current Revised Revised Max RA

E[∆c] 1.89 1.89 1.94 2.00
(0.00) (0.19) (0.45)

E[∆d] 1.47 1.84 2.45 1.15
(0.38) (1.02) (−0.34)

E[rd] 6.51 5.46 5.57 4.03
(−0.66) (−0.59) (−1.55)

E[rf ] 0.25 0.25 0.37 1.07
(0.00) (0.19) (1.34)

E[zd] 3.42 3.45 3.49 3.56
(0.18) (0.48) (1.02)

SD[∆c] 1.99 1.99 1.99 2.01
(0.00) (−0.01) (0.04)

SD[∆d] 11.09 3.47 2.12 2.47
(−2.79) (−3.28) (−3.15)

SD[rd] 19.15 18.41 13.64 13.39
(−0.39) (−2.91) (−3.04)

SD[rf ] 2.72 3.21 3.70 3.87
(0.96) (1.92) (2.27)

SD[zd] 0.45 0.46 0.25 0.23
(0.22) (−3.17) (−3.52)

AC[rf ] 0.68 0.95 0.90 0.88
(4.12) (3.35) (3.12)

AC[zd] 0.89 0.92 0.85 0.83
(0.64) (−0.86) (−1.33)

Corr[∆c,∆d] 0.54 0.47 0.41 0.50
(−0.31) (−0.59) (−0.19)

Corr[∆c, rd] 0.05 0.09 0.06 0.09
(0.57) (0.23) (0.61)

Corr[∆d, rd] 0.07 0.19 0.15 0.18
(1.41) (1.03) (1.37)

(b) Data and average model-implied moments.

Table 6: Baseline model.
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F.2 BASELINE MODEL (ψ = 1.5)

Parameter Current Revised Revised Max RA

γ 1.31 78.83 10.00
(1.29, 1.32) (75.37, 82.75) (10.00, 10.00)

β 0.9981 0.9958 0.9977
(0.9980, 0.9982) (0.9957, 0.9958) (0.9976, 0.9977)

ρa 0.9968 0.9898 0.9875
(0.9965, 0.9971) (0.9895, 0.9901) (0.9871, 0.9878)

σa 0.00031 0.03566 0.03946
(0.00030, 0.00033) (0.03515, 0.03618) (0.03898, 0.04000)

µy 0.0016 0.0016 0.0017
(0.0016, 0.0016) (0.0016, 0.0016) (0.0016, 0.0017)

µd 0.0015 0.0020 0.0009
(0.0015, 0.0016) (0.0020, 0.0021) (0.0009, 0.0010)

σy 0.0058 0.0057 0.0059
(0.0057, 0.0058) (0.0056, 0.0058) (0.0057, 0.0060)

ψd 1.54 0.98 1.05
(1.44, 1.63) (0.88, 1.09) (0.95, 1.16)

πdy 0.816 0.443 0.600
(0.763, 0.873) (0.409, 0.477) (0.548, 0.662)

J 29.27 48.26 57.00
(28.62, 29.98) (47.90, 48.64) (56.39, 57.59)

pval 0.000 0.000 0.000
(0.000, 0.000) (0.000, 0.000) (0.000, 0.000)

(a) Average and(5, 95) percentiles of the parameter estimates. TheJ-test has6 degrees of freedom. The IES is1.5.

Moment Data Current Revised Revised Max RA

E[∆c] 1.89 1.89 1.94 1.99
(0.00) (0.21) (0.40)

E[∆d] 1.47 1.84 2.44 1.12
(0.38) (1.01) (−0.37)

E[rd] 6.51 5.46 5.55 4.00
(−0.66) (−0.60) (−1.57)

E[rf ] 0.25 0.25 0.38 1.09
(0.00) (0.20) (1.38)

E[zd] 3.42 3.45 3.49 3.56
(0.18) (0.49) (1.03)

SD[∆c] 1.99 1.99 1.97 2.02
(0.00) (−0.05) (0.06)

SD[∆d] 11.09 3.47 2.12 2.44
(−2.79) (−3.28) (−3.16)

SD[rd] 19.15 18.41 13.61 13.28
(−0.39) (−2.92) (−3.09)

SD[rf ] 2.72 3.21 3.70 3.88
(0.96) (1.93) (2.29)

SD[zd] 0.45 0.46 0.25 0.23
(0.22) (−3.19) (−3.58)

AC[rf ] 0.68 0.95 0.90 0.88
(4.12) (3.34) (3.09)

AC[zd] 0.89 0.92 0.85 0.82
(0.64) (−0.87) (−1.39)

Corr[∆c,∆d] 0.54 0.47 0.41 0.50
(−0.31) (−0.59) (−0.18)

Corr[∆c, rd] 0.05 0.09 0.06 0.09
(0.57) (0.23) (0.61)

Corr[∆d, rd] 0.07 0.19 0.15 0.18
(1.41) (1.03) (1.37)

(b) Data and average model-implied moments.

Table 7: Baseline model.
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F.3 LONG-RUN RISK MODEL (ψ = 2.0)

OmitsSD[rf ] & AC[rf ] All Moments

Parameter No VR Revised No VR Revised

γ 2.40 2.58 2.49 2.43
(2.18, 2.62) (2.33, 2.87) (2.20, 2.75) (2.19, 2.68)

β 0.9992 0.9983 0.9992 0.9991
(0.9991, 0.9993) (0.9982, 0.9984) (0.9990, 0.9993) (0.9990, 0.9992)

ρa − 0.9811 − 0.9537
(0.9793, 0.9829) (0.9519, 0.9555)

σa − 0.0483 − 0.0165
(0.0460, 0.0507) (0.0159, 0.0171)

µy 0.0016 0.0016 0.0016 0.0016
(0.0014, 0.0017) (0.0014, 0.0018) (0.0014, 0.0017) (0.0014, 0.0017)

µd 0.0012 0.0013 0.0014 0.0012
(0.0009, 0.0015) (0.0009, 0.0016) (0.0011, 0.0017) (0.0009, 0.0015)

σy 0.0041 0.0040 0.0050 0.0041
(0.0040, 0.0043) (0.0038, 0.0043) (0.0049, 0.0051) (0.0039, 0.0042)

ψd 3.26 2.89 3.01 3.25
(3.05, 3.47) (2.66, 3.13) (2.81, 3.18) (3.01, 3.49)

πdy 0.593 0.782 0.132 0.640
(0.354, 0.834) (0.487, 1.114) (−0.184, 0.419) (0.392, 0.885)

φd 2.31 1.65 2.11 2.27
(2.13, 2.51) (1.53, 1.78) (1.88, 2.30) (2.06, 2.50)

ρx 0.9990 0.9994 0.9981 0.9990
(0.9986, 0.9993) (0.9993, 0.9995) (0.9974, 0.9988) (0.9986, 0.9994)

ψx 0.0255 0.0260 0.0306 0.0252
(0.0242, 0.0269) (0.0247, 0.0273) (0.0287, 0.0328) (0.0240, 0.0266)

J 20.91 14.36 54.54 19.91
(20.16, 21.71) (13.93, 14.78) (53.67, 55.47) (19.25, 20.63)

pval 0.007 0.026 0.000 0.011
(0.005, 0.010) (0.022, 0.030) (0.000, 0.000) (0.008, 0.014)

df 8 6 10 8

Table 8: Long-run risk model. Average and(5, 95) percentiles of the parameter estimates. The IES is2.0.
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OmitsSD[rf ] & AC[rf ] All Moments

Moment Data No VR Revised No VR Revised

E[∆c] 1.89 1.88 1.89 1.88 1.89
(−0.03) (0.02) (−0.02) (0.00)

E[∆d] 1.47 1.48 1.55 1.68 1.48
(0.01) (0.08) (0.21) (0.01)

E[rd] 6.51 6.47 6.46 5.93 6.49
(−0.02) (−0.04) (−0.37) (−0.01)

E[rf ] 0.25 0.30 0.26 0.28 0.26
(0.07) (0.01) (0.05) (0.01)

E[zd] 3.42 3.43 3.40 3.42 3.43
(0.03) (−0.17) (−0.05) (0.02)

SD[∆c] 1.99 1.92 1.94 2.45 1.89
(−0.14) (−0.10) (0.95) (−0.21)

SD[∆d] 11.09 5.62 4.79 6.40 5.50
(−2.00) (−2.30) (−1.71) (−2.04)

SD[rd] 19.15 18.03 19.79 18.74 18.16
(−0.59) (0.34) (−0.21) (−0.52)

SD[rf ] 2.72 0.64 5.56 0.87 2.83
(−4.11) (5.60) (−3.66) (0.21)

SD[zd] 0.45 0.53 0.46 0.52 0.52
(1.34) (0.08) (1.12) (1.17)

AC[∆c] 0.53 0.43 0.46 0.48 0.43
(−1.07) (−0.75) (−0.55) (−1.09)

AC[∆d] 0.19 0.27 0.21 0.31 0.26
(0.77) (0.20) (1.16) (0.69)

AC[rd] −0.01 0.01 −0.05 0.00 −0.01
(0.21) (−0.45) (0.12) (0.04)

AC[rf ] 0.68 0.96 0.84 0.96 0.69
(4.34) (2.44) (4.25) (0.14)

AC[zd] 0.89 0.94 0.90 0.93 0.94
(1.09) (0.27) (0.91) (1.02)

Corr[∆c,∆d] 0.54 0.48 0.50 0.44 0.48
(−0.27) (−0.18) (−0.45) (−0.26)

Corr[∆c, rd] 0.05 0.07 0.06 0.08 0.07
(0.30) (0.21) (0.47) (0.29)

Corr[∆d, rd ] 0.07 0.24 0.19 0.28 0.24
(2.09) (1.51) (2.54) (2.01)

Corr[ep, zd,−1] −0.16 −0.17 −0.13 −0.15 −0.17
(−0.10) (0.37) (0.16) (−0.04)

Corr[∆c, zd,−1] 0.19 0.66 0.60 0.69 0.65
(2.67) (2.31) (2.87) (2.64)

Table 9: Long-run risk model. Data and average model-implied moments.
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F.4 LONG-RUN RISK MODEL (ψ = 1.5)

OmitsSD[rf ] & AC[rf ] All Moments

Parameter No VR Revised No VR Revised

γ 2.05 2.44 2.08 2.13
(1.92, 2.18) (2.22, 2.68) (1.86, 2.31) (1.97, 2.34)

β 0.9995 0.9988 0.9995 0.9995
(0.9994, 0.9995) (0.9987, 0.9990) (0.9994, 0.9995) (0.9994, 0.9995)

ρa − 0.9801 − 0.9514
(0.9781, 0.9820) (0.9490, 0.9538)

σa − 0.0497 − 0.0160
(0.0472, 0.0521) (0.0153, 0.0168)

µy 0.0015 0.0016 0.0015 0.0015
(0.0014, 0.0017) (0.0014, 0.0018) (0.0014, 0.0017) (0.0014, 0.0017)

µd 0.0011 0.0013 0.0013 0.0012
(0.0008, 0.0015) (0.0009, 0.0017) (0.0010, 0.0017) (0.0008, 0.0015)

σy 0.0042 0.0040 0.0051 0.0041
(0.0040, 0.0044) (0.0037, 0.0043) (0.0050, 0.0052) (0.0039, 0.0043)

ψd 3.22 3.10 2.94 3.29
(3.01, 3.44) (2.83, 3.38) (2.78, 3.11) (3.06, 3.53)

πdy 0.552 0.740 0.191 0.611
(0.311, 0.798) (0.414, 1.066) (−0.091, 0.456) (0.372, 0.895)

φd 2.29 1.84 2.02 2.33
(2.12, 2.44) (1.71, 1.98) (1.85, 2.21) (2.15, 2.51)

ρx 0.9993 0.9995 0.9988 0.9993
(0.9991, 0.9995) (0.9993, 0.9995) (0.9983, 0.9993) (0.9990, 0.9994)

ψx 0.0250 0.0258 0.0290 0.0248
(0.0238, 0.0263) (0.0246, 0.0270) (0.0275, 0.0307) (0.0236, 0.0259)

J 21.89 14.61 52.00 20.68
(21.04, 22.74) (14.15, 15.08) (51.02, 53.11) (19.95, 21.47)

pval 0.005 0.024 0.000 0.008
(0.004, 0.007) (0.020, 0.028) (0.000, 0.000) (0.006, 0.011)

df 8 6 10 8

Table 10: Long-run risk model. Average and(5, 95) percentiles of the parameter estimates. The IES is1.5.
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OmitsSD[rf ] & AC[rf ] All Moments

Moment Data No VR Revised No VR Revised

E[∆c] 1.89 1.85 1.89 1.86 1.86
(−0.16) (0.03) (−0.09) (−0.11)

E[∆d] 1.47 1.38 1.55 1.58 1.42
(−0.10) (0.07) (0.11) (−0.05)

E[rd] 6.51 6.85 6.47 6.34 6.77
(0.21) (−0.03) (−0.11) (0.16)

E[rf ] 0.25 0.53 0.27 0.40 0.43
(0.45) (0.02) (0.24) (0.29)

E[zd] 3.42 3.44 3.40 3.43 3.43
(0.09) (−0.16) (0.02) (0.08)

SD[∆c] 1.99 1.98 1.90 2.51 1.90
(−0.03) (−0.18) (1.06) (−0.19)

SD[∆d] 11.09 5.70 5.04 6.36 5.60
(−1.97) (−2.21) (−1.73) (−2.01)

SD[rd] 19.15 17.81 19.88 18.32 17.98
(−0.71) (0.39) (−0.44) (−0.61)

SD[rf ] 2.72 0.88 5.75 1.18 2.86
(−3.63) (5.97) (−3.03) (0.27)

SD[zd] 0.45 0.54 0.46 0.54 0.53
(1.41) (0.08) (1.36) (1.23)

AC[∆c] 0.53 0.44 0.46 0.49 0.43
(−1.03) (−0.78) (−0.49) (−1.08)

AC[∆d] 0.19 0.28 0.23 0.31 0.27
(0.81) (0.33) (1.14) (0.75)

AC[rd] −0.01 0.02 −0.05 0.01 0.00
(0.32) (−0.47) (0.23) (0.12)

AC[rf ] 0.68 0.96 0.83 0.96 0.69
(4.37) (2.36) (4.33) (0.17)

AC[zd] 0.89 0.94 0.90 0.94 0.94
(1.15) (0.26) (1.05) (1.07)

Corr[∆c,∆d] 0.54 0.48 0.49 0.45 0.48
(−0.29) (−0.22) (−0.40) (−0.27)

Corr[∆c, rd] 0.05 0.07 0.06 0.08 0.07
(0.26) (0.26) (0.40) (0.27)

Corr[∆d, rd ] 0.07 0.25 0.20 0.28 0.24
(2.14) (1.64) (2.51) (2.07)

Corr[ep, zd,−1] −0.16 −0.18 −0.13 −0.17 −0.18
(−0.21) (0.37) (−0.05) (−0.12)

Corr[∆c, zd,−1] 0.19 0.66 0.60 0.70 0.66
(2.68) (2.32) (2.89) (2.65)

Table 11: Long-run risk model. Data and average model-implied moments.
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F.5 EXTENDED LONG-RUN RISK MODEL (ψ = 2.0)

OmitsSD[rf ] & AC[rf ] All Moments

Ptr No VR+SV Demand Demand+SV No VR+SV Demand Demand+SV

γ 2.31 4.35 6.92 2.43 3.02 5.85
(2.15, 2.48) (3.66, 4.85) (3.58, 11.51) (2.29, 2.56) (2.79, 3.27) (4.67, 6.93)

β 0.9990 0.9992 0.9984 0.9985 0.9992 0.9984
(0.9989, 0.9992) (0.9990, 0.9992) (0.9978, 0.9989) (0.9984, 0.9986) (0.9992, 0.9993) (0.9982, 0.9986)

ρa − 0.9813 0.9877 − 0.9586 0.9925
(0.8971, 0.9892) (0.9825, 0.9918) (0.9565, 0.9606) (0.9908, 0.9934)

σa − 0.0393 0.0351 − 0.0184 0.0285
(0.0365, 0.0479) (0.0314, 0.0383) (0.0176, 0.0191) (0.0268, 0.0297)

µy 0.0016 0.0016 0.0016 0.0016 0.0015 0.0016
(0.0015, 0.0016) (0.0015, 0.0016) (0.0015, 0.0016) (0.0014, 0.0018) (0.0015, 0.0016) (0.0015, 0.0016)

µd 0.0015 0.0015 0.0015 0.0013 0.0014 0.0015
(0.0014, 0.0017) (0.0013, 0.0017) (0.0013, 0.0017) (0.0009, 0.0016) (0.0012, 0.0016) (0.0013, 0.0017)

σy 0.0021 0.0039 0.0014 0.0007 0.0041 0.0006
(0.0007, 0.0037) (0.0037, 0.0041) (0.0002, 0.0031) (0.0003, 0.0014) (0.0040, 0.0043) (0.0001, 0.0014)

ψd 3.39 − − 3.00 − −
(3.06, 3.73) (2.81, 3.21)

πdy 0.654 − − 0.754 − −
(0.299, 0.990) (0.482, 1.038)

φd 2.20 3.41 3.20 1.93 2.68 2.76
(1.98, 2.42) (2.98, 3.71) (2.59, 3.62) (1.84, 2.03) (2.51, 2.87) (2.60, 2.89)

ρx 0.9978 0.9949 0.9951 0.9993 0.9978 0.9965
(0.9971, 0.9984) (0.9938, 0.9963) (0.9938, 0.9965) (0.9991, 0.9995) (0.9973, 0.9983) (0.9958, 0.9971)

ψx 0.0292 0.0378 0.0375 0.0253 0.0290 0.0342
(0.0268, 0.0319) (0.0341, 0.0411) (0.0336, 0.0422) (0.0241, 0.0266) (0.0276, 0.0305) (0.0319, 0.0367)

πya − −0.039 −0.042 − −0.053 −0.051
(−0.049, −0.030) (−0.057, −0.027) (−0.072, −0.035) (−0.067, −0.034)

πda − −0.712 −0.792 − −1.044 −0.866
(−0.750, −0.552) (−0.848, −0.745) (−1.078, −1.008) (−0.897, −0.836)

ρσy
0.9964 − 0.7231 0.9608 − 0.7758

(0.9938, 0.9982) (0.1739, 0.9787) (0.9559, 0.9651) (0.6417, 0.8724)

νy 3.6e−6 − 2.1e−5 1.3e−5 − 2.7e−5
(2.1e−6, 5.1e−6) (7.0e−6, 3.6e−5) (1.2e−5, 1.5e−5) (2.1e−5, 3.5e−5)

J 15.76 9.59 8.79 18.44 13.99 9.77
(15.11, 16.44) (9.20, 9.99) (7.98, 9.39) (17.74, 19.18) (13.40, 14.54) (9.32, 10.22)

pval 0.015 0.143 0.068 0.018 0.082 0.135
(0.012, 0.019) (0.125, 0.163) (0.052, 0.092) (0.014, 0.023) (0.069, 0.099) (0.116, 0.157)

df 6 6 4 8 8 6

Table 12: Extended long-run risk models. Average and(5, 95) percentiles of the parameter estimates. The IES is2.0.
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OmitsSD[rf ] & AC[rf ] All Moments

Moment Data No VR+SV Demand Demand+SV No VR+SV Demand Demand+SV

E[∆c] 1.89 1.88 1.89 1.89 1.91 1.85 1.89
(−0.04) (0.00) (0.01) (0.08) (−0.15) (0.03)

E[∆d] 1.47 1.81 1.78 1.79 1.53 1.73 1.84
(0.35) (0.32) (0.33) (0.06) (0.27) (0.38)

E[rd] 6.51 6.14 5.62 5.67 6.77 5.90 5.83
(−0.24) (−0.56) (−0.52) (0.16) (−0.38) (−0.43)

E[rf ] 0.25 0.24 0.28 0.26 0.09 0.45 0.15
(−0.03) (0.04) (0.00) (−0.27) (0.33) (−0.18)

E[zd] 3.42 3.41 3.39 3.39 3.42 3.40 3.39
(−0.11) (−0.23) (−0.24) (−0.03) (−0.16) (−0.20)

SD[∆c] 1.99 1.91 1.98 1.99 2.03 1.98 2.12
(−0.17) (−0.03) (0.00) (0.09) (−0.03) (0.26)

SD[∆d] 11.09 5.64 10.71 10.58 5.38 7.58 9.47
(−1.99) (−0.14) (−0.19) (−2.09) (−1.28) (−0.59)

SD[rd] 19.15 19.51 18.94 19.04 18.67 18.14 18.53
(0.19) (−0.11) (−0.06) (−0.25) (−0.53) (−0.33)

SD[rf ] 2.72 1.07 3.98 3.42 2.47 2.99 2.66
(−3.25) (2.49) (1.39) (−0.50) (0.53) (−0.12)

SD[zd] 0.45 0.48 0.47 0.46 0.51 0.51 0.49
(0.40) (0.32) (0.22) (0.93) (0.91) (0.56)

AC[∆c] 0.53 0.45 0.43 0.44 0.44 0.43 0.45
(−0.83) (−1.06) (−1.01) (−0.95) (−1.06) (−0.92)

AC[∆d] 0.19 0.26 0.17 0.16 0.24 0.21 0.17
(0.65) (−0.20) (−0.33) (0.49) (0.20) (−0.21)

AC[rd] −0.01 −0.01 0.02 −0.01 −0.03 0.02 −0.03
(0.02) (0.35) (−0.06) (−0.25) (0.36) (−0.20)

AC[rf ] 0.68 0.93 0.85 0.83 0.69 0.71 0.70
(3.89) (2.68) (2.29) (0.07) (0.50) (0.35)

AC[zd] 0.89 0.92 0.90 0.90 0.93 0.93 0.91
(0.57) (0.26) (0.17) (0.89) (0.88) (0.51)

Corr[∆c,∆d] 0.54 0.49 0.54 0.53 0.51 0.48 0.52
(−0.22) (0.02) (−0.06) (−0.13) (−0.27) (−0.10)

Corr[∆c, rd] 0.05 0.07 0.11 0.10 0.06 0.09 0.10
(0.29) (0.88) (0.81) (0.20) (0.55) (0.76)

Corr[∆d, rd ] 0.07 0.22 0.03 0.04 0.22 0.14 0.07
(1.87) (−0.43) (−0.37) (1.77) (0.80) (0.04)

Corr[ep, zd,−1] −0.16 −0.27 −0.10 −0.13 −0.23 −0.15 −0.13
(−1.06) (0.70) (0.41) (−0.67) (0.18) (0.33)

Corr[∆c, zd,−1] 0.19 0.58 0.62 0.61 0.65 0.66 0.63
(2.23) (2.46) (2.40) (2.64) (2.66) (2.52)

Table 13: Extended long-run risk model. Data and average model-implied moments.
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F.6 EXTENDED LONG-RUN RISK MODEL (ψ = 1.5)

OmitsSD[rf ] & AC[rf ] All Moments

Ptr No VR+SV Demand Demand+SV No VR+SV Demand Demand+SV

γ 1.98 3.71 7.10 2.17 2.61 4.57
(1.80, 2.16) (3.09, 4.66) (3.67, 11.70) (2.06, 2.28) (2.32, 2.96) (3.67, 5.54)

β 0.9994 0.9993 0.9989 0.9990 0.9995 0.9991
(0.9992, 0.9995) (0.9990, 0.9995) (0.9983, 0.9994) (0.9990, 0.9991) (0.9995, 0.9995) (0.9989, 0.9992)

ρa − 0.9159 0.9792 − 0.9564 0.9898
(0.8586, 0.9874) (0.9217, 0.9904) (0.9536, 0.9592) (0.9860, 0.9929)

σa − 0.0485 0.0378 − 0.0178 0.0260
(0.0394, 0.0566) (0.0338, 0.0439) (0.0168, 0.0188) (0.0231, 0.0287)

µy 0.0016 0.0016 0.0016 0.0016 0.0015 0.0016
(0.0015, 0.0017) (0.0015, 0.0016) (0.0015, 0.0016) (0.0014, 0.0018) (0.0014, 0.0016) (0.0015, 0.0017)

µd 0.0015 0.0015 0.0015 0.0012 0.0014 0.0015
(0.0012, 0.0016) (0.0013, 0.0017) (0.0013, 0.0017) (0.0009, 0.0016) (0.0011, 0.0016) (0.0013, 0.0017)

σy 0.0012 0.0039 0.0012 0.0007 0.0041 0.0006
(0.0004, 0.0027) (0.0037, 0.0041) (0.0001, 0.0027) (0.0003, 0.0013) (0.0039, 0.0043) (0.0000, 0.0013)

ψd 3.32 − − 3.07 − −
(3.02, 3.66) (2.88, 3.27)

πdy 0.728 − − 0.692 − −
(0.371, 1.079) (0.400, 0.970)

φd 2.14 3.17 3.31 2.02 2.65 2.62
(1.93, 2.35) (2.71, 3.82) (2.71, 3.75) (1.91, 2.13) (2.42, 2.92) (2.44, 2.79)

ρx 0.9987 0.9962 0.9954 0.9994 0.9984 0.9978
(0.9981, 0.9992) (0.9943, 0.9976) (0.9940, 0.9971) (0.9993, 0.9995) (0.9978, 0.9989) (0.9972, 0.9983)

ψx 0.0268 0.0345 0.0364 0.0253 0.0276 0.0305
(0.0248, 0.0288) (0.0310, 0.0392) (0.0318, 0.0406) (0.0242, 0.0265) (0.0262, 0.0291) (0.0283, 0.0326)

πya − −0.033 −0.039 − −0.055 −0.053
(−0.042, −0.026) (−0.052, −0.025) (−0.078, −0.035) (−0.071, −0.033)

πda − −0.578 −0.742 − −1.065 −0.891
(−0.718, −0.481) (−0.800, −0.620) (−1.111, −1.024) (−0.954, −0.833)

ρσy
0.9949 − 0.6669 0.9545 − 0.7629

(0.9900, 0.9973) (0.1155, 0.9654) (0.9489, 0.9601) (0.6252, 0.8652)

νy 4.5e−6 − 2.4e−5 1.4e−5 − 2.8e−5
(3.2e−6, 6.1e−6) (8.8e−6, 3.8e−5) (1.3e−5, 1.6e−5) (2.2e−5, 3.6e−5)

J 16.16 9.85 9.03 19.38 15.22 11.18
(15.52, 16.78) (9.54, 10.12) (8.34, 9.55) (18.62, 20.24) (14.53, 15.84) (10.65, 11.77)

pval 0.013 0.131 0.061 0.013 0.055 0.084
(0.010, 0.017) (0.120, 0.146) (0.049, 0.080) (0.009, 0.017) (0.045, 0.069) (0.067, 0.100)

df 6 6 4 8 8 6

Table 14: Extended long-run risk models. Average and(5, 95) percentiles of the parameter estimates. The IES is1.5.
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OmitsSD[rf ] & AC[rf ] All Moments

Moment Data No VR+SV Demand Demand+SV No VR+SV Demand Demand+SV

E[∆c] 1.89 1.88 1.88 1.89 1.93 1.83 1.90
(−0.04) (−0.01) (0.01) (0.15) (−0.24) (0.06)

E[∆d] 1.47 1.73 1.77 1.79 1.46 1.68 1.78
(0.27) (0.31) (0.33) (−0.02) (0.22) (0.32)

E[rd] 6.51 6.33 5.65 5.67 6.83 6.15 6.00
(−0.11) (−0.54) (−0.52) (0.20) (−0.23) (−0.32)

E[rf ] 0.25 0.25 0.30 0.25 0.01 0.66 0.09
(−0.01) (0.08) (0.00) (−0.40) (0.67) (−0.27)

E[zd] 3.42 3.41 3.39 3.39 3.43 3.40 3.40
(−0.08) (−0.26) (−0.24) (0.03) (−0.13) (−0.19)

SD[∆c] 1.99 1.90 1.99 1.99 2.07 1.97 2.11
(−0.20) (−0.01) (−0.01) (0.16) (−0.04) (0.24)

SD[∆d] 11.09 5.51 10.47 10.67 5.60 7.49 8.89
(−2.04) (−0.22) (−0.15) (−2.01) (−1.32) (−0.80)

SD[rd] 19.15 19.34 19.24 19.03 18.70 17.81 18.13
(0.10) (0.05) (−0.06) (−0.24) (−0.71) (−0.54)

SD[rf ] 2.72 1.20 9.61 4.24 2.31 3.01 2.66
(−2.99) (13.58) (2.99) (−0.81) (0.57) (−0.12)

SD[zd] 0.45 0.48 0.46 0.46 0.51 0.52 0.50
(0.50) (0.18) (0.23) (0.97) (1.08) (0.84)

AC[∆c] 0.53 0.45 0.43 0.43 0.45 0.43 0.44
(−0.88) (−1.07) (−1.04) (−0.91) (−1.06) (−0.95)

AC[∆d] 0.19 0.25 0.16 0.16 0.26 0.21 0.17
(0.57) (−0.34) (−0.27) (0.61) (0.20) (−0.19)

AC[rd] −0.01 −0.01 0.01 −0.01 −0.03 0.03 −0.02
(0.02) (0.21) (0.03) (−0.27) (0.43) (−0.15)

AC[rf ] 0.68 0.93 0.56 0.81 0.69 0.71 0.71
(3.87) (−1.86) (2.04) (0.07) (0.51) (0.48)

AC[zd] 0.89 0.92 0.91 0.90 0.93 0.94 0.93
(0.66) (0.42) (0.21) (0.90) (1.00) (0.75)

Corr[∆c,∆d] 0.54 0.50 0.54 0.53 0.50 0.48 0.50
(−0.18) (−0.01) (−0.04) (−0.16) (−0.28) (−0.16)

Corr[∆c, rd] 0.05 0.06 0.10 0.11 0.06 0.08 0.09
(0.25) (0.70) (0.82) (0.23) (0.47) (0.59)

Corr[∆d, rd ] 0.07 0.22 0.04 0.04 0.22 0.14 0.09
(1.81) (−0.37) (−0.38) (1.89) (0.83) (0.24)

Corr[ep, zd,−1] −0.16 −0.27 −0.11 −0.12 −0.23 −0.16 −0.16
(−1.09) (0.57) (0.42) (−0.67) (0.02) (0.09)

Corr[∆c, zd,−1] 0.19 0.59 0.64 0.62 0.66 0.66 0.65
(2.30) (2.56) (2.43) (2.66) (2.66) (2.59)

Table 15: Long-run risk model. Data and average model-implied moments.
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