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show that this condition holds under weak conditions. Simulations show that the highest 
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1 Introduction

Impulse response analysis based on autoregressions plays a central role in quantitative economics

(see Kilian and Lütkepohl 2017). Many researchers have cautioned against relying on pre-tests

to diagnose and remove apparent unit roots in autoregressive processes (e.g., Elliott 1998; Rossi

and Pesavento 2007; Gospodinov, Herrera and Pesavento 2011). As result, autoregressions are

often estimated based on highly persistent data. A long-standing question has been how to assess

the uncertainty about response estimates when the dominant autoregressive root may be close to

unity. The asymptotic validity of conventional methods of asymptotic and bootstrap inference

for individual impulse responses in stationary processes has been established in Lütkepohl (1990)

and Gonçalves and Kilian (2004). Extensions to possibly integrated autoregressive processes are

provided in Inoue and Kilian (2002a, 2003), building on Park and Phillips (1989) and Sims, Stock

and Watson (1990). Kilian and Lütkepohl (2017) note that the assumptions underlying the analysis

of higher-order autoregressions in Inoue and Kilian (2002a) may be relaxed further by fitting lag-

augmented autoregressions, as proposed by Dolado and Lütkepohl (1996) and Toda and Yamamoto

(1995).1 All these asymptotic justifications, however, rely on pointwise convergence results. It is

unclear whether they are valid uniformly across the parameter space.

In many econometric applications the distinction between pointwise and uniform validity, as

discussed in Giraitis and Phillips (2006), Mikusheva (2007a), Andrews and Guggenberger (2009),

and Kasy (2019), among others, is of no practical importance. This distinction matters, however,

when the distribution of the statistic of interest changes with the value of the population parameter

to be estimated, as is the case in the AR(1) model when the autoregressive root approaches unity.

The concern is that for a 1 − α confidence interval C to be asymptotically valid we need to show

that

lim
T→∞

inf
ρ
Pρ(ρ ∈ C) ≥ 1− α,

where ρ denotes the AR(1) slope parameter and the infimum is taken over the parameter space of

ρ. This means that there exists a sample size that guarantees the coverage accuracy of the interval

for any parameter value ρ. In contrast, under the pointwise approximation, the actual coverage

accuracy is not known and may become arbitrarily low, since the true value of ρ is not known.2

1Related work also includes Kurozumi and Yamamoto (2000) and Bauer and Maynard (2012).
2For example, Mikusheva (2007a) demonstrates that the conventional asymptotic normal approximation for the

slope parameter in the AR(1) model with near unit roots is pointwise correct, but not uniformly correct, which helps
explain the poor coverage accuracy of conventional confidence intervals in this model, as ρ approaches unity (see
Nankervis and Savin 1988; Hansen 1999; Kilian 1999).
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Concern over the reliability of conventional methods of inference when applied to highly persis-

tent autoregressive processes has subsequently motivated the development of nonstandard asymp-

totic approximations based on local-to-unity processes. For example, Stock (1991) proposes con-

structing confidence intervals for the dominant autoregressive root by inverting unit root tests.

Phillips (2014), however, proves that inference about the AR(1) slope parameter based on Stock’s

(1991) confidence interval, while asymptotically valid when the root is local to unity, has zero

coverage asymptotically when the root is far enough from unity.3

The lack of a uniform asymptotic approximation across the parameter space has undermined

the profession’s confidence in the accuracy of standard confidence intervals in applied work and

has created interest in confidence intervals that remain asymptotically valid whether the AR(1)

slope parameter is unity, close to unity or far from unity. For example, under weak conditions,

the grid bootstrap of Hansen (1999) can be shown to provide a uniformly asymptotically valid

approximation to the distribution of the AR(1) slope parameter under both stationary and local-

to-unity asymptotics (see Mikusheva 2007a).

While the AR(1) process has been studied extensively in the literature, there has been much less

work on the problem of uniform inference in higher-order autoregressions, which are the workhorse

model in applied work. Allowing for additional lags turns out to change the properties of the

estimator of the autoregressive model dramatically. Our analysis shows that the lack of uniform

validity of the conventional Gaussian asymptotic approximation does not extend to inference on

individual slope parameters in higher-order autoregressive models. In the latter case, asymptotic

normality holds uniformly across the parameter space. This result has important implications

for inference on smooth functions of autoregressive slope coefficients such as impulse responses in

autoregressions.

Our contribution to this literature is fivefold. First, we show that conventional asymptotic and

bootstrap confidence intervals for individual impulse responses remain uniformly asymptotically

valid, as long as the horizon of the impulse response remains fixed with respect to the sample size,

generalizing the pointwise asymptotic results in Park and Phillips (1989), Sims, Stock and Watson

(1990) and Inoue and Kilian (2002a). Our analysis covers both higher-order autoregressions and

lag-augmented autoregressions. We provide a suitable rank condition that ensures that inference

on impulse responses is uniformly valid.4

3Phillips’ conclusion is consistent with simulation evidence in Hansen (1999), which illustrates the comparatively
poor coverage accuracy of Stock’s method in the stationary region.

4In related work, Mikusheva (2012) established the uniform validity of one-dimensional impulse response inference
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Second, we establish the uniform asymptotic validity of Gaussian inference on vectors of au-

toregressive slope parameters and vectors of impulse responses. The joint asymptotic normality of

the estimator of autoregressive slope parameters has been postulated as a high-level assumption in

a range of studies including Guerron-Quintana, Inoue and Kilian (2017), Montiel Olea, Stock and

Watson (2018), and Gafarov, Meier and Montiel Olea (2018). Our analysis establishes the unifom

joint asymptotic normality of the lag-augmented estimator of the autoregressive slope parame-

ters under conditions not requiring the process to be stationary. We furthermore establish, under

the same conditions, the uniform joint asymptotic normality of the impulse response estimator

postulated by Granziera, Moon and Schorfheide (2018).

The latter result is central for the construction of joint impulse response confidence inter-

vals based on Wald test statistics. Joint inference on impulse response functions has become

increasingly recognized as essential for practitioners interested in understanding the true extent

of the uncertainty about estimates of impulse response functions (e.g., Jordà 2009; Lütkepohl;

Staszewska-Bystrova and Winker 2015a,b,c; Inoue and Kilian 2016; Kilian and Lütkepohl 2017;

Bruder and Wolf 2018; Montiel Olea and Plagborg-Møller 2019). Our analysis shows that the use

of lag-augmented autoregressions is required for inference about impulse response functions based

on Wald test statistics to be uniformly asymptotically valid.

Third, a simulation study involving univariate autoregressions with varying degrees of persis-

tence confirms that the conventional asymptotic approximation based on fixed impulse response

horizons remains accurate even uniformly, as long as the horizon is reasonably small relative to

the sample size. We find that delta method impulse response confidence intervals based on lag-

augmented autoregressions are considerably more accurate in small samples than confidence in-

tervals based on the original autoregression. We then investigate the extent to which further

improvements in coverage accuracy may be achieved by bootstrapping the lag-augmented autore-

gression. The reason that delta method confidence intervals tend to be less accurate than suitably

constructed bootstrap confidence intervals is that, even for stationary processes, the finite-sample

distribution of impulse responses is far from Gaussian. The longer the horizon, the worse the nor-

mal approximation becomes. One potential remedy is the use of the Hall percentile interval, which

allows the distribution of the impulse response estimator to be non-Gaussian. We find, however,

that the use of the Hall percentile interval cannot be recommended because its coverage accuray at

for a specific form of the grid bootstrap of Hansen (1991) applied to autoregressions. Her uniformity results, however,
do not apply to the conventional delta method and bootstrap confidence intervals considered in our analysis.
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longer horizons tends to be too low. An alternative is the bias-adjusted bootstrap method of Kilian

(1999), which was designed to improve the small-sample accuracy of impulse response confidence

intervals in stationary autoregressions. This method yields consistently high uniform coverage ac-

curacy when applied to lag-augmented autoregressions. For example, for T = 240, the uniform

coverage rates for nominal 90% confidence intervals range from 87% to 89% and for T = 480 from

89% to 90%, for horizons between 1 and 12 periods. In contrast, without lag augmentation, the

same type of bootstrap confidence interval is much less accurate, consistent with earlier simula-

tion evidence in the literature. Our results suggest that persistent autoregressions in applied work

should be routinely lag-augmented, if the coverage accuracy of the impulse response confidence

intervals is the primary objective.

Fourth, we quantify the increase in average interval length caused by lag augmentation. We

show by simulation and analytically that this increase is negligible at short horizons. At long

horizons, the cost of maintaining accurate coverage by lag-augmenting the autoregression may be

a substantial increase in interval length, when the data generating process is highly persistent. A

local power analysis, however, shows that after adjusting for size, impulse-response inference based

on the lag-augmented autoregression need not involve a loss in power in finite samples and may

even enhance power in some cases.

Finally, we establish the asymptotic validity within the local-to-unity framework of the Efron

(1987) percentile interval for impulse responses at long horizons based on the lag-augmented au-

toregression. Although impulse response inference is not uniformly valid at long horizons, these

results help explain the excellent coverage accuracy of this approach when applied to data from

persistent autoregressive processes at horizons as long as 60 periods. This result is in stark con-

trast to earlier theoretical and bootstrap simulation results based on autoregressions that were

not lag augmented (see Phillips 1998; Kilian and Chang 2000). Our simulation evidence suggests

that there is little need for nonstandard interval estimators based on long-horizon asymptotics in

many applications of impulse response analysis. Our results also provide a formal justification

for conducting long-horizon inference based on autoregressions in levels rather than in differences.

Moreover, we formally show that other bootstrap confidence intervals for impulse responses based

on lag-augmented autoregressions such as Hall’s (1992) percentile interval or, for that matter, the

delta method are not asymptotically valid at long horizons, even when lag-augmenting the autore-

gression. Likewise, equal-tailed and symmetric percentile-t intervals are not asymptotically valid.

This is a rare example of a situation in which Efron’s percentile interval is asymptotically valid for

4



impulse response inference, but other intervals are not.

The remainder of the paper is organized as follows. In section 2, we establish notation and state

our assumptions about the data generating process and the estimated model. Section 3 contains

the derivation of the uniform validity of the conventional asymptotic Gaussian approximation.

We consider inference on individual impulse responses as well as vectors of impulse responses. In

section 4, we establish the uniform asymptotic validity of inference based on the recursive-design

bootstrap for autoregressions. In section 5, we examine the practical relevance of our asymptotic

analysis in finite samples. In section 6, we provide long-horizon asymptotics based on the local-to-

unity framework for impulse responses estimated from lag-augmented autoregressions. In section

7, we discuss the robustness of our conclusions to lag order misspecification. We also examine an

alternative approach to lag augmentation based on moving average lags. Section 8 contains the

concluding remarks. Details of the proofs can be found in Appendix A and B.

2 Preliminaries

2.1 Lag-Augmented Autoregressions

Lag-augmented autoregressions were first introducted by Dolado and Lütkepohl (1996) and Toda

and Yamamoto (1995) and have been utilized in a range of applications (see, e.g., Kurozumi and

Yamamoto 2000; Bauer and Maynard 2012; Kilian and Lütkepohl 2017). Unlike earlier studies,

we are concerned with the use of lag augmentation for impulse response analysis. Let yt denote a

possibly integrated scalar time series variable. Consider fitting an autoregressive model of order p:

yt = φ1yt−1 + ...+ φpyt−p + ut,

where ut is white noise, the deterministic terms have been suppressed for expository purposes, and

t = 1, ..., T . Impulse responses may be constructed as a nonlinear transformation of the autoregres-

sive coefficients. Impulse response inference based on consistent estimates of the p autoregressive

coefficients in this model works well when the underlying process is known to be covariance station-

ary, but not necessarily when it is I(1) or near I(1) (see, e.g., Sims, Stock and Watson 1990). If the

data generating process (DGP) is possibly (near) I(1), an alternative is to fit the lag-augmented
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autoregressive model

yt = φ1yt−1 + ...+ φpyt−p + φp+1yt−p−1 + ut,

and to base impulse response inference on estimates of the first p autoregressive slope coefficients

only . This is possible because φp+1 is known to be zero in population and the estimates of φ1, ..., φp

are consistent (see, e.g., Dolado and Lütkepohl 1996; Toda and Yamamoto 1995).5 Our analysis

examines the uniform asymptotic validity of impulse response inference based on the original and

the lag-augmented autoregression.

2.2 Notation and Assumptions

As in Sims, Stock and Watson (1990) and Inoue and Kilian (2002a), consider a scalar autoregressive

process of known order p > 1:

yt = d†t + y†t ,

y†t = φ1y
†
t−1 + φ2y

†
t−2 + · · ·+ φpy

†
t−p + ut,

where d†t is a deterministic function of time, ut is iid with zero mean and variance σ2, and ∆y†0 =

· · · = ∆y†1−p = 0. For expository purposes, we focus on linear time trends of the form d†t =

δ†0 + δ†1(t/T ). This process has an augmented Dickey-Fuller representation:

∆yt = δ0 + δ1
t

T
+ πyt−1 + γ1∆yt−1 + · · ·+ γp−1∆yt−p+1 + ut

= β′xt + ut, (1)

where δ0 = φ(1)δ†0 + δ†1(φ1 + 2φ2 + · · · + pφp), δ1 = φ(1)δ†1, φ(L) = 1 − φ1L − · · · − φpLp, π =

−φ(1) =
∑p

j=1 φj − 1, γj = −(φj+1 + · · · + φp), ut
iid∼ (0, σ2), β = [δ0 δ1 π γ1 · · · γp−1]′, and

xt = [1 t/T yt−1 ∆yt−1 · · · ∆yt−p+1]′. When φp = 0, the AR(p) process underlying equation (1)

without loss of generality may be reinterpreted as an autoregression of order p − 1 that has been

augmented by one lag.

The autoregressive lag-order polynomial may equivalently be expressed as φ(L) = Πp
i=1(1−ρiL),

where |ρ1| ≤ |ρ1| ≤ ... ≤ |ρp−1| ≤ |ρp| are the p autoregressive roots. Let ω(ρp) = σ2/(φ†(1))2

where φ†(L) = φ(L)/(1−ρpL) and ρp is the largest root. Let θ = [β′, σ2]′. Let the parameter space

5In the case of possibly near I(2) or I(2) variables, the autoregressive model would be augmented by two autore-
gressive lags. In this paper, we restrict attention to variables that are possibly I(0), I(1) or near I(1).
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Θ ⊂ <dθ denote the set of θ where dθ = p + 3. Finally, let JcT (r) denote an Ornstein-Uhlenbeck

process such that JcT (r) =
∫ r

0 e
cT (r−s)dW (s), where W (·) is a standard Brownian motion defined

on [0, 1] and cT = T log(max(|ρp|, ε)) for some ε ∈ (0, 1).

The model is estimated by least squares, yielding

β̂T =

 T∑
t=p+1

xtx
′
t

−1
T∑

t=p+1

xtyt,

ût = yt − β̂′Txt,

σ̂2
T =

1

T − p

T∑
t=p+1

û2
t ,

σ̂4,T =
1

T − p

T∑
t=1

(û2
t − σ̂2

T )2,

Σ̂T =

 σ̂2
T ⊗ (

∑T
t=p+1 xtx

′
t)
−1 0(2+p)×1

01×(2+p) T−1σ̂4,T

 .

Assumption A. The data generating process satisfies:

(i) There are constants ρ, ρ, κ and K that do not depend on the data generating process, where

ρ ∈ (0, 1), ρ ∈ (0, 1), and 0 < κ < K <∞, such that

Θ = {θ : κ ≤ σ2 ≤ K, −K ≤ δ†0 ≤ K, −K ≤ δ
†
1 ≤ K, |ρp−1| ≤ ρ, and either |ρp| ≤ ρ or ρ ≤ ρp ≤ 1}.

(ii) {ut}Tt=1 is a sequence of iid random variables with E(ut) = 0 and

E


 ut

u2
t − σ2

 ut

u2
t − σ2

′ =

 σ2 0

0 σ4

 ,
where κ ≤ σ4 ≤ K and κ ≤ E(u6

t ) ≤ K.

Remarks.

1. Assumption (i) implies that the roots of |φ(z)| = 0 are either all outside the unit circle in

modulus or that φ(z) = 0 has at most one unit root and all the other roots are outside the

unit circle in modulus. We rule out the possibility that the data are generated by an I(2)
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process or a near-I(2) process or that the process is explosive. This assumption is standard in

the literature (e.g., Mikusheva 2012). Assumption (i) also rules out complex near unit roots

and roots near −1.

2. When the model is augmented with one lag, the population coefficient on that lag is known

to be zero. Although the augmented lag parameter is estimated, the uniform coverage rate

is defined as the limit of the infimum of the coverage probabilities with respect to the other

parameters, with the augmented lag parameter fixed at zero. This coverage rate is greater

than or equal to the uniform coverage rate when the infimum is taken with respect to all

parameters. Thus, without loss of generality, we focus on the latter.

3. We abstract from the complications introduced by conditional heteroskedasticity in the error

term (see Gonçalves and Kilian 2004; Andrews and Guggenberger 2009).

4. We deliberately abstract from the lag order selection problem. As discussed in Kilian and

Lütkepohl (2017), conditioning on estimates of the lag order invalidates standard asymptotic

inference on the autoregressive parameters. One way of circumventing this problem is to set p

equal to a conservative upper bound on the lag order, not unlike the upper bound that users

of infomation criteria already have to provide when estimating the lag order.

5. In the theoretical analysis, we restrict attention to autoregressions of lag order p > 1, build-

ing on the insights in Sims, Stock and Watson (1990). This facilitates the comparison across

methods of inference. Although standard impulse response inference based on the original au-

toregressive model breaks down when p = 1, lag-augmented inference remains asymptotically

valid in that case, as illustrated in section 7.
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3 Asymptotic Results for the Delta Method

Let θ̂T denote the least-squares estimator of θ = [β′, σ2]′ ∈ Θ and let

H(cT ) = Υ−1(cT )


1 1

2 ω(ρp)
∫ 1

0 JcT (r)dr 0

1
2

1
3 ω(ρp)

∫ 1
0 rJcT (r)dr 0

ω(ρp)
∫ 1

0 JcT (r)dr ω(ρp)
∫ 1

0 rJcT (r)dr ω(ρp)
2
∫ 1

0 JcT (r)2dr 0

0 0 0 M

Υ−1(cT ),

(2)

D(cT ) = Υ−1(cT )


N1

N2

σω(ρp)
∫ 1

0 JcT (r)dW (r)

N3

 , (3)

where Υ(cT ) = diag(1, 1, 1√
−2cT

, Ip+1, 1), cT = T log(max(|ρp|, ε)) for some ε ∈ (0, 1), ρp is the

largest root of φ(z) = 0, T−
1
2
∑[·T ]

t=1 ut
d→ W (·), T−

1
2
∑T

t=1[1, t/T,∆yt−1, · · · ,∆yt−p]′ut
d→

[N1 N2 N3]′ and T−
1
2
∑T

t=1 u
2
t

d→ N4 with [N1, N2]′ = [W (1),
∫ 1

0 rdW (r)]′. [N1, N2]′, N3 and

N4 are independent normal random vectors with zero means and covariance matrices given by

σ2

 1 1
2

1
2

1
3

 , σ2M ≡ σ2E




∆yt−1

...

∆yt−p+1




∆yt−1

...

∆yt−p+1


′ and σ4, (4)

respectively, and N is the standard normal random vector that is the limit of η(θ, T ), as ρp ap-

proaches one from below.

Proposition 1: Suppose that Θ satisfies Assumption A. Then

lim
T→∞

sup
θ∈Θ

sup
x∈<dθ

∣∣∣∣P (Σ̂
− 1

2
T (θ̂T − θ) ≤ x)− P (η(θ, T ) ≤ x)

∣∣∣∣ = 0, (5)

where η(θ, T ) is  H(cT )−
1
2D(cT )

N4

 , (6)
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if |ρp| < 1 and N if ρp = 1.

Express the dψ × 1 vector of impulse responses ψ as a function of θ:

ψ = f(θ), (7)

where f : X → <dψ and Θ ⊂ X ⊂ <p+3. Our goal is to provide methods for uniform inference on

impulse responses over Θ.

Assumption B. Suppose that f : X → <dψ is continuously differentiable, that ψ does not depend

on δ†0 and δ†1, and that the rank of

Df(θ)diag(I2,
√
−2 log(max(|ρp|, ε)), Ip) (8)

is dψ for all θ ∈ Θ where Df(θ) = ∂f(θ)/∂θ′, ε ∈ (0, 1) and ρp is the largest autoregressive root.

Remarks.

1. A violation of Assumption B would occur, for example, if the autoregressice parameters were

zero in population and the impulse response horizon h > p (see Benkwitz, Lütkepohl and

Neumann 2000). We abstract from this well-known problem, as is standard in the literature,

since we are concerned with inference about impulse responses estimated from persistent time

series processes.

2. Likewise, assumption B may fail for some exact unit root processes. Specifically, standard

delta method and bootstrap inference fails when the first-order linear approximation to ψ is

proportionate to ρ. In that case, the limiting variance of
√
T (ψ̂T −ψ) is zero, as discussed in

Kilian and Lütkepohl (2017), and the rank condition fails. Lag augmenting the autoregression

helps rule out this singularity in the asymptotic variance of f(θ).

3. To appreciate the usefulness of the rank condition in Assumption B, consider the AR(2)

process

∆yt = πyt−1 + γ∆yt−1 + ut,

where π = φ1 + φ2 − 1 and γ = −φ2, and the first two impulse responses are φ1 and φ2
1 + φ2.
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Then

Df(θ) =

 0 0 1 1 0

0 0 2(π + γ + 1) 2(π + γ + 1)− 1 0

 ,
where the columns of zeros arise because there is no deterministic component, and the impulse

responses do not depend on the error variance. Note that the conventional rank condition for

the delta method is always satisfied in this example. Matrix (8) can be written as

T
1
2Df(θ)Υ−1

T (c) =

 0 0
√
−2 log(max(|ρ2|, ε)) 1 0

0 0 2
√
−2 log(max(|ρ2|, ε))(π + γ + 1) 2(π + γ + 1)− 1 0

 ,
where ΥT (cT ) = diag(T

1
2 , T

1
2 , T

1
2√
−2cT

, T
1
2 I2).

This expression shows that, if one is interested in inference on the first impulse response, the

rank condition is always satisfied. As φ1, φ2 → 1/2, however, the second row approaches a

vector of zeros, so inference about the second impulse response is not possible. Even though

the conventional rank condition is satisfied, we can conduct uniform inference only on one of

the parameters of interest.

In contrast, when fitting an AR(3) model to data generated by this AR(2) DGP, the rank of

the matrix (8),

 0 0
√
−2 log(max(|ρ3|, ε)) 1 0 0

0 0 2
√
−2 log(max(|ρ3|, ε))(π + γ1 + 1) 2(π + γ1 + 1)− 1 1 0

 ,
is always 2. Thus, lag augmentation allows inference about the second impulse response as

well as joint inference about both of the impulse responses.6

4. This example may be generalized. It can be shown that the rank condition in Assumption B

is always satisfied for the first p impulse responses for all θ in the parameter space specified

in Assumption A and for all p = 1, 2, ..., when the autoregression is augmented by one lag.

Suppose that yt follows an AR(p) process. The companion matrix for the first p coefficients

6The concept of lag augmentation to overcome an asymptotic rank reduction in the Jacobian matrix of the
impulse responses is conceptually similar to adding moments to overcome the asymptotic rank reduction in the
moment Jacobian matrix that occurs in first-order underidentified or weakly identified GMM models (see Lee and
Liao 2018).
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of the lag-augmented model is given by

F =



π + γ1 + 1 γ2 − γ1 γ3 − γ2 · · · γp − γp−1 γp+1 − γp

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0


. (9)

Then the h-step-ahead impulse response is given by the (1,1) element of F h. The responses

are given by

π + γ1 + 1,

(π + γ1 + 1)2 + γ2 − γ1,

(π + γ1 + 1)3 + 2(π + γ1 + 1)(γ2 − γ1) + (γ3 − γ2),

...

(π + γ1 + 1)p + p(γp+1 − γp)p−1(γ2 − γ1) + · · ·+ γp+1 − γp,

for h = 1, 2, 3, ..., p, respectively. We are concerned about uniform joint inference about the

first p impulse responses. Our claim is that the submatrix Mp obtained from eliminating the

first two columns and the last column of the p× (p+ 3) matrix in Assumption B has rank p.

Note that the first p− 1 impulse responses are identical to those from an AR(p) model with

γp = 0. Thus, the (p − 1) × (p − 1) upper-left submatrix of Mp matches the corresponding

(p − 1) × (p − 1) submatrix for the AR(p) model that is obtained from lag-augmenting an

AR(p−1) model. We prove this claim by mathematical induction. When p = 1 (i.e., the DGP

is an AR(1) process and an AR(2) model is fitted), the 1× 2 matrix in Assumption B always

has rank 1 satisfying Assumption B. Suppose that the rank condition is satisfied for p = k,

i.e., the k × k submatrix has rank k. Denote that matrix by Mk. Then the (k + 1)× (k + 1)

submatrix for the AR(k + 1) model can be written as

 Mk 0k×1

01×k 0

+

 0k×k 0k×1

01×(k−1) − 1 1

 . (10)
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Because Mk has rank k, this matrix has rank k+1 anywhere in the parameter space specified

in Assumption A. Thus, the claim holds for p = k + 1. Since this result holds for the first p

impulse responses jointly, it holds also for individual elements in this vector.

Proposition 2. Under Assumptions A and B,

lim
T→∞

sup
θ∈Θ

∣∣∣P ((DfT (θ̂T )Σ̂TDf(θ̂)′)−
1
2 (f(θ̂T )− f(θ)) ≤ x

)
− Φ(x)

∣∣∣ = 0, (11)

lim
T→∞

sup
θ∈Θ

∣∣∣P ((f(θ̂T )− f(θ))′(Df(θ̂T )Σ̂TDf(θ̂T )′)−1(f(θ̂T )− f(θ)) ≤ x
)
− Fχ2

dψ

(x)
∣∣∣ = 0, (12)

where Fχ2
dψ

(·) is the cdf of the chi-square distribution with dψ degrees of freedom.

It follows from Lemma 2 of Kasy (2019) that confidence sets constructed from quantiles of the

standard normal and chi-square distributions have confidence level 1− α uniformly on Θ.

4 Asymptotic Results for Bootstrap Inference

Bootstrap approximations of the asymptotic distribution of impulse response estimators may be

generated by standard recursive residual-based bootstrap algorithms for autoregressions (see Kilian

and Lütkepohl 2017). Let θ̂∗T denote the bootstrap estimator of θ̂T , constructed by bootstrapping

the original or the lag-augmented autoregressive model. Similarly, let P ∗ denote the bootstrap

analogue of P .

Proposition 3. Under Assumptions A and B,

lim
T→∞

sup
θ∈Θ
|P ∗(ΥT (c∗T )(θ̂∗T − θ̂T ) ≤ x)− P ∗(η∗(θ̂T , T ) ≤ x)| = 0, (13)

almost surely conditional on the data, where c∗T = cT +
∫ 1

0 J
τ
cT

(r)dW (r)/
∫ 1

0 (JτcT (x))2dr, JτcT (r) =

JcT (r)−
∫ 1

0 (4− 6s)JcT (s)ds− r
∫ 1

0 (12s− 6)JcT (s)ds, and η∗(·, ·) is η(·, ·) with cT replaced by c∗T .

Proposition 4. Under Assumptions A and B,

lim
T→∞

sup
θ∈Θ
|P ∗([(Df(θ̂∗T )Σ̂∗TDf(θ̂∗T )′)−

1
2 f(θ̂∗T )− f(θ̂)] ≤ x)− Φ(x)| = 0, (14)

lim
T→∞

sup
θ∈Θ
|P ((f(θ̂∗T )− f(θ̂T ))(Df(θ̂∗T )Σ̂∗TDf(θ̂∗T )′)−1(f(θ̂∗T )− f(θ̂T )) ≤ x))− Fχ2(x)| = 0, (15)
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almost surely conditional on the data.

To summarize, Propositions 1 through 4, extend the pointwise asymptotic validity results in

Park and Phillips (1989), Sims, Stock and Watson (1990), and Inoue and Kilian (2002a) by estab-

lishing the uniform validity of asymptotic and bootstrap inference about individual slope parameters

and impulse responses based on higher-order autoregressions. They also establish the corresponding

results for asymptotic and bootstrap inference based on lag-augmented autoregressions. Finally,

they establish the uniform validity of asymptotic and bootstrap inference based on lag-augmented

autoregressions about vectors of impulse responses.

5 Simulation Evidence

In this section, we demonstrate that our asymptotic analysis helps understand the finite-sample

accuracy of delta method and bootstrap confidence intervals for impulse responses. The boot-

strap algorithms are reviewed in detail in Appendix D. For expository purposes, we generate

5,000 samples of {yt}Tt=1 from the data generating process yt = ρyt−1 + ut, ut
iid∼ N(0, 1), where

ρ ∈ {0.2, 0.5, 0.9, 0.95, 0.96, 0.97, 0.98, 0.99, 0.995, 1}, T ∈{80, 120, 240, 480, 600} and y0 = 0. Of

particular interest are roots exceeding 0.95 because for smaller roots conventional bootstrap ap-

proximations are known to work well (see Kilian 1999).7 For each sample of length T , we fit an

AR(p) model, p ∈ {2, 4, 6}, with intercept and construct the implied responses to a unit shock at

horizons h ∈ {1, ..., 12}. Lag-augmented autoregressions include an additional lag, but the impulse

responses are based on the estimates of the first p slope coefficients only. We do not include a

linear time trend in the fitted model because the inclusion of deterministic time trends is rare in

applied work.8

Since the results are not sensitive to the lag order p, the tables shown in this section concentrate

on the case of p = 4. Our analysis focuses on confidence intervals for individual impulse responses.

The nominal confidence level is 90%. In constructing the uniform coverage rates as the infimum of

7Alternative specifications of the data generating process with standardized t4 or standardized χ2
3 errors, as in

Kilian (1998a), yield results very similar to the baseline specification with N(0, 1) errors and, hence, are not shown to
conserve space. These specific distributions were chosen because their moments resemble those of residual distributions
often encountered in applied work (see Kilian 1998a). Although the standardized t4 distribution does not satisfy our
sufficient condition A(iii), the simulation results are robust to this violation.

8Likewise, we do not consider autoregressions excluding an intercept. Normal asymptotic appoximations tend to
work better when the regression model does not include an intercept because the exclusion of deterministic regressors
reduces the small-sample bias of the least-squares estimator. This regression specification is hardly ever used in
applied work, however.
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the coverage rates for a given impulse response across ρ ∈ {0.2, 0.5, 0.9, 0.95, 0.96, 0.97, 0.98, 0.99,

0.995, 1} for given T , one has to account for the bias caused by data mining across ρ. The reason

is that the coverage rates in the simulation study (like any estimate of a proportion) are subject

to estimation error. They have an approximate Gaussian distribution. Thus, even if the estimate

of the coverage rate were centered on 0.90 for each ρ, there would be sampling variation in the

simulated coverage rates. It can be shown by that under the null hypothesis that the coverage

is truly 0.90, the lowest coverage rate across all ρ would be 0.8934, which biases downward our

estimate of the uniform coverage rate. This means that we need to adjust upward the infimum

across ρ obtained in the simulation by 0.0066 to control for data mining. This adjustment is

independent of the sample size because it only reflects the Monte Carlo simulation error. Details

of the rationale of this adjustment can be found in Appendix C.9

5.1 Coverage Accuracy at Short Horizons

The delta method intervals are based on closed-form solutions for the impulse-response standard

error, as discussed in Lütkepohl (1990). Table 1 shows that the uniform coverage rates of the delta

method interval converge to 0.90, as T →∞, as predicted by asymptotic theory, whether inference

is based on the AR(4) model or the lag-augmented AR(5) model. There is strong evidence that

delta method intervals based on the lag-augmented AR(5) model are considerably more accurate in

small samples than delta method intervals based on the AR(4) model. For example, for T = 480,

the uniform coverage accuracy at horizon 12 is 86% for the lag-augmented model compared with

only 63% for the original model. These differences are not predicted by our asymptotic analysis in

section 3. For much larger T , as expected, there is nothing to choose between these approaches.

Not surprisingly, the coverage accuracy is excellent at short horizons, but deteriorates as h

increases. This finding mirrors the conclusions of Kilian and Chang (2000) and Phillips (1998)

that the conventional asymptotic approximation remains accurate, as long as the horizon is small

relative to the sample size. Only when the horizon of the impulse response is allowed to grow with

the sample size, conventional asymptotic approximations for impulse response estimators become

asymptotically invalid in a local-to-unity setting. Table 1 illustrates that even for horizons as large

as h = 12, for moderately large samples, the conventional asymptotic Gaussian approximation

9An alternative approach would have been to view ρ as local to unity and to report results for the implied ρ,
given T and a grid of Pitman drifts. Since our asynptotic results do not hinge on this particular asymptotic thought
experiment, it is more natural to focus on the grid of possible ρ values in the simulation study.
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remains reasonably accurate. For example, for T = 480, coverage rates for the lag-augmented

model range from 90% at short horizons to 86% at horizon 12.

An important question is whether the accuracy of impulse response inference may be improved

by bootstrapping the impulse responses. In Table 2, we examine the coverage accuracy of several

commonly used bootstrap confidence intervals.10 The distribution of impulse response estimators

is known to be non-normal in small samples (see Kilian 1999). The first two panels in Table 2

show results based on the Hall percentile interval with endpoints
[
2ψ̂T − ψ̂∗0.95,T , 2ψ̂T − ψ̂∗0.05,T

]
,

where ψ̂T is the impulse response estimator based on the original sample and ψ̂∗γ,T denotes the

critical point defined by the γ quantile of the distribution of the bootstrap estimator of the impulse

response. This interval accounts for small-sample bias in the impulse response estimator and does

not require normality to hold (see Hall 1992). The bootstrap estimators are generated based on

the standard recursive design-bootstrap discussed in Appendix D. All results are based on 1,000

bootstrap replications. Table 2 shows that bootstrap confidence intervals may greatly improve

the accuracy of inference based on the non-augmented AR(4) model. For example, the uniform

coverage rates for T = 480 range from 90% at horizon 1 to 85% at horizon 12, which is much higher

than for the delta method in Table 1 at longer horizons. When using the lag-augmented model,

however, the Hall interval is not systematically more accurate than the delta method.

An alternative approach that has been shown to work well in bootstrapping stationary autore-

gressions is the bias-adjusted bootstrap of Kilian (1999), which replaces the least-squares estimates

of the slope parameters by first-order mean bias-adjusted estimates when implementing the boot-

strap (see Pope 1990). Impulse response intervals are based on the standard percentile interval

of Efron (1979) with the interval endpoints defined as
[
ψ̂∗0.05,T , ψ̂

∗
0.95,T

]
. Table 2 shows that this

method greatly improves the uniform coverage accuracy of the bootstrap confidence intervals in

small samples, whether the model is lag-augmented or not, but by far the most accurate cover-

age rates are obtained based on the lag-augmented model. For T = 80, the coverage rates are

between 80% and 87%, depending on the horizon. For T = 120, the coverage accuracy improves

to between 83% and 88%. For T = 240, they are at least 87%, for T = 480 at least 88%, and

for T = 600 at least 89%. This evidence suggests that the conventional asymptotic approximation

remains accurate at longer horizons than previously thought possible. Performance deteriorates,

when the autoregression is not lag-augmented, whether inference is based on the delta method or

10A general introduction to bootstrap methods for autoregressions and details of the construction of each of these
intervals can be found in Kilian and Lütkepohl (2017).
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the bias-adjusted bootstrap.

5.2 The Effect of Lag-Augmentation on Average Interval Length

Our coverage results suggest that accurate coverage for impulse response confidence intervals re-

quires highly persistent autoregressions in applied work to be lag-augmented. This improvement

in accuracy, however, tends to come at the cost of an increase in the average length of the interval.

Since lag augmentation is necessary to control coverage accuracy in finite samples, it is difficult in

general to compare the average length of intervals based on the original and on the lag-augmented

model.

One way of assessing the cost of lag augmentation while controlling for coverage is to compare

the average length of the Efron interval based on the bias adjusted autoregressive model augmented

with two autoregressive lags to the same type of interval based on the bias-adjusted autoregressive

model augmented by only one autoregressive lag. Since the coverage accuray of these intervals can

be shown to be virtually the same, we can directly compare the average interval length. As Table

3 shows, the inclusion of the extra augmented lag has negligible effects on average interval length.

For T = 80, the average interval length increases by between 1.4% at horizon 1 and 2.2% at horizon

12. For T = 600, this increase shrinks to between 0.2% at horizon 1 and 0.7% at horizon 12.

Additional insights may be gained by comparing the average length of the Efron percentile

interval at short horizons, because at these horizons both the intervals based on the bias-adjusted

autoregression augmented by one lag and the intervals based on the bias-adjusted original autore-

gression are about equally accurate (see Table 2). Table 4 shows the percentage increase in the

average interval length at these horizons, computed as the average of the percentage increases in

average interval length obtained for each ρ. We find that the increase in average interval length

caused by the lag augmentation tends to be negligible. Even for T = 80 and T = 120 the average

interval length increases by at most 1.5% and 1%, respectively, when a fifth autoregressive lag is

added. For T = 240, that increase drops to 0.5% and for larger samples sizes the increase further

reduces to 0.25% and 0.15%.

Our findings for short-horizon impulse responses are consistent with simulation evidence in

Dolado and Lütkepohl (1996) that the power loss of Granger causality tests based on the lag-

augmented model is quite modest when the autoregressive lag order is reasonably large. This does

not mean that the benefits of lag augmentation come without cost, however. One important dif-
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ference from the analysis in Dolado and Lütkepohl (1996) is that the distribution of the long-run

impulse response depends on the sum of the autoregressive coefficients, when the dominant autore-

gressive root is modeled as local to unity. This sum is more accurately measured in the original

autoregression, where φ̂1 + φ̂2 + · · · + φ̂p converges at rate T to a nonstandard distribution, than

in the lag-augmented autoregression, where φ̂1 + φ̂2 + · · · + φ̂p is
√
T -consistent and asymptoti-

cally Gaussian. This reasoning suggests that impulse response inference based on lag-augmented

models at longer horizons may involve a loss in power compared to inference based on the original

autoregression, when the data generating process is highly persistent.

In Table 5, we investigate this conjecture by comparing the size-adjusted local power of im-

pulse response inference based on the lag-augmented autoregression to that based on the original

autoregression. We focus on the delta method, given the computational challenges in evaluating

the power of the bootstrap procedures. Our analysis appeals to the duality of inference based

on delta method confidence intervals and inference based on two-sided t-tests. All results shown

are exact finite-sample results. The local power differences are expressed in percentage points with

positive entries indicating a loss in size-adjusted power from lag-augmenting the autoregression and

negative entries indicating a gain in size-adjusted power. Table 5 shows that there are situations

when lag augmentation causes the power of the test to decline substantially at longer horizons, but

there are also situations when the power remains unchanged or even increases. Thus, once the size

is controlled for, finite-sample inference based on the lag-augmented model does not necessarily

involve a loss in power,??although it may involve a substantial loss in power in some cases.

5.3 Coverage Accuracy at Longer Horizons

An important question is how quickly the accuracy of our asymptotic approximation deteriorates

with the impulse response horizon. Table 6 shows that the coverage accuracy of the Efron percentile

interval based on the bias-adjusted lag-augmented autoregression is preserved even at much longer

horizons. For example, for T = 240 the uniform coverage accuracy of the bootstrap confidence

interval for the lag-augmented model is at least 88% at every impulse response horizon from 12 to

60. For T = 480 the lowest uniform coverage rate at these horizons is 89% and for T = 600 it is

90%.11

11Our analysis in Tables 1 through 4 focuses on nominal 90% intervals. Confidence levels of 90% or smaller
are conventional for element-wise impulse response inference. In constructing joint confidence intervals based on
the Bonferroni method, it is customary to rely on much higher element-wise confidence levels (see Lütkepohl et al.
2015, 2018). It is therefore useful to note that, for T = 240 or larger, nominal 99% impulse response confidence
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These results suggest that for many applications of impulse response analysis there is no need to

rely on nonstandard interval estimators based on long-horizon asymptotics for impulse responses,

as long as we apply the bias-adjusted bootstrap method to the lag-augmented autoregression.

The superior accuracy of this method at longer horizons is not explained by our fixed-horizon

asymptotics in sections 3 and 4, however. In the next section, we formally establish the pointwise

asymptotic validity of this method (and this method alone) under the assumption that the impulse

response horizon increases linearly with the sample size, which helps explain its greater robustness

to the impulse response horizon.

6 Impulse Responses at Long Horizons When the DGP is Local
to Unity

In this section, we show that Efron’s percentile interval based on the lag-augmented autoregres-

sive model (employed with or without bias adjustments of the autoregressice slope parameters) is

asymptotically valid for long-horizon impulse response inference when there is a near unit root. We

first consider the AR(1) model for illustration:

yt = φ1,T yt−1 + ut, (16)

where φ1,T = ec/T for some constant c ≤ 0, y0 = 0, and ut
iid∼ (0, σ2). As is well known, the

estimator φ̂1,T in this model has a nonstandard distribution, as does the [λT ]-step-ahead impulse

response φ̂
[λT ]
1,T . In contrast, in the lag-augmented model

yt = φ1yt−1 + φ2yt−2 + ut, (17)

which may equivalently be expressed as

∆yt = πyt−1 + γ∆yt−2 + ut, (18)

√
T (φ̂1,T − 1) =

√
T (π̂T + γ̂T ) =

√
T γ̂T + op(1) is asymptotically normally distributed.

Consider the t-statistic for testing the null hypothesis that the [λT ]-step-ahead impulse response

intervals based on our preferred method have effective uniform coverage rates of between 98% and 99% at all horizons
considered.
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is 1:
φ̂

[λT ]
1,T − 1

[λT ]φ̂
[λT ]−1
1,T ÂSE(φ̂1,T )

, (19)

where ÂSE(φ̂1,T ) is the estimate of the asymptotic standard error of φ̂1,T . Rewrite the t-statistic

as 1− 1

φ̂
[λT ]
1,T

 φ̂1,T

[λT ]ÂSE(φ̂1,T )
. (20)

It follows from
1

φ̂1,T

=
1

1 + 1√
T

√
T (φ̂1,T − 1)

, (21)

that

1

λT
1
2

1− 1

φ̂
[λT ]
1,T

 = − 1

λT
1
2

(
1 +

1√
T

√
T (φ̂1,T − 1)

)−[λT ]

+ op(1)

= − 1

λT
1
2

(e−z)λT
1
2 + op(1), (22)

where z is a zero-mean normal random variable such that
√
T (γ̂T −γT )

d→ z. Combining (20) and

(22), the t statistic can be approximated by

− 1

λT
1
2

e−λT
1
2 z φ̂1,T

T
1
2 ÂV ar(φ̂1,T )

. (23)

Note that
√
T φ̂1,T√

ÂV ar(φ̂1,T )
converges in probability to a constant. Thus,

zT = T−
1
2 log(-t) (24)

converges in distribution to a zero-mean normal random variable. As a result, zT is positive with

probability approaching 1/2 and is negative with probability approaching 1/2. As T → ∞, the

t-statistic,

t = − exp(T
1
2 zT ), (25)

converges to zero with probability 1/2 and diverges to minus infinity with probability 1/2 as T

goes to infinity. Thus, the delta method interval fails. Noting that T
1
2 ÂSE(φ̂1,T ) converges in

probability to a constant, the same argument applies to the unstudentized statistic,
√
T (φ̂

[λT ]
1,T − 1)
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and
√
T (φ̂

∗[λT ]
1,T − φ̂[λT ]

1,T ), invalidating Hall’s percentile interval.

In contrast, impulse response inference based on Efron’s percentile interval remains asymp-

totically valid at long horizons, because, as the horizon lengthens, the impulse response can be

expressed as a monotonic function of the asymptotically normal estimator φ̂1,T . Unlike other con-

fidence intervals, the Efron percentile interval is transformation-respecting. In other words, the

interval for a given monotonic transformation of the original parameter may be obtained by apply-

ing the same transformation to the interval endpoints for the original parameter (see Efron 1979).

The implications of this point for long-horizon impulse response inference are formalized in the

following proposition.

Assumption C. The data generating process satisfies:

(i) |ρj | < 1 for j = 1, ..., p− 1 and ρp = ec/T for some constant c ≤ 0.

(ii) {ut}Tt=1 is a sequence of iid random variables with E(ut) = 0 and E(u2
t ) <∞.

Proposition 5: Suppose that the DGP is an AR(p) process, as described in section 2.2, and that

Assumption C is satisfied. Then the Efron (1979) percentile interval based on the lag-augmented

autoregressive model allows asymptotically valid inference about the impulse responses at long

horizons.

Remarks.

1. Proposition 5 establishes the asymptotic validity of impulse response inference based on

Efron’s percentile interval within the local-to-unity framework. It does not establish its

asymptotic validity in the stationary region. Thus, long-horizon inference is not uniformly

valid in the parameter space. It is valid only for roots close to unity. Further simulations

(not shown to conserve space) suggest that for reasonably large samples our asymptotic ap-

proximation is excellent for roots of 0.8 or larger. An immediate implication is that impulse

response inference is likely to be more reliable at long horizons when persistent autoregressive

processes are expressed in levels rather than in differences.

2. Proposition 5 may be generalized to vector autoregressive processes, as long as there is only

one large root, as is commonly assumed in related studies (see, e.g., Pesavento and Rossi
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2006; Mikusheva 2012). For a potential alternative approach that allows for multiple large

roots see Phillips and Lee (2016) and the references therein.

3. In related work, Mikusheva (2012) proposes a generalization of the grid bootstrap of Hansen

(1999) for autoregressions that allows inference on individual impulse responses that, like

our approach, is uniformly asymptotically valid in the parameter space. The advantage of

Mikusheva’s asymptotic approximation is that it nests as special cases the conventional normal

approximation for short-horizon impulse response estimators and the nonstandard asymptotic

approximation for long-horizon impulse response estimators, as proposed by Phillips (1998),

Wright (2000), Gospodinov (2004) and Pesavento and Rossi (2006). The disadvantage of

Mikusheva’s procedure is that its computational cost tends to be prohibitive for all but the

simplest autoregressive processes.12 Our approach provides a computationally less costly

alternative to Mikusheva’s grid bootstrap in many applied settings for short as well as long

horizons. For example, at horizons up to 12 periods, even for T = 240, the infimum of the

impulse response coverage rates based on our conventional bootstrap asymptotics for lag-

augmented autoregressive models ranges from 87% to 89%. For T = 480, the coverage rates

reach 89% to 90%, depending on the horizon. The latter coverage rates are at least as accurate

as the grid bootstrap coverage rates for T = 500 reported in Mikusheva (2012), which range

from 87% to 92% at similar horizons.

4. Unlike Efron’s percentile interval, Hall’s percentile interval and percentile-t intervals are not

transformation respecting and hence are invalid at long horizons under Assumption C.

It is useful to illustrate these results by simulation. Table 7 restricts the impulse response

horizon to be a fraction λ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} of the sample size T . All methods of inference

are implemented exactly as in section 5. We focus on impulse response inference based on the lag-

augmented autoregression, since impulse response inference based on the original autoregression

fails at long horizons, regardless of how the interval is constructed. This fact follows from Phillips

(1998) and may easily be verified by simulation. The more interesting question is how well our

asymptotic approximation works for the lag-augmented model. As predicted by our theoretical

analysis, conventional delta method inference breaks down at long horizons, even when working

with the lag-augmented model. Even for T = 600, the coverage rates of the nominal 90% delta

12The largest process considered by Mikusheva (2012) in her simulation analysis is an AR(2) process. Her method
does not appear to have been applied to autoregressions with more lags.
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method interval remain between 49% and 68%, depending on λ. Similarly, the coverage rates of the

Hall percentile interval range from 43% to 52% for T = 600, illustrating the failure of this method.

Likewise, equal-tailed and symmetric percentile-t impulse response intervals show no tendency to

converge to their nominal probability content (results not shown to conserve space).

In contrast, even without bias adjustments, the coverage rates of Efron’s percentile interval

range from 85% for T = 240 to 89% for T = 600. Applying bias adjustments for the slope

parameters, further increases the finite-sample accuracy. The coverage accuracy increases to about

89% for T = 240 and 90% for T = 600, regardless of λ. We conclude that the Efron percentile

interval based on the bias-adjusted lag-augmented autoregression which performed best in section

5 is also the preferred approach in the current setting. It should be noted that the type of local

power analysis we conducted in section 5.2 is infeasible in the context of long-horizon inference

when one of the roots is local to unity because inference based on the non-augmented model is

asymptotically invalid.

7 Extensions to ARMA Processes

The practice of augmenting the AR(p) model by one autoregressive lag, resulting in an AR(p+ 1)

model, of which only the first p slope coefficients are used for inference, presumes that p is known.

In section 2, p was defined as the true lag order, assuming that this lag order is finite. It should

be noted that all our results would go through if p exceeded the true lag order. The lag order p

could, alternatively, be defined as the approximating lag order for an AR(∞) process (e.g., Inoue

and Kilian 2002b). While a theoretical analysis of this setting is beyond the scope of this paper,

in this section we present some preliminary simulation evidence based on ARMA(1,1)-DGPs with

MA roots of +0.25 and -0.25, respectively. Table 8 illustrates that the uniform coverage of our

preferred method based on the lag augmented AR(6) model is nearly perfect in this case at all

horizons from 1 to 60. The coverage rates range from 0.88 to 0.91 for T = 600, matching the results

for purely autoregressive processes. Only slightly less accurate results hold for lag augmented

AR(4) and AR(8) models, suggesting that the autoregressive approximation continues to work well

for reasonably large lag orders.

It may seem that the conventional lag augmentation approach could be further improved upon

by augmenting the original autoregression by one moving average lag instead of one autoregressive

lag. This is not the case. First, the resulting ARMA(p,1) model would not be more robust against
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lag order misspecification because – after discarding the augmented MA coefficient – the implied

AR(p) model is only as good as the maintained AR(p) specification. Second, applied users for good

reason tend to avoid the estimation of higher-dimensional ARMA models because ARMA estimates

tend to be unreliable in small samples. Third, and most importantly, it can be shown that this MA

lag augmentation procedure is asymptotically invalid.

To illustrate the point, consider the ARMA(1,1) model:

yt = φyt−1 + ut − θut−1

where ut
iid∼ (0, 1). Closed-form results are facilitated by focusing on the IV estimator. When this

process is stationary, φ and θ satisfy

γ1 = φγ0 − θ,

γ2 = φγ1,

where γj ≡ E(ytyt−j) for j = 0, 1, 2. The implied IV estimator of φ and θ is:

φ̂ =
γ̂2

γ̂1
,

θ̂ =
γ̂2

γ̂1
γ̂0 − γ̂1,

where γ̂j = (1/T )
∑T

t=j+1 ytyt−j for j = 0, 1, 2.

When φ = 1, it can be shown that φ̂ and θ̂ remain consistent for φ and θ. Hall (1989) shows

that φ̂ converges weakly to a Dickey-Fuller distribution. Because the impulse responses, φ̂h, are not

asymptotically normally distributed, conventional methods of inference based on the asymptotic

normal approximation fail.

To illustrate this point, we conduct a small-scale Monte Carlo experiment. The data are gen-

erated from the Gaussian random walk process:

yt = yt−1 + ut,

where y0 = 0, ut
iid∼ N(0, 1) and t = 1, 2, ..., T with T = 600. AR(1), AR(2) and ARMA(1,1)

models are fitted and the first twelve impulse responses are calculated using the estimate of the

AR(1) coefficient parameter of these models. Table 9 reports the coverage rates for nominal 90%
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impulse response confidence intervals based on the delta method. As expected, the delta method

fails for the AR(1) model, as does the delta method for the AR(1) model augmented by one MA

lag. The effective coverage rates are near 50%. In contrast, the delta method produces coverage

rates between 85% and 89% in the AR(1) model augmented by one autoregressive lag. Even more

accurate results would be obtained by suitable bootstrap methods.

8 Concluding Remarks

Although impulse response inference has played an important role in macroeconometrics since the

1980s, all existing proofs of the asymptotic validity of conventional delta method and bootstrap

confidence intervals are based on pointwise Gaussian asymptotic approximations. We established

the uniform asymptotic validity of conventional asymptotic and bootstrap inference about individ-

ual impulse responses and vectors of impulse responses when the horizon is fixed with respect to

the sample size. We showed that for inference about vectors of impulse responses based on Wald

test statistics to be uniformly valid in the parameter space, autoregressions must be lag augmented.

Inference about individual impulse responses, in contrast, under weak conditions is uniformly valid

even without lag augmentation, provided the model includes more than one lag.

We documented by simulation that the conventional asymptotic approximation works well in

moderately large samples, as long as the impulse response horizon remains reasonably small rel-

ative to the sample size. The highest small-sample accuracy is achieved when bootstrapping the

lag-augmented autoregressive model using the bias-adjusted bootstrap method of Kilian (1999).

We provided formal asymptotic arguments why this method of inference retains its accuracy even

at very long impulse response horizons, when other methods do not. Although the latter argu-

ment does not hold uniformly across the parameter space, it does hold in a local-to-unity setting.

Our results suggest that highly persistent autoregressions in applied work should be routinely

lag-augmented when conducting impulse response analysis, if coverage accuracy is the primary

objective.
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Appendix A: Proof of Propositions 1, 2, 3, 4 and 5

To prove Proposition 1, we follow the steps taken in Mikusheva (2007a,b). First we show that

the estimation uncertainty about the asymptotic covariance matrix is asymptotically negligible

(Lemma B1). Next, we show that the distribution of the least-squares estimator can be uniformly

approximated by that based on Gaussian autoregressive processes (Lemma B2). Third, we show

that the latter can be uniformly approximated by the local-to-unity asymptotic distribution (Lemma

B3). Proposition 2 follows from Proposition 1 and the rank condition in Assumption B.

As in Mikusheva (2007a, 2012), we split the parameter space into two overlapping parts:

AT = {θ ∈ Θ : |1− ρp| < T 1−α},

BT = {θ ∈ Θ : |1− ρp| > T 1−α},

for some 0 < α < 1.

Proof of Proposition 1. First, it follows from Lemma B1 that

lim
T→∞

sup
θ∈Θ

sup
x∈<dθ

∣∣∣∣P (Σ̂
− 1

2
T (θ̂T − θ) ≤ x)− P (Σ

− 1
2

T (θ̂T − θ) ≤ x)

∣∣∣∣ = 0, (A.1)

where

Σ̂T =

 σ̂2
T (
∑T

t=p+1 xtx
′
t)
−1 0(p+2)×1

01×(p+2) σ̂4,T

 , ΣT =

 σ2(
∑T

t=p+1 xtx
′
t)
−1 0(p+2)×1

01×(p+2) σ4

 . (A.2)

Next, it follows from Lemma B2 that the distribution of Σ
− 1

2
T (θ̂T − θ) based on {yt}Tt=1 can be

uniformly approximated by that based on {ȳt}Tt=1 where

∆ȳt = δ0 + δ1

(
t

T

)
+ πȳt−1 + Γ1∆ȳt−1 + · · ·+ Γp−1∆ȳt−p+1 + ūt

= βx̄t + ūt, (A.3)
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and ūt
iid∼ N(0, σ2). It follows from Lemma 5 of Mikusheva (2007a) and Lemma B3 that

Υ−1
T (cT )

T∑
t=p+1

x̄tx̄
′
tΥ
−1
T (cT )−Υ−1(cT )


1 1

2
ω(ρp)

∫ 1

0
JcT (r)dr 0

1
2

1
3

ω(ρp)
∫ 1

0
rJcT (r)dr 0

ω(ρp)
∫ 1

0
JcT (r)dr ω(ρp)

∫ 1

0
rJcT (r)dr ω(ρp)

2
∫ 1

0
JcT (r)2dr 0

0 0 0 M

Υ−1(cT )

= op(1) (A.4)

and

Υ−1
T (cT )

T∑
t=p+1

x̄tūt −Υ−1(cT )


N1

N2

σω(ρp)
∫ 1

0 JcT (r)dW (r)

N3

 = op(1), (A.5)

uniformly over AT , where cT = T log(max(|ρp|, ε)) and ΥT (cT ) = T
1
2 Υ(cT ).

Third, it follows from Lemma 12(a) and (b) of Mikusheva (2007b), (A.4) and (A.5) that

T
1
2 (σ̂2

T − σ2) =
1√
T

T∑
t=p+1

(û2
t − σ2)

=
1√
T

T∑
t=p+1

((ut − (β̂T − β)′xt)
2 − σ2)

=
1√
T

T∑
t=p+1

(u2
t − σ2 − 2(β̂T − β)′xtut + (β̂T − β)′xtx

′
t(β̂T − β))

=
1√
T

T∑
t=p+1

(u2
t − σ2)− 2T−

1
2 (β̂T − β)′ΥT (cT )Υ−1

T (cT )
T∑

t=p+1

xtut

+T−
1
2 (β̂T − β)′ΥT (c)Υ−1

T (cT )

T∑
t=p+1

xtx
′
tΥ
−1
T (cT )ΥT (cT )(β̂T − β)

=
1√
T

T∑
t=p+1

(u2
t − σ2) +Op(T

− 1
2 )

d→ N4, (A.6)

uniformly on Θ.

It follows from (A.4), (A.5) and (A.6) that

lim
T→∞

sup
θ∈AT

sup
x∈<dθ

∣∣∣∣P (Σ
− 1

2
T (θ̂T − θ) ≤ x)− P (η(θ, T ) ≤ x)

∣∣∣∣ = 0. (A.7)
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Using

√
−2cT

∫ 1

0
JcT (r)dW (r)

d→ N(0, 1), (A.8)

(−2cT )

∫ 1

0
J2
cT

(r)dx
p→ 1, (A.9)

as cT → −∞ (Phillips, 1987), it follows from Lemma 12(a) and (b) of Mikusheva (2007b) and (A.6)

that

lim
T→∞

sup
θ∈BT

sup
x∈<dθ

∣∣∣∣P (Σ
− 1

2
T (θ̂T − θ) ≤ x)− P (η(θ, T ) ≤ x)

∣∣∣∣ = 0. (A.10)

Therefore, Proposition 1 follows from (A.7) and (A.10). �

Proof of Proposition 2. Because f(·) is continuously differentiable,

T
1
2 (f(θ̂T )− f(θ)) = T

1
2Df(θ̄T )(θ̂T − θ)

= T
1
2Df(θ̄T )Σ

1
2
TΣ
− 1

2
T (θ̂T − θ)

= T
1
2Df(θ̄T )Υ−1

T (cT )(ΥT (cT )ΣTΥT (cT ))
1
2

×Σ
− 1

2
T (θ̂T − θ), (A.11)

where θ̄T is a point between θ̂T and θ.

Note that T
1
2Df(θ)ΥT (c) equals (8), that the first two columns consist of zeros by Assumption

B, and that in the nonstationary region AT , the elements of the third column converge to zero.

Thus, it follows from (A.4), (A.5) and (A.11) that

(Df(θ̂T )Σ̂TDf(θ̂T )′)−
1
2T

1
2 (f(θ̂T )− f(θ)) (A.12)

converges in distribution to the standard normal random vector uniformly on AT . In the stationary

region BT , it follows from Lemma 12(a) and (b) of Mikusheva (2007b) and (A.6) that (A.12)

converges in distribution to the standard normal random vector uniformly on BT . Thus, (11)

follows. (12) follows from the second remark about Theorem 1 in Kasy (2019). �

Proof of Proposition 3. Because we assume that the variance is uniformly bounded away from zero

and uniformly bounded from above in Assumption A(i), the arguments in the proof of Lemma 6 of

Mikusheva (2007a) carry through after scaling the residual in her proof by its standard deviation.
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Thus, the empirical distribution of the scaled residuals belongs to the Lr(K,M, θ) class13, and the

Skorohod representation result in Lemma 12 of Mikusheva (2007a) applies. In other words, for

any realization of the disturbance term, there exists K > 0, M > 0 and θ such that the empirical

distribution function of the residual-based bootstrap, F̂T , belongs to Lr(K,M, θ) for all θ ∈ Θ.

Thus, there is an almost sure approximation of the partial sum process by Brownian motions: For

any ε > 0 there exists δ > 0 such that

lim
T→∞

sup
FT∈Lr(K,M,θ)

P ∗

 sup
0≤s≤1

∣∣∣∣∣∣ 1√
T

[sT ]∑
t=1

u∗t − σW (s)| > εT−δ

∣∣∣∣∣∣
 = 0. (A.13)

Moreover, by Lemma B2 with cT , ut, xt, yt replaced by c∗T , u
∗
t , x
∗
t , y
∗
t , respectively, the relevant boot-

strap sample moments can be approximated by those generated from a Gaussian autoregressive

process with β = β̂T almost surely conditional on the data. A bootstrap version of Lemma B1 may

be constructed by replacing σ̂4,T and σ4,T by σ̂∗4,T and σ̂4,T , respectively. Repeating the arguments

in the proof of Lemma 5 of Mikusheva (2007a) yields a bootstrap version of Lemma B3 in which

cT is replaced by c∗T from which we obtain the desired result. �

Proof of Proposition 4. The proof of Proposition 4 is analogous to that of Proposition 2. �

Proof of Proposition 5. The AR(p) model is augmented by one lag. Let F̂ and F̂ ∗ denote the com-

panion matrices for the first p coefficients of the estimated lag-augmented model and its bootstrap

analogue,

F̂ =



φ̂1,T φ̂2,T · · · φ̂p−1,T φ̂p,T

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


, F̂ ∗ =


φ̂∗1,T φ̂∗2,T · · · φ̂∗p−1,T φ̂∗p,T

1 0 · · · 0 0

0 1 · · · 0 0

 ,

respectively. The h-step-ahead impulse response estimate and bootstrap estimate are the (1,1)

13Mikusheva (2007a) defines this class to be the class of sequences of distributions FT such that the mean is zero,
the variance σ2

T satisfies |σ2
T | ≤MT−θ and the supremum of the rth moment with respect to T is less than K.
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elements of F̂ h and F̂ ∗h, respectively.

F can be written as

F = PJP−1, (A.14)

where J is the Jordan normal form of F , and P consists of eigenvectors and generalized eigenvectors

of P . Thus

F h = PJhP−1 (A.15)

The hth power of the Jordan normal form is given by

Jh =


ρhp 0 · · · 0

0 Jhm2
(ρp−1) · · · 0

...
...

. . .
...

0 0 · · · Jhmq(ρ1)

 , (A.16)

where mj is the multiplicity of the jth largest root with m1 = 1 such that
∑q

j=1mj = p, and

Jhmj (ρk) =


ρhk

(
h
1

)
ρh−1
k

(
h
2

)
ρh−2
k · · ·

(
h

mj−1

)
ρ
h−mj+1
k

0 ρhk
(
h
1

)
ρh−1
k · · ·

(
h

mj−2

)
ρ
h−mj+2
k

...
...

...
. . .

...

0 0 0 · · · ρhk

 (A.17)

for j = 1, 2, ..., q. Because there is one and only one local-to-unity root (ρp), the (1,1) element of

F [λT ] can be approximated by

P11ρ
[λT ]
p P 11 + o(1), (A.18)

where P11 is the (1,1) element of P and P 11 is the (1,1) element of P−1. Similarly, the (1,1) element

of F̂ [λT ] and that of F̂ ∗[λT ] can be approximated by

P̂11ρ̂
[λT ]
p P̂ 11 + op(1), (A.19)

P̂ ∗11ρ̂
∗[λT ]
p P̂ 11∗ + o∗p(1), (A.20)
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respectively. Taking the log on both sides

log(P̂11) + log(P̂ 11) + [λT ] log(ρ̂p) + op(1), (A.21)

log(P̂ ∗11) + log(P̂ 11∗) + [λT ] log(ρ̂∗p) + o∗p(1). (A.22)

Because there is one and only one local-to-unity root (ρp), ρ̂p and ρ̂∗p are continuously differentiable

in (φ̂1,T , ..., φ̂p,T ) and (φ̂∗,T1,T , ..., φ̂
∗
p,T ), respectively. Thus, ρ̂p,T is asymptotically normally distributed

in the lag-augmented model. Because Efron’s percentile bootstrap interval is transformation-

respecting and because ρ̂p,T is asymptotically normally distributed, it remains asymptotically valid,

when other intervals fail. Since first-order mean bias adjustments of the slope parameters are of or-

der T , this argument remains valid when using Efron’s interval in conjunction with bias adjustments

(see Kilian 1998b). �

Appendix B: Proofs of Lemmas B1, B2, B3 and B4

Throughout Appendix B, suppose that Assumptions A and B are satisfied.

The following lemma builds on Lemma 3 of Mikusheva (2007a):

Lemma B1.

σ̂4,T = σ4 + op(1) (B.1)

uniformly on Θ.

Proof of Lemma B1. σ̂4,T can be approximated by

σ̂4,T =
1

T − p

T∑
t=p+1

û4
t − σ̂4

T

=
1

T − p

T∑
t=p+1

û4
t − σ4 + op(1)

=
1

T − p

T∑
t=p+1

(ut − (β̂T − β)′xt)
4 − σ4 + op(1)
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=
1

T − p

 T∑
t=p+1

u4
t − 4((β̂T − β)′xt)u

3
t

+6((β̂T − β)′xt)
2u2
t − 4((β̂T − β)′xt)

3ut + ((β̂T − β)′xt)
4
]

=
1

T − p

 T∑
t=p+1

u4
t − 4(ζ ′T x̃t)u

3
t + 6(ζ ′T x̃t)

2u2
t − 4(ζ ′T x̃t)

3ut + (ζ ′Txt)
4

 (B.2)

where the second equality follows from Lemma 3 of Mikusheva (2007a), ζT = (
∑T

t=p+1 xtx
′
t)

1
2 (β̂T −

β) and x̃t = (
∑T

t=p+1 xtx
′
t)
− 1

2xt. As shown in the proof of Proposition 1, ζT = Op(1) uniformly on

Θ. Because
∑T

t=p+1 x̃tx̃
′
t = Ip+2,

T∑
t=p+1

p+2∑
j=1

x̃kt ≤ 1, (B.3)

for k = 4, 6, 8. Thus, it follows from the Cauchy-Schwarz inequality that

∣∣∣∣∣∣ 1

T − p

T∑
t=p+1

(ζ ′T x̃t)u
3
t

∣∣∣∣∣∣ ≤
 1

T − p

T∑
t=p+1

(ζ ′T x̃tx̃
′
tζT )

 1
2
 1

T − p

T∑
t=p+1

u6
t

 1
2

= Op(T
− 1

2 ), (B.4)∣∣∣∣∣∣ 1

T − p

T∑
t=p+1

(ζ ′T x̃t)
2u2
t

∣∣∣∣∣∣ ≤
 1

T − p

T∑
t=p+1

(ζ ′T x̃t)
4

 1
2
 1

T − p

T∑
t=p+1

u4
t

 1
2

≤ C

‖ζT ‖4
T − p

T∑
t=p+1

p+2∑
j=1

x̃4
j,t

 1
2
 1

T − p

T∑
t=p+1

u4
t

 1
2

= Op(T
− 1

2 ), (B.5)

∣∣∣∣∣∣ 1

T − p

T∑
t=p+1

(ζ ′T x̃t)
3ut

∣∣∣∣∣∣ = Op(T
− 1

2 ), (B.6)

∣∣∣∣∣∣ 1

T − p

T∑
t=p+1

(ζ ′T x̃t)
4

∣∣∣∣∣∣ = Op(T
− 1

2 ), (B.7)

where the last two results follow from arguments similar to the one used in the second result and

the Op(T
− 1

2 ) terms are uniformly on Θ. Thus, Lemma B1 follows. �

The next lemma is a slight extension of Lemma 11 of Mikusheva (2007b) which we present for
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completeness.

Lemma B2. Suppose that ȳt follows

∆ȳt = δ0 + δ1(t/T ) + πȳt−1 + γ1∆ȳt−1 + · · ·+ γp−1∆ȳt−p+1 + ūt

= βx̄t + ūt, (B.8)

where ūt
iid∼ N(0, σ2). Then thre exists a completion of the initial probability space and the

realization of ȳt on this probability space such that

sup
θ∈AT

sup
t=1,...,T

∥∥∥∥ yt√
T
− ȳt√

T

∥∥∥∥ = o(1) a.s., (B.9)

sup
θ∈AT

sup
t=1,...,T

∥∥∥∥ yt√
T

∥∥∥∥ = O(1) a.s., (B.10)

sup
θ∈AT

∥∥∥∥∥∥Υ−1
T (c)

T∑
t=p+1

xtut −Υ−1
T (c)

T∑
t=p+1

x̄tūt

∥∥∥∥∥∥ = o(1), (B.11)

sup
θ∈AT

∥∥∥∥∥∥Υ−1
T (c)

T∑
t=p+1

xtx
′
tΥ
−1
T (c)−Υ−1

T (c)
T∑

t=p+1

x̄tx̄
′
tΥ
−1
T (c)

∥∥∥∥∥∥ = o(1), (B.12)

sup
θ∈AT

∥∥∥∥∥∥(
T∑

t=p+1

xtx
′
t)
− 1

2

T∑
t=p+1

xtu
′
t − (

T∑
t=p+1

x̄tx̄
′
t)
− 1

2

T∑
t=p+1

x̄tū
′
t

∥∥∥∥∥∥ = o(1). (B.13)

Proof of Lemma B2.

Because κ ≤ σ2 ≤ K, (B.9) and (B.10) follow from Lemma 11(a) and (b), respectively, of

Mikusheva (2007b) who normalizes σ2 to one. Similarly, (B.11) follows from Lemma 11(c), (d),

(e), and (f) of Mikusheva (2007b) and (B.12) from her Lemma 11(g), (h), and (i). (B.13) follows

from (B.11) and (B.12). �

The next two results follow from the arguments used in the proof of Lemma 5 of Mikusheva
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(2007a).

Lemma B3.

lim
T→∞

sup
θ∈AT

E

∥∥∥∥∥∥vech

ΥT (cT )−1
T∑

t=p+1

x̄tx̄tΥT (cT )−1

−Υ−1(cT )


1 1

2 ω(ρp)
∫ 1

0 JcT (r)dr 0

1
2

1
3 ω(ρp)

∫ 1
0 rJcT (r)dr 0

ω(ρp)
∫ 1

0 JcT (r)dr ω(ρp)
∫ 1

0 rJcT (r)dr ω(ρp)
2
∫ 1

0 JcT (r)2dr 0

0 0 0 M

Υ−1(cT )



∥∥∥∥∥∥∥∥∥∥∥∥

2

= 0, (B.14)

lim
T→∞

sup
θ∈AT

E

∥∥∥∥∥∥∥∥∥∥∥∥
ΥT (cT )−1

T∑
t=p+1

x̄tūt −Υ−1(cT )


N1

N2

σω(ρp)
∫ 1

0 JcT (r)dW (r)

N3



∥∥∥∥∥∥∥∥∥∥∥∥

2

= 0. (B.15)

The following result is a slight modification of equation (21) of Inoue and Kilian (2002a):

Lemma B4.

Let δ0,T = φT (1)δ†0,T + δ†1,T (φT,1 + 2φT,2 + · · ·+ pφT,p), δ
†
0,T = δ†0 + ξcT

−1/2 + o(T−1/2), δ1,T =

φT (1)δ†1,T , δ†1,T = δ†1 + ξdT
−1/2 + o(T−1/2), φT (L) = 1 − φT,1L − · · · − φT,pLp, πT = −φT (1) =∑p

j=1 φT,j − 1 = ξ0T
−1 + o(T−1), γT,j = −(φT,j+1 + · · · + φT,p) = γj + ξjT

−1/2 + o(T−1/2),

uT,t
iid∼ (0n×1, σ

2
T ), and σ2

T = σ2 + ξσ2T−1/2 + o(T−1/2) for some [ξc ξd ξ0, ξ1 · · · ξp−1 ξσ2 ]′w.

Define a triangular array

∆yT,t = δ0,T + δ1,T

(
t

T

)
+ πT yT,t−1 + γT,1∆yT,t−1 + · · ·+ γT,p−1∆yT,t−p+1 + uT,t

= β′TxT,t + uT,t, (B.16)

where βT = [δ0,T δ1,T πT γT,1 · · · γT,p]′, and xt = [1 t/T yt−1 ∆yt−1 · · · ∆yt−p+1]′. Then

lim
T→∞

sup
θ∈Θ

sup
x∈<dθ

∣∣∣P (ΥT (cT )(θ̂T − θ) ≤ x)− P (ηT (θ, T ) ≤ x)
∣∣∣ = 0, (B.17)
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where cT = T log(1 + ρp,T ).

The proof of Lemma B4 is based on the same arguments already used in the proof of Proposition

1 and is omitted. �

Appendix C: Data Mining Correction

Let the uniform coverage rate of the 1− α level confidence set be

min
i∈{1,2,...,7}

Pρi(ψi ∈ Ci), (C.1)

where ψi and Ci are the true parameter values and ρi is the ith value of ρ.

Because Pρi(ψi ∈ Ci) is not analytically tractable in finite samples, it is approximated by

simulation:

P̂ρi(ψi ∈ Ci) =
1

M

M∑
j=1

I(ψi ∈ C(j)
i ) (C.2)

where M is the number of Monte Carlo simulations and C
(j)
i is a level 1− α confidence set for the

jth Monte Carlo iteration.

The problem is that the estimate (C.2) is downward biased due to “data mining”. To estimate

this bias, express the Monte Carlo estimate of the coverage rate as:

Xi =
1

5000

M∑
j=1

dij , (C.3)

where dij is an iid Bernoulli random variable with parameter 1 − α for i = 1, ..., 7. Thus, 5000Xi

is a binomial random variable with parameters 5000 and 1− α. Then the expectation of

Y = min
i∈{1,2,...,7}

Xi (C.4)

minus (1− α) is the data mining bias. Thus, the expectation of Y can be estimated from

1

n

n∑
j=1

min
i∈{1,2,...,7}

X
(j)
i (C.5)

When α = 0.1, d = 7, and M = 5000, as in our simulation study, the normal approximation
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yields 0.894, implying a data mining bias of 0.0066. The same answer is obtained when simulating

this bias rather than relying on the normal approximation.

Appendix D: How to Bootstrap Lag-Augmented AR Models

This appendix summarizes the bootstrap algorithms employed in generating the simulation results

in Tables 1 through 5. First, consider the standard bootstrap algorithm for autoregressions without

bias adjustments. We approximate the data generating process

yt = δ0 + φ1yt−1 + ...+ φpyt−p + ut, (D.1)

where ut is iid white noise, by the bootstrap data generating process

y∗t = δ̂0,T + φ̂1,T y
∗
t−1 + ...+ φ̂p,T y

∗
t−p + u∗t . (D.2)

The bootstrap data set {y∗t }
T
t=1 is recursively generated from model (D2a), given a randomly

chosen block of pre-sample observations and the least-squares estimates
{
δ̂0,T , φ̂1,T , ..., φ̂p,T

}
of

the parameters in model (D1) from the observed sample {yt}Tt=1. The bootstrap innovation u∗t is

generated by drawing with replacement from the set of least-squares residuals {ût}Tt=1. Repeated

application of this procedure allows us to generate a large number of bootstrap data sets of length

T , each of which is evaluated by fitting an AR(p) model with intercept and calculating the implied

impulse response coefficients. The empirical distribution of the bootstrap estimates of a given

impulse response may then be used to construct either the Efron (1987) or the Hall (1992) percentile

interval.

When using bias adjustments, as proposed in Kilian (1998b, 1999), the data generating process

(1) is approximated by the bootstrap data generating process

y∗t = δ̂0,T + φ̂BC1,T y
∗
t−1 + ...+ φ̂BCp,T y

∗
t−p + u∗t . (D.3)

where the least-squares slope parameter estimates have been replaced by first-order mean bias

corrected least-squares estimates φ̂BCT =
{
φ̂BC1,T , ..., φ̂

BC
p,T

}
. Let φ = {φ1, ..., φp} . Then, under some

regularity conditions, E(φ̂ − φ) = b(φ̂T )/T + O(T−3/2), so φ̂BCT = φ̂T − b(φ̂T )/T, where b(φ̂T )/T

may be estimated based on the closed-form solutions in Pope (1990). The motivation for this bias
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adjustment is that we want the bootstrap data generating process to be centered on parameter

values that are not systematically different from their population values. We implement this pro-

cedure with all the refinements discussed in Kilian and Lütkepohl (2017). Repeated application

of this procedure allows us to generate a large number of bootstrap data sets of length T , each of

which is evaluated by fitting an AR(p) model with intercept and calculating the implied impulse

response coefficients based on similarly bias-adjusted estimates of the slope parameters. The em-

pirical distribution of the bootstrap estimates of a given impulse response then is used to construct

the Efron (1987) percentile interval.

The same algorithms may be applied to the lag augmented model. The only difference is that

we approximate

yt = δ0 + φ1yt−1 + ...+ φpyt−p + φp+1yt−p−1 + ut, (D.4)

where φp+1 = 0, by

y∗t = δ̂0,T + φ̂1,T y
∗
t−1 + ...+ φ̂p,T y

∗
t−p + φ̂p+1,T y

∗
t−p−1 + u∗t . (D.5)

where the slope parameter estimates in equation (D4) may be adjusted for small-sample estima-

tion bias or not. Each bootstrap data set of length T is evaluated by fitting the lag-augmented

autoregressive model (and possibly applying bias adjustments to the bootstrap slope parameter

estimates). Of course, as noted in section 2, for the construction of the bootstrap approximation of

the impulse response distribution only the first p bootstrap slope parameter estimates are relevant,

and φ̂∗p+1,T must be discarded. The reason for bootstrapping the AR(p + 1) model (D.4) rather

than the AR(p) model is that we are not testing the restriction on the p + 1st lag. Rather our

confidence sets are based on inverting Wald tests for nonlinear restrictions on the first p parameters

of the AR(p+ 1) model. Even though our Wald tests do not involve φp+1, it is necessary to include

the p+1st lag to correctly mimic the joint asymptotic distributon of the estimator of the remaining

parameters.
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Table 4: Percentage increase in average length of nominal 90% Efron percentile intervals based
on the bias-adjusted lag-augmented autoregression relative to the same interval based on the bias-
adjusted original autoregression

Impulse response horizon
T 1 2 3

80 1.41 1.44 1.48
120 0.88 0.93 0.92
240 0.46 0.44 0.44
480 0.19 0.24 0.21
600 0.12 0.15 0.15

Notes: The data are generated from yt = ρyt−1 +ut, ut
iid∼ N(0, 1), ρ ∈ {0.2, 0.5, 0.9, 0.95, 0.96, 0.97,

0.98, 0.99, 0.995, 1} . The lag-augmented model is an AR(5) model with intercept. The original
model is an AR(4) model with intercept. The bootstrap data are generated using a recursive-design
bootstrap method, as discussed in Appendix D. The percentage increase in the average interval
length is based on the average of the percentage increases in average interval length obtained for
each ρ.
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Table 5: Percentage loss in average size-adjusted power of the t test based on the bias-adjusted lag-
augmented autoregression relative to the t-test based on the bias-adjusted original autoregression
at the 10% significance level

δ
h T -5.0 -2.0 -1.0 -0.5 0.5 1.0 2.0 5.0
1 120 0.005 0.231 0.080 0.019 0.056 0.098 0.580 0.023

240 -0.002 0.112 -0.002 -0.009 0.057 0.065 0.229 0.005
480 0.001 0.066 0.006 0.025 0.082 0.122 0.098 0.003
600 0.001 0.029 -0.002 -0.018 0.071 0.074 0.063 0.002

4 120 9.092 2.942 0.990 0.268 -0.273 -0.663 -1.447 -1.312
240 8.931 4.102 1.496 0.629 -0.522 -1.373 -2.095 -0.168
480 9.820 5.829 2.444 0.852 -0.857 -0.975 -1.135 2.070
600 10.239 5.465 2.162 0.953 -0.887 -0.941 -0.707 2.616

8 120 17.847 4.629 1.987 1.011 -0.632 -1.266 -1.978 -6.016
240 25.465 7.483 3.325 1.764 -1.138 -1.785 -3.352 -0.617
480 31.110 10.525 4.512 1.981 -1.338 -2.505 -2.783 13.153
600 33.164 11.283 4.852 1.687 -1.539 -2.433 -2.334 17.969

12 120 9.780 2.664 1.343 0.539 -0.531 -0.887 -1.427 -2.509
240 20.147 5.672 2.407 1.152 -0.788 -1.412 -2.232 -2.267
480 27.441 8.089 3.369 1.413 -1.107 -1.888 -2.692 2.929
600 28.782 8.335 3.229 1.510 -0.864 -1.727 -2.708 5.762

Notes: The data are generated from (1 − ρL)(1 − δT−
1
2L)yt = ut, ut

iid∼ N(0, 1), with y1 = y2 = 0,
ρ ∈ {0.2, 0.5, 0.9, 0.95, 0.96, 0.97, 0.98, 0.99, 0.995, 1} and δ ∈ {−2,−1,−0.5, 0.5, 1, 2}. The lag-augmented
model is an AR(5) model with intercept. The original model is an AR(4) model with intercept. The null
hypothesis that the h-step-ahead impulse response is given by ρh is tested by the two-sided t test at the
10% significance level. The size-adjusted finite-sample critical values are simulated based on 10,000 draws
for each ρ and δ. The percentage loss in the average power is based on the average of the percentage losses
for each ρ and it is computed based on 10,000 simulation draws. A positive (negative) number indicates the
t-test is more powerful when based on the original autoregression (lag-augmented autoregression).
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Table 7: Uniform coverage rates of nominal 90% impulse response confidence intervals based on
lag-augmented autoregressions

λ = h/T
T 0.1 0.3 0.5 0.7 0.9

Delta method interval

120 0.729 0.546 0.487 0.454 0.433
240 0.704 0.554 0.477 0.477 0.464
480 0.697 0.568 0.499 0.499 0.488
600 0.682 0.552 0.494 0.494 0.484

Hall percentile interval

120 0.621 0.401 0.376 0.363 0.357
240 0.543 0.429 0.407 0.399 0.393
480 0.542 0.458 0.440 0.433 0.429
600 0.524 0.457 0.443 0.435 0.432

Efron percentile interval

120 0.745 0.797 0.795 0.805 0.804
240 0.840 0.847 0.850 0.848 0.850
480 0.878 0.881 0.882 0.882 0.882
600 0.887 0.887 0.888 0.888 0.887

Efron percentile interval after bias adjustment

120 0.855 0.887 0.888 0.891 0.890
240 0.884 0.887 0.889 0.889 0.891
480 0.896 0.888 0.898 0.888 0.896
600 0.901 0.900 0.898 0.900 0.900

Notes: The data are generated from yt = ρyt−1 + ut, ut
iid∼ N(0, 1), ρ ∈ {0.95, 0.96, 0.97, 0.98, 0.99,

0.995, 1} . The lag-augmented model is an AR(5) model with intercept. The bootstrap data are
generated using a recursive-design bootstrap method, as discussed in Appendix D. The uniform
coverage rates are computed as the infimum of the coverage rates across the ρ values, adjusted for
data mining bias.
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Table 9: Coverage rates of nominal 90% impulse response confidence intervals based on the delta
method for random walk DGP

Impulse response horizon

1 2 3 4 5 6 7 8 9 10 11 12

AR(1) model

0.532 0.529 0.523 0.516 0.514 0.510 0.510 0.509 0.505 0.502 0.501 0.500

AR(1) model augmented by one AR lag

0.881 0.881 0.884 0.887 0.886 0.881 0.876 0.876 0.867 0.866 0.861 0.852

AR(1) model augmented by one MA lag

0.551 0.548 0.545 0.542 0.536 0.536 0.535 0.533 0.531 0.527 0.521 0.519

Notes: The number of Monte Carlo simulations is 1,000, and the sample size is 600.
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