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Abstract

Macroeconomic uncertainty—the conditional volatility of the unforecastable component of
a future value of a time series—shows considerable variation in the data. A typical
assumption in business cycle models is that production is Cobb-Douglas. Under that
assumption, this paper shows there is usually little, if any, endogenous variation in output
uncertainty, and first moment shocks have similar effects in all states of the economy.
When the model departs from Cobb-Douglas production and assumes capital and labor
are gross complements, first-moment shocks have state-dependent effects and can cause
meaningful variation in uncertainty compared to the data. Estimating several variants of a
nonlinear real business cycle model reveals the data strongly prefers a model with high
complementarity between capital and labor inputs.
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1 INTRODUCTION

Macroeconomic uncertainty—the conditional volatilitytbie unforecastable component of a fu-
ture value of a time series—shows considerable variatidtndgrata. The literature typically mod-
els changes in uncertainty in business cycle models usiockstto the variance of an exogenous
variable, such as productivity, while holding its conditid mean fixed. This approach produces
estimates for the responses of real activity to an exogeimgusase in uncertainty, but it is silent
on the effect first moment shocks have on uncertainty. Etpntiy, it cannot tell us anything about
situations where uncertainty endogenously varies ovex iimnesponse to the state of the economy.
A common assumption in business cycle models is that pramucs Cobb-Douglas. Under
that assumption, we analytically and numerically showehsitypically little, if any, endogenous
variation in output uncertainty because the model is cloded-linear. Importantly, the model’s
ability to generate endogenous fluctuations in uncertasliynited because log-linearity implies:
(1) first moment shocks have nearly the same effect on outalt states of the economy and (2)
conditional distributions of future real variables are gamacross different states of the economy.
The model can have significant nonlinearity when outputasipced using a constant elasticity
of substitution (CES) production function. In that casestfimoment shocks have state-dependent
impacts on output, resulting in conditional distributigdhat vary across states and endogenous
fluctuations in uncertainty. When capital and labor are gamnplements, we find first-moment
capital and labor productivity shocks generate fluctuatiaruncertainty consistent with the data.
Complementarity can endogenously generate fluctuationagertainty because it influences
how output responds to first moment shocks in different statéhe economy, with the effective
capital intensity ratio playing a key role. For example,sider a positive labor productivity shock.
When the capital intensity ratio is low, the change in labemdnd will be relatively small, as
will the change in output, compared to situations where tq@tal-to-labor ratio is high. The
distributions of future real variables inherit the staggendent nature of the responses, generating
time-varying endogenous uncertainty. On the other hanttheiit€Cobb-Douglas case, the responses
of labor and output to such a shock are essentially the sagaediess of the state of the economy.
An important question is whether the mechanism is emplyicalevant in a more fully fledged
business cycle model. To that end, we estimate severalneamlimodels with real frictions by
matching uncertainty, output, consumption, and investmamments in the data. We consider

In a small open-economy model, Fernandez-Villaverde ¢2@all 1) examine volatility shocks to a country-specific
interest rate spread. They find standard deviation shock lowers output5%-0.2% in Argentina and Ecuador and
0.01%-0.02% in Brazil and Venezuela. Most papers rely on closed-econdew Keynesian models. Mumtaz and
Zanetti (2013) examine monetary policy volatility shockgimodel without capital. They find doubling the volatility
reduces output growth by on},03%. Born and Pfeifer (2014) introduce variable capital uéitisn and investment
adjustment costs. They show a simultane®atandard deviation increase in uncertainty about govenhsgending,
monetary policy, and capital and labor taxes reduces olponly 0.065%. In contrast, Fernandez-Villaverde et al.
(2015) find a volatility shock to only capital taxes lowergput by0.1% and the effect is larger when the ZLB binds.
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four specifications: the typical model with Cobb-Douglasduction and a labor productivity
shock and a model with CES production with a labor produstishock, a capital productivity
shock, and both shocks. The Cobb-Douglas specificatiomimesf poorly because it is not able
to generate nearly enough volatility in uncertainty whilawgtaneously matching the volatilities
and autocorrelations of real activity in the data. All th&eS specifications provide a significant
improvement in fit and the model with both productivity sheawverwhelmingly passes a test
of over-identifying restrictions. In each of these caség, éstimated CES is well below one,
indicating that the data prefers a large degree of compl&argnbetween capital and labor inputs.
The paper closest to ours is the recent article by Straub #oricbt (2019). They show firm-
specific productivity shocks create endogenous fluctustinrthe cross-sectional dispersion of
output when deviating from Cobb-Douglas production. Wddon their work in three ways.
First, we examine aggregate uncertainty by computing tineliional volatility of future real ac-
tivity, rather than the variance in output across firms. &dcave examine the effects of several
first-moment shocks, including shocks to capital and lalodgpctivity, the markup of price over
marginal cost, government spending, household prefesesmtg monetary policy, in models with
and without sticky prices. Third, we conduct a more thoroeigipirical assessment of the merits of
gross complementarity. Specifically, we use a richer mddlincludes habit persistence in con-
sumption and investment adjustment costs and formallysasseempirical fit using a simulated
method of moments procedure that matches key momentsdétatecertainty and real activity.
Several other papers consider alternative mechanismsitdaigenously generate uncertainty
in structural models. One segment emphasizes the role chadial sector under complete infor-
mation, where the severity and duration of financial crigesséochastic. Most papers focus on
crises that result from financial frictions, collateral staints, or the zero lower bound constraint
on the short-term nominal interest rate (Brunnermeier arthi&ov, 2014; He and Krishnamurthy,
2019; Mendoza, 2010; Plante et al., 2018), while othersimdrea incorporate the role of firm
default (Arellano et al., 2019; Gourio, 2014; Navarro, 2014 separate segment of the literature
examines the implications of incomplete information. Sashéhe papers feature learning with
aggregate shocks (Fajgelbaum et al., 2017; Saijo, 2017Nieunverburgh and Veldkamp, 2006),
while others focus on firm-specific shocks (llut and Saijo2@0Straub and Ulbricht, 2015). In
these models, adverse shocks under asymmetric learningeetonomic activity and make it
harder for households and firms to learn about the economghvaimplifies first moment shocks.
The CES literature provides strong motivation for our prgub mechanism. Klump et al.
(2012) surveys empirical estimates of the CES over the kastral decades. Across thé re-
ported studies, the average CE® 58, well below a unitary elasticity implied by Cobb-Douglas
production. More recently, Gechert et al. (2019) examirgr 800 estimates acros1 studies.
They estimate a CES 0f3 after correcting for publication bias and controlling faher aspects



of quality. Antras (2004) finds that when the econometriecsjication is adjusted to account for
biased technological change, the estimate of the CES is tour. Consistent with those results,
Cantore et al. (2015) estimates a CES betweéh and0.18 using a medium-scale New Keyne-
sian model that accounts for biased technological changjesse values are consistent with our
estimates from a real business cycle model that includésdagital and labor productivity shocks.
Another benefit of our mechanism is that it affects uncetyamall periods and is not unique to a
specific economic downturn. This is important because taicey regularly fluctuates in the data.
Overall, our results demonstrate that an empirically ptdaslegree of complementarity causes
first-moments shocks to generate significant variation cetainty. This suggests any study that
fails to account for these effects will lead to an over-stagnt of the causal effects of uncertainty.
The paper proceeds as followSection 2analytically shows why complementarity generates
endogenous uncertaintysection 3quantifies the amount of time-varying uncertainty in models
with productivity shocksSection 4estimates several versions of a real business cycle mottel wi
both Cobb-Douglas and CES production functiddsction 5shows numerical results with several
other common shock&ection 6extends the model to include sticky pric&ection 7concludes.

2 ANALYTICAL RESULTS

This section develops some understanding for how uncéythehaves in dynamic models using

simplified settings that permit analytical solutions. Baling Plante et al. (2018), macroeconomic

uncertainty in our model is defined as the expected volablita variable in the model. The same

definition is also used in empirical work on uncertainty (eJgirado et al. 2015). It is possible to

calculate uncertainty over any horizon, but we concentratihe one-quarter ahead forecast error.
For any variabler, macroeconomic uncertainty is given by

el = VE (21 — Bilrea])?). (1)

whereL; is the mathematical expectation operator conditional éorimation available at time

A key aspect of this definition is that it removes the predilgacomponentF; |z, ], from a 1-
period ahead forecast of While = can represent any variable in the model, the discussionsn th
paper is centered on log outpgt)and log output growthif = 4;.1 — 9;). The first useful result
is that the uncertainty surrounding these two endogenatigbles are equal. This result occurs
because); is known at timeg and therefore cancels out when removing the predictablgpoasnt.
Given this result, the following sections will always refeithe uncertainty surrounding log output.

2.1 ATHEORETICAL MODEL A common modeling assumption is that output is produced with
a Cobb-Douglas function, so the elasticity of substitubetween the factors of production equals
1. In this case, it is possible to derive analytical resultheaat a fully specified theoretical model.
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Suppose log outputy, is produced according to a Cobb-Douglas function given by
Uy = aty + (1 — )y,
where hats denote logs and, j € {1, 2}, are random variables that evolve according to
Zj = (1= p;)log@; + pjiji1 + 0650, €5 ~ N(0, 1),

and bars denote steady-states. Uncertainty about logtolfpriod ahead is constant and given by

Ul = \/a%% +(1—a) ol

This expression shows the conditional volatility of loguttis a weighted average of the variance
of each shock, with weights equal to the squared share of wa@ble in the production func-
tion. Itis also straightforward to derive analytical exgsi®ns for macroeconomic uncertainty over
horizons beyond quarter. For example, uncertainty about log outpperiods ahead is given by

Uy = Q2L+ g+ PR+ (1= @2(L+ 3+ -+ pb)o3

and the unconditional volatility, which equals the uncetiaover an infinite horizon, is given by

U =\ Ja203/(1— p3) + (1 - a)203/(1 — ).

While this example is stylized, it illustrates the impottaole of the production function and
the assumptions underlying the random variables. Therdoarekey assumptions behind the
results: (1) Log-linearity of the production function; (€pnstant weights on the variances; (3)
Log-linearity of the stochastic processes; (4) Constantitmnal variances of the shocks;J.
Deviations from these assumptions would create time-ugryncertainty about log output. Re-
laxing the last assumption by making the variance of an exoge variable stochastic is the most
common way to introduce time-varying uncertainty. Sincgoiés not depend on any equilibrium
feature of the model, we refer to it as time-varygggenousincertainty. This paper examines the
effects of relaxing the first two assumptions, which cretitas-varyingendogenousncertainty.

An alternative way to think about the importance of assuamti(1)-(4) is to note that they
imply the response of log output to an unexpected shonkistate-dependent. Mathematically,

83%/85“ = q0oq and 83%/85% = (1 — 04)0'2.

At any pointin time and for any state of the world, the impddmunexpected shock to log output
is the same. Therefore, the conditional distribution ofdagput one period in the future does not
change shape over time. This result could change if a subet éour assumptions was violated.
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Uncertainty Approximations Taylor expansions are useful for approximating momentsvsaiia
able, such as log output, when the variable is a nonlineartiwm of other random variables. For
example, a second-order approximation of the varianceragsgeneric functiorf(z) is given by

Var(f (2)] = (f'(E[a]))*07, )

where f'(E[z]) is the first derivative off (z) evaluated at its unconditional mean anglis the
unconditional variance of.? Extensions to the multivariate case are straightforwartbiag as
the random variables are uncorrelated. In that case, thanearis approximated by a weighted
average of the unconditional variances of the componedoranvariables, with the weights equal
to the first partial derivatives of the function, all evakit their respective unconditional means.
Approximatingy around the conditional mean of andz, in the Cobb-Douglas case implies

Var[ji11] ~ o?o} + (1 — a?)os.

This approximation is exact due to the log-linearity of tmequction function and its two inputs.
Now consider a CES production function given by

g = =% In (a exp(”T_lilt) +(1-a) exp(”T_ligt)) ,

wherea is the cost-share of capital ands the elasticity of substitution. It is not possible to ana-
lytically solve for log output uncertainty. The approxinuat for the conditional variance implies

Vary[fi1] & (fi(Eid11, Erdori))?0r + (fo(Bi#1is1, Erdiorr))’ 03,

where f;(-) is the partial derivative ofj with respect to the conditional mean #f. As in the
Cobb-Douglas case, the conditional variance for log ougpaitveighted average of the conditional
variances of the two random variables. However, the weighgsnow state-dependent and vary
over time, reflecting the fact that the impact of the two slsomhk log output varies across different
states of the economy. This generates a time-varying donditvariance under CES production.

Isoquants Figure 1plots production function isoquants to help visualize hamplementarity
generates state-dependency. The inner solid line tradgbe@aombinations of the inputs that are
consistent with a given level of output. Points A and B aréahconditions for the same level of
output but with a high level of one input relative to the othBoints A and B are both shifted

to the right, reflecting an increase in with no change inz,. In the left panel where the inputs
are strong complements (= 0.1), the shift results in a large increase in output from poirtbA

A’, wherez; was initially low relative toz, and the isoquants are steep. This reflects the effect

2Appendix Cprovides more information about the approximations. SeaBwya et al. (2005) for further details.
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Figure 1: Production function isoquants. Pointsafid B are shifted right by).05 units of output andy is set t00.5.

of complementarity, in that a relatively high level of on@ut increases the marginal product of
the other. Alternatively, output is largely unchanged frpaint B to B, asz; is already elevated
relative toz, and the isoquants are flat. The middle panel shows the sameisexéor Cobb-
Douglas production. Since the isoquants are linear, ise®@ an input boost output by the same
amount regardless of the initial condition. In the right @amhere the inputs are substitutes+£
2.5), the isoquants are concave rather than convex, meaninigwates level of an input relative
to the other increases its marginal product—the opposwenat happens under complementarity.
The change if relative toz, 1/(1+1=% exp(%+ (&, — 21)), shows the response of output de-
pends on the log difference in the inputsz|fis capital andc, is labor, then this difference would
correspond to the capital intensity ratio. Changes in opatirelative to the other cause variations
in uncertainty, whereas that does not necessarily happemodchanges in output. Under Cobb-
Douglas production, uncertainty is constant since thearesgs of output are not state dependent.

2.2 REAL BUSINESSCYCLE MODEL We now go a step further and introduce a simple model
that under some assumptions provides analytical soludodgesults regarding uncertainty. Out-
put is produced with capital and labor according to a normealiCES production function given by

o—1

= { yo(alzfke 1 /ko)5w + (1 —a)(g'zpni/ng) = )7, o # 1,
=

3)
Yo(g' 2t ko1 /o)™ (20 /1), o=1,

wherek;_; is the capital stockg, is the labor supply, and is the average growth rate of labor-
augmenting productivity:!, i € {k, n}, is a stationary productivity shock that evolves according

étl = ﬂzi2§—1 + 02i€zity €2i ™ N(O, 1)- (4)



Following the literature, we include normalizing const&nt, no andk,, to ensurex is the cost-
share of capital with both the Cobb-Douglas= 1) and the CESA # 1) production functions.
There is monopolistic competition and an exogenous tinrgivg price markup given by

fir = (1= pp)10g i + pufie—1 + 0pepe, €u ~ N(O,1). (5)

This shock breaks the assumption of a constant cost shabaf Which could have a large impact
on log output uncertainty. In symmetric equilibrium, therfis optimality conditions are given by

Mﬂ’f = a(yozf/kb)(a_l)/a(yt/k‘t—l)l/aa (6)
pewy = (1 — a)(yogtzf/%)(a_l)/a(yt/”t)l/a- (7)

A representative household chooges n;, k: }:°, to maximize expected lifetime utility, given
by Eo 320°, Blace; /(1 — ) — x&n, ™"/ (1 + )], wherej3 is the subjective discount factor,
x determines the steady state labor supply; is the Frisch elasticity of labor supply, is the
coefficient of relative risk aversion,js consumption, and and¢ are preference shocks that follow

dt - padt—l + Oa€aity €a ™ N(07 1)7 (8)
&= pﬁét—l + 0¢ce, € ~ N(0,1). 9)

The household’s choices are constrained:by k;, = w,n, + r¥k,_y + (1 — §)k;_ + d;, wheres
is the depreciation rate of capital adidare firm dividends. The optimality conditions are given by

Wy = X&HZC?, (10)
1= BE[(ar1/ar)(cr/cer)” (rig +1=6)]. (11)

In equilibrium, dividends are equal th = (1 — 1/u,)y:, SO the resource constraint is given by
i+ k= (1— sy + (1 — )k, (12)

wheres? is the government spending-to-output ratio. Defjne- 1/(1 — s7), which follows
G = (1= pc)log{ + peCeo + 0cec, ec ~N(0,1). (13)

Competitive equilibrium includes sequences of quantifigsk;, c;, ny, s{ }32,, prices{w;, r¥}22,,
and exogenous variables;!", 1, ai, &, ¢ }72,, that satisfy 8)-(13), given{k_1, 2§}, 110, @0, €0, Co }-
Except when estimating the model, the average growthgateset tol to simplify the exposition.

3Notably, Leon-Ledesma et al. (2010) show that a normakze8 production function improves identification, in
addition to its theoretical benefits. Gechert et al. (2019 that normalization reduces the average estimate of the
CES by0.3. See the review article by Klump et al. (2012) for furtheoimhation about the effects of normalization.



2.3 SOLUTION WITH PRODUCTIVITY SHOCKS In general, the model does not lend itself to
analytical solutions, but it is possible to obtain them wigsapital fully depreciates each period
(0 = 1) andy = 1/0. We first consider the model with only the labor productistyock (i, =
log i, ft =i =0q = ét = 0). The capital-augmenting productivity shock, is common in the
literature on CES production functions. However, it corogles the analytical derivations without
providing additional insight, so we defer our examinatidthis shock to the quantitative sections.
To solve the model, first combiné)(with (11) and (7) with (10). Then guess; = v, to obtain

= (1= (aB/m) (yo/ko)"")ur, (14)
ke = (aB/ 1) (yo/ ko) 'y, i (15)
—« Lo yozi' 0771 W
= {17 <ﬁ”—(aﬁ)”}yo/ko)”*1> <n—o> } 7 (16)

which confirms the consumption-to-output ratio is constaabor depends on labor productivity.

Cobb-Douglas CaseWhenos = 1, uncertainty about 1-period ahead log output is given by

Uy = (1= a)y /B3R — Bulia))d = (1— a)o,

In contrast with the atheoretical example, only one termeapp because multiplies the capital
stock, which is known at time It is straightforward to show that if we included both theital-
and labor-augmenting productivity shock, uncertainty lddnstead equal/ao?, + (1 — a)o2,.
This example satisfies the assumptions discussed abov@rddhection function and the shock
process are log-linear, the shock is homoskedastic, antbteshares are constant. Furthermore,

83}t/852n,t = (1 — Oé)Uzn.
As a result, a model with Cobb-Douglas production, log tytiland full depreciation cannot gen-

erate time-varying log-output uncertainty or state-deleen responses to productivity shocks.

CES Case Wheno # 1, log output and log labor in peridd+ 1 are given by

et = o+ 57 I (@exp(SL (hy — ko)) + (1= @) exp(S5L (B + s — o)), (A7)

o1 = 155 (Fn + 752 2011) (18)

wherek,, collects the constant terms in the labor policy functionnmBaing the policy functions
provides an equation for log output that is solely a functbrabor productivity. In contrast with
the Cobb-Douglas case, output is no longer log-linear. Assalt, deriving an exact analytical
expression for log output uncertainty is no longer possblese turn to analytical approximations.



To apply the Taylor approximation ir2), first combine {7) and (L8) and reorganize to obtain

Y1 =90 + ;5 In (oz exp(ﬁ(l%t - IACO)) + (1 — a)exp(ky + wét—kl)) )

wherefr, collects the constant terms. Then the conditional varigmapproximated by
Var,[§41] ~ [fé(kt,Et5t+1)]2U§-

The second derivative gfwith respect te, f;:, determines how the first derivative of the produc-
tion function changes with different values f©fand the sign off;; depends on the sign of — 1.
The weight,f:, increases witlt whens > 1 and decreases when< 1, so uncertainty is time-
varying under CES production and constant in the Cobb-Casucsise{ = 1). Importantly, if out-
put uncertainty is countercyclical in the data, then the ehagxicapable of matching the data when
o < 1. Since the variation irf; depends on the CES, data on uncertainty will help inform th8 C
Another implication of CES production is that the effect loé tshock on log output varies across
states of the economy. This is due to the production fundteming non-zero second derivatives.

2.4 SOLUTIONS WITH OTHER SHOCKS Our results show that log output uncertainty is constant
under Cobb-Douglas production and time-varying under CE8yction. This section examines
whether any of the other four shocks generate time-varymogdainty in the Cobb-Douglas case.

Leisure Shock The consumption and capital solutions are unchanged bot, Iélf), becomes

1 1 1/c - ‘7771 ﬁ
= —a YoZy_
= {Xft <ﬂ"—(045)"(y0//<30)"*1> < no ) } : (19)

The shock enters linearly in logs, so log output uncertaimtiqe Cobb-Douglas case is given by

Uir = (1= @) Bul62 i1 + 20 e10n00 + 62,0] = (1 — @) J02, + 02/ (1 +m)2, (20)

whereg; ++1 = &1 — Ei[2:11] is defined as the 1-quarter ahead forecast errof: fd8ince the
productivity and leisure shocks are uncorrela@dqbzn,mgsém] = (. Output uncertainty is once
again constant, but it depends on the variance of both staoakthe Frisch labor supply elasticity.

Preference Shock The consumption-to-output ratio is no longer constanthsoet is no closed-
form solution with CES production. In the Cobb-Douglas ¢agecan write the consumption Eu-
ler equation, 11), as a difference equation in the output-to-consumptitio end iterate to obtain

Y/ = E;io(aﬁ/ﬂ)jEt [exp(aer; — )] = af,



whereE; [exp(a. ;)] = exp(pla; + 31—, p*02/2). Sincea; is exogenous, the solution is given by

a=y/ai, ko=1-1/a})y, n=((1- Oz)af/(xﬁ))ﬁn,

and uncertainty about 1-period ahead log output is given by

Uy = (1= )y B0 o + 03] = (1= @)\ Jo2, + 02 /(L4022 (D)

Whenp, = 0, Eifexp(aw;)] = 1, soa; linearly depends on,. Therefore;. ,,, = o2 and log
output uncertainty is constant. Whegn> 0, uncertainty is time-varying. The production function
is log-linear, the weight on the volatilitie$,— «, is constant, and the shocks are homoskedastic.
However, the conditional volatility of; is time-varying, which causes time-varying uncertaihty.

Markup Shock This example is similar to the previous example. Iteratevéwd to obtain

yifer =14 2252, (aB) Eilexp(— Sy fed)] =

Sinceu; is exogenous, the solution is given by

c=y/uy, k= 1-1/u)y, n=((1- O‘)Ut/(Xﬂt))ﬁ~

We show inAppendix Dthat it is possible to derive an analytical expressiongdhat is a function

of only the current value of the markup,, and parameters associated with its stochastic précess.
Whenp, = 0, v, = 1/(1 — (af/i)exp(o;/2)). Therefore, the labor forecast error only

depends on the markup, which is log-linear. Output unaggtdias the same expression as it does

with an i.i.d preference shock, except it now dependsﬁerhenpu > 0, uncertainty is given by

Uffm =(1-a) \/0'3 + (02 + Ei¢7% 141 — 2Covi(Bair1, Q1)) /(1 4+ 1), (22)
which varies over time, just like ir2(l), because the conditional volatility af is time-varying.

Government Spending Shock This example is similar to the markup shock, exgept 1 and
ye/ (Gee) = 14 3272, (aB) Ey [GXP(Zgzl ét—i—i)] = M.
Sincem; is exogenous, the solution is given by

e =y/ (M), ko= (1= 1/m)ye/G me= ((1— @)miC/ (xi) ™.

4If the preference shock process was written in levels, awstf logs, then uncertainty would not vary over time.
St is possible to obtain an analytical solution with a CESdarction function & # 1) when the markup shock is
i.i.d. (p, = 0), since the consumption-to-outputratio becomes constdat derivation is also shown fppendix D
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Following the same derivations as the markup shock caspubuhcertainty is given by

Ugtﬂ =(1-a) \/Ug + (02 + Etﬁb?ﬁ,tﬂ — 2 Covi(@m,t+1, ¢§,t+1)/(1 +n)?, (23)

which varies over time due to the conditional volatility:of. If the shock was directly to the gov-
ernment spending shar&, instead of;, it would introduce another nonlinearity and make it im-
possible to solve for log output uncertainty. However, iheetvarying uncertainty would remain.

3 REAL BUSINESSCYCLE MODEL SIMULATIONS

The previous section assumed full depreciation of capitdl get the coefficient of relative risk
aversion to the inverse of the elasticity of substitutiotwsen capital and labor to facilitate closed-
form solutions. This section relaxes those assumptionsibhenically solving the nonlinear model.
Ouir first goal is to assess the amount of endogenous variatiomcertainty the model gener-
ates under different degrees of complementarity in theymton function. To do so, we simulate
the model and report summary statistics assuming differgloes foro. We then show general-
ized impulse response functions and conditional distidmstof future output to develop intuition
for why the degree of complementarity generates staterdigpey and time-varying uncertainty.

Subjective Discount Factor B8 0.9959 Average Markup I 1.11
Average Labor Share of Income wn/y 0.6031 Frisch Elasticity 1/n 0.5
Capital Depreciation Rate 1) 0.0247 Shock Persistence P 0.9
Average Government Spending Share 39 0.2081 Shock Standard Deviation o 0.02

Table 1: Parameter values.

Table 1summarizes the parameter values. We specify log utilityomsamption{ = 1). The
Frisch elasticity of labor supply matches the intensivegmaestimate in Chetty et al. (2012). The
average markup is consistent with Smets and Wouters (20@7rarhi and Gourio (2018). Many
of the other parameters are based on data from 1964Q1-20¥@@h is the sample we will use
to estimate our model in the next sectfoithe discount rate is equal to the inverse of the average
real interest rate, which corresponds to the ratio of theamefederal funds rate to the average
GDP deflator inflation rate. The depreciation rate matchesterage rate for private fixed assets
and consumer durable goods. The labor share is equal to ¢nage/for the total economy. The
average government spending share is equal to the fradtimab output that excludes personal
consumption expenditures and fixed private investment.thage exercises, the persistence and
standard deviation of the shock are set to round values tieawvdhin the ranges used in the
literature. In the next section, we will estimate the parersegoverning the stochastic processes.

6SeeAppendix Afor a detailed description of our data sources and how theg wansformed for our calculations.
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The model is the one introduced 8ection 2.2 but we now focus on role of both labor and
capital-augmenting productivity shocks. Other stoclegstocesses are set to their steady state
values. We use the policy function iteration algorithm died in Richter et al. (2014) to solve
the nonlinear model. To isolate the effects of each shodl, @me shock enters at any give time.
The algorithm is based on the theoretical work on monotoreaiprs in Coleman (1991). We
discretize the capital stock and approximate the shockgsoasing thév-state Markov chain in
Rouwenhorst (1995). This method is attractive becauseei dot require us to interpolate on the
shock dimensions, which makes the solution more accuratéaater than quadrature methods.

To obtain initial conjectures for the nonlinear policy ftioas, we solve the log-linear analogue
of our nonlinear model with Sims’s (2002) gensys algoritirhe algorithm minimizes the Euler
equation errors on every node in the state space and contpatesaximum distance between the
updated policy functions and the initial conjectures. értmeplaces the initial conjectures with the
updated policy functions and iterates until the maximurtediise is below the tolerance level. Once
the algorithm converges, we use the nonlinear solution anaenical integration to generate a pol-
icy function for log output uncertainty. Sé@pendix Efor a detailed description of the algorithm.
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Figure 2: Real uncertainty series from Ludvigson et al. ®03haded regions denote NBER recessions.

3.1 SMULATED MOMENTS We begin by simulating the model separately with each shock t
assess the amount of endogenous variation in log outputtairty and the source of the variation
over time. Each simulation is initialized with a draw fronetargodic distribution and spans 224
guarters, the same number of observations as our quaregdysdmple. For each shock and each
simulation, we calculate the standard deviation of log outmcertainty, the standard deviation
of output growth, and the correlation between uncertainty autput growth. We execute000
simulations per specification and then report the averadéans) percentiles of the moments.
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We compare the simulated moments to equivalent moments iletta. To measure uncertainty
in the data, we use the real uncertainty series from Ludwiggaal. (2020), which is shown in
Figure 2 This is a sub-index of the macro uncertainty series froradiet al. (2015) that accounts
for 73 real activity variables (e.g., measures of outpuioime, housing, consumption, orders, and
inventories). For their analysis, most time series aresfamed into growth rates and standard
normalized. Repeated simulations of a factor augmentevaatoregression are used to obtain
estimates of uncertainty for each real variable and thenageel to generate the aggregate real
uncertainty series. The benefit of this series is that it tteesame definition of uncertainty as this
paper, so it distinguishes between uncertainty and camditivolatility. To make the units from
our model comparable to the real uncertainty series, WejkalESD(ugm)/SD(@f), wherey;
is the 1-quarter log-difference in output. We will refer tost statistic as the normalized volatility
of output uncertainty. In the data, output growth equaldalgedifference in per capita real GDP.

Data CES
0.2 0.5 1.0 1.5 2.5
Labor Productivity Shock")
SDWUY,.1)/SD(%]) 5.76 5.41 1.52 0.06 0.49 1.01
' (4.56, 6.40) (1.26,1.82) (0.04,0.07) (0.39,0.62) (0.76,1.31)
Corr(Uf 1, 97) —0.40 —0.44 —0.41 —0.37 0.36 0.34
' (—0.47, —0.42) (—0.44, —0.39) (—0.42, —0.31) (0.32,0.40) (0.29,0.39)
SD(49) 0.80 1.15 1.50 1.68 1.76 1.83
(1.06,1.24) (1.38,1.62) (1.55,1.82) (1.62,1.90) (1.69,1.98)
Capital Productivity Shock:f)
SDWUY,.1)/SD(%]) 5.76 5.54 2.14 0.03 0.85 1.59
' (4.31,7.11) (1.64,2.79) (0.02,0.04) (0.61,1.17) (1.13,2.22)
Corr(Uf 1, 97) —0.40 —0.20 —0.18 —0.37 0.15 0.15
' (—0.26, —0.15) (—0.25,-0.13) (—0.42, —0.31) (0.09,0.21) (0.09,0.21)
SD(49) 0.80 1.10 0.90 0.83 0.81 0.80
(1.00, 1.20) (0.83,0.97) (0.76,0.90) (0.75,0.88) (0.74,0.87)

Table 2: Data and average model-implied moments. The dgtaigerly from 1964-2019. Th@, 95) percentiles are
based ori,000 simulations of the model and shown in parentheses. Theatdigdviations are all multiplied byo0.

Table 2shows the data and model-implied moments for differentieltiss of substitution. For
each shock, the first row shows the normalized volatility méertainty, the second row shows the
correlation between log output uncertainty and output ginpand the third row shows the standard
deviation of output growth. Below each moment, we reportt85) percentiles across thie000
simulations of the model. Notably, the model generates simo variation in uncertainty under
Cobb-Douglas productions(= 1), as our analytical results indicate. The insignificaniateon
that occurs stems from the minor non-linearity that existemcapital does not fully depreciate.

The variation in uncertainty sharply increases with theredegf complementarity. When
o = 0.2, slightly above the estimated value in Cantore et al. (20t normalized volatility of
uncertainty is close to the volatility of the real uncertgiseries. Importantly, the model achieves
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this result while closely matching the volatility of outpgitowth in the data. Both shocks also
create a negative correlation between uncertainty andibgtpwth, close to the value in the data.
Substitutability between the capital and labor inputsx( 1) also generates meaningful time-
varying uncertainty, but there are two important caveaisst,Amatching the variation in the data
would require unreasonably high substitutability, eveerdeng horizons. With a labor produc-
tivity shock this would cause the model to significantly epeedict output growth volatility in the
data. Second, both shocks create a positive correlatidrowtput growth, in contrast with the data.
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Figure 3: Generalized impulse responses to a 1 standaratevshock to labor productivity in different states of the
economy. The low (high) capital state2i% below (above) steady state. The low (high) labor produgtatate ist.5%
below (above) steady state. The values correspond td 784) percentiles of the ergodic distribution when= 0.2.

3.2 SrATE-DEPENDENTIMPULSE RESPONSES Meaningful time-varying uncertainty indicates
the economy is reacting differently to shocks dependingruthe state of the economy. To illus-
trate the relationship between uncertainty and the dedrgtate-dependenclzigure 3plots gener-
alized impulse response functions (GIRFs) of a positisendard deviation shock to labor produc-
tivity at different initial conditions and CES parametefues. To compute the GIRFs, we follow
the procedure in Koop et al. (1996). We first calculate themw#d 0,000 simulations of a given
specification, conditional on random shocks in every quaiée then calculate a second mean
from another set 0of0,000 simulations, but this time the shock in the first quarter [daeed with
the labor productivity shock. Each GIRF represents theedifice between the two mean paths
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in each specification. The different lines in the graph ré&dletifferent initial conditions, while
the columns reflect different values @f The low (high) initial capital state i8% below (above)
steady state. The low (high) labor initial productivitytstés 4.5% percent below (above) steady
state. These states correspond to(ttie 84) percentiles of the ergodic distribution when= 0.2.
First, it is important to note that lower CES values dampenrdgsponse of output to a labor
productivity shock regardless of the initial state. Theoase of hours worked declines with lower
values ofs and is negative whetm = 0.2. This is driven by the complementarity in the production
function. Since capital cannot immediately adjust in resgoto the shock, higher complemen-
tarity (lower o) reduces the increase in the marginal product of labor frgmnoductivity shock
and dampens the increase in labor demand. In the extremefgasdect complementarity (Leon-
tief production), a labor productivity shock causes a amreshe decline in hours worked and no
change in output, since the marginal product of labor is.Zet@mmplementarity has the opposite
(amplifying) effect for the response of output to a capitadductivity shock £*), because hours
worked is free to increase in the same period as the shocks mbchanism explains why the
volatility of output growth rises witle in the top panel oTable 2and declines in the bottom panel.
Second, state-dependency in the impulse responses odeenstiaere is a high degree of com-
plementarity, as demonstrated in the left panel whetre(.2. Additionally, the response of output
is dependent on the initial effective capital intensityioatFk;, ;/(2'n;), rather than the initial
level of output. There is little difference in the respongden the initial capital {_;) and labor
productivity (z{) states are both high or low. When the initial effective talpntensity ratio is
low, as it is wherk_; is low andz{ is high, increases in effective labor increase output ket
little, as illustrated in the isoquants shownRigure 1 Complementarity prevents firms from tak-
ing full advantage of the positive shock because capital@aimmediately increase with labor. In
contrast, wherk_, is high and:{ is low, labor productivity shocks lead to a larger boost itpor.
Complementarity also implies business cycle turning sainiven by labor productivity shocks
exhibit the most extreme levels of uncertainty. When céjpéthigh and a large negative labor
productivity shock occurs at the onset of a recession, thigorese to other shocks is elevated, in-
creasing uncertainty. When capital is low and a large p@sgroductivity shock arrives at the start
of an expansion, the responses are weak, and future outcefaggely certain. This is the source
of the negative correlation between uncertainty and owgpawth in the top panel ofable 2
The pattern of state-dependency is altered in responsedpitakproductivity shock. Initial
periods with lowk_; and z} have the largest responses of output, while periods with hig

’Francis and Ramey (2005) show hours decline in responsethadlogy shock in a model with Leontief produc-
tion. Cantore et al. (2014) find the sign of the response digpen the type of productivity shock and the magnitude of
the elasticity of substitution. Canova et al. (2010) shdvesresponse in the data also depends on the type of produc-
tivity shock—neutral shocks reduce hours, while investirggrecific shocks boost hours. Francis and Ramey (2009)
find that labor productivity shocks reduce hours when atfjgghe data for the changes in demographics over time.
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and z} have the smallest responses. This result is expected dieeimiplied effective capital
intensity ratio. The highest levels of output uncertairitgrt occur at low levels of output, rather
than business cycle turning points as is the case with latoolygtivity shocks. This explains why
the correlation of output uncertainty with output growthnsaker in the bottom panel than the
top panel ofTable 2 While not shown in the table, the correlation of uncertainith the level of
output is much more negative with capital productivity dkeothan with labor productivity shocks.
Under Cobb-Douglas production & 1), there is no state dependency in the impulse response
functions, confirming the intuition from the analytical uéts and isoquant illustration. Similarly,
wheno > 1 the state dependency is in the opposite direction, but bigilelg amounts. Overall,
the amount of state dependency is small even when(.2 and in the extreme statesBigure 3
and these regions are visited relatively infrequently.sTiggests only a modest amount of state-
dependency in the model is required to generate the variationcertainty observed in the data.

3.3 CONDITIONAL DISTRIBUTIONS Another intuitive way to visualize how the degree of com-
plementarity affects output uncertainty is to look at th@didonal distributions for future log
output. To generate these distributions, we first conda€00 1-period simulations of the model
for each of the four states used to generate the GIRFs. Wauteetine simulated values from each
specification to construct a kernel density estimator ofdis&ibution of next period’s log output.
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Figure 4: Conditional distributions for log output one pekin the future {:11) in different states of the economy.

Figure 4plots the conditional distribution for the model with lamoductivity shocks. Con-
sistent with our previous results, the conditional disttibns are essentially invariant to the state
of the economy whea is nearl. However, wherwr = 0.2, the distributions differ depending upon
the initial state. In cases with a low initial capital rattbe distributions are tighter around the
conditional mean of the distribution, whereas the distidns are wider in cases where the ratio is
initially high. This reflects that in states of the economyhva depressed level of capital relative to
labor productivity, changes in labor productivity nextiperwill have a smaller impact on output.
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4 ReAL BUSINESSCYCLE MODEL ESTIMATES

This section takes the model to the data using a simulateldadetf moments. We introduce habit
persistence in consumption and investment adjustmens éolédwing Boldrin et al. (2001) and
Christiano et al. (2005) to match the positive autocorietet of real activity growth in the data.
The production function,3), as well as the firm’s optimality conditionsG)(and (7), are un-
changed. The representative household now chopses;, k:, z; }7°, to maximize expected life-
time utility, £y >5°, 5t[log(c; — hety) — xn: T7/(1 + )], wherez is investment¢® is aggregate
consumption and is the degree of external habit persistence. Those choieeastrained by

k
¢+ v = wny + k-1 +dy,

ke = (1= 8)kiy + (1 — " (2 = 1)*/2),

wherex{"" = z,/(gz,_1) is investment growth relative to the average growth rateg@hdcales
the size of the investment adjustment cost. The househmbdisiality conditions are given by

At = ¢t — hey_q,
Wy = XN A,
1= gl — " (af™ = 1)(32]" — 1)/2] + Bg" E[(\e/ Mt) e (2747 (a7 — 1)),
@ = BEJ( A/ A1) (ry + (1= 6)qir)]-

The aggregate resource constraint is giver;by =, = (1 — §9)y,. The model does not have
a steady-state due to growth in labor productivity. Vaeablith a trend are defined in terms of
labor productivity (i.e.7; = z;/g"). The detrended equilibrium system is providedppendix B

Competitive equilibrium consists of sequences of quasjfiy, k, ¢, n, &, A, xf*P}ee,, prices,
{r* w,q}22,, and exogenous variables;®, 27"}, that satisfy the detrended equilibrium system,
given the initial conditions{¢_1, kv, 71, 2k, 20} and the two shock sequencés, ;. ;, €., 2.

We estimate the model using data from 1964Q1-2019Q4. Ussggansformed data described
in Appendix A the target momentsif%ﬁ, are estimated with a two-step Generalized Method of
Moments (GMM) estimator, wheré = 224 is the sample size. Given the GMM estimates, the
model is estimated with Simulated Method of Moments (SMMy. farameterizatioftand shocks
&, we solve the nonlinear model and simulatg i= 1,000 times forT" periods. The model-implied
analogues of the target moments are the median moments aloeds simulations 0}/ .(0, ).

The parameter estimates,are obtained by minimizing the following loss function:

J(60,€) = [WF — UH7(6, E)'[EL(L + 1/R)| U7 — UH7(6,€)),
where$2 is the diagonal of the GMM estimate of the variance-covasamatrix. We use Monte
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Carlo methods to calculate the standard errors on the pseassimates. For different sequences
of shocks, we re-estimate the structural motiel= 200 times and report the mean a(@ 95)
percentiles of the parameter estimat®gpendix Fprovides a detailed description of methodology.

The SMM procedure targets nine moments. They include tinelatd deviations and first-order
autocorrelations of output, consumption, and investmeswth, as well as three moments related
to uncertainty: the standard deviation of (normalizedpatiincertainty, the first-order autocorre-
lation of output uncertainty, and the cross-correlationwtput uncertainty with output growth.

We use a limited information approach to match empiricajets and SMM to account for
short-sample bias. To improve on the current methodologyswelve the fully nonlinear model
and repeat the estimation procedure for different shockessoes. The solutions and estimations
are run in parallel on a supercomputer. The literature glpiestimates models once based on a
particular seed and uses the Delta method to compute sthadars. While our approach has a
higher computational burden, our estimates are indepédére seed and have precise numerical
standard errors. The estimates allow us to numericallycqimate the sampling distribution of
the parameters and test whether they are significantlyrdiffeacross modefs We also obtain a
distribution of J values, which determine whether a model provides a significaprovement in
fit over another model, and the corresponding p-values fréestaof over-identifying restrictions.

Table 3shows the parameter estimates and model-implied momedés €our specifications:
the CES model with only a labor productivity shock, only a capital productivity shock:),
and both productivity shocks{ & 2") and the Cobb-Douglas model with only the labor pro-
ductivity shock. In our model, the Cobb-Douglas specifmais unable to distinguish between a
capital, labor, and total factor productivity shock, sothllee versions yield the same overall fit
and parameter estimates. The only difference that wouldrasahat the shock standard devia-
tion would scale to account for differences in the labor &bstre in the production function. We
report the results with the labor productivity shock. Facleparameter, we show the average and
(5,95) percentiles acrosX)0 estimations of the model. For each moment, we report the raiedn
t-statistic for the null hypothesis that a model-impliedment equals its counterpart in the data.

We begin with the Cobb-Douglas specificati@nThere are only four estimated parameters
because the CES is fixed Bt The estimates are consistent with the literature. The platers a

8Ruge-Murcia (2012) applies SMM to several nonlinear bussraycle models and finds that asymptotic standard
errors tend to overstate the variability of the estimatdss Tinderscores the importance of using Monte Carlo methods
9The test statistic is given by* = .J (0, £*), where&* is a matrix of shocks given seed J(f, £) converges to a
x? distribution with V,,, — N,, degrees of freedom, wheré,, is the number of empirical targets ang is the number
of estimated parameters. Tlig 95) percentiles of the p-values determine whether a modebigljzasses the test.
0Table 6in Appendix Gshows the results of adding fourth-order autocorrelatiomeal activity growth to our list
of targeted moments. These values are informative bechasautocorrelation functions in the data are decreasing.
The qualitative results are unchanged. All three CES spatifins perform significantly better than the Cobb-Douglas
specification and the CES model with both productivity steqoaisses a test of over-identifying restrictions. The only
difference from our main results is that the CES model witly arcapital productivity shock no longer passes the test.
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C-D CES
Parameter am zm 5k i & 5k
Pzn 0.9571 0.9839 — 0.9626
(0.9529, 0.9609) (0.9822, 0.9859) (0.9555,0.9724)
Ozn 0.0211 0.0166 — 0.0199
(0.0209, 0.0214) (0.0159,0.0173) (0.0182,0.0211)
Pzk — — 0.9152 0.9664
(0.9125,0.9182) (0.9414, 0.9788)
Ok - — 0.0316 0.0071
(0.0311, 0.0321) (0.0066, 0.0076)
O 2.9470 0.9074 2.1571 1.7650
(2.8521, 3.0550) (0.7465,1.0527) (2.0987, 2.2216) (1.3480, 2.0866)
h 0.8998 0.5075 0.8859 0.7798
(0.8965, 0.9030) (0.4053, 0.5893) (0.8843,0.8876) (0.7224, 0.8143)
o — 0.1739 0.3945 0.1325
(0.1713,0.1767) (0.3848, 0.4040) (0.1178,0.1430)
J 53.41 12.51 6.75 1.88
(52.94,53.91) (12.01, 12.95) (6.62, 6.85) (1.72,2.10)
pval 0.00 0.01 0.15 0.39
(0.00, 0.00) (0.01,0.02) (0.14,0.16) (0.35,0.42)
df 5 4 4 2
(a) Average and5, 95) percentiles of the parameter estimates.
C-D CES
Moment Data am am P sm & 2k
SD(L{gtH)/SD(Qé]) 5.76 1.98 6.24 5.71 5.71
(—6.15) (0.78) (—0.09) (—0.08)
C’orr(Z/{g’t+1 , Qf) —0.40 —0.33 —0.58 —0.35 —0.46
’ (0.84) (—1.95) (0.56) (—0.65)
AC(Z/{g’tH) 0.91 0.90 0.91 0.88 0.88
’ (—0.12) (—0.07) (—0.74) (—0.82)
SD(yg) 0.80 0.95 0.80 0.88 0.81
(2.33) (0.04) (1.32) (0.19)
SD(¢e9) 0.51 0.40 0.41 0.49 0.52
(—2.20) (—1.97) (—0.45) (0.20)
SD(:@Q) 2.02 2.11 2.13 1.76 1.95
(0.44) (0.54) (—1.35) (—0.40)
AC(y9) 0.29 0.46 0.17 0.35 0.24
(1.89) (—1.38) (0.60) (—0.58)
AC(¢e9) 0.41 0.46 0.31 0.46 0.43
(0.77) (—1.35) (0.75) (0.33)
AC(z9) 0.42 0.47 0.41 0.32 0.41
(0.56) (—0.09) (—1.10) (—0.07)

(b) Data and average model-implied moments. t-statistiesngparentheses.

Table 3: Parameter estimates and targeted moments.

highly persistent labor productivity process,( = 0.96), strong habit persistencé & 0.9), and
significant investment adjustment costs ( 2.9). The model has a poor fit. Thevalue is53.4

and the p-value is essentiallymeaning the data soundly rejects this specification. Thgdsit rea-
son is because the model cannot generate the volatilityaerteinty that occurs in the data. Nor-
malized uncertainty is considerably larger than the near zalues reported i®ection 3because
the real frictions introduce two additional backward laukcomponents that generate greater non-
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linearities and state-dependency than in the frictiontesdel. However, the t-statistic is still15,
meaning the volatility of uncertainty in the model is sigeafintly different from the data. The
model also has trouble matching the standard deviationsiipiub and consumption growth, as
botht-statistics exceedl. Overall, these three moments account for rou@bli of the J value.

All three specifications with a CES production function peni significantly better than the
Cobb-Douglas model. While there is some variation in theredes, the data prefers strong com-
plementarity in the production function (< 0.4) under all three shock specifications. In the model
with a productivity shock, the estimated CE®i$7 and the/ value drops td2.5. Despite the sig-
nificant improvement in fit, the p-value is still only01, mainly because the model over-predicts
the correlation between output growth and uncertainty amttpredicts the standard deviation of
consumption growth. The model with a capital productiviipek performs better, even though the
estimated CES is highes (= 0.39). TheJ value is6.8 and the p-value increases(d 5, passing
the test of over-identifying restrictions at thé% level. The model with both labor and capital
productivity shocks performs the best. Despite only twordeg of freedom, theé value declines
to 1.9 and the p-value further increasesit89. None of the t-statistics exceéd indicating that
none of the model-implied moments are statistically déferfrom their counterparts in the data.
Furthermore, the CES is only13, pointing to strong complementarity between capital abdia

5 MOVING BEYOND PRODUCTIVITY SHOCKS

Table 4repeats the exercise rable 2for the remaining shocks discussedSaction 2under our
baseline calibration. We begin with a discussion of theltesinder Cobb-Douglas production
(o = 1), which confirm that our analytical results carry throughdar model without full depre-
ciation. In particular, shocks to the price markup, @overnment spending), and preferences)
generate noticeable time variation in output uncertaiftys stems from the conditional volatility
that is created by the way the exogenous shock enters thigoeigun system, rather than state de-
pendence through the endogenous capital skate)( Wheny, or a, is elevated, further increases
in the shock have a smaller impact on output than when eithiiroge states are low. The oppo-
site holds for the government spending shock—an elevatadplifies the response of output to
further increases in government spending. Shocks to ke@wferencesj do not generate mean-
ingful variation in uncertainty with Cobb-Douglas prodioct, similar to the productivity shocks.
Government spending shocks generate the largest variatiorcertainty, nearl20% of what
is in the data and several times larger than what the markogkshenerates. This may seem at
odds with our analytical results, since the expressionsiigertainty were nearly identical for the
two shocks. However, both produce nearly the same valugéun-normalized level of uncer-
tainty (SD(L{f{t +1))- The differences occur because capital and hours workegk rimoopposite
directions in response to a government spending shock,hwdaepens the volatility of output
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Data CES

0.2 0.5 1.0 1.5 2.5
Markup Shock f)

SDWUY,.1)/SD(%)  5.76 0.93 0.22 0.17 0.27 0.38
’ (0.77,1.12) (0.15,0.31) (0.14,0.21) (0.22,0.33) (0.30, 0.48)

Corr(Uf 1, 97) —0.40 —0.48 —0.31 0.35 0.38 0.36
’ (—0.51,—0.44)  (—0.40, —0.22) (0.31,0.39) (0.35,0.41) (0.32,0.40)

SD(49) 0.80 0.22 0.29 0.33 0.35 0.37
(0.20, 0.24) (0.27,0.32) (0.31,0.36) (0.33,0.38) (0.34, 0.40)

Government Spending Shoak) (

SDWUY,.)/SD(@)  5.76 2.85 0.67 1.02 1.34 1.61
’ (2.03,3.93) (0.55,0.80) (0.72,1.41) (0.89,1.95) (1.05,2.40)
Corr(UY 1, 97) —0.40 0.03 —0.13 —0.17 —0.13 —0.08
’ (=0.03,0.10)  (—0.21,-0.05)  (—0.23,—-0.10)  (—0.20,—0.07)  (—0.16,—0.00)
SD(59) 0.80 0.25 0.25 0.22 0.19 0.17
(0.23,0.27) (0.23,0.27) (0.20,0.23) (0.18,0.21) (0.16,0.18)

Preference Shocla)

SD(uft+1)/SD(gf) 5.76 3.11 1.39 0.61 0.50 0.74
' (2.07,4.43) (0.87,2.04) (0.45,0.82) (0.42,0.61) (0.55,1.00)

Corr(Uf 1, 97) —0.40 —0.25 —0.07 0.22 0.43 0.39
' (—0.34,-0.16)  (—0.12, —0.03) (0.16,0.29) (0.41,0.45) (0.32,0.46)

SD(9Y) 0.80 0.22 0.34 0.42 0.46 0.51
(0.20, 0.24) (0.31,0.36) (0.39, 0.45) (0.43,0.50) (0.47,0.55)

Leisure Preference Shocg)(

SD(L{ftH)/SD(ﬁ) 5.76 1.84 0.51 0.02 0.16 0.33
o (1.55,2.18) (0.42,0.61) (0.02,0.03) (0.13,0.21) (0.25,0.44)

Corr(U 1, 97) —0.40 —0.44 —0.41 —0.37 0.36 0.34
’ (—0.47,-0.43)  (—0.44,-0.39)  (—0.42,—0.31) (0.32,0.40) (0.29,0.39)

SD(§7) 0.80 0.38 0.50 0.56 0.59 0.61
(0.35,0.41) (0.46,0.54) (0.52,0.61) (0.54,0.63) (0.56,0.66)

Table 4: Data and average model-implied moments. The dgtaigerly from 1964-2019. Th@, 95) percentiles are
based ori,000 simulations of the model and shown in parentheses. Theatdiéviations are all multiplied by00.
The persistence of each proces8.&s The shock standard deviations ar@2, except the markup shock whichig1.

(SD(%Y)). While government spending shocks generate sizableilylat uncertainty relative to
the volatility of output growth, they would require unreaably large variations in the output share
of government spending to generate meaningful variatitimeérun-normalized level of uncertainty.
When deviating from Cobb-Douglas production, the momemi&able 4 with the exception
of those generated from government spending shocks, mavaimilar direction as shown with
the labor productivity shock ifable 2 As ¢ falls, the volatility of output growth declines, the
volatility of uncertainty increases, and the correlatidruncertainty and output growth becomes
more negative. Complementarity introduces state depeydethe impulse responses in a similar
way as the labor productivity shock, through the effectiapital ratio. Initial periods with a higher
effective capital ratio have a larger response in hours aeind output. When = 0.2, these
shocks generate variation in uncertainty between ond-#md one-half of what is in the data. The
correlation between uncertainty and the effective capdiiad exceed$.9 for each shock, confirm-
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ing the mechanism that generates uncertainty. Theseseitionstrate that complementarity has

meaningful implications for time-varying uncertainty foost shocks, not just productivity shocks.
Government spending shocks are the exception to this paffére variation in uncertainty is

relatively stable across the valuesgsuggesting the conditional volatility that stems fromegy

the shock hits the equilibrium system dominates the effecomplementarity. The correlation of

output growth and uncertainty is positive and increasesfalls, in contrast with the other shocks.

6 NEw KEYNESIAN MODEL SIMULATIONS

This section extends the real business cycle modegéation 2.20 include sticky prices. Following
Rotemberg (1982), firms choose their labor, capital, andepievel to maximize the expected
discounted present value of future dividends subject tcaaitic price adjustment cost. Using the
functional form in Ireland (1997), the optimality conditi®in symmetric equilibrium are given by

k= amey(yozt Jko) T (ki) ?

o—1

wy = (1 —a)mey (Yog' 2 /o) * (ye/ne)7
QP (me/70 — V) /70 = (emey — 1)/ (e — 1) + BeP Ey[(cr/copa ) (Teg /T — D) (Teq1 /T) (Yes1 /)],

Q=

wherer is the gross inflation rate ane scales the size of the price adjustment cost. Whien 0,
the real marginal cost of producing an additional unit opotitmc, is endogenously determined by
the Phillips Curve. Whep? = 0, mc¢; = 1/, and the model collapses the versiorSection 2.2
The household’s budget constraint is givendw b, /i, = win; + b1 /7 + d;, wherei is
the gross nominal interest rate set by the central bank anthe real value of a privately-issued
1-period nominal bond in zero net supply. The optimality dtinds are given byX0), (11), and

L= BE[(ct/cer1)(ie/Tee))-

The monetary policy rule is given by

i = 17y (e /T)7 (9o / (Gye-1)) ") " exp(eie), &5 ~ N(O, 1),

wherer is the inflation targetp, andg, are the responses to the inflation and output growth gaps,
andp; is the persistence of the policy rule. Following Eggertsson Singh (2019), we exclude the
price adjustment costs from the aggregate resource corisgait is unchanged froiSection 2.2

We set¢, = 2.0, ¢, = 0.2, p; = 0.8, ando; = 0.0025, which are all common values. The
price adjustment cost parameter is sebtol9. This value corresponds to a Calvo price setting
where prices change once every three quarters, the meamgsin Smets and Wouters (2007).
The inflation target is set tb 0084, which is the average GDP deflator inflation rate in our sample
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Data CES

0.2 0.5 1.0 1.5 2.5
Labor Productivity Shock:(")
SDWUY,.1)/SD(%)  5.76 4.37 1.08 0.10 0.53 0.93
' (3.65, 5.20) (0.90, 1.30) (0.08,0.13) (0.42,0.67) (0.72,1.20)
Corr(Uf 1, 97) —0.40 —0.38 —0.39 0.38 0.38 0.37
' (—0.41,-0.37)  (—0.42, —0.37) (0.33,0.43) (0.34,0.42) (0.31,0.42)
SD(49) 0.80 1.43 1.58 1.63 1.64 1.66
(1.31,1.55) (1.46,1.71) (1.50, 1.76) (1.52,1.77) (1.53,1.79)
Capital Productivity Shockzf)
SDWUY,.1)/SD(%)  5.76 9.27 2.82 0.05 0.89 1.54
' (7.28,11.78) (2.17, 3.68) (0.04, 0.06) (0.68,1.16) (1.16, 2.05)
Corr(Uf 1, 97) —0.40 —0.26 —0.22 0.38 0.20 0.18
' (—0.34,-0.20)  (—0.29, —0.16) (0.33,0.43) (0.15,0.26) (0.13,0.24)
SD(9Y) 0.80 0.82 0.76 0.80 0.84 0.88
(0.74,0.91) (0.70,0.82) (0.74,0.87) (0.77,0.91) (0.81,0.96)
Markup Shock f)
SDWUY,.1)/SD(%)  5.76 4.66 3.46 2.82 2.54 2.28
' (3.73,5.74) (2.74,4.30) (2.22, 3.55) (2.00, 3.20) (1.78,2.89)
Corr(Uf 1, 97) —0.40 —0.25 —0.24 —0.24 —0.24 —0.24
' (-0.29,-0.22)  (—0.28,-0.19)  (—0.28,—0.19)  (—0.29,—0.19)  (—0.29,—0.19)
SD(9Y) 0.80 0.36 0.42 0.45 0.46 0.47
(0.32,0.39) (0.38,0.46) (0.41,0.49) (0.42,0.50) (0.43,0.51)
Monetary Policy Shocks()
SDWUY,.1)/SD(@)  5.76 0.17 0.06 0.04 0.05 0.07
o (0.12,0.22) (0.05,0.08) (0.04, 0.05) (0.05,0.07) (0.05,0.09)
Corr(UY,.1,77) —0.40 —0.29 —0.56 —0.65 —0.46 —0.32
’ (-0.36,—-0.21)  (—0.66,—0.46)  (—0.70,—0.60)  (—0.54,—0.36)  (—0.42, —0.22)
SD(4?) 0.80 0.83 1.12 1.28 1.34 1.39
(0.75,0.90) (1.02,1.22) (1.16, 1.39) (1.22,1.46) (1.27,1.52)

Table 5: Data and average model-implied moments. The dgtaigerly from 1964-2019. Th@, 95) percentiles are
based ori,000 simulations of the model and shown in parentheses. Theatdiéviations are all multiplied by00.
The shock standard deviations are sdi.ti2 (productivity),0.01 (price markup), and.0025 (monetary policy).

Table 5once again repeats the exercise in table 2 for the model tidtkygrices. The results
with the capital and labor productivity shocks are qualiely unchanged. There is little time-
varying uncertainty under Cobb-Douglas production andmmeggdul, counter-cyclical variation
when capital and labor are gross complements. Quantibgthv@wever, there are some important
differences. Strong complementarity causes capital ptodty shocks to generate considerably
more time-varying uncertainty and less output growth vithathan our baseline model. These
dynamics are driven almost entirely by the interest ratetimén the monetary policy rule. When
ko is low, there is a large response of output. The persisteniteipolicy rule keeps interest rates
lower for longer, amplifying the response of output. Cosedy, whenk is high, the response of
output is weak due to complementarity, which mitigates fifeces of the interest rate persistence.

Price markup shocks generate meaningful time-varyingnaicey even under Cobb-Douglas
production. This stems from the endogeneity of marginatscoBositive markup shocks always
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reduce factor prices, but when prices are sticky, the shisckiacreases current and future infla-
tion. This feeds into marginal costs and further reduce®fgmrices. Since price adjustment costs
are quadratic, marginal costs and hence factor pricesndeniore in states that are farther away
from steady state. This generates state-dependent oegpdnses and time-varying uncertainty.
Monetary policy shocks cause almost no variation in unggstaregardless of the elasticity of
substitution in production. The small variation in uncarta occurs even though the volatility of
output growth is larger than it is in the data. Overall, theeseilts reinforce that productivity shocks
under complementarity are an important driver of the vamnaih uncertainty observed in the data.

7 CONCLUSION

Much of the uncertainty literature uses structural modelexamine the effects of shocks to the
variance of exogenous variables, while holding their choal means fixed. In this paper, our fo-
cus is on endogenous movements in uncertainty that are diaibges in the state of the economy.
This can occur in any model where first moment shocks have-d&iendent effects on output.
However, this channel is weak in many business cycle modelause many are close to log linear.
One source of the near-linearity in business cycle modetasfrom the common assumption
of Cobb-Douglas production, which implies a unitary elastiof substitution between inputs in
production. This paper shows that if capital and labor acsgicomplements, first moment pro-
ductivity shocks can generate time-varying and countehaal uncertainty consistent with the
data. While there are other mechanisms in the literatunes isyparticularly compelling for two
main reasons. First, there is overwhelming evidence initbkature that the elasticity of substitu-
tion between inputs in the production process is well belovtyu Second, complementarity can
explain why uncertainty fluctuates at all points of the bassicycle, not just during recessions or
isolated events. More broadly, our results demonstratddhiag to account for the effects of first-
moments shocks on uncertainty will lead to an over-stat¢wfehe causal effects of uncertainty.
There are several avenues to build on our results. We focusoertainty about future real
activity. Developing richer models that include a finan@attor or additional frictions would
make it possible to examine whether the model can matchalige sources of uncertainty, such
as those surrounding prices and interest rates. Buildingemxous volatility shocks into any model
where there are meaningful state-dependent effects ofriimatent shock would make it possible
to examine the causal effect of various sources of unceytaimile controlling for feedback from
the state of the economy. Both of these extensions woulddugdvance the uncertainty literature.
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A DATA SOURCES

We use the following quarterly time-series from 1964Q1204 provided by Haver Analytics:

1. Civilian Noninstitutional Population: 16 Years and Over,
Not Seasonally Adjusted, Thousands (LN16N@USECON)

2. Gross Domestic Product: Implicit Price Deflator,
Seasonally Adjusted, 2012=100 (DGDP@USNA)

3. Gross Domestic Product Seasonally Adjusted, Billions of Dollars, (GDP@USECON)

4. Personal Consumption Expenditures: Nondurable Goods
Seasonally Adjusted, Billions of Dollars (CN@USECON)

5. Personal Consumption Expenditures: Services
Seasonally Adjusted, Billions of Dollars (CS@USECON)

6. Personal Consumption Expenditures: Durable Goods
Seasonally Adjusted, Billions of Dollars (CD@USECON)

7. Private Fixed Investment Seasonally Adjusted, Billions of Dollars (F@QUSECON)
8. Labor Share, Total Economy, All Employed Persons (LXEBL@USECON)
9. Net Stock: Private Fixed AssetsBillions of Dollars (EPT@CAPSTOCK)
10. Net Stock: Consumer Durable GoodsBillions of Dollars (EDT@CAPSTOCK)
11. Depreciation: Private Fixed AssetsBillions of Dollars (KPT@CAPSTOCK)
12. Depreciation: Consumer Durable GoodsBillions of Dollars (KDT@CAPSTOCK)
13. Effective Federal Funds Rate Percent per Annum (FFED@USECON)
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We also use the Ludvigson et al. (2020) Real UncertaintyXnaieailable on the authors’ personal
websites. We use a quarterly average of monthly valuek fer3 (one quarter forecast horizon).
We applied the following transformations to the above dataces:

1. Per Capita Real Output Growth:

A GDPy GDP;—
Ay, = 100 (log <m) — log (DGDPt71+2]\1f16Nt71)> )

2. Per Capita Real Consumption Growth
A CN+CS. CN¢_1+CSe—
Aéy =100 (log <DGDP§ILN§6M> — log (DGDPtt,11+LN§6]1Vt,1>) :
3. Per Capita Real Investment Growth
o Fi+CDy Fy_1+CD;_
Az =100 (10g (DGD}tDj—',-LNlGNt) — log (DGDItDt,llJrLJ\;lﬁth,l)) :

4. Subjective Discount Factor

8= (DGDP,/DGDP,_,)/(1+ FFED/100)"%.
5. Capital Depreciation Rate

§ = (KPT + KDT)/(EPT + EDT).

B DETRENDEDEQUILIBRIUM SYSTEM

The detrended real business cycle model includes the eraggmoductivity processes)( and

Q=

pury = 04(3/02’41‘3//7{?0)0771 (gﬁt/];?t—ﬂ ;
Ut = Yo {a (Zf]%t—l/(gko)> T+ (1-a) (Zf”t/%) U} N )

ey = (1 — a) (Yoz;' /o) = (G/me)7
Wy = XNy Ar,
A= & — (h/§)é,
¢+ = (1— 387,
ke = (1= 0)ke1/g+ 3,1 — " (2™ — 1)%/2),
1= gl — " (2{" = 1)(32] — 1)/2] + BL"Ee[(Ae/ Mt ) g (25 (2% — 1)),
@ = (B/9)Ed(Ae/Ms1) (rf iy + (1= 0)qenr)],

gap
Ty

Q=

= T¢/Ty—1.
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The New Keynesian model also includes the following equmtio

1= (6/§)Et[(at+1/at)(5t/5t+1)(Stit/(ﬁﬂfﬁ))L
o(m{™ — D)™ = (ymey — 1) /(e — 1) + 5¢Et[(at+1/at)(ét/6t+1)(wfi’f - 1)7Tf$1)(?3t+1/?3t)]7
ir = Ly (0 ) ) P exp(mpy),

0~ i—1
Et — Zflyf)y(p )

C DERIVATION OF APPROXIMATIONS

Supposey = g(z) is function of a random variable with meanz, unconditional variance? ,,

and conditional (one-step ahead) varianﬁg. A second-order Taylor expansion arounamplies
y(@) = g(z) + ¢'(T)(x — 7) + g"(T)(x — 2)*/2,
so the unconditional expectation is given by
Ely(z)] = g(z) + 9" (7)07 /2.
By definition Var[y] = E[(y — 3)?] = E[y?*] — (E[y])?. Therefore, using the same approximation

Var[y] ~ [9(2)]* + ([¢' (@) + 9(2)9" ()07 — (9(2) + 9" (2)07./2)".

Expanding the approximation and dropping the efi¢ term impliesVar[y] ~ [¢'(Z)]*07 ..

Now suppose: follows a stochastic process. An approximation of the tingenditional vari-
ance ofy,, 1, denoted byar,[y,. 1], follows the same deviation, except it is approximated adou

the conditional mean af,,, denoted by, [z, ,]. ThereforeVar[y;11] ~ [¢'(E[r:41])]°0% .

Real Business Cycle Model with CES ProductionSubstituting 18) into (17) implies

et = o+ 575 I (@exp(ZL (hy — ko)) + (1= @) exp(Zb i + O 2, — ©=17g))

Denotey, andy. ., as the first and second partial derivatives with respectddymtivity and define

exp(fi) = exp(ZL (ke — ko)), exp(fa) = exp({5hn + Wﬁtﬂ — ZLny),

Then the first and second derivatives are given by

o olien) (—a)esp(fa)

z 1+no aexp(fi)+(1—a)exp(f2)’ (24)
~ _ olo=1)(14n)? _a(l—a) exp(f1) exp(f2)
Yzz = (14no)? (ozexp(fl)—i-(l—a) exp(fg))2’ (25)

wherey; > 0 andy; < 0. The sign of the second derivative depends orvthel term.
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D ANALYTICAL SOLUTIONS

D.1 CoBB-DOUGLAS SOLUTION WITH MARKUP SHOCKS Forward iteration implies

Ct

aths 1 4 2;11(O‘ﬁ)jEt exp(— 23;1 ﬂt+z’)] = Uz

The price markup in periotl+ j, written as a function of the current markup, is given by

f+1 = Ho + pufle + OpEiir,
fiera = po(1 + pu) + Piﬂt + PuOuEt+1 + Op€it,
fletj = Ho 5:1 Pffl + PLﬂt + Zgzl pf;_"augtﬂ,

whereyy = (1 — p,) In i. Therefore, the sum of the markup oygperiods is equal to

22‘1:1 i = Ho + puﬂt + Ou€tt1,
2 . R
Dot Bagi = p0(2 4 pu) + pu(1+ pp)fie + 0u(1+ pu)eegr + 0uciya,
o o N o 1n . h
ZLl Hivi = Mo ?:1(] +1- Z)PM b Pu ?:1 Pu e + Zi:l( g:o PM)U;ﬁHh-

Sinceji,1 is normally distributed with meaym, -+ p,. /i, and variance,, exp(ji.;) is log-normally
distributed with meanxp (o + p,fic+07,/2). Applying this property texp(— Zle fie+;) implies

b — 14372 () exp (—Mo S G+ 1= et = S ol e+ Y0 (D pL)203/2> :
In the special case there markup shocks are i.i.d., thidtrg@splifies to
athe = 577 ol(aB/m) exp(o/2)l = 1/(1 = (aB/f) exp(o};/2)),
So the output-to-consumption ratio is constant and doesaugte equilibrium hours to vary.
D.2 CES SLUTION WITH I.1.D. MARKUP SHOCKS The Euler equation is given by
1= aﬂ(yo/kf‘O)(U—l)/UEt[(Ct/Ct+1)7(yt+1/kt)l/a(1/Mt+1)]-
To solve the model, assume= 1/0 and guess; = fy,. Then
1= aB(yo/ko) "V (y/ k) Ey[exp(—firs1)]-

With i.i.d. markup shocksk; [exp(—/i11)] = (1/f) exp(a?/2). Therefore,

¢ = (1= ((aB/m) exp(02)) (yo/ ko)™ "y, ke = ((B/ ) exp(02))7 (yo/ ko)™ "t
which verifies our initial conjecture that the consumpttormsutput ratio is constant.
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E NONLINEAR SOLUTION METHOD

We begin by compactly writing the detrended nonlinear elguim system as

E[f(St+1, St, €t+1)|zt7 19] = 07

where f is a vector-valued functior, is a vector of variables;; are the shocks;; are the states
(z; = [k,—1, 2]’ for the baseline model ang = [k,_1, é&_1, &1, 2", 2] for the estimated model).
There are many ways to discretize the exogenous stdtes)dzF. We use the Markov chain
in Rouwenhorst (1995), which Kopecky and Suen (2010) shawestorms other methods for ap-
proximating autoregressive processes. The bounds on tlogienous states are set as a percentage
of their deterministic steady state valués ( is set to+15% for the baseline model anid_,, ¢4,
andz;_,, are respectively set t610%, +25%, £10% for the estimated model). These values were
chosen so the grids contaif% of the simulated values for each state. We discretize thessit@to
9 evenly-spaced points. The product of the points in eacledsion,D, represents the total nodes
in the state spacd) = 81 for the baseline model ant = 59,049 for the estimated model). The
realization ofz; on noded is denotedz;(d). The Rouwenhorst method provides integration nodes,
[z 1 (m), zF,, (m)], with weights,é(m), for m € {1,...,M}. Since the exogenous variables
evolve according to a Markov chain, the number of futureizatibns is the same as the state (9).
The vector of policy functions is denotgd, and the realization on nodgis denotedpf,(d)
(pf, = [n(z,)] for the baseline model angf, = [n.(z,), ¢:(z;)] for the estimated model). Our
choice of policy functions, while not unique, simplifies\dal for the variables in the nonlinear
system of equations givesy. The following steps outline our policy function iteratiatgorithm:

1. Use Sims’s (2002)ensys algorithm to solve the log-linear model. Then map the sotuti
for the policy functions to the discretized state spaces phovides an initial conjecture.
2. Oniterationj € {1,2,...} and each nodé € {1, ..., D}, use Chris Sims’ssol ve to find
pf,(d) to satisfyE[f(-)|z:(d), J] =~ 0. Guespf,(d) = pfj_l(d). Then apply the following:
(a) Solve for all variables dated at timegivenpf,(d) andz;(d).
(b) Linearly interpolate the policy functionsf;_,, at the updated state variables, (1),
to obtainpf, ., (m) on every integration nodey € {1,..., M}.
(c) Given{pf,.,(m)}}_,, solve for the other elements sf.; (m) and compute

m=1?

E[f(st11,8:(d), e41)|2:(d), V] = Z%:l d(m) f(se41(m),s¢(d), e1(m)).

Whencsol ve converges, saif;(d) = pf,(d).

3. Repeat step 2 untihaxdist; < 107°, wheremaxdist; = max{|pf; — pf;_,|}. When that
criterion is satisfied, the algorithm has converged to am@apmate nonlinear solution.
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F ESTIMATION METHOD

The estimation procedure has two stages. The first stageage moments in the data using a 2-
step Generalized Method of Moments (GMM) estimator with avgand West (1987) weighting
matrix with 5 lags. The second stage is a Simulated Method of Moments (SpdBedure that
searches for a parameter vector that minimizes the distastvecen the GMM estimates in the
data and short-sample predictions of the model, weighteatidgiagonal of the GMM estimate of
the variance-covariance matrix. The second stage is regpéat many different draws of shocks
to obtain a sampling distribution for each parameter. Thieviang steps outline the algorithm:

1. Use GMM to estimate the moments?, and the diagonal of the covariance matbiy;.

2. Use SMM to estimate the real business cycle model. Givandom seed;, draw aB + T-
period sequence for each shock in the model, whens a 1,000 period burn-in andl’
is the sample size in the data. Denote the shock mé&fix- (e.g., in the 2-shock model
Eprr = [e 80 A7) Fors € {1,..., N,}, run the following steps:

(a) Specify a guess$,, for the N, estimated parameters and the covariance métr]i?(,
i. Foralli € {1,..., N,,}, apply the following steps:

A. Draw 6; from a multivariate normal distribution centered at somempa-
rameter vectord, with a diagonal covariance matrix,,.

B. Solve the nonlinear model with the policy function itépatalgorithm inAp-
pendix Egivend;. Repeat 3(a)i.A. if the algorithm does not converge.

C. Given&y, ,(r), simulate the quarterly modét times for B + T' periods.
We draw initial states from the ergodic distribution by bagoff the first B
periods. For each repetition calculate the moments based on the remaining
T periods, ¥ (9;, £5.(r)), the same way they are calculated in the data.

D. Calculate the median moments acrossih&@mulations,

UM (6;,£3) = median{ WY (9, £5(r))},, and evaluate the loss function:

r=11
Jp = [0 = Ui (0, &) (SR (1 + 1/R)| R — Wi (0, €7))

ii. Find the parameter drat that corresponds tmin{.J;} ¥ , and calculate:;’.
A. Find theN,.,; draws with the lowesf?. Stack the remaining draws ing,; x
N, matrix,©°, and defing® = ©° — 1y, ,x1 Sonty, 05/ (Nyest)-
B. CalculateXpy = (©°)'O°/(Npest)-
(b) Use simulated annealing to minimize the loss function.
i. Fori e {0,..., N,}, repeat the following steps:
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A. Draw a candidate vector of paramete&"?, where

0o fori = 0,
N(éi_l, COZ?O) fori > 0.

élgand ~

We setc, to target an average acceptance rate06t across seeds.

Solve the nonlinear model with policy function iteratigivenéf“"d.

C. Given&j, ,(r), simulate the quarterly modét times for B + T' periods.
We draw initial states from the ergodic distribution by bamoff the first B
periods. For each repetition, calculate the moments based on the remaining
T periods, W (geand £3(r)), the same way they are calculated in the data.

D. Calculate the median moments acrossﬂweimulations,@%T(éf“"d,5;1) =
median{ W (§eend g5 (r))}E_, and evaluate the loss function:

r=11

w

Tt = (B — Wi (B, €3)) (SR (1 + 1/R)) (98 — B (0, &)

(2

E. Accept or reject the candidate draw according to

(Ggand | gy if = 0,
(6, J5) = { (feond| g2y if min(1, exp(J5, — J2) Jer) > i,

2

(01, J2)) otherwise

wherec; is the temperature andis a draw from a uniform distribution.
ii. Find the parameter dradf, that corresponds tmin{.J} ", and updaté&s,.
A. Discard the first\,;/2 draws. Stack the remaining draws inN\g/2 x N,
matrix, ©¢, and defined® = ©° — 1y, 2.1 Y 1y, 1 05/ (Na/2).
B. CalculateXz™ = (©%)0°/(N4/2).

(c) Repeat the previous stéfx,,, times, initializing at drawd, = égﬁn and covariance
matrix p = £3"". Gradually decrease the temperature. Of all the draws, fi@d/y
lowest.J values, denote@J;g’ess}j.Vle, and the corresponding dram{ﬁgvujess}jy:"l.

(d) Forj € {1,..., N;}, minimize the same loss function with MATLABfsri nsear ch
starting a®?;/ ... The resulting minimum i§>7 with a loss function value of*’ . Re-
peat, each time updating the guess, ufmss—t]” < 0.001. The parameter estimates

reported in the tables in the main paper, dendtedorrespond tenin{J3/ }27,.

3. The set of SMM parameter estima{@g s approximate the joint sampling distribution of
the parameters. We report its meérs .7, 6/N,, and(5, 95) percentiles.

We setV, = 200, R = 1,000, Ngp = 3, andN,; = 1. N,,,, N4, N,,, andc; are all model-specific.
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G ADDITIONAL RESULTS

C-D CES
Parameter am zm 5k s & 5k
Pzn 0.9629 0.9582 — 0.9671
(0.9605, 0.9653) (0.9496, 0.9640) (0.9573,0.9770)
Oun 0.0212 0.0230 — 0.0196
(0.0209, 0.0214) (0.0216, 0.0243) (0.0176, 0.0216)
Pzk - — 0.9325 0.9497
(0.9297,0.9351) (0.9106, 0.9798)
Ok - — 0.0350 0.0069
(0.0341, 0.0358) (0.0062, 0.0076)
P 3.0369 3.4135 2.5592 2.0112
(2.9041, 3.1527) (2.8463,4.0188) (2.3614, 2.7270) (1.3984, 2.6369)
h 0.9001 0.8176 0.8912 0.7502
(0.8965,0.9034) (0.7913,0.8392) (0.8875,0.8945) (0.6700, 0.8125)
o — 0.1692 0.4738 0.1294
(0.1658,0.1723) (0.4582, 0.4875) (0.1071,0.1480)
J 55.89 18.19 21.51 8.06
(55.29, 56.52) (16.81,20.45) (20.94,22.08) (7.67,8.58)
pval 0.00 0.01 0.00 0.15
(0.00, 0.00) (0.00,0.02) (0.00, 0.00) (0.13,0.18)
df 8 7 7 5
(a) Average and5, 95) percentiles of the parameter estimates.
C-D CES
Moment Data s am P s & 2k
SDWU},,1)/SD(H}) 5.75 1.96 5.97 5.47 5.70
(—5.99) (0.36) (—0.44) (—0.07)
Corr(U,,1,97) —0.41 —0.33 —0.64 —0.34 —0.48
’ (0.84) (—2.63) (0.67) (—0.83)
AU, ) 0.92 0.90 0.88 0.89 0.88
’ (—0.45) (—1.15) (—0.67) (—0.99)
SD(9) 0.80 0.95 0.84 0.89 0.80
(2.19) (0.59) (1.35) (0.00)
SD(¢e9) 0.51 0.41 0.47 0.50 0.54
(—2.01) (—0.78) (—0.07) (0.61)
SD(&9) 2.04 2.09 1.81 1.74 1.89
(0.26) (-=1.12) (—1.48) (=0.74)
AC(y9) 0.29 0.47 0.33 0.39 0.24
(1.98) (0.40) (1.12) (=0.58)
AC(¢e9) 0.39 0.47 0.26 0.49 0.38
(1.15) (—1.87) (1.41) (=0.21)
AC(z9) 0.42 0.48 0.49 0.36 0.45
(0.64) (0.73) (—0.61) (0.31)
AC4(g9) 0.11 0.03 0.01 —0.02 0.02
(=1.27) (—1.54) (=1.97) (—1.35)
AC4(e9) 0.06 0.07 0.05 0.11 0.15
(0.09) (—0.24) (0.62) (1.28)
AC4(39) 0.15 0.03 0.09 —0.05 0.07
(—1.70) (—0.89) (—2.92) (-1.12)

(b) Data and average model-implied moments. t-statistiesngparentheses.

Table 6: Parameter estimates and targeted moments.
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