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1 Introduction

One of the most important channels through which monetary policy affects the real economy

is mortgage borrowing. Lower mortgage rates resulting from expansionary monetary policies

reduce long-term borrowing costs, generate liquidity for refinancing borrowers, and stimulate

household spending. This channel, however, has been weakened by frictions in the U.S.

mortgage market. One example is the failure of consumers to optimally refinance their

mortgages, due to the complicated, infrequent nature of the refinancing process (e.g., Keys

et al. (2016)). Another type of friction is capacity constraints faced by mortgage lenders,

which slow their responses to surging demand during periods of low rates (e.g., Fuster et al.

(2021)).

The rapid growth of financial technology-based (“FinTech”) lending after the financial

crisis is expected to ease these frictions. Unlike traditional brick-and-mortar banks, FinTech

lenders automate the mortgage origination process, allowing borrowers to complete their

applications online in a streamlined process without human interactions with a loan officer.1

Because of automation and the use of labor-saving technology in the underwriting process,

these lenders are also more resilient to demand shocks.2 These features are likely to facilitate

the transmission of monetary policy through the household borrowing channel. To date,

however, macroeconomic models that study the distributional effects of monetary policy

shocks have not incorporated FinTech lending.

While the existing empirical literature has focused on the growth of FinTech firms and

the features of their products, it has not studied the spillovers of FinTech lending across

consumers’ social networks. Social interactions play a key role in consumers’ acquisition of

information and decision-making, so it stands to reason that FinTech adoption is affected

by peers. To the extent that this effect is strong, the transmission of a monetary stimulus in

the FinTech era will be further amplified. A rigorous analysis of the role of FinTech lending

1FinTech lenders in this paper are classified as in Fuster et al. (2019) and Buchak et al. (2018). See
Appendix A for a detailed description of the lender classification. According to this classification, the share
of FinTech mortgage origination rose from 2% in 2008 to 11% in 2017, with an even higher presence in the
refinancing market.

2Previous studies have found that faster loan processing does not come at the cost of higher loan default
risks. See Fuster et al. (2019) and Buchak et al. (2018).
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in the monetary transmission has to take into account both FinTech product features and

the amplification through social network spillovers. Using two alternative identification

strategies, I provide causal estimates of the network spillover effect on FinTech adoption. To

quantify the effects of monetary policy shocks on household consumption and borrowing in

the presence of FinTech lending, I develop a heterogeneous-agent model with social learning.

The model allows counterfactual analysis to assess separately the role of FinTech lending

features, network spillovers, and mortgage market frictions in the monetary transmission.

I start by providing empirical evidence on the effect of social network spillovers on FinTech

market penetration at the county level. The identification of causal effects involves two

major challenges. First, how to measure social networks and network spillovers across U.S.

counties? Second, how to solve the identification problem arising from the existence of

unobserved common shocks that drive FinTech lending to grow simultaneously in multiple

markets without market-to-market spillovers?3 For example, socially connected counties

are likely to share similar borrower characteristics and be exposed to common economic

shocks, which could affect FinTech adoption through channels other than social interactions,

confounding the identification of the network effect.

To overcome the first challenge, I employ the novel social connectedness index (SCI)

developed by Bailey et al. (2018b), who use granular data on social networks of U.S. Facebook

users, aggregate this information to the county level, and measure the relative intensity of

social interactions for every pair of counties. Using this index, I measure network spillovers

as the weighted change in the FinTech market share in a county’s socially connected markets,

with the largest weights assigned to counties that are most socially connected to this county.

Unlike conventional approaches that focus on a few neighboring markets to study market

spillovers (e.g., DeFusco et al. (2018)), this approach allows many counties (not necessarily

just neighboring counties) to affect a given county, based on a continuous measure of social

connectedness.

To overcome the second challenge, I employ two alternative instrumental-variable (IV)

strategies. The first strategy leverages the panel nature of county-level data, making it
3The identification of the causal spillover in the peer-effects literature is discussed in Manski (1993), who

distinguishes between the correlated effect, the contextual effect and the endogenous effect. The endogenous
effect is the most important and policy relevant. It is this effect that my analysis seeks to identify.
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possible to include a rich array of controls that account for both demand-side confounding

factors (e.g., demographics, borrower characteristics, and labor- and housing-market

conditions) and supply-side spillovers (e.g., advertising), as well as region-by-quarter fixed

effects that soak up all shocks affecting counties in a census division within a quarter.

Nevertheless, it is possible that some unobserved shocks that affect a narrower geographical

area are not captured by these fixed effects. More generally, economic activities in

neighboring markets tend to comove strongly in response to unobserved regional shocks,

which are hard to control for. I therefore use instruments to further strengthen the

identification. Specifically, I adapt the IV strategy of Bailey et al. (2018a) to the panel

setting, exploiting exogenous variation in the FinTech growth in a county’s socially connected

but geographically distant markets.

This strategy reveals a sizable network spillover effect. A county’s FinTech market share

increases by about 0.3 percentage points (pps) in a year, when the FinTech market share in

its socially connected markets increases by 1 pp. This effect is stronger at longer horizons. A

breakdown by loan purpose suggests that the spillover effect is larger for FinTech refinancing

than for FinTech home purchases. Moreover, I find that counties with higher social and

economic mobility, such as those located in metropolitan areas, those with higher shares of

college graduates, and those having experienced larger migration flows in the past, are more

responsive to the network shock. This heterogeneity adds further credence to the propagation

of FinTech lending across consumers’ social networks.

While the panel IV strategy exploits all sources of variation in the FinTech growth in a

county’s distant but socially connected markets, it is agnostic about the underlying structural

causes of FinTech growth. An alternative approach to identification is to exploit a specific

source of exogenous variation. This strategy is motivated by the finding in the banking

literature that an important driver of fast FinTech growth after the financial crisis was a shift

in U.S. banking regulations that effectively reduced banks’ presence in the mortgage market

(Buchak et al. (2018)). At the county level, the exposure to the regulatory shift depends on

the pre-crisis capital structure of the banks operating in a county, which varies substantially

in the cross section and is plausibly unrelated to post-crisis demand for FinTech loans.

This suggests that the exposure of a county’s socially connected markets to the regulatory
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change may serve as the instrument for the FinTech growth in these markets, which then

helps identify the spillover effect. This cross-sectional IV strategy reveals a strong network

spillover effect in the long run, corroborating the findings from the panel IV strategy.

Motivated by these empirical findings, I develop a structural heterogeneous-agent model

to quantify the role of FinTech lending and network spillovers in the transmission of monetary

policy shocks to households. The model incorporates three key empirical features of FinTech

lending. First, FinTech lenders offer more convenient services to consumers, increasing the

likelihood of refinancing (Buchak et al. (2018)). Second, FinTech lenders respond more

elastically to surging demand, facilitating the pass-through of policy shocks (Fuster et al.

(2019); Fuster et al. (2021)). Third, social interactions help spread information about

FinTech lending, making a mortgage transaction even more accessible from the consumer’s

point of view (this paper).

The model has rich heterogeneity on the household side characterized by idiosyncratic

income shocks, balance-sheet conditions, and household-specific mortgage rates, all of which

matter for consumption and refinancing decisions. While refinancing amid a monetary

stimulus benefits most households, two types of frictions in the model may prevent households

from taking this action. One is the non-pecuniary cost of refinancing (e.g., the time and effort

spent on talking to the agent, visiting the lender’s office and completing the paperwork).

The other is capacity constraints faced by traditional lenders. FinTech lending reduces

these frictions and increases the refinancing and consumption responses to the monetary

stimulus. Despite its advantages, however, FinTech lending is not adopted by everyone,

because households are not fully informed. They learn about FinTech lending through social

networks and/or non-network sources (e.g., advertisements or search engines) with some

probabilities, which in turn determines the market share of FinTech lenders.

Model simulations show that, when FinTech market penetration and social network

intensity are calibrated to data from 2017, a monetary stimulus that lowers the mortgage

rate by 1 pp increases the refinancing propensity (i.e., the share of borrowers refinancing their

mortgage in a year) by 11.1 pps. In an otherwise identical economy without FinTech lending

and network spillovers, the refinancing propensity only increases by 9.9 pps upon the policy
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shock, suggesting a 1.2 pps (or a 12%) improvement in the effect of the monetary stimulus

on refinancing. When the network spillover is shut down, the refinancing propensity only

increases by 10.6 pps (or 7%), suggesting that almost half of the improved monetary-policy

effect on refinancing is due to the amplification of network spillovers. Quantitatively similar

results are obtained for the consumption response: Network spillovers contribute slightly

more than half (55%) to the overall 13% increase in the consumption response.

As FinTech lending continues to expand in the U.S. mortgage market, it will likely become

more important in the monetary transmission. A counterfactual analysis based on the model

helps understand how the effects of a monetary stimulus would change, if social networks

played an even more important role in spreading information. As the probability of learning

from peers increases, the FinTech market share rises, even if FinTech lenders do not actively

expand their business, and consumption and refinancing are more responsive to the policy

stimulus. A rise of the FinTech market share from 20% to 80% due to stronger network

spillovers, for example, would increase the consumption and refinancing responses by 56%

and 51%, respectively.

Relation to the literature. This paper contributes to the macroeconomic literature on

the transmission of monetary policy shocks through the mortgage borrowing channel (e.g.,

Beraja et al. (2018); Wong (2019); Greenwald (2018); Garriga et al. (2017); Cloyne et al.

(2020); Berger et al. (2021)). This literature so far has not incorporated different types of

market frictions as documented in the empirical finance literature (Andersen et al. (2020);

Keys et al. (2016); Agarwal et al. (2015); Campbell (2006); Fuster et al. (2021)). Nor

has it considered the role of financial technology in the monetary transmission. My paper

incorporates FinTech lending within the analysis of the household problem, providing a new

perspective on the state-dependence of the effects of monetary policy shocks. Conventional

models with standard calibration may underestimate the changing responsiveness of the

household sector, as FinTech lending continues to expand in the U.S. mortgage market.

This paper also adds to a growing literature on innovations in the mortgage industry and

their policy implications (Buchak et al. (2018); Fuster et al. (2019); Bartlett et al. (2022);

Jagtiani et al. (2020)). This line of research has focused on the causes of FinTech growth,
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the distinct features of FinTech products, and how this new lending model may impact

future regulations. I contribute to this literature by presenting evidence on the role of social

networks in amplifying monetary-policy effects in the FinTech era, calling further attention

from policy makers to the broad implications of technology innovations.

In addition, this paper also contributes to the microeconomic literature studying social

interactions and household financial decision-making.4 This literature has offered extensive

evidence on peer effects in other contexts, for example, home purchases (Bailey et al.

(2018a)), leverage choices (Bailey et al. (2019); Georgarakos et al. (2014)), electronic product

adoption (Bailey et al. (2021)) and consumption (Agarwal et al. (2016); De Giorgi et al.

(2020); Moretti (2011)), but these estimates do not inform us about the magnitude of the

peer effects in FinTech mortgage adoption. While the related studies by Maturana and

Nickerson (2019) and McCartney and Shah (2021) provide peer-effect estimates for mortgage

refinancing and lender choices, they focus on a specific setting (interactions between Texas

school teachers) or a small geographic area (Los Angeles) over the period before FinTech

emerged. There are reasons to believe that (and indeed, I show that) the network effect on

FinTech refinancing is stronger than that on other refinancing due to the highly standardized

online application systems designed by FinTech lenders. This paper’s main contribution to

the literature is to provide estimates of causal network effects in the FinTech mortgage

setting, and more importantly, use these estimates to discipline a structural model that

studies the implications of FinTech lending for the transmission of monetary policy shocks.

Finally, my work is connected to the literature on how shadow banks affect the

transmission of monetary policy. Xiao (2020), focusing on upstream shadow banks that

take deposits from households, shows that deposits flow out of the banking system and

into the uninsured shadow banking sector when the Fed raises interest rates, affecting

the deposits channel of monetary policy (Drechsler et al. (2017)). Buchak et al. (2022)

focus on downstream shadow banks that specialize in loan origination and study their

interaction with traditional banks in changing the consequences of aggregate policies such

as quantitative easing (QE). Unlike these studies, I focus on the role of consumers’ social

4See Kuchler and Stroebel (2021) for a comprehensive review of the literature on the role of social
interactions in the decision-making of households, investors and financial institutions.
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networks in expanding the FinTech footprint, which amplifies the transmission of monetary

policy through the refinancing channel.

The remainder of the paper is organized as follows. Section 2 describes the main

proprietary datasets used in the empirical analysis and highlights the trends in the mortgage

lender advertising data. Section 3 presents empirical evidence on the network spillover effect

of FinTech lending based on two alternative IV strategies. Sections 4 and 5 describe the

structural model and its calibration. Section 6 presents model simulations and counterfactual

analysis that quantify the role of FinTech lending features and the role of social network

spillovers in changing the effects of monetary policy shocks. Section 7 concludes.

2 Data

The empirical analysis in this paper draws on loan-level, bank-level, county-level and

national-level economic and financial data. This section describes two main proprietary

datasets used: the confidential-version HMDA data and Mintel-Comperemedia advertising

data. To conserve space, the description of other datasets is provided in Appendix B.

Home Mortgage Disclosure Act (HMDA). This dataset contains nearly the universe of

residential mortgage application and approval records in the U.S. It has detailed loan-level

information and borrower-level characteristics, as well as the lender identifier, making it

the most suitable source for studying FinTech lending in the U.S. national and regional

mortgage markets. The public version of the data can be obtained from the Consumer

Financial Protection Bureau (CFPB).

The confidential version of the data, accessible from the Federal Reserve Board, has

additional information on the exact date of origination, rather than just the year as in the

public version. This information allows me to construct county-level panel data at quarterly

frequency to study the dynamics of FinTech spillovers, and to strengthen the identification

by including region-by-quarter fixed effects in my regressions. Moreover, the confidential

HMDA data have higher precision, because they are continuously updated and corrected

for 18 months after the original submission, whereas the public version is not. I use the

confidential HMDA data to implement the panel IV strategy.
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Mintel-Comperemedia Direct Mail and Print Advertising Data. Since the empirical

analysis of this paper aims to identify the spillover of FinTech lending across consumers’ social

networks, the supply-side spillovers must be controlled for. For example, one concern is that

a FinTech lender earning the market share in one county may expand its business to socially

connected counties. In general, it is hard to disentangle these two channels, as transaction

data are generated in equilibrium and capture both demand- and supply-side shifts. I tackle

this issue using a new dataset on mortgage lenders’ advertising. If the estimated network

effect reflects cross-region spillovers arising from lenders’ business strategy, we would expect

such spillovers to be also reflected in their advertising strategy.

The data, obtained through a customized contract between the Federal Reserve Bank of

Dallas and Mintel Comperemedia Inc., contain information on the volume of advertisements

(offers) sent by individual mortgage lenders to households by mail at the zip-code level. The

dataset includes all major mortgage lenders—both FinTech and non-FinTech—and has a

number of advantages: a geographically representative coverage, a long sample period (since

2007), and its high frequency (monthly).5 In all my empirical specifications, I include changes

in FinTech advertising volumes in a county and in the county’s socially connected markets

as control variables, so that any supply-side spillovers through advertising are accounted for.

To understand the trends in U.S. mortgage lenders’ advertising, panel (a) of Figure

C1 in the Appendix plots the time series of mortgage-offer volumes. Mortgage advertising

experienced a boom-bust circle in the mid and late 2000s, as did mortgage originations. The

spike in 2012-13, driven by refinancing advertisements, coincided with a mortgage refinancing

boom over this period. Panel (b) plots the share of mortgage offers sent by FinTech lenders.

Similar to the patterns in the HMDA data, FinTech advertising was essentially non-existent

before 2011 and increased dramatically in subsequent years, accounting for a large share of

the refinancing offers. These patterns suggest that FinTech lenders are active in advertising

and that the advertising trends resemble those in the actual originations data. Panels (c)

5The underlying microdata used to construct this dataset consist of a panel of 70,000 households who
regularly share the direct mails and print advertisements they received with the Mintel team on a weekly
basis. The sampling of these households is designed to be representative for the U.S. population, and it
is updated every month to include new households for the panel to be continuously representative. Given
this sample design, the advertising volume at the zip-code level can be reliably estimated with appropriate
weighting.

8



and (d) plot the advertising shares of two largest FinTech lenders, Quicken Loans and Loan

Depot. The former sent the most offers among FinTech lenders (and originated the most

loans), dwarfing the share of Loan Depot.

One may be concerned that these data cover only direct mails and print advertising, not

capturing trends in other forms of advertising, such as email offers (for which no suitable

data exist). One way to address this concern is to cross-check online search statistics, which

are likely to reflect the volume of information consumers received online or electronically.

The lower panel of Figure C1 shows the Google search trends indices for Quicken Loans

and Loan Depot (as mortgage companies). These indices moved closely with the advertising

shares in panel (c), with correlations as high as 0.85 (for Quicken loans) and 0.86 (for Loan

Depot). This comparison provides further support to the usefulness of the Mintel data in

capturing lender advertising patterns.

3 Empirical Evidence

This section discusses two measures of social interactions at the county level and how

they may be used to estimate the network spillover effect. To overcome the identification

challenge to causal inference, I implement two alternative IV strategies: a panel IV

strategy that exploits variation in FinTech growth in a county’s socially connected but

geographically distant markets and a cross-sectional IV strategy that exploits variation in

the market exposure to post-crisis banking regulations. Additional evidence from examining

the heterogeneity in the network effect, external survey evidence, and a battery of robustness

checks provides further support to a sizeable network effect of FinTech lending. I conclude

this section by discussing the aggregate implications of network spillovers and how my

empirical evidence motivates the structural model in Section 4.

3.1 Measuring Network Spillovers

At the individual level, the network spillover effect (or peer effect) on FinTech adoption refers

to the change in a person’s probability of adopting FinTech, if the probability of FinTech

adoption increases among the set of people whom the person connects to through social
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relationships. With county-level data, this interpretation naturally extends to the change in

a county’s FinTech market share, given an exogenous increase in the FinTech market share

in the county’s socially connected markets.

Estimating this effect requires measuring the social connectedness between counties. A

conventional measure is based on geographical distance, consistent with theory and evidence

in the trade literature that bilateral trade falls with distance. An alternative measure—the

social connectedness index (SCI)—was introduced by Bailey et al. (2018b), who use granular

data on friendship links of U.S. Facebook users and aggregate this information to the

county-pair level. This index directly captures the intensity of social interactions between

individuals in any two counties.6

I construct the network-spillover variable, which is the key RHS variable in my regressions,

as the weighted change in the FinTech market share in a county’s socially connected markets.7

Using the SCI-based measure, for example, the spillover from county c’s socially connected

areas (SCAs) is

∆FinTechSCAc,t ≡
∑

j∈JSCAc

ωSCAj,c ∆FinTechj,t, (1)

where the weight, ωSCAj,c ≡ sj,c∑
k∈JSCAc

sk,c
, increases in the SCI between counties j and c (sj,c),

so that the largest weights are assigned to the counties that are most socially connected to

county c. ∆FinTechj,t is the change in the FinTech market share in county j at time t.

JSCAc denotes the set of counties that are socially connected to county c.

Alternatively, using the more traditional distance-based measure, the FinTech spillover

from county c’s geographically connected areas (GCAs) is

∆FinTechGCAc,t ≡
∑

j∈JGCAc

ωGCAj,c ∆FinTechj,t, (2)

where the weight, ωGCAj,c ≡ 1
1+dj,c , is inversely related to the distance, dj,c, between counties

6See Bailey et al. (2018b) for a detailed description of the construction of the SCI and its correlations
with distance and trade flows. The SCI data used in this paper were accessed in October 2020 (see Appendix
B). Social network patterns captured in the SCI data are stable over time (Kuchler and Stroebel (2021)).

7The FinTech market share in a county over a specific period (e.g., a quarter) is computed as the share of
total mortgage originations in the county over this period accounted for by FinTech lenders. The loan-level
HMDA data are used to construct FinTech market shares.
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j and c. JGCAc denotes the set of counties that are geographically close to county c.

Given the large dimensionality of the dataset, JSCAc and JGCAc are chosen to include

markets that have non-trivial social interactions with county c. In the main analysis, I

include counties ranked as the top 200 socially connected counties to county c (according

to the SCI) in JSCAc and counties within 200 miles of county c in JGCAc . Increasing these

thresholds has little impact on the estimated network spillover effect (see Appendix Table

C1). The reason is that the weights (ωSCAj,c and ωGCAj,c ) are essentially zero for markets

excluded by these thresholds, and that the spillovers from these markets are statistically and

economically insignificant (see Section 3.2.2). An example of the differences between GCAs

and SCAs is provided in Appendix Figure C2 for Cook county, IL, where Chicago is located.

To estimate the network spillover effect, one may attempt to regress the change in the

FinTech market share in county c, ∆FinTechc,t, on ∆FinTechSCAc,t (or ∆FinTechGCAc,t ). The

identification of the causal effect, however, is threatened by the existence of unobserved

common shocks, both on the demand and the supply side, that cause FinTech to grow

simultaneously in socially connected markets without market-to-market spillovers. On

the demand side, consumers in socially connected counties are likely to share similar

characteristics (e.g., demographics, educational attainment, and credit worthiness) or be

exposed to common economic shocks (e.g., housing- and labor-market shocks) that directly

affect their mortgage choices. On the supply side, lenders may advertise their products to

multiple markets simultaneously, or deliberately expand their business to socially connected

markets. In the next two subsections, I introduce two alternative empirical strategies, as

well as a number of robustness checks and additional evidence, to deal with these concerns.

3.2 The Panel IV Approach

My first empirical strategy leverages the panel nature of county-level data, which allows the

inclusion of a rich set of time-varying controls and fixed effects to mitigate the endogeneity

concerns. First, to account for correlated consumer characteristics, I include time-varying

shares of the young population, minority population, college graduates, and subprime

borrowers in the county and in its socially connected counties, as well as the interactions
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between demographics and year dummies to account for the possibility that different

demographic groups face different economic shocks that are common across regions. Second,

to account for the impact of housing and labor market conditions, I include the growth rates

of house prices, employment, and population in the county and in its socially connected

markets. Third, to account for supply-side spillovers, I control for the growth rates of

mortgage advertising sent by FinTech lenders to the county and to its socially connected

markets. Fourth, I include county fixed effects and region-by-time fixed effects to control

for unobserved heterogeneity and regional-specific time trends that could affect both loan

demand and supply across counties in a given census division within a quarter.

Despite this comprehensive list of controls, it is possible that some unobserved shocks

may affect a narrower geographical area and hence are not captured by the fixed effects. More

generally, economic activities in neighboring markets tend to comove strongly in response to

regional shocks, which are hard to control for due to their wide scope and unobserved nature.

I therefore use instruments to abstract from this concern. Note that the SCI-based measure of

connectedness can identify counties that are socially connected to but geographically distant

from a county. Utilizing this feature, the instrument is constructed as the weighted change

in the FinTech market share in a county’s socially connected but geographically distant

markets,

∆FinTechSCA,Outc,t ≡
∑

j∈JSCA,Outc

ωSCA,Outj,c ∆FinTechj,t. (3)

A similar instrument was proposed by Bailey et al. (2018a) to isolate exogenous house

price changes experienced by an individual’s friends and to study the network effect of

beliefs on housing investment. In essence, this instrument exploits exogenous variation in

the network formation between faraway counties, for example, historical migration patterns

that shaped the social connectedness between Cook County in Illinois and Holmes County in

Mississippi, interacted with idiosyncratic shocks that drive local FinTech growth. Since these

counties are distant, it is less likely that they are hit by unobserved common shocks that

typically affect neighboring markets, especially conditional on the many controls discussed

above.
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Equation (4) formalizes this panel IV strategy:

1st stage: ∆FinTechSCAc,t = δc + δd,t + α1∆FinTechSCA,Outc,t + α2xc,t + α3x̄SCAc,t + νSCAc,t

2nd stage: ∆FinTechc,t = γc + γd,t + β1∆ ̂FinTech
SCA

c,t + β2xc,t + β3x̄SCAc,t + εc,t,
(4)

where ∆FinTechc,t is the four-quarter change in county c’s FinTech market share,

∆FinTechSCAc,t the weighted four-quarter change in the FinTech market share in county

c’s SCAs (as defined in equation 3), and ∆FinTechSCA,Outc,t the weighted four-quarter change

in the FinTech market share in county c’s socially connected but geographically distant

markets. As in Bailey et al. (2018a), I use counties outside county c’s commuting zone

to construct the instrument. As shown in the robustness (Section 3.2.3), using alternative

distance thresholds (e.g., at least 100 or 200 miles away) gives similar estimates. δc and γc

denote the county fixed effects, δd,t and γd,t the region-by-quarter fixed effects, xc,t the set

of controls for county c, and x̄SCAc,t the set of controls for county c’s SCAs.8 The standard

errors are clustered at the county level.9

3.2.1 Baseline Results

Panel I of Table 1 presents the OLS estimates of the network spillover effect using the

SCI-based measure of connectedness. The estimates are stable across specifications: A 1 pp

increase in SCAs’ FinTech market share raises a county’s FinTech market share by 0.33-0.34

pps over a one-year horizon. The estimates in panel II using the distance-based measure

of connectedness are similar. A 1 pp increase in GCAs’ FinTech market share raises a

county’s FinTech market share by 0.33-0.37 pps. Panel III shows the IV estimates using

the FinTech growth in a county’s out-of-commuting-zone SCAs as the instrument. With the

full set of controls, the baseline IV estimate in the third column, 0.33, is similar to the OLS

estimate, suggesting that the inclusion of a rich set controls and fixed effects is effective in

addressing the endogeneity concern. These estimates imply a sizable network spillover effect:

8The control variables for the county’s SCAs, x̄SCA
c,t , take the linear-in-mean form (as standard in the

peer effects literature). It means that each of the variables in this set (e.g., house price growth) is a weighted
average of the same variable across the county’s SCAs (using ωSCA

j,c as the weight).
9Since county-level lending activities feature substantial heterogeneity, the regression is estimated by

weighted least squares using counties’ historical average volume of mortgage originations as the weight.
Using county population as the weight yields similar results.
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If SCAs’ or GCAs’ FinTech market-share growth moves from the 10th to 90th percentile of

the distribution, a county’s FinTech market share will increase by 1.8 pps, a 31% increase

relative to the unconditional mean (about 6 pps).

So far, the network spillover effect is estimated for all types of FinTech originations (i.e.,

refinancing and home purchases). To answer the question of which type of lending is more

responsive to network spillovers, I estimate the IV specification with the change in county

c’s FinTech market share of refinancing or home-purchasing mortgages, respectively, as the

second-stage dependent variable. Columns 2 and 3 of Table 2 show a stronger effect on

refinancing than home-purchasing. A 1 pp increase in SCAs’ FinTech market share raises

a county’s FinTech refinancing share by 0.38 pps, about twice as much as the effect on

FinTech home purchases. This pattern is consistent with the fact that refinancing is easier

to automate, unlike home-purchasing mortgages that require coordination with other parties.

In addition, Table 2 shows that the rising FinTech market share caused by network

spillovers is associated with a growing volume of FinTech lending, rather than a decline in

the non-FinTech lending volume. Column 4 shows that a county’s FinTech lending volume

(normalized by prior-year total originations) increases by 0.4 pps in response to network

spillovers. Given the 6% FinTech market share, this implies a 7% increase in the county’s

FinTech lending volume. Both refinancing and home-purchasing volumes grow (columns 5

and 6), with higher growth observed for FinTech refinancing. Finally, column 7 shows no

change in the volume of non-FinTech lending in response to FinTech spillovers.

3.2.2 Heterogeneity in FinTech Spillover Effect

The results in Section 3.2.1 inform us about the average spillover effect. They mask

substantial heterogeneity across counties and their connected markets. In this subsection,

I use the panel IV strategy to examine how the spillover effect varies with the degree of

connectedness and which counties are most responsive to network spillovers.

I start by testing whether a gravity relationship holds for the spillover effect, i.e., whether

a county’s most socially connected markets exert the greatest impact on the county’s FinTech

lending. For this purpose, I reconstruct ∆FinTechSCAc,t such that it includes only a subset

of connected markets. The instrument is reconstructed accordingly using counties in this
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subset but geographically faraway from county c. Table 3 presents the IV estimates, which

show a clear pattern that markets most connected to a county have the largest impact

on the county’s FinTech lending, and that the effect monotonically increases with social

connectedness. Zooming in on individual counties, Figure 1 shows the network spillover

effects of a county’s top 10 SCAs and top 10 GCAs on the county’s FinTech market share,

using the OLS specification. Even within this small set of connected counties, a declining

pattern of the network effect is observed for relatively less connected counties (regardless of

the connectedness measure), consistent with a gravity relationship.

Which counties are more responsive to network spillovers? A natural conjecture is that

counties more connected to the outside world and more socially and economically mobile

should be more responsive. To evaluate this hypothesis, I interact ∆FinTechSCAc,t with

each of the four county characteristics in Table 4 one at a time. The instruments are

constructed accordingly by interacting ∆FinTechSCA,Outc,t with these characteristics. The

results show that, the spillover effect is larger for counties located in metropolitan areas

with a larger population (column 1), for counties with higher (above-the-median) shares of

college graduates (column 2), for counties with higher shares of African Americans (column

3), and for counties having experienced larger migration flows in the previous year (column

4), reinforcing the earlier results.

3.2.3 Additional Evidence and Robustness

Refinancing spillovers vs. FinTech refinancing spillovers. Previous studies focusing

on the pre-FinTech era provided evidence that peer effects exist in consumers’ refinancing

decisions (e.g., Maturana and Nickerson (2019); McCartney and Shah (2021)). An important

question is whether the FinTech refinancing spillover effect I estimated earlier merely reflects

peer effects common to all forms of refinancing. There is reason to believe, however, that

peer effects in refinancing are stronger with FinTech, given the widespread internet access

and highly standardized online application systems designed by FinTech lenders.

One way to address this question is to estimate the refinancing spillover effect by lender

segment. Table 5 shows the estimates for overall refinancing, FinTech refinancing, non-bank

refinancing, and bank refinancing. These effects are estimated using IV specifications similar
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to equation (4), with the LHS, RHS and IV constructed accordingly for a given lender

segment. In addition, for the effects to be comparable across specifications, I rescale the

regression variables so that the coefficient in each column represents the percent change

relative to the unconditional mean, caused by a 1 s.d. increase in the explanatory variable

(as in Maturana and Nickerson (2019)). Column (1) shows that the overall refinancing

share increases by 15.7% in a county (relative to the unconditional mean), following a 1 s.d.

increase in SCAs’ overall refinancing share. Column (2) shows that the FinTech refinancing

share increases by almost 20% in a county, following a 1 s.d. increase in SCAs’ FinTech

refinancing share. This effect is significantly higher than that in column (1), based on a

bootstrap test of equal coefficients.

A closely related question is whether the FinTech spillover effect merely reflects the

spillover effect of non-bank lending. Column (3) shows that the network spillover effect

of non-bank refinancing is only 14.5%, significantly lower than the FinTech network effect.

Finally, column (4) estimates the spillover effect of bank refinancing, showing a even weaker

effect of 7%. These results suggest that, while network effects exist in mortgage refinancing

in general, the FinTech network effect is the most pronounced.

Instruments using alternative distance thresholds. To see if the baseline IV estimate is

robustness to alternative criteria for defining counties’ socially connected but geographically

distant markets, columns (1)-(2) of Appendix Table C2 present the estimates using FinTech

growth in a county’s SCAs that are at least 100 miles and 200 miles away from the county

as the instruments. The estimates (0.34 and 0.42) are similar to the baseline estimate.

Spillovers measured by FinTech refinancing shares. One concern about using

∆FinTechSCAc,t as the key RHS variable for estimating equation (4) is that it reflects both

FinTech refinancing and home-purchasing activities. The latter are know to be volatile and

display seasonality, likely resulting in unstable estimates. To address this concern, I use the

change in SCAs’ FinTech refinancing market share as the RHS and rescale this variable

to account for its mean difference from ∆FinTechSCAc,t . The instrument is constructed

accordingly using the weighted change in the FinTech refinancing market share in a county’s

distant SCAs. Column (3) of Table C2 in the Appendix shows that the overall effect, 0.28,
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is similar to the baseline. Columns (4) and (5) estimate the effect by loan purpose and

again show a stronger network effect for FinTech refinancing, consistent with the pattern

documented earlier.

Big-city effects. One concern about the identification in the panel IV strategy is that

some unobserved shocks may affect socially connected counties simultaneously even if they

are faraway. For example, a FinTech product may be first launched in a few major cities.

Demand shocks, such as tech-sector layoffs, may affect geographically distant markets that

have a similar employment composition (although the educational attainment-by-time fixed

effects should account for this kind of shock). This issue is more prominent for counties in

big cities (e.g., New York and San Francisco). To address this concern, I drop counties in the

largest metropolitan areas (MSAs), not only in the main regression but also for constructing

the IVs, and re-estimate the IV specification to obtain the spillover effect. Column (6) of

Appendix Table C2 shows that the baseline estimate is essentially unchanged when counties

in the largest 10 MSAs are excluded. Even if counties in the largest 30 MSAs are excluded

(accounting for half of the MSA population), column (7) shows an estimate similar to the

baseline IV estimate.

Dynamic spillover effects. The origination-date information in the confidential HMDA

data allows me to examine the network spillover effect at a higher frequency and its dynamics

over time. Figure 2 plots the cumulative network spillover effect at different horizons

(1-quarter, 2-quarter, etc.), using the IV strategy in equation (4). The 4-quarter effect

is the same as in the baseline. The left panel shows a rising network effect over time, from

0.1 after one quarter to about 0.4 after eight quarters. The right panel shows the effect

by loan purpose. Both FinTech refinancing and home-purchasing display stronger network

effects over time, and, consistent with the earlier results, the effect is larger for FinTech

refinancing at all horizons.

Survey evidence on network spillovers. Since mortgage loan-level data do not

reveal borrower-level relationships, it is difficult to provide direct evidence that it is

chats with friends and family that lead to FinTech adoption. My analysis hence has

relied on social-connectedness measures at the county level and empirical strategies for
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causal inference. External survey data provide direct evidence for this narrative. The

PricewaterhouseCoopers (PwC) consumer-finance group conducted a national survey in

2015 to study consumer preferences for loan origination.10 Two results from this survey

shed light on the role of technology and social interactions in mortgage origination. First,

whereas most consumers preferred completing mortgage applications by traditional methods

and interacting with lenders in 2013, most consumers in 2015 preferred completing this

task online, suggesting a shift in preferences toward technology-based lending. Second, as

shown in Appendix Figure C3, consumers ranked “friends and family” as the second most

influential referral source for mortgages (27%). The most influential source is “existing

banking relation” (29%), which does not apply to FinTech lenders, because they specialize

in mortgage originations and do not take household deposits. Interestingly, social media itself

(e.g., social media campaigns) are not an important referral source. It is friends and family

whom consumers may interact with through social media that matter for their decisions.

3.3 The Cross-Sectional IV Approach

While the panel IV strategy essentially exploits all sources of variation in the FinTech growth

in a county’s socially connected but geographically distant markets, it is agnostic about the

underlying structural causes of FinTech growth in regional markets. I now consider an

alternative IV strategy that isolates a specific source of the differential growth of FinTech in

county markets—shifts in U.S. banking regulations after the financial crisis.

After the financial crisis, traditional banks faced numerous regulatory shocks such as the

Dodd Frank Act and Basel III measures (Buchak et al. (2018)). One significant change was

increased capital requirements. As shown in the left panel of Figure 3, banks’ tier 1 (T1)

capital ratio—the core measure of a bank’s financial strength from a regulator’s point of

view—rose drastically in the years after the crisis. Building up regulatory capital, however,

comes at the cost of reducing banks’ balance-sheet lending and mortgage originations. This

created opportunities for FinTech lenders, who did not face these regulatory burdens, to gain

10The survey had approximately 2,000 respondents above the age of 18 across the U.S., who were chosen
based on their ownership of four major lending products (auto loans, home mortgages, student loans and
personal loans) using a population-targeting survey approach. It was administered online in June 2015. The
full report “Consumer lending: Understanding today’s empowered borrower” is available at PwC’s website.

18



market shares.

At the county level, the exposure of a specific county to the regulatory tightening

depends on the pre-crisis capital structure of the banks operating in that county, which

varies substantially and is plausibly unrelated to post-crisis loan demand. This suggests

that the exposure of a county’s socially connected markets to regulatory shocks may serve as

the instrument for the post-crisis FinTech growth in these markets, which then helps identify

the causal spillover effect. Since the nature of the shock is cross-sectional and it took several

years for banks to adapt to the new regulatory environment, my analysis focuses on FinTech

growth in the period of 2008-2015.

The design of the instrument is motivated by the finding in Buchak et al. (2018) that

counties where banks increased their T1 capital ratios the most after the crisis experienced

the highest growth in FinTech lending.11 To avoid the concern that changes in T1 capital

ratios after the crisis may reflect, to some extent, rising demand for FinTech loans over

the same period, I use banks’ T1 capital ratios at the beginning of 2008 to construct the

instrument. Variation in this ratio comes from capital decreases before the crisis under loose

financial supervision, which cannot be possibly driven by post-crisis loan demand. In fact,

banks had the lowest capital ratios in 2008 were those reducing capital the most before the

crisis. These banks also experienced the largest capital increases after the crisis (see Figure

3, right panel).

The instrument has two layers of aggregation. The first layer measures the exposure

of a specific county, say, county j (in county c’s network), to the regulatory shock. The

second layer aggregates the exposure of a set of counties in county c’s network, using the

social-connectedness weight, ωSCAj,c . The following expression defines the IV,

T1RatioSCAc,2008 ≡
∑

j∈JSCAc

ωSCAj,c

 ∑
b∈Bj

sb,jT1Ratiob,2008


︸ ︷︷ ︸

county j’s exposure

. (5)

11Buchak et al. (2018) presented the result that counties where banks increased their T1 capital ratios
the most after the crisis experienced the highest growth in the market share of nonbank lending. I ran the
same specification using county-level data and confirmed that this result also holds for the FinTech market
share.
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The exposure of county j to the regulatory shock is measured by origination share-weighted

T1 capital ratios. sb,j in expression (5) denotes bank b’s origination share in county j in

2008, and T1Ratiob,2008 denotes bank b’s T1 capital ratio at the beginning of 2008.

Equation (6) formalizes this cross-sectional IV strategy:

1st Stage: ∆FinTechSCAc,2008−2015 = δs + α1T1RatioSCAc,2008 + α2xc + α3x̄SCAc + νSCAc

2nd Stage: ∆FinTechc,2008−2015 = γs + β1∆ ̂FinTech
SCA

c,2008−2015 + β2xc + β3x̄SCAc + εc.
(6)

The control variables include those discussed earlier (adapted here to the cross-sectional

setting) and the bank share of originations in 2008. More importantly, I include the exposure

of the county itself to the regulatory shocks (T1Ratioc,2008), so that any direct impact due

to the county’s exposure to these shocks on its FinTech market share is accounted for. State

fixed effects, δs and γs, ensure that the estimation compares counties within a state. The

main identifying assumption is that, conditional on the county’s exposure to regulatory

shifts and a rich set of controls for loan demand, the regulatory shocks experienced by the

county’s socially connected markets only affect its FinTech lending indirectly through the

impact on these connected markets’ FinTech growth. As shown later, the IV estimate from

this strategy is robust to a refined instrument using the exposure of a county’s socially

connected but geographically distant markets, and to a different exposure measure based on

county-specific market shares of the four largest banks (Big4) at the onset of the crisis.

3.3.1 Results

In the first stage of equation (6), α̂1 is expected to be negative, because counties where banks

had low capital ratios in early 2008 were more likely to experience capital rebuilding after

the crisis, which depressed balance-sheeting lending and encouraged FinTech lending. The

bin scatter plot of FinTech growth in SCAs against the instrument (residualized using other

control variables) in panel (a) of Figure 4 shows this negative relationship. This is confirmed

by the first-stage estimate, -0.37, in panel I of Table 6, column (1), which also shows a high

relevance of the IV.

The second-stage IV estimate shows that a 1 pp increase in SCAs’ FinTech market share

raises the county’s FinTech market share by 1.5 pps, indicating a strong network spillover
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effect. This estimate is larger than the panel IV estimate in Section 3.2, likely due to the

longer estimation horizon in this case. This can also be seen by comparing the OLS estimates:

At the one-year horizon, the effect is 0.33 pps (Table 1), while at the cross-sectional seven-year

horizon, the OLS estimate is 1 pp (column 5, Table 6).

One may raise the concern that the exposure to the regulatory tightening is likely to

be correlated across neighboring counties, since smaller banks typically operate within a

limited geographic area, resulting in a similar bank composition in these markets. This issue

itself does not introduce bias, because I already controlled for the county’s exposure. It

may, however, introduce multicolinearity that inflates the coefficients and standard errors.

To address this issue, I refine the instrument using the exposure of the county’s socially

connected but geographically distant markets, T1RatioSCA,Outc,2008 . Columns (3) and (4) in

panel I of Table 6 show the results. The first stage has a negative sign (as expected) and

a high relevance. The network spillover effect in the second stage, 1.3 pps, is only slightly

lower than that in column 2.12

3.3.2 The Role of Big4 Banks

While the U.S. banking sector as a whole faced numerous regulatory shocks following the

financial crisis, the burden fell particularly hard on the largest four banks (Bank of America,

Citi, JP Morgan and Wells Fargo), as documented by Begley and Srinivasan (2022). For

example, these banks started their regulatory capital from the lowest level at the onset of

the crisis and had to increase capital ratios the most after the crisis. This implies that the

exposure of a county to regulatory shocks should be largely captured by its exposure to Big4

lending. To provide further support to the regulatory channel, I construct an IV using Big4

origination shares in county markets, as shown below, and run 2SLS as in equation (6),

Big4ShareSCAc,2008 ≡
∑

j∈JSCAc

ωSCAj,c Big4Sharej,2008, (7)

12I also reestimate the IV specification using T1 capital ratios and the market-share distribution in
an earlier year to construct the instrument. This lagged instrument helps purge demand shocks that are
correlated with bank balance-sheet conditions in 2008 and post-crisis FinTech growth, since it is less likely
that unobserved local demand shocks correlated with balance-sheet conditions in the early 2000s can explain
FinTech growth in the far future in 2015. I found similar estimates to those in Table 6.
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where Big4Sharej,2008 represents the origination share of the Big4 banks in county j in 2008.

The first-stage coefficient, α̂1, is expected to be positive, because counties where Big4 had

the highest market shares before the crisis were most likely to experience severe regulatory

adjustments, a withdrawal of the Big4 banks, and FinTech entry. The bin scatter plot in

panel (b) of Figure 4 shows the positive relationship between the 2008 Big4 share in SCAs

and the post-crisis FinTech growth in SCAs. The strongly positive estimate in the lower

panel of Table 6 (column 1) confirms this relationship. The second-stage network spillover

effect is 1.3. Using a refined version of the IV based on the exposure of socially connected

but geographically distant markets to Big4 lending, I obtain a similar spillover effect, 1.2

(column 4, panel II). These results support the view that regulatory changes were a main

driver of FinTech growth, which in turn was amplified by network spillovers.

3.4 Implications for the Monetary Transmission

To summarize, my empirical analysis establishes that network spillovers play an important

role in the penetration of FinTech lending in county markets. At the aggregate level,

higher FinTech market penetration helps ease mortgage market frictions, facilitates loan

originations, and enhances the pass-through of monetary policy stimulus. The important

questions are how to quantify this effect of FinTech lending and how important the network

spillovers are in driving this effect. Answering these questions requires a structural model

and counterfactual analysis, which I explore in Sections 4-6.

Before we can design such a structural model, we need to know more about how FinTech

lending affects the monetary transmission. First, does FinTech market penetration affect

monetary transmission mainly through the refinancing channel or the home-purchasing

channel? Second, does FinTech market penetration affect monetary transmission mainly

through the quantity channel (i.e., by originating more loans) or the price channel (i.e., by

offering lower rates)?

Evidence in Fuster et al. (2019) provides some answers to these questions. Specifically,

they show that the refinancing propensity increases significantly for counties with higher

FinTech market penetration. Moreover, using Ginnie Mae loan-level data, which capture
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a riskier segment of the U.S. mortgage market, they document that FinTech lenders offer

slightly lower rates to home-purchasing mortgages, while no differences in the refinancing

rates are found. Their evidence, however, does not tell us about the effect of FinTech market

penetration on home purchases, nor the effect on the rate for a typical new mortgage.

I therefore extend Fuster et al.’s county-level evidence to additional outcome variables,

the home-purchasing propensity and the average rate on newly originated mortgages, using

mortgage servicing data, McDash. The data, regression specification and estimation results

are detailed in Appendix D. The key findings can be summarized as follows. First, unlike the

refinancing propensity, the home-purchasing propensity does not change for counties with

higher FinTech market penetration. Second, the average rate on newly originated mortgages

does not differ across counties with different FinTech market penetration. Together, these

findings suggest that FinTech market penetration facilitates monetary transmission mainly

through the refinancing-quantity channel, which will be the focus of the structural model in

the next section.

4 Model

Motivated by these empirical findings, I develop a quantitative macroeconomic model of

heterogeneous agents to assess the role of FinTech lending and network spillovers in the

transmission of monetary policy shocks to households. The model helps us understand how

consumers make decisions given their income and wealth conditions and how these decisions

are affected by various shocks and institutional features. The model incorporates three key

empirical features of FinTech lending. First, FinTech lenders offer more convenient services

that are valued by the average consumer.13 Second, FinTech lenders respond more elastically

to demand shocks, facilitating the pass-through of policy stimulus. Third, social interactions

help spread information about FinTech lending, making mortgage transactions even more

accessible from the consumer’s point of view. Through a series of counterfactual analyses

13For supporting evidence, see Buchak et al. (2018) and Fuster et al. (2019). Evidence from customer
reviews and industry ratings also supports this point. For example, Quicken Loans (the largest FinTech
lender) has ranked the highest in primary mortgage originations for customer satisfaction since 2010. This
evidence suggests that the average consumer values the quality of services offered by FinTech lenders,
although some consumers may still prefer traditional lenders and human interactions (see Section 6.3).
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and policy experiments, I quantify the change in the monetary policy effects due to the

introduction of FinTech lending, with a particular focus on the role of network spillovers.

Preferences. The economy is populated by a continuum of infinitely-lived households

indexed by i. Households maximize their expected life-time utility

E
[ ∞∑
t=0

βtu(ci,t)
]
,

where ci,t denotes consumption of household i at time t. The utility derived from housing

services does not enter the maximization problem explicitly, given the assumption that

households are endowed with one unit of housing and do not adjust their housing size.14

Income and house prices. Households face idiosyncratic uninsurable income shocks.

Log-income is generated from the AR(1) process

log(yi,t) = (1− ρy)µy + ρy log(yi,t−1) + εyi,t, εyi,t ∼i.i.d. (0, σ2
y), (8)

where µy and ρy capture the unconditional mean and the persistence of the process. εyi,t is

a mean zero i.i.d. shock with variance σ2
y. Similarly, the log of aggregate house prices is

generated by the AR(1) process,

log(pt) = (1− ρp)µp + ρp log(pt−1) + εpt , εpt ∼i.i.d. (0, σ2
p), (9)

with unconditional mean µp, persistence ρp, and an idiosyncratic shock εpt .

Mortgage debt, refinancing, and liquid savings. Mortgage debt is long-term. It

requires a recurring fixed payment, rbt0bi,t0 , every period, which was determined at the time

of origination t0. Households can refinance their mortgage at any time t1 > t0 by paying

off the existing balance and originating a new balance bi,t1 at the current market rate, rbt1 .

The resulting new payment is rbt1bi,t1 . Upon refinancing, households cash out available home

14The recent literature on heterogeneous-agent life-cycle models has emphasized the role of housing
investments in the transmission of aggregate shocks (e.g., Zhou (2022)). My model abstracts from this
aspect, because I focus on the refinancing channel of monetary policy, and because FinTech lending is much
more important in refinancing than in home-purchasing originations. The role of FinTech lending remains
important even if housing investments are modeled as endogenous.
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equity, if any. If they are underwater, they have to pay back the amount that meets the

loan-to-value (LTV) requirement. This implies that the collateral constraint binds at the

time of refinancing,

bi,t1 = γpt1 ,

where γ is the maximum LTV ratio set by the lender.

Refinancing involves two types of costs. One is a closing cost that is proportional to the

new borrowing amount, φbi,t1 . The other is non-pecuniary, reflecting the time and effort

spent on refinancing-related activities, such as talking to the loan agent, visiting the lender’s

office, and completing the paperwork. This non-pecuniary cost, fi,t, is drawn from an i.i.d.

process with the cumulative distribution function Ff . Households have access to liquid assets,

ai,t, which pay a rate of return ra < rb. Moreover, households face the liquidity constraint

every period, ai,t ≥ 0.

FinTech lending and network spillovers. One important feature of FinTech lending

is improved services (e.g., reduced paperwork, at-home origination, and faster loan

processing).15 I model this feature as a utility gain, q, when consumers refinance their

mortgage with a FinTech lender. For the baseline model, I assume that q is a positive

constant (calibrated from data). Of course, in reality, some consumers may not perceive

FinTech services as more convenient and may prefer traditional lending. In Section 6.3, I

relax this assumption by allowing heterogeneity in q and in the choice between FinTech and

traditional lenders even after the consumer learns about FinTech, and I examine how the

distribution of q affects my baseline model results.

Although FinTech services in the baseline model raise utility, not every consumer uses

these services, because consumers are not fully informed. There are two ways to learn about

FinTech lending. First, FinTech information may arrive from a non-network source (e.g.,

advertising and search engines). Let the arrival of information from this source be a random

variable, Qi,t, drawn from an i.i.d. Bernoulli process. With probability pq, information

arrives (Qi,t = 1), and the consumer chooses whether to refinance her mortgage. If she

15My model assumes that FinTech lenders and traditional lenders charge the same closing fees and the
same mortgage rates. The former is supported by evidence in Buchak et al. (2018). The latter is supported
by the empirical evidence in Appendix D.
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chooses to refinance, she will do so with a FinTech lender because of the utility gain. If she

chooses not to refinance, she makes the mortgage payment according to the existing contract.

With probability 1− pq, the information does not arrive (Qi,t = 0). In this case, she decides

whether to refinance with a traditional lender (assuming no learning from the other source).

The second source of FinTech information is social networks. Let the arrival of FinTech

information from this source be a random variable, Ei,t, drawn from an i.i.d. Bernoulli

process, which is also independent from Qi,t. With probability pe, information arrives from

social interactions (Ei,t = 1). If the consumer chooses to refinance with a FinTech lender, she

receives a utility gain e > q. The inequality captures the additional benefits from personal

experience and extra information shared by friends. This assumption will also be relaxed in

Section 6.3. With probability 1 − pe, the consumer does not learn about FinTech from her

social network, but she may still learn it from the non-network source.16

Since information may arrive from two independent sources, there are different paths

that lead to a refinancing decision. To summarize, first, with probability (1 − pq)(1 −

pe), the consumer does not learn about FinTech from either source (Qi,t = Ei,t = 0) and

decides whether to refinance with a traditional lender. Second, with probability pq(1− pe),

the consumer learns about FinTech only from the non-network source (Qi,t = 1, Ei,t =

0) and decides whether to refinance with a FinTech lender. Third, with probability pe,

the consumer learns about FinTech through social interactions (Ei,t = 1), which may or

may not be coincident with non-network learning, and decides whether to refinance with a

FinTech lender. The overall utility gain from refinancing with a FinTech lender, therefore,

is max{qQi,t, eEi,t}.17

Monetary policy stimulus and capacity constraints. As extensively documented in

the literature, another type of friction that weakens the pass-through of low policy rates to

borrowers is the slow response of traditional lenders to surging demand (Fuster et al. (2019);

Fuster et al. (2021)). This results from capacity constraints and operational bottlenecks (e.g.,

16I model social networks as being exogenously formed, given that the impact of a specific county on the
social network is likely to be small.

17In the model, the draws of Qi,t and Ei,t are independent across time. Allowing draws to be persistent
has a similar effect to feeding rising paths of pq and pe into the model. In Section 6.2, I use counterfactual
analysis to show how the efficacy of monetary policy would change if pe increases.
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rising training costs, hiring difficulties and staffing issues) that are more likely to be binding

during periods of low rates, especially for lenders who rely on traditional, labor-intensive

underwriting. Consumers are negatively impacted by delayed processing and credit rationing.

I model the implications of this friction as a utility toll on consumers who refinance their

mortgage with a traditional lender after a stimulative monetary policy shock. Specifically, in

response to an unexpected permanent decline in the mortgage rate in period T , the utility

loss of these consumers is

χ(rbT−1, r
b
T+τ ) ≡ I(rbT+τ < rbT−1)(rbT−1 − rbT+τ )[χ(τ + 1)−α], τ = 0, 1, 2, ... (10)

where rbT−1 − rbT+τ is the rate change, τ the number of periods since the rate change, and

χ > 0 and α > 0 parameters to be calibrated. This specification captures several key

features of the capacity-constraint-induced cost: (i) it appears only when the rate falls, (ii)

it is proportional to the size of the rate shock, and (iii) it diminishes over time.18 FinTech

lending eases this type of friction. Without loss of generality, I assume that FinTech lenders

do not face capacity constraints, so their consumers do not incur this utility loss.

Recursive formulation. This baseline model has a recursive formulation (see Appendix

E). For the purpose of conducting counterfactual analysis, I also formulate a model without

FinTech lending (the no-FinTech economy) and a model with FinTech lending but absent

network spillovers (the no-FinTech-spillover economy). Appendix E details their recursive

formulations and outlines the solution method.

5 Calibration

The model frequency is annual. The utility function takes the form of constant relative risk

aversion (CRRA), u(c) = c1−σ

1−σ . σ is set to 2 as in standard consumption models, implying an

intertemporal elasticity of substitution of 0.5. β is set to 0.95, consistent with the calibrated

value of the discount factor in the heterogeneous-agent consumption literature (e.g., Berger

et al. (2018); Guren et al. (2021)).

18In the model, households do not internalize lenders’ capacity constraints into their own maximization
problem, but instead perceive these utility costs as unexpected shocks.
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The AR(1) coefficient of the log income process, ρy, and the standard deviation of

the idiosyncratic income shock, σy, are set to 0.9 and 0.1, respectively, consistent with

estimates using the Panel Study of Income Dynamics (PSID) data (e.g., Zhou (2022)). The

AR(1) coefficient of the log house price, ρp, and the standard deviation of the corresponding

idiosyncratic shock, σp, are calibrated by fitting the historical CoreLogic national home price

index (deflated by the CPI) into equation (9), which gives σp = 0.95 and ρp = 0.05.

The refinancing closing cost, φ, is set to 3%, consistent with the Federal Reserve

Board’s estimate in “A Consumer’s Guide to Mortgage Refinancings” and recent industry

estimates.19 The maximum LTV ratio, γ, is set to 80%, consistent with GSE guidelines for

conforming loans without private mortgage insurance. The return on liquid assets, ra, is

set to 1%, based on the historical average of the 1-year treasury rate net of inflation. The

steady-state mortgage rate, rb, is set to 4%, consistent with the historical average of the

30-year FRM rate net of inflation. The distributions of initial liquid assets and LTV ratios

match PSID data for mortgage borrowers over the period of 2007-2017.

The non-pecuniary cost of refinancing, f , is drawn from a discrete i.i.d. process with

two realizations, fH and fL, and the corresponding probabilities, pf and 1 − pf . I set

fL = 0, as in models without non-pecuniary refinancing costs. pf is calibrated such that

the refinancing propensity before the monetary policy shock in the no-FinTech economy

matches the average refinancing propensity prior to QE1 in the McDash data. fH is set to

1.25 so that the refinancing propensity conditional on drawing fH is zero in the no-FinTech

economy.20 The parameter governing the effect of capacity constraints, χ, is calibrated to

match the refinancing response to the monetary policy shock in the no-FinTech economy,

which is 9.4% at an annualized rate (Beraja et al. (2018)). The persistence of capacity

constraints, α, is set to 3, implying that these constraints largely dissipate after one year,

consistent with the evidence in Fuster et al. (2021).

19For example, Quicken Loans estimates that a refinancing borrower is expected to pay 2%-3% of the
remaining principal in closing costs. http://www.rocketmortgage.com/learn/cost-to-refinance.

20On the one hand, fH has to be large enough so that the conditional refinancing propensity (on drawing
fH) is zero in the no-FinTech economy. On the other hand, fH cannot be too large since that would imply a
very low refinancing rate even absent capacity constraints, which is inconsistent with external evidence (e.g.
Figure 5 in Fuster et al. (2021)). I experimented with alternative values of fH satisfying these restrictions
and found that the quantitative results are robust.
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There are four key parameters related to FinTech lending: the probabilities of FinTech

information arriving from network and non-network sources, pe and pq, and FinTech utility

gains with and without social interactions, e and q. The first two parameters determine

the FinTech market share, while the latter two parameters are related to the likelihood

of refinancing conditional on receiving FinTech information. These parameters are jointly

calibrated to target four moments. First, the FinTech market share is 20% in the baseline

economy before the policy shock, matching the average county-level FinTech refinancing

share in 2017. Second, the FinTech market share is 10% in the no-FinTech-spillover economy

before the policy shock, matching the projected FinTech market share in a counterfactual

no-FinTech-spillover county in 2017.21 This calibration yields pq = 7% and pe = 6%. Third,

the refinancing propensity in the no-FinTech-spillover economy is 6% higher than in the

no-FinTech economy before the policy shock. Fourth, the refinancing propensity in the

baseline economy is 18% higher than in the no-FinTech economy before the policy shock.

The latter two moments are set by estimating the equation of the county-level refinancing

propensity:

Refic,t = γc + γd,t + β1∆FinTechc,t + β2∆FinTechSCAc,t + β3xc,t + β4x̄SCAc,t + εc,t. (11)

In equation (11), the effects of FinTech lending and network spillovers on a county’s

refinancing propensity are estimated simultaneously. The estimates, β̂1 = 0.011 and

β̂2 = 0.021 (both significant at the 1% level), imply that a 10 pp increase in the county’s own

FinTech lending (equivalent to moving from the 10th to 90th percentile) is associated with a

6% higher refinancing propensity. In addition, if FinTech lending in the county’s SCAs also

increases by 10 pps, the refinancing propensity would be 18% higher.22

21The counterfactual is calculated as follows. Table 1 shows that a 1 pp increase in the FinTech market
share in a county’s network raises the county’s FinTech market share by about 0.3 pps. The increase of
the explanatory variable from its smallest value to its mean is about 10 pps, implying a 3 pp increase in
the county’s FinTech market share due to spillovers. This effect accounts for 50% of the historical average
FinTech market share in a county (6%). Removing this effect from the 2017 average FinTech refinancing
share suggests that the counterfactual share is 10% (=20%*[1-50%]).

22The first effect is obtained as (0.011*10)/2 =6%, where the denominator is the refinancing rate before the
policy shock in the no-FinTech economy. The second calculation utilizes the FinTech spillover estimate (0.33).
The effect of a 1 pp increase in ∆FinTechSCA

c,t is the direct effect β2 plus β1 multiplied by the spillover effect.
Therefore, the total effect with both FinTech and its spillovers is [0.011*10+ (0.021+0.011*0.33)*10]/2=18%.
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6 Quantitative Results

In this section, I use the calibrated model to address two key questions. First, to what

extent have FinTech lending and its network spillovers changed consumption and refinancing

responses to a stimulative monetary policy shock? Second, how would consumption and

refinancing responses, as well as the FinTech market share, change if social networks

played an even more important role in spreading information? Answering these questions

using a structural model avoids the empirical challenges to the identification of monetary

policy shocks, especially given the short time span for which FinTech has existed.

Moreover, counterfactual analysis helps isolate the role of network spillovers in the monetary

transmission. The baseline model is then extended to allow for heterogeneity in the utility

gain from FinTech services.

6.1 How Has FinTech Lending Changed Monetary Transmission?

Consider the effects of a monetary policy shock that lowers the mortgage rate by 1 pp

permanently in three economies: the no-FinTech economy, the economy with FinTech

lending but without network spillovers, and the economy with FinTech and network spillovers

(baseline). Comparing the consumption and refinancing responses across the three economies

allows me to isolate the role of technology itself and the role of network spillovers in changing

the efficacy of a monetary stimulus. Note that the calibration reflects the FinTech market

penetration in 2017, so the quantitative results are specific to that baseline. In Section 6.2, I

consider alternative states of FinTech presence and assess the change in the monetary policy

effects.

Panel (a) of Figure 5 plots the refinancing propensity (i.e., the percent of borrowers who

refinance their mortgage in a year) before and after the monetary policy shock in the three

economies. Before the shock, this propensity is 2.1% in the no-FinTech economy, 2.2% in the

no-FinTech-spillover economy, and 2.4% in the baseline economy, reflecting a small fraction of

households who extract home equity to smooth consumption without changing the mortgage

rate. Upon the shock, the borrowing cost is lower and the refinancing propensity rises across

the board to 12%, 12.8% and 13.5%, respectively. Panel (b) plots the refinancing response
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to the monetary stimulus (i.e., the change in the refinancing propensity) for each economy,

which is 9.9 pps, 10.6 pps, and 11.1 pps, respectively. This means that, compared to the

no-FinTech economy, the refinancing response to the policy shock is 1.2 pps (or 12%) higher

in the economy with FinTech and network spillovers. Shutting down network spillovers would

increase the refinancing response only by 0.7 pps (or 7%), implying that almost half (41%)

of the total improvement in the monetary policy effect on refinancing is accounted for by the

amplification of network spillovers.

Quantitatively similar results are obtained for the consumption responses. As shown

in panel (d) of Figure 5, consumption increases by 1.11%, 1.16% and 1.24%, respectively,

in response to the shock in three economies. In the economy with FinTech and

network spillovers, consumption is 13% more responsive to the policy shock than in the

no-FinTech economy. Shutting down network spillovers would only increase the consumption

responsiveness by 6%, implying that slightly more than half (55%) of the total improvement

in the monetary policy effect on consumption is accounted for by network spillovers.

To understand which households are the main driver behind these responses, Figure 6

plots the refinancing propensity conditional on the household type. The upper panel shows

that, in the no-FinTech economy, only households with low non-pecuniary refinancing costs

are able to refinance their mortgage, and that their response to the policy shock explains

the overall refinancing and consumption responses. With FinTech lending (the middle

panel), the utility gain from more convenient services and greater lender resilience increase

the refinancing propensity for those with low non-pecuniary costs (yellow bars). More

importantly, some households who otherwise would not refinance due to high non-pecuniary

costs are able to respond to the policy shock, thanks to FinTech lending (blue bar). Finally,

the lower panel highlights the role of network spillovers. Households who obtain FinTech

information from social networks are more likely to refinance their mortgage than otherwise

identical households, which contributes to the higher responsiveness of the refinancing and

consumption to the policy shock.

The role of market frictions. Standard macroeconomic models usually incorporate two

explanations for why a consumer may not refinance her mortgage when the policy stimulus
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hits the mortgage market. First, the present discounted value of the future interest savings

(i.e., the accounting benefit) may be lower than the refinancing closing cost. Second, the

consumer may be ineligible for refinancing due to a high LTV ratio. My model highlights

two additional explanations arising from mortgage market frictions: non-pecuniary costs

associated with refinancing (the consumer-side friction) and capacity-constraint-induced

utility loss (the lender-side friction). Without these frictions, every eligible consumer would

have refinanced her mortgage as long as the accounting benefit exceeds the closing cost.

I assess the role of market frictions in weakening the monetary stimulus through

counterfactual analysis. Figure 7 shows the refinancing propensity in the period of the policy

shock in each of the six scenarios. First, in the economy without these two types of frictions,

the refinancing propensity conditional on eligibility is 100%, suggesting that the policy

stimulus is large enough to make every eligible consumer benefit financially from refinancing.

The unconditional refinancing propensity is lower, 80%, reflecting the fraction of eligible

consumers. Second, in the economy with the lender-side friction, the refinancing propensity

conditional on eligibility falls to 55%, and the unconditional refinancing propensity is

lower (44%). Third, in the economy with consumer-side frictions, the conditional and

unconditional refinancing propensities are even lower, 28% and 22%. Fourth, with both

types of frictions, only 15% of eligible consumers and 12% of all consumers refinance their

mortgage, severely limiting the pass-through of the policy stimulus.

FinTech lending and network spillovers help ease these frictions. The baseline calibration

shows that the conditional and unconditional refinancing propensities are 17% and 14% on

impact. With stronger network spillovers, for example, pe=0.6, the refinancing propensities

could reach 26% (conditional) and 21% (unconditional).

6.2 Policy Experiments

As FinTech lending continues to expand in the U.S. mortgage market, it will likely become

more important in easing market frictions and facilitating the pass-through of future interest

rate cuts. My empirical analysis has stressed the role of social networks in FinTech market

penetration. This motivates a counterfactual analysis for understanding how the effects of
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monetary policy shocks would change, if social networks play an even more important role in

spreading information (e.g., through technologies that allow consumers to be more connected

with their peers).

The key parameter governing the strength of social interactions in the model is pe, the

probability that a consumer learns about FinTech from her social network. Figure 8 plots

for different values of pe the FinTech market share and the refinancing and consumption

responses to a stimulative monetary policy shock, holding other parameters fixed. The left

panel shows that, as the probability of learning from peers increases, the market share of

FinTech rises, even if FinTech lenders do not actively expand their business (e.g., through

advertising that increases pq). When pe increases from the baseline 6% to 60%, for example,

the FinTech market share in refinancing would increase from 20% to 80%. The middle and

right panels show that refinancing and consumption are more responsive to the monetary

policy shock, as the FinTech market share rises. When the FinTech market share increases

from 20% to 80%, the effect of the monetary policy shock on refinancing increases from 11.1

pps to 16.8 pps, which is a 51% increase in the responsiveness. The effect on consumption

increases from 1.2% to 1.9%, which is a 56% increase in the responsiveness. This result

shows that FinTech lending in conjunction with social network spillovers can be an important

determinant of the effects of monetary policy shocks.

6.3 Model Extension

To account for the possibility that FinTech lending may not benefit consumers equally and

that some consumers may even view it as burdensome (perhaps because they are not adept

at operating mobile apps or prefer personal interactions), I extend the baseline model to

allow for heterogeneity in the utility consumers receive when using FinTech, q ∼ Fq. The

purpose of this exercise is to examine how parameters governing the distribution of q affect

the baseline model results.

To illustrate the point, I add to the baseline model a binary probability distribution for

q. Specifically, conditional on learning about FinTech, a fraction pqL of consumers perceive

FinTech services to be inconvenient and experience a utility loss (qL < 0), if they refinance
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with a FinTech lender. The remaining consumers, as in the baseline model, view FinTech

services as more convenient and obtain a utility gain (qH > 0) from a FinTech refinance.

Social interactions help mitigate the utility loss of the former group of consumers. If a

consumer learns about FinTech from social networks, the overall utility gain from FinTech

services is max{qQi,t, e} (which cannot be negative), whereas it is q (which can be negative),

if the consumer does not learn about FinTech from social networks.

As a starting point, I set pqL=10% to match the fraction of the U.S. population who had

less than a high school diploma or equivalent in the 2010s, given the evidence that FinTech

adoption is increasing in educational attainment (see Fuster et al. (2019)). I set qH = 0.06,

which is a small deviation from the value of q in the baseline model (0.05). Setting the mean

of q to 0.05 implies qL = −0.04. This parametrization yields quantitative results similar to

the baseline model. I then conduct two experiments: (i) changing the mean of q by changing

the fraction of consumers who would be worse off with FinTech (pqL), and (ii) changing the

dispersion of q by enlarging the gap between qH and qL, while keeping the mean fixed at

0.05.

Figure E1 in the Appendix shows the mean of q, the FinTech market share in the period

of the policy shock, and the refinancing and consumption responses, as pqL increases from

10% to 90%. As more consumers are made worse off by using FinTech services, the expected

utility gain from FinTech refinancing diminishes, which pushes down the FinTech market

share and reduces the responsiveness of refinancing and consumption to the policy stimulus.

However, since consumers can always resort to traditional lenders for refinancing, the effects

of the policy stimulus on refinancing and consumption will be larger than in the no-FinTech

economy, as long as some consumers are better off from FinTech services.

Figure E2 in the Appendix shows the standard deviation of q, together with other

aggregate outcomes, for different values of qH . To keep pqL and the mean of q constant, as

qH increases, qL has to fall. The FinTech market share increases, because, as qH increases,

consumers receiving qH are more likely to refinance with a FinTech lender, whereas consumers

receiving (more negative) qL are unaffected— they would choose traditional lenders or would

not refinance even for a smaller loss. On the other hand, the refinancing and consumption
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responses are weakened, because those who receive qH would be more likely to refinance with

FinTech lenders even before the policy shock. This lowers the sensitivity of refinancing and

consumption to the policy shock.

7 Conclusion

In the U.S., the vast majority of borrowers hold long-term fixed-rate mortgages. This

institutional feature implies that the pass-through of lower policy rates to the household

sector depends on households’ ability and willingness to change their rates, typically

through mortgage refinancing. This refinancing channel of monetary policy, however, has

been weakened by various frictions, such as the complicated loan origination process that

discouraged consumers and capacity constrains that slow lenders’ responses in periods of low

rates. The rapid growth of financial technology in the mortgage industry is expected to ease

these frictions, given the more convenient services brought in by this new lending model and

the greater lender resilience.

This is only part of the story, however, because consumers’ social networks can propagate

FinTech adoption, further amplifying the impact of monetary policy shocks. Using U.S.

county-level data, I show that FinTech lending displays a sizable spillover effect across social

networks, and that this effect is particularly strong in areas with higher social and economic

mobility and for refinancing mortgages as opposed to home-purchasing mortgages.

I develop a structural model to quantify the importance of FinTech lending features

and network spillovers in the transmission of stimulative monetary policy shocks. The

consumption response to a 1 pp decline in the mortgage rate is 13% higher with FinTech

lending. About half of this improvement is due to FinTech amplification through social

networks, and the rest is accounted for by FinTech product features and lender resilience.

As FinTech lending continues to expand in the U.S. mortgage market, one would expect it

to further enhance the monetary policy transmission. I use counterfactual analysis to assess

the effects of a monetary policy stimulus, were social interactions become more effective

in spreading information. I show that an increase in the FinTech market share to 80%

resulting from more effective social learning, for example, would raise the consumption and
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refinancing responses by 50%-60% compared to the economy in 2017, when the FinTech

refinancing market share was 20%.
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Figure 1: FinTech spillover effects from the socially most connected counties

(a) Top 10 GCAs
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(b) Top 10 SCAs
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Notes: Point estimates and the 95% confidence intervals are obtained by estimating the OLS specification in
the third column of Table 1 for each of the top 10 geographically connected areas (GCAs) and top 10 socially
connected areas (SCAs). Standard errors are clustered at the county level. See text for the description of
the control variables.
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Figure 2: Dynamic effects of FinTech spillovers

(a) Overall effect
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(b) Effect by loan purpose
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Notes: Point estimates and the 95% confidence intervals are obtained by estimating the IV specifications
in the third column of Table 1 for each horizon and by loan purpose. Standard errors are clustered at the
county level. See text for the description of the control variables.
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Figure 3: Rising capital ratios after the financial crisis

(a) Bank-level T1 capital ratio
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Notes: Panel (a) plots the distribution of the bank-level T1 capital ratio in 2008 and 2015. For visual
presentation, the upper 2% extreme values are winsorized. Panel (b) shows a bin scatter plot of the bank-level
T1 capital ratio growth from 2008 to 2015 (y-axis) against the 2008 bank-level T1 capital ratio (x-axis).
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Figure 4: Instruments for FinTech growth in socially connected markets

(a) T1 capital ratio in SCAs
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(b) Big4 share in SCAs

−
.0

0
5

0
.0

0
5

.0
1

F
in

T
e
c
h
 s

h
a
re

 i
n
 S

C
A

s
, 
2
0
0
8
−

2
0
1
5

−.07 −.035 0 .035 .07 .105

Big4 share in SCAs, 2008

Notes: This figure shows the bin scatter plots for the first stage of the IV strategy in equation (6). Note that
these variables are residualized using other control variables to reflect the first-stage regression coefficients.
Panel (a) plots the change in SCAs’ FinTech market share from 2008 to 2015 (y-axis) against the instrument
(x-axis): origination-share-weighted 2008 T1 capital ratios in SCAs. Panel (b) plots the change in SCAs’
FinTech market share from 2008 to 2015 (y-axis) against an alternative instrument (x-axis): 2008 Big4
market shares in SCAs.
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Figure 5: Effects of a stimulative monetary policy shock on refinancing and consumption
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(c) Consumption
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(d) Consumption response to MP shock

Notes: Model simulations. Panel (a) plots the levels of the refinancing propensity (i.e., the fraction of
borrowers who refinance their mortgage in a year) under different scenarios (no-FinTech, no-spillover,
baseline) before and after a monetary-policy (MP) shock that lowers the mortgage rate by 1 pp. Panel
(b) plots the changes in the refinancing propensity in response to the MP shock under these scenarios (in
percentage points). Panel (c) plots the levels of consumption (in numeraire) before and after the MP shock
under these scenarios. Panel (d) plots the percent changes in consumption in response to the MP shock
under these scenarios.
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Figure 6: Conditional refinancing propensities
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Notes: Model simulations. The colored bars in the left column show the refinancing propensity for each type
of consumers (conditional on their realizations of f , Q and E) under each scenario (no-FinTech, no-spillover,
baseline) before a monetary-policy (MP) shock that lowers the mortgage rate by 1 pp. The colored bars in
the right column indicate the conditional refinancing propensity for each type of consumers in each scenario
after the MP shock.
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Figure 7: Counterfactual analysis: The role of frictions and FinTech in explaining the
refinancing propensity after a monetary policy shock
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Notes: Model simulations. The gray bars indicate the refinancing propensity (the percent of consumers
who refinance their mortgage in the year) after a stimulative monetary-policy (MP) shock that lowers the
mortgage rate by 1 pp. The black bars indicate the refinancing propensity conditional on eligibility (the
LTV ratio less than 80%) after the MP shock. There are two types of market frictions: the non-pecuniary
refinancing cost faced by consumers and the capacity constraints faced by traditional lenders. This figure
shows how each friction reduces the refinancing propensity (relative to the no-frictions case) and how FinTech
lending and network spillovers help ease the impact of these frictions.

Figure 8: Social network intensity and monetary policy effects
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Notes: Model simulations. This figure depicts the changes in the FinTech market share and the refinancing
and consumption responses to a stimulative monetary-policy (MP) shock that lowers the mortgage rate by
1 pp, as the network spillover becomes stronger (pe increases).
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Table 1: FinTech spillover effect: Panel estimates

Panel I. SCA spillovers Dep. variable: ∆FinTech sharec
OLS estimates (1) (2) (3)

∆FinTechSCA 0.342*** 0.337*** 0.329***
(0.022) (0.022) (0.022)

County FE x x x
Region-by-quarter FE x x x
County controls x x
SCA controls x
R-squared 0.363 0.367 0.371
# Obs. 122,350 122,314 122,314

Panel II. GCA spillovers
OLS estimates (1) (2) (3)

∆FinTechGCA 0.333*** 0.338*** 0.370***
(0.024) (0.025) (0.027)

County FE x x x
Region-by-quarter FE x x x
County controls x x
GCA controls x
R-squared 0.356 0.361 0.367
# Obs. 122,384 122,325 122,325

Panel III. SCA spillovers
IV estimates (1) (2) (3)

̂∆FinTechSCA 0.343*** 0.338*** 0.328***
(0.024) (0.024) (0.024)

County FE x x x
Region-by-quarter FE x x x
County controls x x
SCA controls x
1st stage coef. on ∆FinTechSCA,Out 0.788*** 0.786*** 0.784***
F-stat of excluded instruments 9,139 9,330 9,322
# Obs. 122,350 122,314 122,314

Notes: SCA denotes socially connected area and GCA denotes geographically connected area. *, ** and ***
denote significance at the 10%, 5% and 1% level, respectively. Standard errors are clustered at the county
level. See text for the description of the control variables. The instrument in panel III, ∆FinTechSCA,Out

is the social connectedness-weighted change in the FinTech market share in a county’s socially connected
but geographically distant areas, i.e., outside of this county’s commuting zone (see Table C2 for IVs with
alternative distance thresholds).
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Table 2: FinTech spillover effect by loan purpose: Panel IV estimates

∆FinTech ∆FinTech ∆FinTech ∆FinTech ∆FinTech ∆FinTech ∆NonFin
share refi share purchase share volume refi volume purchase volume volume
(1) (2) (3) (4) (5) (6) (7)

̂∆FinTechSCA 0.328*** 0.376*** 0.167*** 0.397*** 0.303*** 0.094*** -0.133
(0.024) (0.028) (0.020) (0.031) (0.027) (0.012) (0.109)

County FE x x x x x x x
Region-by-quarter FE x x x x x x x
County controls x x x x x x x
SCA controls x x x x x x x
# Obs. 122,314 119,718 119,663 122,314 122,314 122,314 122,314

Notes: *, ** and *** denote significance at the 10%, 5% and 1% level, respectively. Standard errors are
clustered at the county level. See Table 1 for further information on the instrument.

Table 3: FinTech spillover effect by connectedness: Panel IV estimates

Spillover effect from
Top 50 SCAs Top 51-100 Top 101-150 Top151-200 Top 201-500

̂∆FinTechSCA 0.245*** 0.095*** 0.060*** 0.016 0.035
(0.019) (0.013) (0.013) (0.011) (0.040)

County FE x x x x x
Region-by-quarter FE x x x x x
County controls x x x x x
SCA controls x x x x x

# Obs. 122,314 122,314 122,314 122,314 122,314

Notes: *, ** and *** denote significance at the 10%, 5% and 1% level, respectively. Standard errors are
clustered at the county level. See Table 1 for further information on the instrument.
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Table 4: Heterogeneity in FinTech spillover effect: Panel IV estimates

Dep. variable:
∆FinTech sharec (1) (2) (3) (4)

̂∆FinTechSCA 0.201*** 0.273*** 0.242*** 0.199***
(0.046) (0.030) (0.031) (0.022)

×Nonmetro, urban pop≥2.5K 0.048
(0.051)

×Metro, pop < 1 Million 0.105*
(0.055)

×Metro, pop ≥ 1 Million 0.216***
(0.057)

×High share of Bachelor’s degree 0.069*
(0.037)

×High share of black 0.123***
(0.041)

×High prior-year migration flow 0.152***
(0.030)

County FE x x x x
Region-by-quarter FE x x x x
County controls x x x x
SCA controls x x x x
# Obs. 122,314 122,314 122,314 109,835

Notes: *, ** and *** denote significance at the 10%, 5% and 1% level, respectively. Standard errors are
clustered at the county level. See Table 1 for further information on the instrument. All interaction terms
are also instrumented by interacting the IV with the county characteristics.
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Table 5: Refinancing spillover effect by lender segment: Panel IV estimates

∆Refi sharec ∆FinTech ∆Nonbank ∆Bank
Refi sharec Refi sharec Refi sharec

(1) (2) (3) (4)

∆Refi shareSCA 15.70***
(1.036)

∆FinTech Refi shareSCA 19.28***
(1.420)

∆Nonbank Refi shareSCA 14.52***
(0.733)

∆Bank Refi shareSCA 7.22***
(0.381)

County FE x x x x
Region-by-quarter FE x x x x
County controls x x x x
SCA controls x x x x

# Obs. 122,314 119,718 119,718 119,718

Notes: *, ** and *** denote significance at the 10%, 5% and 1% level, respectively. Standard errors are
clustered at the county level. The dependent variables and the key explanatory variables shown in the table
are scaled such that the coefficient represents the percent change relative to the unconditional mean of the
level variable (i.e., refi share, FinTech refi share, non-bank refi share and bank refi share) for a 1 s.d. increase
in the explanatory variable. The instrument in column (1) is the weighted changed in the refinancing share
in a county’s out-of-commuting-zone socially connected areas (out-CZ SCAs). The instrument in column
(2) is the weighted changed in the FinTech market share (of refinancing mortgages) in a county’s out-CZ
SCAs. The instrument in column (3) is the weighted changed in the non-bank market share (of refinancing
mortgages) in a county’s out-CZ SCAs. The instrument in column (4) is the weighted changed in banks’
market share (of refinancing mortgages) in a county’s out-CZ SCAs.
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Table 6: Instrumenting FinTech spillovers with regulatory exposure

Panel I (1) (2) (3) (4) (5)
T1-ratio-based IV 1st stage 2nd stage 1st stage 2nd stage OLS

̂∆FinTechSCA 1.542*** 1.312*** 1.009***
(0.296) (0.349) (0.038)

T1RatioSCA2008 -0.370***
(0.050)

T1RatioSCA,Out2008 -0.318***
(0.052)

State FE x x x x x
County controls x x x x x
SCA controls x x x x x

F-stat of excluded instruments 55 - 37 - -
# Obs. 3,094 3,094 3,094 3,094 3,094

Panel II (1) (2) (3) (4)
Big4-share-based IV 1st stage 2nd stage 1st stage 2nd stage

̂∆FinTechSCA 1.301*** 1.235***
(0.185) (0.287)

Big4shareSCA2008 0.097***
(0.008)

Big4shareSCA,Out2008 0.078***
(0.010)

State FE x x x x
County controls x x x x
SCA controls x x x x

F-stat of excluded instruments 137 - 55 -
# Obs. 3,094 3,094 3,094 3,094

Notes: *, ** and *** denote significance at the 10%, 5% and 1% level, respectively. Columns (1) and (2) of
panel I use T1RatioSCA

2008 as the instrument for estimating the IV specification in equation (6). Columns (3)
and (4) of panel I use T1RatioSCA,Out

2008 as the instrument with the superscript SCA,Out denoting socially
connected counties outside the county’s commuting zone. Columns (1) and (2) of panel II use Big4shareSCA

2008
as the instrument for estimating the IV specification in equation (6). Columns (3) and (4) of panel II use
Big4shareSCA,Out

2008 as the instrument with the superscript SCA,Out denoting socially connected counties
outside the county’s commuting zone.
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Appendices to “Financial Technology and the
Transmission of Monetary Policy: The Role of Social

Networks”

A Lender Classification
I follow Buchak et al. (2018) and Fuster et al. (2019) in identifying FinTech lenders. The
former study identifies FinTech lenders as those having a strong online presence and allowing
nearly all of the mortgage application process to take place online without human interaction
from the lender. The latter study identifies FinTech lenders as those enabling a mortgage
applicant to obtain a preapproval online. The two classification schemes differ only in the
case of a few small FinTech lenders, and the resulting FinTech market shares are similar
both at the national and regional levels.23 I use the combined list of FinTech lenders from
these two studies, as in Jagtiani et al. (2020). Similar empirical results are obtained when
using either one of these classifications. Figure A1 plots the FinTech market share in the
aggregate and the dispersion of this share in the county-level market. Table A1 shows the
list of major FinTech lenders and their market shares in the 2017 HMDA data.

Figure A1: FinTech market share in mortgage originations
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Source: HMDA public data, 2007-2017. Notes: FinTech market shares are computed using the volume of
mortgage originations.

23While both studies consider the possibility of “FinTech bank lenders”, they do not classify any bank as
a FinTech lender as of 2017. This is because the prevalence of existing business models and legacy systems
in traditional banks has hindered their ability to adopt new technologies.
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Table A1: Major FinTech lenders in 2017

Lender name Market share (%)

Quicken Loans 5.00
Loandepot.com 2.08
Guranteed Rate 1.08
Movement Mortgage 0.77
Everett Financial 0.46
Cardinal Financial 0.24
Envoy Mortgage 0.21
FBC Mortgage 0.21
Evergreen Moneysource Mortgage 0.17
Amerisave Mortgage 0.16
ARK-LA-TEX Financial Services 0.16
Skyline Financial 0.15
American Neighborhood Mortgage 0.13
Homeward Residential 0.10

Source: HMDA public data, 2017. Notes: FinTech market shares are computed using the volume of
mortgage originations.
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B Data Appendix
This appendix describes the data used in my empirical analysis that are not discussed in
Section 2.
Measures of Social Connectedness. My empirical analysis employs two alternative
measures of social connectedness. One is based on the geographical distance between two
counties, obtained from the NBER County Distance Database. The other is based on novel
social network data developed by Bailey et al. (2018b), including the county-pair-level social
connectedness index (SCI).24 This index uses an anonymized snapshot of active Facebook
users and their friendship links as of August 2020 to capture the intensity of social interactions
between any two counties. The SCI between counties i and j is constructed as

SCIi,j = FB Connectionsi,j
FB Usersi × FB Usersj

, (12)

where FB Usersi and FB Usersj are the numbers of Facebook users in counties i and j,
and FB Connectionsi,j is the total number of friendship links between individuals in the two
counties.25 Bailey et al. (2018b) show that the index is strongly negatively correlated with
distance and is positively correlated with bilateral social and economic activities. The index
has been increasingly used by researchers to study the role of social interactions in economic
outcomes at the individual, neighborhood, regional and national levels (see Kuchler and
Stroebel (2021)).
County-level Demographic and Economic Data. These data are collected from various
sources. The population estimates by demographic group are obtained from the Census
Bureau. Employment statistics are obtained from the Bureau of Labor Statistics’ Quarterly
Census of Employment and Wages. The share of subprime borrowers is constructed using
the New York Fed (FRBNY) Consumer Credit Panel/Equifax Data (accessed through
FRS-RADAR-DW).26 It is the fraction of consumers having an Equifax Risk Score below
670 among all consumers of age 22-80 in a county. County-to-county migration data (both
inflows and outflows) are obtained from the Internal Revenue Service Tax Statistics. The
rural-urban continuum code is obtained from the U.S. Department of Agriculture.

The CoreLogic home price index (HPI), accessed through FRS-RADAR-DW, is used

24Accessed in October 2020 through https://data.humdata.org/dataset/social-connectedness-index.
25The public SCI data are scaled to have a maximum value of 109 and a minimum value of 1. They

measure the relative probability of a Facebook friendship between a user in county i and a user in county j.
26The New York Fed (FRBNY) Consumer Credit Panel/Equifax Data is a nationally representative

anonymous random sample from Equifax credit files. The data track all consumers with a US credit file
residing in the same household from a random, anonymous sample of 5% of US consumers with a credit file.
These data are used as a source of data but all calculations, findings, assertions are that of the author.
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to construct house price growth. The advantage of the CoreLogic data is that they are
representative of all types of loans in the market (rather than just conforming loans as in
FHFA data) and available at relatively high frequency. The disadvantage is that the index
does not have the full geographical coverage at the county level. To address this issue, for
counties where the HPI data are not available, I use house price growth in their respective
MSAs. If a county is missing the HPI data and is not located in an MSA, I use house
price growth in its state. Using alternative FHFA county-level HPI data does not affect my
empirical results.
Bank Balance Sheet Data. Tier 1 capital ratios are constructed using bank call reports
accessed through the Federal Financial Institutions Examination Council’s (FFIEC) Central
Data Repository. This information is then merged with the HMDA dataset using the Avery
file.27

Black Knight McDash Dataset (McDash). This dataset consists of servicing portfolios
of the largest mortgage servicers in the U.S., covering two-thirds of installment-type loans
in the residential mortgage servicing market. The data contain loan-level information at
origination and monthly updates on the performance. Unlike the HMDA dataset that
measures the flow into mortgage debt, the McDash data measures the stock of mortgages.
I use these data to construct several key variables for the extension of Fuster et al.
(2019) analysis in Appendix D at the county level: the refinancing propensity, the home
purchasing propensity, the average rate of newly refinanced mortgages, the average rate
of new home-purchasing mortgages, and the average FICO score. I restrict the sample to
conventional first-lien 30-year FRMs below the jumbo cutoff. The dataset is accessed through
the Federal Reserve System’s RADAR Data Warehouse (FRS-RADAR-DW).

C Additional Evidence and Robustness

27Constructed by Robert Avery, the Avery file contains matching information for all lenders in the HMDA
data and the FFIEC Call reports in each filing year. I downloaded the Stata version of this file made available
by Neil Bhutta on his homepage: https://sites.google.com/site/neilbhutta/data.
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Figure C1: U.S. mortgage lenders’ advertising
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(b) FinTech share of mortgage offers
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(c) Top FinTech lenders: share of mortgage offers
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(d) Top FinTech lenders: share of refinancing offers
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(e) Top FinTech lenders: Google trends
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(f) Top FinTech lenders: Google trends, adjusted
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Source: Mintel-Comperemedia Direct Mail and Print Advertising Dataset; Google Trends. Notes: Panel (e)
plots quarterly Google Trends statistics for the terms “Quicken Loans” and “Loan Depot” (both identified by
Google as mortgage loan companies). Panel (f) plots the adjusted Quicken Loan series by adding the Trends
statistics for “Quicken Loans” and for “Rocket Mortgage” to account for the fact that Rocket Mortgage is
Quicken Loan’s online retail lending platform.
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Figure C2: Geographically connected areas (GCAs) and socially connected areas (SCAs) of
Cook county, IL

Notes: This figure depicts the GCAs (light blue) and the SCAs (dark blue) of Cook county, IL. While a
large number of counties are both geographically and socially connected to Cook, many counties in Michigan
are only geographically connected to it. On the other hand, many counties in Mississippi, Arkansas and
Louisiana are far away from Cook but are socially connected to it, which is likely explained by migration of
African Americans from the South to the urban North during the Great Migration period.
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Figure C3: Referral sources for home mortgages, 2015
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Source: PwC report “Consumer lending: Understanding today’s empowered borrower”, 2015. Notes: The
report is based on a national survey of 2,000 consumers conducted by PwC in June 2015 using a population
targeting approach. The percentages indicate how many respondents ranked the option in their top 3 referral
sources. Thus, percentages will not sum to 100%. URL: https://www.pwc.com/mx/es/servicios-consultoria/
archivo/experience-radar-prestamos-a-consumo-entendiendo-al-prestatario-empoderado-de-hoy.pdf
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Table C1: Panel IV estimates: Robustness to changing SCA thresholds

Spillover effect from
Top 200 SCAs Top 250 SCAs Top 300 SCAs Top 500 SCAs Top 1000 SCAs All counties

̂∆FinTechSCA 0.328*** 0.342*** 0.348*** 0.361*** 0.368*** 0.354***
(0.024) (0.025) (0.026) (0.028) (0.029) (0.029)

County FE x x x x x x
Region-by-quarter FE x x x x x x
County controls x x x x x x
SCA controls x x x x x x

# Obs. 122,314 122,314 122,314 122,314 122,314 122,314

Notes: See notes for Table 1.

Table C2: Panel IV estimates: Robustness to alternative specifications

Alternative instruments Alternative RHS: ∆FinTech RefiSCA Excl. counties in largest
SCAs>100mi SCAs>200mi Total effect Refinancing Purchases 10 MSAs 30 MSAs

(1) (2) (3) (4) (5) (6) (7)

̂∆FinTechSCA 0.344*** 0.417*** 0.281*** 0.418*** 0.090*** 0.311*** 0.258***
(0.035) (0.061) (0.022) (0.031) (0.016) (0.025) (0.023)

County FE x x x x x x x
Region-by-quarter FE x x x x x x x
County controls x x x x x x x
SCA controls x x x x x x x

1st stage coef. on IV 0.514*** 0.146*** 0.453*** 0.453*** 0.453*** 0.762*** 0.731***
F-stat of excluded instruments 1,082 226 9,122 9,071 9,074 8,268 6,921
# Obs. 122,314 122,314 122,314 119,718 119,663 118,154 114,114

Notes: *, ** and *** denote significance at the 10%, 5% and 1% level, respectively. Standard errors are
clustered at the county level. The first two columns estimate IV specification (4) with alternative instruments
using SCAs that are 100 or 200 miles away from the county of interest. Columns (3)-(5) use the weighted
change in SCAs’ FinTech refinancing share (as opposed to the weighted change in SCAs’ overall FinTech
share) as the key RHS variable to estimate IV specification (4) by loan purpose. Columns (6) and (7) show
the IV estimates excluding counties in the largest MSAs.
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D Extension to Fuster et al. (2019)
To inform the structural modeling choices, I extend the county-level evidence in Fuster et al.
(2019) by examining the effects of FinTech market penetration on (i) the home-purchasing
propensity, and (ii) the average interest rate of newly originated mortgages (excluding jumbo
loans). The sample period is 2007Q1-2017Q4. The regression specification and the measure
of FinTech market penetration closely follow those in Fuster et al. (2019):

yc,t = γc + γt + β1FinPenetrationc,t−1 + β2xc,t + εc,t, (13)

where the measure of FinTech market penetration, FinPenetrationc,t−1, is the one-quarter
lagged four-quarter moving-average FinTech market share in county c at quarter t. The
regression includes county and quarter fixed effects, as well as the controls for the loan-market
composition and demand shifters (e.g., the average FICO score, house prices growth, lagged
average rates and demographics). Standard errors are clustered at the county level.

The dependent variables are constructed using quarterly loan-level mortgage servicing
data (McDash), which cover the majority of existing mortgages in the U.S. (see Appendix B
for the data description). The home-purchasing propensity is the share of newly originated
home-purchasing mortgages among all existing mortgages. The average interest rates on
new refinancing mortgages and on new home-purchasing mortgages are straightforward to
construct using the McDash data.

Table D1 shows the estimation results. Column (1) confirms the finding in Fuster
et al. (2019) that the refinancing propensity is significantly higher for counties with higher
FinTech market penetration. In contrast, column (2) shows no significant change in the
home-purchasing propensity. Columns (3) and (4) show no significant differences in the
average rate of new mortgages, either refinancing or home-purchasing, for counties with
higher FinTech market penetration. These results together suggest that higher FinTech
market penetration facilitates the transmission of monetary stimulus mainly through the
refinancing quantity channel.
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Table D1: Effects of FinTech market penetration on mortgage originations and rates

Refi propensity Purchasing propensity Avg. refi rate Avg. purchasing rate
(1) (2) (3) (4)

FinTech Penetration 0.038*** 0.006 -0.006 0.180
(0.010) (0.009) (0.072) (0.143)

County FE x x x x
Quarter FE x x x x
County controls x x x x
# Obs. 119,073 119,073 101,254 102,485

Notes: *, ** and *** denote significance at the 10%, 5% and 1% level, respectively. Standard errors are
clustered at the county level. See text for the description of control variables.
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E Model Appendix: Recursive Formulation
The no-FinTech model. It is useful to first describe the recursive formulation of the
model without FinTech lending. The household maximizes its expected lifetime utility by
comparing the value of refinancing, V R, and the value of not refinancing, V N . The value
function is V = max{V R, V N}, where

V R(b, a, y, rb0, rb, f, p) = max
a′ ,c

u(c)− f − χ(rb0, rb) + βEV (b′ , a′ , y′ , rb, rb′ , f ′ , p′)

s.t. c+ a
′ =y + (1 + ra)a− (1 + rb)b+ (1− φ)b′

b
′ =γp; a

′ ≥ 0,

V N(b, a, y, rb0, rb, f, p) = max
a′ ,c

u(c) + βEV (b′ , a′ , y′ , rb0, rb
′
, f
′
, p
′)

s.t. c+ a
′ =y + (1 + ra)a− (1 + rb0)b+ b

′

b
′ =b; a

′ ≥ 0,

with log(y′) and log(p′) evolving according to equations (8) and (9).
The no-FinTech-spillover model. Next, consider the model in which FinTech lending is
available but there is no FinTech spillover across social networks. In this case, the household
maximizes its expected utility by choosing between V R and V N , where

V R(b, a, y, rb0, rb, f, p,Q) = max
a′ ,c

u(c)− f + qQ− (1−Q)χ(rb0, rb) + βEV (b′ , a′ , y′ , rb, rb′ , f ′ , p′ , Q′)

s.t. c+ a
′ =y + (1 + ra)a− (1 + rb)b+ (1− φ)b′

b
′ =γp; a

′ ≥ 0,

V N(b, a, y, rb0, rb, f, p) = max
a′ ,c

u(c) + βEV (b′ , a′ , y′ , rb0, rb
′
, f
′
, p
′
, Q
′)

s.t. c+ a
′ =y + (1 + ra)a− (1 + rb0)b+ b

′

b
′ =b; a

′ ≥ 0,

with log(y′) and log(p′) evolving according to equations (8) and (9).
The baseline model. In this model, FinTech information can be obtained from both
network and non-network sources. The household maximizes its expected utility by choosing
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between V R and V N , where

V R(b, a, y, rb0, rb, f, p,Q,E) = max
a′ ,c

u(c)− f + max{qQ, eE} − I (max{qQ, eE} = 0)χ(rb0, rb)+

βEV (b′ , a′ , y′ , rb, rb′ , f ′ , p′ , Q′ , E ′)

s.t. c+ a
′ =y + (1 + ra)a− (1 + rb)b+ (1− φ)b′

b
′ =γp; a

′ ≥ 0,

V N(b, a, y, rb0, rb, f, p) = max
a′ ,c

u(c) + βEV (b′ , a′ , y′ , rb0, rb
′
, f
′
, p
′
, Q
′
, E
′)

s.t. c+ a
′ =y + (1 + ra)a− (1 + rb0)b+ b

′

b
′ =b; a

′ ≥ 0,

with log(y′) and log(p′) evolving according to equations (8) and (9).
Solution methods. The baseline model is characterized by a large number of state
variables. One way to reduce the state space is to define a new random variable that
combines information in f , Q and E. Let Z = −f + max{qQ, eE} with cumulative density
function FZ . The value of refinancing, V R, can be rewritten as

V R(b, a, y, rb0, rb, p, Z) = max
a′ ,c

u(c) +Z − I (Z = −f)χ(rb0, rb) + βEV (b′ , a′ , y′ , rb, rb′ , p′ , Z ′),

subject to the same constraints.
The model is solved numerically using a value function iteration method. In the first step,

the state space is discretized and the value functions are solved over fixed grids of the state
space. In the second step, the policy functions are obtained by solving the maximization
problem over finer grids conditional on the value functions obtained from the first step. All
model simulations are based on the optimal choices of 100,000 households.
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Figure E1: Average FinTech utility gain and monetary policy effects
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(d) Consumption response

Notes: Model simulations. This figure depicts how the FinTech market share, the refinancing response,
and the consumption response change (panels b-d), when the average utility gain from FinTech refinancing
decreases (panel a) due to a rising share of consumers who are worse off with FinTech lending.
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Figure E2: Dispersion in FinTech utility gain and monetary policy effects
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(c) Refi-propensity response
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(d) Consumption response

Notes: Model simulations. This figure depicts how the FinTech market share, the refinancing response, and
the consumption response change (panels b-d), when the average utility gain from FinTech refinancing is
fixed but the dispersion increases (panel a) due to the increasing dispersion in the realized FinTech utility
gain.
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