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I Testing the Null Hypothesis of Weak Instruments

This section describes the weak instruments test in the SP-IV model dis-
cussed in Section 2.2 of the main text. The test nests the popular bias-
based test of Stock and Yogo (2005) when H = 1. The development of
the test is analogous to that of the weak instruments test in Lewis and
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Mertens (2022), which extends the Stock and Yogo (2005) test to be robust
to autocorrelation and heteroskedasticity. Mathematically, the extension
of the Stock and Yogo (2005) test in Lewis and Mertens (2022) closely
resembles the extension required for SP-IV to allow H > 1.

We first establish some specific notation: ||U ||2 is the spectral norm of
U (the positive square root of the maximum eigenvalue of UU ′, also the `2-
norm if U is a vector), Pn is the set of positive definite n×nmatrices, On×m

is the set of n×m orthogonal real matrices U such that UU ′ = In, Kn,m
denotes the n×m commutation matrix such that Kn,m vec(U) = vec(U ′)

where U ∈ Rn×m. We also define the special matrix Rn,m = In ⊗ vec(Im).
The dimension of Rn,m is nm2×n. For U ∈ Rnm×nm, the (i, j)-th element
of V = R′n,m(U ⊗ Im)Rn,m ∈ Rn×n is Tr(Uij) where Uij ∈ Rm×m is (i, j)-th
block of U and Tr(·) is the trace. For U ∈ Rnm×m, the i-th element of
V = R′n,m vec(U ′) ∈ Rn is equal to Tr(Ui) where Ui ∈ Rm×m is the i-th
row block of U . Note that R′n,mRn,m = mIN .

I.1 Weak IV Representation of the SP-IV Estimator

Using the more general notation for the restriction matrixR defined above,
the SP-IV estimator is

β̂ =
(
R′K,H(Y ⊥H PZ⊥Y ⊥′H ⊗ IH)RK,H

)−1
R′K,H vec(y⊥HPZ⊥Y ⊥′H ) ,(I.1)

where PZ⊥ = Z⊥′(Z⊥Z⊥′)−1Z⊥. As is standard in the literature – see,
e.g., Staiger and Stock (1997) – we assume identification but first-stage
parameters that are local-to-zero.

Assumption 4. ΘY = C/
√
T where C ∈ RHK×Nz is a fixed matrix and

RK,H(CC ′ ⊗ IH)RK,H is of full rank.

This assumption implies that the instruments are weak under the null
hypothesis. The following replace Assumptions 2 and 3 to allow the char-
acterization of the weak instrument asymptotic distribution of β̂.
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Assumption 5. The following limits hold as T →∞:

u⊥Hu
⊥′
H /T

p→ Σu⊥H
∈ PH ,(5.a)

u⊥Hv
⊥′
H /T

p→ Σu⊥Hv
⊥
H
∈ RH×HK ,

v⊥Hv
⊥′
H /T

p→ Σv⊥H
∈ PHK ,

T−
1
2

[
vec((Z⊥Z⊥′)−

1
2Z⊥w⊥′H )

vec((Z⊥Z⊥′)−
1
2Z⊥v⊥′H )

]
d→ N (0,W ⊗ INz) ,(5.b)

and Ŵ
p→W(5.c)

where W =

[
W1 W12

W′
12 W2

]
∈ P(K+1)H .

w⊥H = y⊥H − (β′ ⊗ IH)ΘYQ
− 1

2Z⊥ are the reduced-form errors with covari-
ance matrix W1, v⊥H = Y ⊥H − ΘYQ

− 1
2Z⊥ are first-stage error terms with

covariance matrix W2, and W is the joint covariance of the reduced-form
and first-stage errors.

The SP-IV estimator can be rewritten as

β̂ =
(
R′K,H(sZY s

′
ZY ⊗ IH)RK,H

)−1
R′K,H vec(sZys

′
ZY ).(I.2)

where sZy = y⊥HZ
⊥′(Z⊥Z⊥′)−

1
2 and sZY = Y ⊥H Z

⊥′(Z⊥Z⊥′)−
1
2 . This alter-

native expression reformulates β̂ in terms of random vectors with asymp-
totic distributions given in Assumption 5. Define the random variables η1

and η2 (H ×Nz and HK ×Nz respectively) as[
vec(η1)

vec(η2)

]
∼ N

((
0HNz

vec(C)

)
,S⊗ INz

)
(I.3)

where S ∈ P(K+1)H , partitioned as W with

S1 = W1 + (β′ ⊗ IH)W2(β ⊗ IH)− (β′ ⊗ IH)W′
12 −W12(β ⊗ IH),

(I.4)

S12 = W12 − (β′ ⊗ IH)W2 , S2 = W2,

such that S⊗ INz is the asymptotic covariance of
T−

1
2

[
vec(u⊥HZ

⊥′(Z⊥Z⊥′)−
1
2 )′ vec(Y ⊥H Z

⊥′(Z⊥Z⊥′)−
1
2 )′
)′
. Proposition 6
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then characterizes the distribution of the random variable β∗ = β̂ − β.

Proposition 6. Under Assumptions 4 and 5, sZY
d→ η2 and sZy

d→ (β′⊗
IH)η2 + η1, and thus

β̂ − β d→ β∗ =
(
R′K,H(η2η

′
2 ⊗ IH)RK,H

)−1
R′K,H vec(η1η

′
2).

Proof. The results follow directly from the stated assumptions, the ex-
pression for β̂ in (I.2), and the continuous mapping theorem.

Since β∗ converges to a quotient of quadratic forms in normal random
variables, β̂ is not a consistent estimator of β. The asymptotic bias of the
SP-IV estimator is the expected value E[β∗]. Before introducing the weak
instruments set, we define the concentration matrix for the model.

Definition 1. The concentration matrix is Λ = 1
Nz

Φ−
1
2RK,H(CC ′⊗IH)RK,HΦ−

1
2

where Φ = R′K,H(S2 ⊗ IH)RK,H .

I.2 Definition of Weak Instruments

We consider instruments weak when a weighted `2-norm of the asymptotic
bias E[β∗] is large relative to a worst-case benchmark.

Definition 2. The bias criterion is B = Tr(S1)−
1
2 ||E [β∗]′Φ

1
2 ||2.

Following Stock and Yogo (2005), the `2-norm in the bias criterion
aggregates the K elements of the bias through a quadratic loss function,
such that B is weakly positive and penalizes larger biases more heavily.
The criterion applies a weighting matrix, Φ, to put the elements of E [β∗]

on a comparable scale. The weighting matrix Φ effectively standardizes
the regressors in the second stage so that they have unit standard devia-
tions and are orthogonal. The bias criterion also scales by Tr(S1), which
is the probability limit of T−1u⊥HPZ⊥u⊥′H . This scaling expresses B as a
ratio, relative to the same worst-case bias as in Montiel-Olea and Pflueger
(2013), and Lewis and Mertens (2022). The intuition for the worst-case
bias is given by the ad-hoc approximation of E[β∗] in terms of a ratio of
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expectations as in Staiger and Stock (1997):

E[β∗] ≈ vec(S12)′RK,HΦ−
1
2

Tr(S1)
1
2

(IK + Λ)−1Φ−
1
2 Tr(S1)

1
2(I.5)

Using this approximation, the bias criterion in (2) reaches a maximum of
unity when the errors u⊥H are perfect linear combinations of the second-
stage regressors, v⊥HP⊥Z , such that the first term in (I.5) is a K × 1 unit
vector, and when the instruments are completely uninformative so the
concentration matrix, Λ, is zero.

Definition 3. The weak instrument set is

(I.6) Bτ (W) = {C ∈ RN×K , β ∈ RN : B ≥ τ}.

The weak instrument set is the set of values for β and the first-stage
parameters C such that bias B exceeds a tolerance level τ . This set
depends on W, which can be consistently estimated, but also on C, and
the K unknown parameters in β.

I.3 Characterizing the Boundary of the Weak Instrument Set

Under Assumptions 4 & 5, the bias criterion in Definition 2 can be de-
composed as B = ||hρ||2, where

h = HE
[(
R′K,H(S(l + ψ)(l + ψ)′S ′ ⊗ IH)RK,H

)−1
R′K,H

(
S(l + ψ)ψ′S−1 ⊗ IH

)]
,

ρ =
(
Φ−

1
2 ⊗ IH2

)
vec (S12) /

√
Tr(S1) ,

l = S
− 1

2
2 C, ψ = S

− 1
2

2 (η2−C), vec(ψ) ∼ N (0, IKHNz), and S = ((Φ/H)−
1
2⊗

IH)S
1
2
2 . This decomposition is analogous to that of Lemma 1 in Lewis and

Mertens (2022). The matrix h is the expected value of a random matrix
that is a function of ψ, a matrix with i.i.d standard normal variables as
elements. This expected value – when it exists – also depends on loca-
tion parameters C and on W2. The vector ρ depends on W and β. In
general, there is no tractable analytical expression for the integral underly-
ing the expectation in h, which is required to evaluate the bias. Following

5



Montiel-Olea and Pflueger (2013) and Lewis and Mertens (2022), we adopt
a Nagar (1959) approximation to h around ψ = 0, which we denote by
hn. The Nagar bias is defined as Bn = ||hnρ||2. Using the eigenvalue de-
composition Λ = QΛDΛQ

′
Λ, the Nagar approximation of h around ψ = 0

is given by

hn = N−1
z QΛD

− 1
2

Λ M1(D−
1
2

Λ QΛ ⊗ L0 ⊗ IK)(IKH ⊗ (INz ⊗ L0)KNz ,HNzRH,Nz)M2

(I.7)

with L0 = HNz
− 1

2Q′ΛΛ−
1
2R′K,HNz

(S vec(l) ⊗ IHNz) ∈ OK×HNz , M1 =

R′K,K
(
IK3 + (KK,K ⊗ IK)

)
and M2 = RK,HR

′
K,H/(K + 1)− IKH2 .

Analogous to Lewis and Mertens (2022), we base our test on the bound

Bn ≤ λ−1
minB(W) ,(I.8)

where λmin = mineval{Λ} and

B(W) = (Nz

√
H)−1sup

L0

{||M1(IK ⊗ L0 ⊗ IK)(IKH ⊗ (INz ⊗ L0)KNz ,HNzRH,Nz)M2Ψ||2} ,

(I.9)

Ψ =
(
SW

− 1
2

2 [W12 : W2]′ ⊗ IH)RK+1,H(R′K+1,H(W ⊗ IH)RK+1,H)−
1
2 .

(I.10)

I.4 Null Hypothesis

Given a bias tolerance level τ , the test of the null hypothesis of weak
instruments is based on a test of whether the minimum eigenvalue of Λ

is less than or equal to a threshold value λ∗min(τ). More formally, the null
and alternative hypotheses for the test are

H0 : λmin ∈ H(W) vs. H1 : λmin 6∈ H(W),(I.11)

where H(W) = {λmin ∈ R+ : λmin ≤ λ∗min(τ)},

where λ∗min(τ) = B(W)/τ . The null hypothesis is that the minimum
eigenvalue of the concentration matrix is in the set of values for which
the worst-case Nagar bias is greater than the tolerance level τ . Under the
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alternative, the minimum eigenvalue is not in that set of values.

I.5 Test Statistic and Critical Values

The following proposition presents our statistic to test the null hypothesis.

Proposition 7. Define the test statistic

g = N−1
z mineval{Φ̂−

1
2 (Y ⊥H PZ⊥Y ⊥′H )Φ̂−

1
2},

where Φ̂ = R′K,H(Ŵ2 ⊗ IH)RK,H . Then, under Assumptions 4 and 5,

g
d→ mineval{R′K,H(ζ ⊗ IK)RK,H/(HNz)},

where the KH×KH random matrix ζ = S(l+ψ)(l+ψ)′S ′ has a noncen-
tral Wishart distribution, ζ ∼ W(Nz,Σ,Ω), with Nz degrees of freedom,
covariance matrix Σ = SS ′ ∈ PKH , and a matrix of noncentrality param-
eters Ω = Σ−1Sll′S ′.18

Proof. The proposition follows from Slutsky’s theorem, the continuous
mapping theorem, and Y ⊥H PZ⊥Y ⊥′H

d→ R′K,H

(
S

1
2
2 (l + ψ)(l + ψ)′S

1
2′
2 ⊗ IK

)
RK,H ,

which implies the stated distribution of ζ.

While ζ has a noncentral Wishart distribution, critical values for the
test statistic g require the distribution of mineval{R′K,H(ζ ⊗ IH)RK,H},
which is the minimum eigenvalue of the K ×K matrix consisting of the
traces of the H × H partitions of ζ. To the best of our knowledge, the
distribution of this function of ζ is unknown. Moreover, the limiting
distribution of g depends in general on all parameters in Σ and Ω, not
just on the threshold for λmin.

To address both these challenges, we follow Stock and Yogo (2005)
and Lewis and Mertens (2022) and obtain critical values from a bound-
ing limiting distribution of g. Specifically, we consider the distribution of
γ′R′K,H(ζ⊗IH)RK,Hγ ≥ mineval{R′K,H(ζ⊗IH)RK,H} as a bounding distri-
bution, where γ is the eigenvector associated with the minimum eigenvalue

18We adopt the notational convention of Muirhead (1982) for the noncentral Wishart distribution.
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of Λ and γ′γ = 1. The following theorem is a straightforward extension
of Theorem 2 in Lewis and Mertens (2022).

Theorem 1. For ζ ∼ W(Nz,Σ,Ω),

(i) The n-th cumulant of γ′R′K,H(ζ ⊗ IH)RK,Hγ is

κn = 2n−1(n− 1)!
(
Nz Tr

(
((γγ′ ⊗ IH)Σ)n

)
+ nTr

(
((γγ′ ⊗ IH)Σ)nΩ

))
.

(ii) The n-th cumulant κn with n > 1 is bounded by

κn ≤2n−1(n− 1)!
(
Nz maxeval{R′K,H(Σn ⊗ IH)RK,H}

+ nHNzλmin maxeval{Σ}n−1
)
.

Proof. See Lewis and Mertens (2022).

As in Lewis and Mertens (2022), we consider the class of approximat-
ing distributions proposed by Imhof (1961), which match the first three
cumulants of an unknown target distribution. We select the Imhof distri-
bution with the largest critical value at significance level α subject to the
constraints that the first cumulant, κ1 = HNz(1 + λmin), matches that of
the target distribution, and that the second and third cumulants respect
the analytical upper bounds on the cumulants of the limiting distribution
of g. The resulting critical value is guaranteed to be conservative relative
to the unknown critical value from the true limiting distribution of the
test statistic, g.

II Additional Simulation Results

II.1 IRF Estimates in the Simulations

Figures II.1 and II.2 show the true model impulse responses to a one
s.t.d. contractionary monetary policy shock, together with the mean IRF
estimates and 2.5% and 97.5% percentiles, across 5000 simulations from
the Smets and Wouters (2007) model discussed in Section 3. The columns
show IRFs estimated using a distributed lag specification, local projections
with the set of control variables Xt−1 described in the main text, and a
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VAR in Xt with four lags. The top rows in each Figure show the IRFs
of inflation, whereas the bottom rows show the IRFs of the output gap
(real marginal cost). For brevity, we only show the IRFs associated with
the monetary policy shock for H = 20 quarters. Results for the other
specifications are available on request.

Figure II.1: True and Estimated IRFs in Simulations, Small Sample (T = 250)
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(c) VAR
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(d) Distributed Lag
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(e) LP with controls
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(f) VAR
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Notes: Figures show IRFs to a one s.t.d. contractionary monetary policy shock in data
generated by the Smets and Wouters (2007) model. Red lines show the true IRFs. Blue
lines show the mean and 2.5% and 97.5% percentiles of the estimated IRFs across 5000
samples.

Figure II.1 shows the IRF estimates in a small sample with T = 250.
The DL estimates display smaller small-sample bias than the LP and VAR
estimates but have a wider 95% range at shorter horizons. Consistent with
Li et al. (2021), the VAR estimates have a narrower range than LP with
controls, particularly at longer horizons.

Figure II.2 shows the IRF estimates in a larger sample with T = 5000.
The DL and LP estimates show essentially no bias for T = 5000. Consis-
tent with Montiel Olea and Plagborg-Møller (2021), the VAR estimates
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Figure II.2: True and Estimated IRFs in Simulations, Large Sample (T = 5000)
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Notes: See Figure II.1

show no bias for horizons up to the lag length of the VAR (four). Given
that the Stock and Watson (2012) model does not have a finite-order
VAR representation in Xt, the restrictions implied by the finite-order
VAR model result in bias in the IRF estimates at horizons beyond the
lag length of the VAR.

II.2 Simulation Results Using Three Instruments (Nz = 3)

This section presents the simulation results for specifications using three
instruments. Besides the monetary policy shock, the additional instru-
ments are the government spending shock and the risk premium shock
from the Smets and Wouters (2007) model. These additional shocks also
satisfy the exogeneity requirements for estimating the parameters of the
Phillips curve in the data-generating process, both for 2SLS with DL in-
struments and the SP-IV estimators.
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Panel a. of Table II.1 reports the mean estimates across 5000 Monte
Carlo samples, Panel b. shows the standard deviations. The results are
qualitatively similar to those reported in Tables 2, 3 in the main text,
which show results for simulations with only the monetary policy shock
as an instrument.

More specifically, the relative performance of the various estimators in
terms of bias and variance remains the same with three instruments. In
general, the bias improvements from using the IV estimators relative to
OLS are smaller with three instruments. However, the comparison of panel
b. in Table II.1 and Table 3 in the main text shows that using additional
instruments lowers the variance of all the estimators. Therefore, the choice
of the number of instruments involves a bias-variance trade-off, at least in
data generated from the SW model.

Table II.2 shows the empirical rejection rates for the specifications that
use three instruments. The Table repeats the rejection rates for H = 20,
Nz = 3 that are also in Table 4 in the main text and are discussed there.
The first three columns additionally report the results for H = 8 and
Nz = 3 for completeness. The general conclusions remain qualitatively
the same, although the size distortions related to the many-moments prob-
lem are naturally quantitatively less pronounced. The robust SP-IV tests
also appear somewhat less affected by many moment distortions than the
robust tests for the single equation specification with DL instruments (re-
ferred to in the Table as AR SE-IV and KLM SE-IV).

II.3 Simulation Results for Generalized SP-IV estimators

This section presents simulation results for the (feasible) generalized SP-
IV estimators based on a 2-step procedure. First, we estimate the base-
line SP-IV estimators and estimate the covariance matrix Σ̂⊥u using (19).
Then, we use the latter to obtain the generalized SP-IV estimators as
in (B.1). The generalized SP-IV estimators are also the feasible 2-step
efficient GMM estimators.

Table II.3 reports the standard deviations of the estimates in the sim-
ulations. The generalized SP-IV, or “GSP-IV”, estimators are, in theory,
asymptotically more efficient than our baseline estimators. However, the
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Table II.1: Mean and Variance of parameter estimates, Nz = 3

a. Mean Parameter Estimates

T = 250 T = 500 T = 5000
Estimator γb γf λ γb γf λ γb γf λ
True Value 0.15 0.85 0.05 0.15 0.85 0.05 0.15 0.85 0.05
OLS 0.47 0.47 0.00 0.48 0.48 0.00 0.48 0.48 0.00

H = 8
2SLS 0.40 0.56 0.00 0.36 0.63 0.00 0.23 0.82 0.02
SP-IV LP 0.39 0.56 0.00 0.36 0.63 0.00 0.22 0.82 0.02
SP-IV LP-C 0.40 0.55 0.02 0.36 0.63 0.03 0.20 0.81 0.04
SP-IV VAR 0.34 0.69 0.01 0.29 0.75 0.02 0.20 0.83 0.04

H = 20
2SLS 0.45 0.51 0.00 0.43 0.55 0.00 0.28 0.76 0.01
SP-IV LP 0.44 0.51 0.00 0.42 0.56 0.00 0.28 0.76 0.01
SP-IV LP-C 0.44 0.51 0.01 0.43 0.56 0.01 0.27 0.76 0.02
SP-IV VAR 0.35 0.69 0.01 0.31 0.74 0.01 0.23 0.82 0.02

b. Standard Deviation of Parameter Estimates

T = 250 T = 500 T = 5000
Estimator γb γf λ γb γf λ γb γf λ
H = 8
2SLS 0.09 0.10 0.03 0.08 0.09 0.03 0.06 0.05 0.02
SP-IV LP 0.09 0.10 0.04 0.09 0.09 0.03 0.06 0.05 0.02
SP-IV LP-C 0.09 0.10 0.06 0.09 0.09 0.05 0.06 0.05 0.03
SP-IV VAR 0.11 0.13 0.05 0.11 0.11 0.05 0.06 0.05 0.03

H = 20
2SLS 0.04 0.04 0.01 0.04 0.04 0.01 0.04 0.04 0.01
SP-IV LP 0.05 0.05 0.02 0.04 0.04 0.01 0.04 0.04 0.01
SP-IV LP-C 0.04 0.05 0.02 0.04 0.04 0.02 0.04 0.04 0.01
SP-IV VAR 0.09 0.11 0.02 0.09 0.10 0.02 0.05 0.04 0.02

Notes: The first row in Panel a. contains the true parameter values β = [γb, γf , λ]
′ of

(2) in the Smets and Wouters (2007) model. The other rows show the mean (Panel a.)
and standard deviation (Panel b.) of estimates across 5000 Monte Carlo samples of size
T and with h = 0, . . . ,H − 1. All IV estimators use the true monetary policy shock,
government spending shock, and risk premium shock in the model as instruments. SP-IV
LP and LP-C denote implementations based on LPs without and with Xt−1 as controls,
respectively. SP-IV VAR denotes implementation with a VAR for Xt with four lags.
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Table II.2: Empirical size of nominal 5% tests, Nz = 3

H = 8 H = 20
T = 250 T = 500 T = 5000 T = 250 T = 500 T = 5000

Wald 2SLS 83.1 79.2 58.9 100.0 99.9 94.3
Wald SP-IV LP 84.3 80.4 60.4 100.0 99.9 93.8
Wald SP-IV LP-C 75.8 62.4 22.7 100.0 99.8 83.0
Wald SP-IV VAR 39.2 28.3 13.3 86.7 76.7 54.1

AR SE-IV 16.9 11.4 4.3 60.0 36.3 6.4
AR SP-IV LP 7.0 5.7 4.7 14.3 8.0 5.0
AR SP-IV LP-C 7.0 5.6 4.5 16.9 9.2 5.1
AR SP-IV VAR 3.9 5.1 4.8 6.5 5.2 4.6

KLM SE-IV 2.7 4.3 4.3 0.0 7.2 5.0
KLM SP-IV LP 5.7 5.2 5.3 7.6 6.5 5.3
KLM SP-IV LP-C 7.3 5.5 5.6 11.4 7.6 6.1
KLM SP-IV VAR 6.9 6.6 4.9 11.7 8.5 5.5

Notes: The table shows empirical rejection rates of nominal 5% tests of the true values of
β = [γb, γf , λ]

′ in 5000 Monte Carlo samples from the Smets and Wouters (2007) model.
All IV estimators are based on h = 0, ...,H − 1 and use the true monetary policy shock,
government spending shock, and risk premium shock in the model as instruments. SP-IV
LP and LP-C denote implementations based on local projections without and with Xt−1
(described in the text) as controls, respectively. SP-IV VAR denotes implementation with
a vector autoregression for Xt with four lags. Robust tests for 2SLS/SE-IV use a HAR
Newey-West variance matrix with Sun (2014) fixed-b critical values; inference procedures
for SP-IV are described in Section 2 and Appendix A.

feasible versions do not generally improve performance in practice, at
least not in realistic sample sizes and for our data-generating process. For
Nz = 1, most GSP-IV variances slightly exceed those of their SP-IV coun-
terparts in Table 3 in the main text. With more instruments (Nz = 3),
there is some sporadic evidence of small efficiency gains of GSP-IV relative
to their SP-IV counterparts in Panel b. in Table 3. The fact that GSP-IV
does not consistently provide efficiency gains (and frequently fares slightly
worse) in small samples likely results from estimation error in the H ×H
weighting matrix, which itself depends on the estimate β̂, which is only
weakly identified.

For brevity, we do not report the simulation results for the bias and
empirical rejection rates, but they are available on request. The results are
comparable overall to the regular SP-IV estimators discussed in the main
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Table II.3: Standard deviation of parameter estimates, GSP-IV

T = 250 T = 500 T = 5000
γb γf λ γb γf λ γb γf λ

H = 8, Nz = 1
GSP-IV LP 0.33 0.46 0.24 0.27 0.40 0.24 0.12 0.08 0.09
GSP-IV LP-C 0.36 0.33 0.31 0.31 0.22 0.28 0.12 0.06 0.08
GSP-IV VAR 0.36 0.41 0.34 0.33 0.27 0.32 0.13 0.06 0.09

H = 20, Nz = 1
GSP-IV LP 0.15 0.18 0.07 0.12 0.14 0.06 0.07 0.05 0.03
GSP-IV LP-C 0.10 0.11 0.06 0.09 0.09 0.05 0.08 0.05 0.03
GSP-IV VAR 0.24 0.28 0.14 0.21 0.19 0.13 0.12 0.06 0.06

H = 8, Nz = 3
GSP-IV LP 0.11 0.12 0.04 0.09 0.10 0.03 0.06 0.05 0.02
GSP-IV LP-C 0.10 0.10 0.05 0.09 0.08 0.05 0.06 0.05 0.03
GSP-IV VAR 0.11 0.12 0.05 0.10 0.11 0.05 0.06 0.05 0.03

H = 20, Nz = 3
GSP-IV LP 0.04 0.04 0.01 0.03 0.03 0.01 0.04 0.04 0.01
GSP-IV LP-C 0.03 0.03 0.01 0.03 0.03 0.01 0.04 0.04 0.01
GSP-IV VAR 0.07 0.09 0.02 0.07 0.09 0.02 0.05 0.04 0.02

Notes: Rows show standard deviations across 5000 Monte Carlo samples of size T with
h = 0, . . . ,H − 1. Nz = 1 estimators use the monetary policy shock as an instrument;
Nz = 3 add the government spending and risk premium shocks as instruments. GSP-IV
is the (feasible) generalized estimator in (B.1), obtained in a two-step procedure using
(19).

text. The GSP-IV estimators consistently show somewhat greater bias
than their SP-IV counterparts when additional instruments are included.
In sum, at least in our setting, the simulation results offer little motivation
to prefer GSP-IV over SP-IV in practice.

II.4 Simulation Results for Alternative 2SLS Specifications

This section presents simulation results for alternative 2SLS estimators
that incorporate controls.

As mentioned in the main text, we consider three alternative versions
of 2SLS estimation with controls. The first, labeled 2SLS-C, adds Xt−1

as controls to both stages of 2SLS with DL instruments. The second,
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labeled 2SLS-CL, adds Xt−H as controls to both stages of 2SLS with DL
instruments. The third, labeled 2SLS-CZ, does not add any controls to
2SLS, but uses a DL of z⊥t – the residual in the regression of zt on Xt−1 –
as the instruments.

Table II.4 reports mean estimates of the different versions of 2SLS in
the simulations for T = 5000 with the lag endogenous monetary policy
instrument as in Section 3.1. For comparison, the Table also repeats the
results for the implementations of SP-IV based on LPs with Xt−1 as con-
trols and a VAR in Xt with four lags. As the Table shows, 2SLS-C reduces
overall bias in the parameter estimates relative to 2SLS, but still produces
a severely biased estimate for the slope of the Phillips Curve, λ. As ex-
plained in the main text, the problem of including Xt−1 as controls to
address lag endogeneity is that doing so also diminishes the explanatory
power of the lags of the instruments in the first stage. As a result, identi-
fication weakens to the point where, even in large samples, there remains
a strong bias in λ. Adding Xt−H instead as controls (2SLS-CL) avoids
that problem but also does not fully insulate 2SLS from the bias due to
lag endogeneity. Table II.4 shows that 2SLS-CL generates bias improve-
ments relative to 2SLS, but not to the same extent as the SP-IV LP-C
and VAR estimators. Finally, the only version of 2SLS that is successful
in removing the lag endogeneity bias is the version in which zt is first or-
thogonalized to Xt−1 (2SLS-CZ). Table II.4 shows that, in large samples,
2SLS-CZ generates, on average, the same parameter estimates as SP-IV
using LPs with controls.

Table II.5 reports mean estimates of the different versions of 2SLS in
the same simulations with the fully exogenous monetary policy instrument
as in Section 3.2. As the Table shows, 2SLS-C produces strong bias in λ in
all sample sizes. The reason is again that adding Xt−1 as controls greatly
weakens the identifying information from the lags of the instrument. The
2SLS-CL estimates based on adding Xt−H as controls lead to some small
sample bias improvements relative to 2SLS without any controls, but these
improvements are not as large as for SP-IV since estimation is based exclu-
sively on H-step ahead forecast errors. Finally, when the instrument zt is
fully exogenous already, the 2SLS-CZ estimates with a DL of residualized
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Table II.4: Mean Parameter estimates, Alternative 2SLS Specifica-
tions, Lag Endogenous Instrument, T = 5000

Estimator γb γf λ
True Value 0.15 0.85 0.05
OLS 0.48 0.48 0.00

H = 8
2SLS 0.27 0.58 -0.09
2SLS-C 0.19 0.87 -0.06
2SLS-CL 0.20 0.83 0.01
2SLS-CZ 0.16 0.84 0.05
SP-IV LP-C 0.16 0.84 0.05
SP-IV VAR 0.12 0.83 0.09

H = 20
2SLS 0.24 0.76 -0.02
2SLS-C 0.21 0.84 -0.06
2SLS-CL 0.23 0.81 0.01
2SLS-CZ 0.23 0.81 0.02
SP-IV LP-C 0.23 0.81 0.02
SP-IV VAR 0.17 0.83 0.05

Notes: The first row contains the true parameter values β = [γb, γf , λ]
′ of (2) in the

Smets and Wouters (2007) model. The other rows show the mean estimates across 5000
Monte Carlo samples of size T and with h = 0, . . . ,H − 1. 2SLS-C adds Xt−1 as controls
to both stages, 2SLS-CL adds Xt−H as controls to both stages, 2SLS-CZ is 2SLS a DL
of z⊥t as instruments instead of zt. SP-IV LP-C and VAR denote implementations based
on LP with Xt−1 and a VAR in Xt with four lags, respectively.

shocks z⊥t offer no further improvement relative to 2SLS with a DL of zt in
small samples: the mean parameter estimates for 2SLS and 2SLS-CZ are
essentially the same across all specifications; unlike SP-IV with controls,
there is no improvement in the effective instrument strength.

II.5 Measuring Effective Instrument Strength

This Section provides formal measures of the effective instrument strength
for the various estimators. We do so by approximating the concentration
matrix, Λ, associated with each estimator. For 2SLS estimators, this is the
object derived in Lewis and Mertens (2022), which extends Stock and Yogo
(2005) to be robust to heteroskedasticity and autocorrelation; for SP-IV, it
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Table II.5: Mean Parameter estimates, Alternative 2SLS Specifica-
tions, Fully Exogenous Instruments

T = 250 T = 500 T = 5000
Estimator γb γf λ γb γf λ γb γf λ
True Value 0.15 0.85 0.05 0.15 0.85 0.05 0.15 0.85 0.05
OLS 0.47 0.47 0.00 0.48 0.48 0.00 0.48 0.48 0.00

H = 8
2SLS 0.27 0.51 0.01 0.24 0.61 0.00 0.17 0.83 0.04
2SLS-C 0.31 0.69 -0.05 0.27 0.76 -0.04 0.18 0.89 -0.11
2SLS-CL 0.30 0.58 0.02 0.26 0.69 0.03 0.16 0.83 0.05
2SLS-CZ 0.27 0.52 0.01 0.24 0.62 0.01 0.16 0.84 0.05
SP-IV LP-C 0.29 0.64 0.05 0.25 0.74 0.04 0.16 0.84 0.05
SP-IV VAR 0.22 0.80 0.03 0.18 0.84 0.05 0.12 0.83 0.09

H = 20
2SLS 0.39 0.53 0.00 0.36 0.61 0.00 0.23 0.80 0.01
2SLS-C 0.37 0.57 -0.07 0.33 0.64 -0.06 0.21 0.85 -0.08
2SLS-CL 0.40 0.53 0.00 0.37 0.61 0.00 0.23 0.80 0.02
2SLS-CZ 0.39 0.53 0.00 0.36 0.61 0.00 0.23 0.81 0.02
SP-IV LP-C 0.41 0.55 0.01 0.37 0.64 0.01 0.23 0.81 0.02
SP-IV VAR 0.27 0.80 0.01 0.23 0.84 0.02 0.17 0.83 0.05

Notes: The first row contains the true parameter values β = [γb, γf , λ]
′ of (2) in the

Smets and Wouters (2007) model. The other rows show the mean estimates across 5000
Monte Carlo samples of size T and with h = 0, . . . ,H − 1. 2SLS-C adds Xt−1 as controls
to both stages, 2SLS-CL adds Xt−H as controls to both stages, 2SLS-CZ is 2SLS a DL
of z⊥t as instruments instead of zt. SP-IV LP-C and VAR denote implementations based
on LP with Xt−1 and a VAR in Xt with four lags, respectively.

is defined in Definition 1. We approximate it by setting T = 1, 000, 000 in
the Smets andWouters (2007) model to estimate the first-stage coefficients
ΘY and relevant error covariance matrices. The minimum eigenvalue of
the concentration matrix is a sufficient statistic for the worst-case bias of
the respective IV estimators, which motivates the proposed test statistic,
gmin. We report this minimum eigenvalue relative to the τ = 0.10 and
α = 0.05 critical values (as described in Lewis and Mertens (2022) and
Section I, respectively), specific to each estimator and specification, to
provide a metric that is on comparable scale across models. Table II.6
reports the results for T = 500, and these results scale linearly with T .

The measures of instrument strength reported in Table II.6 are overall
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Table II.6: Measures of instrument strength, T = 500

Nz = 1 Nz = 3
H = 8
2SLS 0.02 0.02
SPIV LP 0.02 0.02
SP-IV LP-C 0.17 0.17
SP-IV VAR 0.12 0.13

H = 20
2SLS 0.02 0.01
SPIV LP 0.02 0.01
SP-IV LP-C 0.08 0.05
SP-IV VAR 0.03 0.06

Notes: The table reports an approximation of the minimum eigenvalue of the concentra-
tion matrix, Λ, associated with the respective estimator, relative to the associated critical
value for the bias-based first-stage test. For 2SLS, Λ and critical values are defined as in
Lewis and Mertens (2022) and for SP-IV as in Definition 1 and Section I. The true value
of ΘY is approximated using a sample of T = 1, 000, 000 from the Smets and Wouters
(2007) model.

relatively small, and it may therefore appear surprising that the perfor-
mance of the estimators is not considerably worse. However, the tests
for instrument strength are based on controlling the worst case bias, and
there is no reason to believe the model parameters, i.e. eigenstructure of
ΘY , covariances of errors) are in the neighborhood of this worst case.

The results in Table II.6 are qualitatively consistent with the theoret-
ical predictions: SP-IV LP-C and SP-IV VAR have effectively stronger
instruments due to the inclusion of controls, whereas 2SLS and SP-IV LP
(without controls) they are essentially identical. SP-IV LP-C appears to
make marginally better use of the instruments than SP-IV VAR, although
the population measure of instrument strength masks the difficulty in es-
timating the IRFs efficiently in small samples. H = 20 delivers weaker
identification than H = 8, almost certainly due to the flattening (and
noisier estimation) of IRFs at longer horizons. The effect of additional in-
struments depends on the estimator considered: additional shocks provide
more identifying variation, but the critical values to which the measures
are benchmarked also increase with Nz.
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