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This paper studies the estimation of β in structural time series equa-
tions of the form

yt = β′Yt + ut ,(1)

where yt is a scalar observation of an outcome variable in period t, Yt is a
K × 1 vector of explanatory variables, ut is an error term, and β contains
the K structural parameters of interest. The explanatory variables Yt may
contain contemporaneous variables, but also lagged variables or agents’
expectations of future variables that may not be measured well by the
econometrician. We are interested in applications where E[Ytut] 6= 0,
such that standard regression techniques yield inconsistent estimates of β
due to endogeneity.

Equation (1) nests a wide range of dynamic relationships of interest
in macroeconomics. Consider the example of the Hybrid New Keynesian
Phillips Curve (henceforth, the “Phillips Curve”),

πt = γbπt−1 + γfπ
e
t+1 + λgapt + ut ,(2)

where πt denotes inflation, πet+1 is a measure of price setters’ period t

expectation of inflation in t + 1, and gapt is an output gap measure
(the deviation of actual economic activity from the level without price
rigidities). Equation (2) maps into the more general problem in (1) with
yt = πt, Yt = [πt−1, π

e
t+1, gapt]

′ and β = [γb, γf , λ]′. The estimation of
β = [γb, γf , λ]′ is complicated by a number of well-known problems that
result in E[Ytut] 6= 0, see for instance Mavroeidis et al. (2014) or McLeay
and Tenreyro (2019) for discussions. A general source of endogeneity is
measurement error, as in practice the output gap and inflation expecta-
tions must be replaced with proxy measures. A second source of endo-
geneity problems is simultaneity, since the error term typically includes
structural shocks that also influence the endogenous variables in Yt. Many
theoretical dynamic relationships include expectations and other endoge-
nous explanatory variables, and therefore face similar problems.

A common approach in the literature is to rely on dynamics for identi-
fication and use lagged variables as instrumental variables. In the Phillips
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Curve example, it is typical to use gapt−1, gapt−2, . . . and πt−2, πt−3, . . .,
or lags of other readily available macroeconomic variables.1 Instrument
exogeneity in this case requires that the error term ut is uncorrelated
with any of the determinants of the instrumenting lagged macroeconomic
variables. In other words, the shocks (and lags thereof) comprising the
error term ut must be uncorrelated with the shocks generating lags of gapt
and πt. There is no general theoretical justification for this assumption;
lags of output gaps or inflation, for example, are not valid instruments
for (2) in fully specified medium-scale macroeconomic models such as the
Smets and Wouters (2007) model. For this reason, Barnichon and Mesters
(2020) propose current and lagged values of direct measures of structural
shocks believed to be uncorrelated with ut as instrumental variables. In
practice, however, the literature is rarely comfortable with imposing the
strong assumption of unconditional lag exogeneity on available empirical
measures of structural shocks, such as empirical measures of monetary
policy surprises, and typically avoids doing so in other contexts by in-
cluding a rich set of lagged macroeconomic controls. Unfortunately, in-
cluding such controls in both stages of 2SLS with lagged economic shocks
as instruments shrinks their explanatory power towards that of only the
contemporaneous value of the instrumenting shocks, resulting in weaker
or even under-identification.

In this paper, we propose a novel approach to estimating β that al-
lows the inclusion of lagged variables as controls without weakening iden-
tification. Specifically, we replace the single equation (1) with an H-
dimensional system of structural equations in forecast errors of yt and Yt,
where H is the number of leads. The forecast errors can be derived from
a variety of forecasting models, including vector autoregressive models
(VARs) and local projections (LPs). The contemporaneous values of the
Nz instrumental variables generate HNz moment conditions, which we
solve in closed form for β, yielding a restricted IV estimator in the sys-
tem of reduced form forecast errors. We refer to this estimator as System
Projections on Instrumental Variables, or SP-IV.

1Galí and Gertler (1999), for example, use four lags of inflation, the labor income share, the
output gap, the long-short interest rate spread, wage inflation, and commodity price inflation.
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We show that SP-IV is equivalent to a regression of the impulse re-
sponse function (IRF) of yt on the IRFs of Yt, where the IRFs can be
obtained from a VAR, LPs or any other valid impulse response estimator.
2SLS with lag sequences of shocks as instruments is also equivalent to a
regression with IRFs, but the implicit IRFs are estimated by regressions of
the endogenous variables on distributed lags (DL) of the shocks. An ad-
vantage of SP-IV is that it estimates structural relationships across IRFs
as they are estimated in practice, which is rarely with DL specifications
but instead with VARs or LPs. In addition, SP-IV works with any LP
or VAR identification scheme and does not necessarily require a direct
measure of an economic shock.

The SP-IV approach has several other advantages over the conven-
tional 2SLS approach with DL instruments. First, like Barnichon and
Mesters (2020), it can leverage existing shock measures, but with suitable
controls it requires only the weaker assumptions of contemporaneous and
lead exogeneity, compared to contemporaneous, lead, and lag exogene-
ity for 2SLS. Second, the use of forecast errors instead of raw variables
can improve efficiency in estimating β. Third, similar efficiency gains in
the first stage increase effective instrument strength and mitigate weak
instrument problems.

We develop inference methods for SP-IV that enable the formal test-
ing of hypotheses about structural relationships across IRFs in macroe-
conomic applications. We describe inference under strong identification
and develop a first-stage test for instrument strength by extending the
popular bias-based test in Stock and Yogo (2005) to the SP-IV setting.
As instrumental variables are often weak in practice, we describe weak in-
strument robust inference procedures based on the Anderson and Rubin
(1949) statistic and Kleibergen’s (2005) KLM statistic.

We demonstrate the better performance of SP-IV in simulations esti-
mating the Phillips curve parameters with weak instruments using data
generated from the Smets and Wouters (2007) model. When the instru-
ment is lag endogenous, 2SLS is prohibitively biased, but SP-IV with suit-
able controls is not. When the instruments are valid for both estimators,
SP-IV with controls still exhibits considerably smaller bias than 2SLS. A
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VAR implementation of SP-IV has the lowest bias of all estimators we
consider, while LP implementations have lower variances. The robust in-
ference procedures for SP-IV remain well-sized in realistic sample sizes
and exhibit smaller size distortions when HNz is large than traditional
2SLS with DL instruments.

As an empirical application, we estimate the Phillips curve in US data
using the Main Business Cycle (MBC) shock of Angeletos et al. (2020)
as an instrument. Identified as the shock that maximally explains the
cyclical variation in unemployment, Angeletos et al. (2020) conclude from
its muted impact on inflation that the Phillips curve must be very flat.
SP-IV enables a formal econometric assessment of claims about structural
relationships between IRFs that accounts for the sampling error in the IRF
estimates. We find that robust confidence sets for the slope of the Phillips
curve are consistent with weak but also fairly strong cyclical connections
between inflation and economic activity. After properly accounting for
estimation uncertainty, the evidence from IRFs to an MBC shock does
not necessarily provide strong support for inflation dynamics that are
disconnected from the business cycle.

Henceforth, IN denotes the N -dimensional identity matrix, ⊗ the Kro-
necker product, Tr(·) the trace operator, vec(·) the vectorization operator,
mineval{·}/maxeval{·} the minimum/maximum eigenvalue, E[Y | X] the
conditional expectation of Y given X, p→ convergence in probability, d→
convergence in distribution, and PU = U ′(UU ′)−1U the projection matrix.

1 System Projections on Instrumental Variables

We first reformulate the dynamic relationship in (1) in terms of forecast
errors. Taking h-horizon leads and subtracting the expectation conditional
on an Nx × 1 vector of predictors Xt−1 (including a constant) yields

y⊥t (h) = β′Y ⊥t (h) + u⊥t (h) ,(3)

where y⊥t (h) = yt+h − E[yt+h | Xt−1], Y ⊥t (h) = Yt+h − E[Yt+h | Xt−1],
and u⊥t (h) = ut+h − E[ut+h | Xt−1]. Let zt denote an Nz × 1 vector of
instrumental variables, and define z⊥t = zt − E[zt | Xt−1]. As explained
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in the introduction, we focus on applications that rely on dynamics for
identification, exploiting orthogonality conditions between the error term
ut and zt, zt−1, ... Instead of the usual approach of imposing orthogonality
between zt−h and ut for various h ≥ 0, we impose

E[u⊥t (h)z⊥t ] = 0 ; h = 0, . . . , H − 1 .(4)

Without conditioning on Xt−1 and under stationarity, the orthogonality
conditions in (4) are equivalent to imposing orthogonality between zt−h

and ut. The key departure from 2SLS with a distributed lag of zt as in-
struments is that the moments in (4) are not in terms of the unconditional
data but in terms of forecast errors conditional on the predictors Xt−1.

1.1 The Generalized Method of Moments Problem

The conditions in (4) provide a set of HNz moment conditions that can be
used to identify the K elements of β. Let y⊥H,t and u⊥H,t denote the H × 1

vectors in which the (h+1)-th element is y⊥t (h) or u⊥t (h) respectively. Let
Y ⊥H,t denote the HK×1 vector stacking the H×1 vectors Y k,⊥

H,t , where Y
k
t

is the k-th variable in Yt. Using this notation, the moment conditions are

E[u⊥H,t(β)⊗ z⊥t ] = 0 ,(5)

where u⊥H,t(b) ≡ y⊥H,t − (b′ ⊗ IH)Y ⊥H,t and the truth is b = β.
The moment conditions in (5) can be augmented to account for the

estimation of the forecast errors. We consider the class of forecasting
models that are linear in Xt−1, but possibly nonlinear in a set of param-
eters collected in the vector d. This class includes local projections and
vector autoregressions, both of which are widely used in applied macroe-
conomics.2 The moment conditions for this step are

E
[[
y⊥′H,t(ζ), Y ⊥′H,t(ζ), z⊥′t (ζ)

]′ ⊗Xt−1

]
= 0,(6)

where y⊥H,t(d), Y ⊥H,t(d), z⊥t (d) are functions of parameters d that depend

2For recent assessments of both methods, see Stock and Watson (2018), Montiel Olea and
Plagborg-Møller (2021), Plagborg-Møller and Wolf (2021), or Li et al. (2021).
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on the forecasting model chosen, and the true value of d is ζ.
The moments in (5) and (6) can be stacked in a moment function

f(yH,t, YH,t, zt, Xt−1; b, d) with E[f(yH,t, YH,t, zt, Xt−1; β, ζ)] = 0. LetWt =

[y⊥′H,t, Y
⊥′
H,t, z

⊥′
t , X

′
t−1]′. The associated GMM objective function is

FT (b, d) =
1

T

(
T∑
t=1

f(Wt; b, d)

)′
Φ(b, d)

(
T∑
t=1

f(Wt; b, d)

)
,(7)

where Φ(b, d) is a positive definite weighting matrix. The forecasting step
and the structural estimation step are separable for estimation purposes
since b does not enter (6) and the Jacobian of (5) with respect to d is zero
in expectation at ζ. This means we can henceforth take the forecasts as
given and focus on the structural estimation step. An additional assump-
tion ensures that estimation error in the forecast errors is asymptotically
negligible for inference on the structural parameters:

Assumption 1. There exists a unique solution, ζ, to the first-stage mo-
ments (6), and the associated GMM estimator satisfies ζ̂ p→ ζ and

√
T (ζ̂−

ζ)
d→ N (0, Vfs) for some feasible weighting matrix.

In what follows, we suppress the dependence of the forecast errors on
the consistently estimated ζ.

1.2 The SP-IV Estimator

Let Φs(b, d) denote the block in the weighting matrix Φ(b, d) corresponding
to the identifying moments in (5). Our baseline estimator uses Φs(b, d) =

IH ⊗ Q−1, where Q = E[z⊥t z
⊥′
t ], to standardize and orthogonalize z⊥t .3

The resulting solution to (7) for β in population is

β =
(
R′(E[Y ⊥H,tz

⊥′
t ]Q−1E[Y ⊥H,tz

⊥′
t ]′ ⊗ IH)R

)−1(8)

×R′ vec(E[y⊥H,tz
⊥′
t ]Q−1E[Y ⊥H,tz

⊥′
t ]′) ,

where R ≡ IK ⊗ vec(IH). Let the H × T matrix y⊥H , the HK × T matrix
Y ⊥H , and the Nz × T matrix Z⊥ collect the sample of observations of y⊥H,t,

3Efficient GMM uses Φs(β, ζ) = (Σ−1
u⊥
H

⊗ Q−1), where Σu⊥
H

= E
[
u⊥H,t(β)u⊥H,t(β)′

]
. Appendix B

presents the resulting GLS version of SP-IV, as well as the CUE SP-IV estimator.
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Y ⊥H,t, and z⊥t respectively. The natural sample analog of (8) is

β̂ =
(
R′(Y ⊥H PZ⊥Y ⊥′H ⊗ IH)R

)−1
R′ vec(y⊥HPZ⊥Y ⊥′H ) ,(9)

which minimizes (7) with respect to b, using the sample weighting matrix,
IH ⊗ (Z⊥Z⊥′/T )−1. That minimization problem is equivalent to minimiz-
ing Tr(u⊥HPZ⊥u⊥′H ), or the sum of squared residuals in the system

y⊥H = (β′ ⊗ IH)Y ⊥H + u⊥H ,(10)

after projection on the instruments z⊥t . Thus, β̂ is also the restricted 2SLS
estimator in the system of equations in (10), where the only restrictions
are those implied by (1). For this reason, we refer to β̂ as the System
Projections on Instrumental Variables (SP-IV) estimator.

The SP-IV estimator has a useful interpretation in terms of the im-
pulse response functions of yt and Yt to innovations in the instruments zt.
Consider the following IRF estimates,

Θ̂Y =
Y ⊥H Z

⊥′

T

(
Z⊥Z⊥′

T

)− 1
2

; Θ̂y =
y⊥HZ

⊥′

T

(
Z⊥Z⊥′

T

)− 1
2

,(11)

which are OLS coefficients from regressing Y ⊥H,t and y⊥H,t on standardized

innovations to the instruments,
(
Z⊥Z⊥′/T

)− 1
2 z⊥t . Using Θ̂y, construct

the HNz × 1 vector Θ̂y stacking the Nz vectors of IRF coefficients of yt.
Construct the HNz ×K matrix Θ̂Y similarly stacking Θ̂Y . Formally,

Θ̂Y = ((Z⊥Z⊥′/T )−
1
2Z⊥ ⊗ IH/T )Y⊥H ;(12)

Θ̂y = ((Z⊥Z⊥′/T )−
1
2Z⊥ ⊗ IH/T )y⊥H ,

where y⊥H = vec
(
y⊥H
)
is TH × 1 and Y⊥H = [vec(Y ⊥H,1), . . . , vec(Y ⊥H,K)] is

TH ×K. Then the SP-IV estimator β̂ in (9) can be expressed as

β̂ = (Y⊥′H (PZ⊥ ⊗ IH)Y⊥H)−1Y⊥′H (PZ⊥ ⊗ IH)y⊥H ,(13)

= (Θ̂′Y Θ̂Y )−1Θ̂′Y Θ̂y ,

which shows β̂ is the slope in OLS regression of Θ̂y on Θ̂Y , i.e. the
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coefficients in a regression of IRFs of yt and Yt to zt conditional on Xt−1.
The expression for β̂ in (13) presents a two-step procedure for imple-

menting SP-IV. The first step consists of estimating IRFs using instru-
ments satisfying the exogeneity conditions. In the second step, the SP-IV
estimator is obtained by regressing the IRF of the outcome variable yt
on the IRFs of the endogenous variables Yt. To theoretically justify the
moment conditions in (4), it will often be natural to choose instruments
leading to impulse responses to interpretable economic shocks, such as
monetary policy shocks, government spending shocks, etc. For the Phillips
curve example in (2), the first step estimates IRFs of inflation πt and the
slack measure gapt to a monetary policy shock (or other aggregate demand
shocks orthogonal to the cost-push term, ut). In the second step, the IRF
of πt is regressed on the IRF of gapt as well as the IRFs of lagged and ex-
pected future inflation, πt−1 and πet+1. The latter are obtained by lagging
and leading the IRF of πt by one horizon. Appendix A gives practical
details on the implementation using LPs or VARs.

A large literature studies the identification of economic shocks pre-
senting potential instruments for SP-IV, see Ramey (2016) or Kilian and
Lütkepohl (2017) for surveys. Essentially any valid strategy for identifying
structural IRFs based on LPs or VARs can be used in conjunction with
SP-IV provided the underlying shocks satisfy the exogeneity conditions
(5). SP-IV produces the coefficients in structural economic relationships
that best fit the IRFs of the variables in those relationships in response to
shocks chosen by the econometrician. SP-IV actually only requires IRFs
to an identified rotation of economic shocks that satisfy the exogeneity
conditions. In other words, the shocks and their associated IRFs need
not necessarily be separately identified. In practice, it is also possible to
perform SP-IV with a subset of horizons rather than all h = 0, . . . , H − 1.

1.3 The Difference Between SP-IV and 2SLS

The standard approach for estimating β in (1) with zt, ..., zt−H+1 as in-
struments exploits the HNz orthogonality conditions

E[utzt−h] = 0 ; h = 0, . . . , H − 1 .(14)
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In a 2SLS implementation, the first stage consists of regressing the en-
dogenous variables Yt on the lag sequence zt, ..., zt−H+1, and the second
stage consists of regressing yt on the predicted values. When zt consists of
measures of economic shocks, the first stage estimates the IRF coefficients
of Yt to the shocks zt using a DL model. Barnichon and Mesters (2020)
observe that, after similarly estimating the IRF of yt, the 2SLS estimates
equal the estimates in OLS regression of the IRF of yt on the IRFs of Yt.
The 2SLS estimator with lagged shocks as instruments therefore can – like
SP-IV – be interpreted as a regression with IRFs. In 2SLS, the regres-
sion uses IRFs estimated by single equation DL models, i.e. regressions
of yt and Yt on zt, ..., zt−H+1 without additional controls. In contrast, in
SP-IV the IRFs can be obtained from LPs or VARs in which the h-step
ahead forecasts of yt and Yt given zt are conditioned on a set of additional
predictors, Xt−1. In the literature, IRFs are typically estimated using
LPs or VARs, not DL models. An advantage of SP-IV is therefore that
it estimates structural relationships across IRFs as they are estimated in
practice. Whereas the IRFs for 2SLS rely on the availability of external
measures of economic shocks, the IRFs for SP-IV can also exploit internal
instruments generated from recursivity assumptions, or any other short or
long-run covariance restrictions. Thus, SP-IV greatly expands the options
for identification.

The ability to accommodate controls also yields three further theo-
retical advantages of SP-IV. To exposit these advantages, we adopt the
usual impulse-propagation paradigm to express yt and Yt in terms of cur-
rent and past realizations of “structural shocks”, εt, where E[εt] = 0,
E[εtε

′
t] = Idim(ε) and E[εtε

′
s] = 0 for s 6= t. Assuming linearity of yt

and Yt in εt, equation (1) implies that the error term can be expressed as
a linear combination of current and past shock realizations:

ut = µ′0εt + µ′1εt−1 + µ′2εt−2 + . . . .(15)

We also assume stationarity throughout.
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1. Weaker Exogeneity Requirements With suitably chosen predic-
tors Xt−1, SP-IV has weaker exogeneity requirements than 2SLS:

Proposition 1. The exogeneity condition for 2SLS with lags of zt is

(16) µ′lE[εt+h−lz
′
t] = 0 ; l = 0, . . . ,∞ ; h = 0, . . . , H − 1.

If Xt−1 spans all εj,t−l such that µj,l = 0 in (15), SP-IV including Xt−1 as
controls requires only

(17) µ′lE[εt+hz
′
t] = 0 ; h = 0, . . . , H − 1

Proof. The 2SLS result follows from substituting (15) in (14) and station-
arity. The SP-IV result follows similarly, orthogonalizing (15) toXt−1.

Following Stock and Watson (2018), we denote the conditions in (16)
with l > h as lag exogeneity, with l = h as contemporeneous exogene-
ity, and with l < h as lead exogeneity. 2SLS requires all three forms of
exogeneity to hold.4 In contrast, SP-IV requires only contemporaneous
and lead exogeneity, since conditioning on Xt−1 eliminates the influence
of all past values of εt on u⊥t (h). With a sufficiently rich set of predictors,
the exogeneity conditions on zt are thus substantially weaker, echoing an
argument of Stock and Watson’s (2018) for including controls in LP-IV.
Even if Xt−1 does not fully span the shocks in practice, it can still reduce
the scope of the exogeneity condition.

Consider the Phillips Curve example in (2). As instruments, Barnichon
and Mesters (2020) consider a DL of Romer and Romer’s (2004) measure
of monetary policy surprises, zRRt , which are the residuals in a regres-
sion of the intended funds rate change at FOMC meetings on the current
rate and Greenbook forecasts of output growth and inflation. Assume no
measurement error and that the error term in (2) is just an exogenous
cost-push shock following ut = ρuut−1 + υt, with 0 ≤ ρu < 1, and υt is
white noise. Unless ρu = 0, ut depends on υt, and all lags υt−1, υt−2, . . ..
If zRRt is uncorrelated with υt, its leads up to H − 1, and all of its lags, it

4The conditions in (16) are sufficient but not strictly necessary, as exogeneity requires only∑∞
l=0 µ

′
lE[εt+h−lz

′
t] = 0. However, there are no theoretical reasons to expect this knife-edge case.
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satisfies the exogeneity requirements for 2SLS estimation of the Phillips
curve with zRRt , ..., zRRt−H+1 as instruments. Suppose, however, that the re-
gression generating zRRt is misspecified by omitting one or more lags of
inflation. In that case, zRRt generally still depends on lags of υt, and the lag
exogeneity requirement for 2SLS is not satisfied. However, by including
lags of inflation amongst predictors Xt−1, the exogeneity requirements for
SP-IV remain satisfied as long as contemporaneous and lead exogeneity
hold. We return to this example later in the simulations of Section 3.

The assumption that a set of variables Xt−1 spans the history of shocks
εt determining ut resembles the invertibility assumption in VARs and the
practice of including lagged controls in LPs to avoid lag exogeneity re-
quirements (Ramey 2016; Stock and Watson 2018). Here though, the
assumption is weaker than that needed to estimate dynamic causal effects
using LPs of VARs: Xt−1 must span the shocks included in the error term
ut in the structural equation of interest, rather than the history of all
shocks driving yt and Yt jointly.5 Nevertheless, a richer set of predictors
offers better insurance against violations of the lag exogeneity assumption.

It is not possible to circumvent the lag exogeneity requirement of 2SLS
by first projecting zt on Xt−1 and using the residuals, z⊥t , ..., z⊥t−H+1 as
the instrumental variables in 2SLS. This is the implicit procedure, for
example, when a shock is first identified in a VAR or LPs with Xt−1 as
controls, and a DL of that shock is then used as the instruments in 2SLS.
ut must still be orthogonal to all lags of the identified shock, which will not
generally hold. Even if such a weaker form of lag exogeneity is plausible,
this procedure does not have any of the other advantages of SP-IV.

2. Efficiency Gains The second advantage of SP-IV is that condi-
tioning on predictors Xt−1 can lead to asymptotic efficiency gains relative
to 2SLS with lagged instruments. Whether SP-IV improves efficiency
depends on the data generating process (DGP) driving ut and the infor-
mativeness of the predictors Xt−1. Intuitively, SP-IV is more efficient than

5For the Phillips curve, zRR
t could still be contaminated by other demand shocks after condition-

ing on Xt−1, and the IRFs identified with zRR
t in VARs or LPs with Xt−1 as controls may therefore

not represent the causal effects of monetary policy shocks; nevertheless, as long as Xt−1 eliminates
the influence of υt−1, υt−2, . . ., zRR

t remains a valid instrument for SP-IV including on Xt−1.
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2SLS if the variances of forecast errors u⊥t (h) at h = 0, ..., H − 1 are small
relative to the variance of the error term ut. The ranking of estimators
depends on the DGP. We consider an AR(1) illustrative model,

(18) ut = ρuut−1 + υt, 0 ≤ ρu < 1, E[υt] = 0, E[υ2
t ] = σ2

υ, E[υtυs] = 0, s 6= t.

Let Σu⊥H
denote the covariance of u⊥H,t.

Proposition 2.

(i) If ut is i.i.d., SP-IV is asymptotically as efficient as 2SLS.

(ii) If ut follows the AR(1) process in (18) and Xt−1 is empty or otherwise
uninformative for ut, then u⊥H,t = uH,t and β̂2SLS is asymptotically
more efficient than β̂ whenever ρu > 0 and H > 1.

(iii) β̂ is asymptotically more efficient than β̂2SLS if σ2
u > maxeval(Σu⊥H

).
If ut follows the AR(1) process in (18) and Xt−1 spans past shocks,
then the condition becomes σ2

υ

1−ρ2u
> maxeval

(
Σu⊥H

)
, where the (h, i)

entry of Σu⊥H
is given by

∑min{h,i}
j=1 σ2

υρ
h+i−2j
u .

Proof. See Appendix C.

When ut is i.i.d., the errors in both estimators are identical in pop-
ulation since Xt−1 does not predict ut, . . . ut+H−1 and forecast errors do
not accumulate over h = 0, . . . , H − 1; so too are their asymptotic vari-
ances. Otherwise, the ranking depends on the DGP. Under (18), if Xt−1

has no predictive power but ut is persistent, then 2SLS dominates SP-IV.
However, when Xt−1 spans the influence of υt−1, υt−2, . . . on the errors,
SP-IV is asymptotically more efficient as long as ρu is sufficiently large
and the forecast horizon H is not too large, see the Figure in Appendix
C. Efficiency gains from using SP-IV are more likely more generally when
ut is predictable and the maximum forecast horizon, H, is moderate.

3. Stronger Identification The ability to condition on Xt−1 in SP-IV
can also improve the effective strength of the instruments. Weak instru-
ments lead to bias in 2SLS estimators and make conventional inference
methods invalid. In many time series applications, instruments are weak,
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while the endogenous variables can be highly persistent, and thus pre-
dictable. Let ωt be the error term in the first stage of 2SLS with variance
σ2
ω. The H × 1 vector of errors in the SP-IV first stage regression of YH,t

on zt (but no additional predictors) is vH,t, with covariance ΣvH . The
errors in the SP-IV first stage regression of YH,t on zt and the additional
predictors Xt−1 is v⊥H,t, with covariance Σv⊥H

.

Proposition 3. When K = 1, for a given zt and H:

(i) Unless Xt−1 is completely irrelevant, the concentration parameter for
SP-IV conditional on Xt−1 is larger than for SP-IV without controls.

(ii) If Tr(Σv⊥H
)/H < σ2

ω, the concentration parameter for SP-IV is larger
than that for 2SLS;

Proof. See Appendix D.

Part(i) in proposition 3 states that when the predictors have explana-
tory power for the endogenous regressors, their inclusion in SP-IV in-
creases the effective strength of the instruments as measured by the con-
centration parameter, and conditioning on Xt−1 therefore decreases bias.
Part(ii) in proposition 3 states that the effective instrument strength can
increase also relative to 2SLS, depending on the persistence and pre-
dictability of the errors as well as on H. As the predictability of the
endogenous variables diminishes with the forecast horizon H, the advan-
tage of conditioning on lagged variables can be outweighed by the recency
of zt for Yt in 2SLS. When K > 1, instrument strength depends on the
entire eigenstructure of the first stage parameters (and that of Σv⊥H

), such
that a fully general result is not readily available. Intuitively, however,
conditioning on Xt−1 should similarly strengthen the instruments when
Xt−1 has explanatory power.

In contrast to SP-IV, adding Xt−1 as additional regressors in both
stages of 2SLS with zt, . . . , zt−H+1 as instruments weakens identification
and may introduce endogeneity. As an extreme case, suppose conditioning
on Xt−1 eliminates the influence of all past realizations of the structural
shocks, εt, on Yt and zt. Including Xt−1 as additional regressors then im-
plies only the contemporaneous instruments zt remain relevant, since Xt−1
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spans all lags of zt; by construction, all zt−h for h > 0 are uncorrelated
with Y ⊥t and are completely irrelevant as instruments. Identification can
no longer exploit information from the dynamic relationship between zt

and Yt. Moreover, when Nz < K, dropping these lags results in under-
identification. In less extreme cases, when Xt−1 does not span all past
shocks, residualizing ut with respect to Xt−1 subtracts some linear com-
bination of the lags of all past shocks. Doing so will generally induce
correlation with the lagged shocks that are spanned by Xt−1, including
those proxied by zt−1, . . . , zt−H+1. Thus, lags of an instrument that were
previously exogenous with respect to ut may become endogenous if the
shocks proxied by zt−1, . . . zt−H+1 partially determine the controls in Xt−1.

1.4 Consistency of the SP-IV Estimator

Consider the following high-level assumptions on covariances.

Assumption 2. The following probability limits and rank condition hold:

Z⊥Z⊥′/T
p→ E[z⊥t z

⊥′
t ] = Q, where Q is positive definite,(2.a)

Y ⊥H Z
⊥′/T

p→ E[Y ⊥H,tz
⊥′
t ] = ΘYQ

1
2 , a real HK ×Nz matrix,(2.b)

Z⊥u⊥′H /T
p→ E[z⊥t u

⊥′
H,t] = 0,(2.c)

R′(ΘY Θ′Y ⊗ IH)R is a fixed matrix with full rank.(2.d)

The convergence in probability in 2.a-2.c holds under standard prim-
itive conditions and laws of large numbers. Condition 2.a ensures linear
independence of the instruments and consistency of the sample weighting
matrix. Condition 2.b states that the covariance between Y ⊥H and Z⊥ is
consistently estimated. The population covariance ΘYQ

1
2 is a rotation of

ΘY , a matrix containing the impulse response coefficients of Y ⊥t to z⊥t ,
after standardization. Condition 2.c is the exogeneity condition. Finally,
the rank condition 2.d is sufficient for the existence of a unique solution to
the moment conditions (5), and ensures that the denominator of the closed
form solution (8) is full rank; with the definition of ΘY , it implies that the
instruments are relevant. 2.b and 2.d jointly imply that the instruments
are strong, an assumption we relax in Section 2.

15



Assumption 2 resembles the usual (strong) IV assumptions, see for
instance Stock and Yogo (2005). Condition 2.d does not require there to
be at least as many instruments as endogenous regressors, Nz ≥ K. Since
rank(R′(ΘY Θ′Y ⊗IH)R) = min{K,H rank(ΘY Θ′Y )}, the order condition is
HNz ≥ K, since there are HNz moment conditions in (5). Adding leads
of yt and Yt makes up for Nz < K just as adding lags of zt does in 2SLS.
Proposition 4 states the consistency result for the SP-IV estimator in (9).

Proposition 4. Under Assumptions 1 and 2, β̂ p→ β.

Proof. Both terms in (9) converge by the stated assumptions, and the
result follows from the continuous mapping theorem.

2 Inference for SP-IV

2.1 Inference under Strong Instruments

When the instruments are strong, under the conditions in Assumption
1-2, inference for SP-IV can proceed analogously to standard 2SLS. With
a further high-level assumption, the limiting distribution of β̂ follows:

Assumption 3. T−1/2 vec(Z⊥u⊥′H )
d→ N(0, (Σu⊥H

⊗Q)),where Σu⊥H
is full rank.

Proposition 5. Under Assumptions 1-3,

(19)
√
T (β̂ − β)

d→ N(0, Vβ) ,

where Vβ = (R′(ΘY Θ′Y ⊗ IH)R)−1R′
(

ΘY Θ′Y ⊗ Σu⊥H

)
R (R′(ΘY Θ′Y ⊗ IH)R)−1.

Proof. The result is immediate, after rearranging (9), from Proposition 4,
the stated assumptions, and the continuous mapping theorem.

Vβ can be estimated by replacing Σu⊥H
with a consistent estimate, and

ΘY Θ′Y with Y ⊥H PZ⊥Y ⊥′H . Inference can be based on standard Wald tests.6

6Given the model (6) and Assumption 1, estimation error in Y ⊥H etc. does not impact the
asymptotic variance of β̂. This is a Frisch-Waugh result; the expected Jacobian of the moments is
block-diagonal since derivatives of second-stage moments with respect to first-stage parameters are
products of controls Xt−1 and forecast errors y⊥H,t, Y

⊥
H,t, z

⊥
t , which are orthogonal by construction.
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A natural consistent estimator is

(20) Σ̂u⊥H
= û⊥H û

⊥′
H /(T −Nx −K).

Including adequate lags in Xt−1 obviates the need for an autocorrela-
tion robust estimate by eliminating autocorrelation in both u⊥t and z⊥t .
Any mechanical correlation between u⊥t (0) and u⊥t−h(h), say, drops out of
var(u⊥H,t⊗ z⊥t ), since when z⊥t is serially uncorrelated, so too is u⊥H,t⊗ z⊥t .7

This is not the case for 2SLS, which generally requires autocorrelation
robust methods due to mechanical autocorrelation in a lag sequence of zt.

2.2 A Test for Weak Instruments

In many applications, the available instruments may be weak. If so, Wald
inference will be invalid, leading to empirical rejection rates that generally
exceed nominal levels. In the Online Appendix, we derive a bias-based
test of instrument strength for SP-IV that is analogous to the popular
Stock and Yogo (2005) bias-based test of weak instruments for standard
2SLS. We consider a Nagar approximation of the bias under weak in-
strument asymptotics, as in Montiel-Olea and Pflueger (2013) and Lewis
and Mertens (2022). Like Stock and Yogo (2005) and Lewis and Mertens
(2022), we use a weighted `2-norm of the bias to accommodate multiple
endogenous regressors (K>1). Weak instruments are defined as those for
which the bias in β̂ is at least τ percent of a worst-case benchmark under
weak instrument asymptotics. The test statistic is similar to that of Cragg
and Donald (1993), and the test rejects the null hypothesis of weak instru-
ments when the statistic exceeds the level-α critical value of a bounding
distribution. The test nests the Stock and Yogo (2005) test when H = 1.

2.3 Weak Instrument Robust Inference for SP-IV

We describe two robust test statistics for SP-IV.
7The argument is analogous to that of Montiel Olea and Plagborg-Møller (2021) for LP with

instrumental variables.
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AR Statistic The “S-statistic” of Stock and Wright (2000) extends the
AR statistic to the GMM setting. For SP-IV, the statistic and its limiting
distribution under the null hypothesis are defined as

AR(b) = (T − dAR) Tr

(
u⊥H(b)PZ⊥u⊥H(b)′

(
u⊥H(b)MZ⊥u⊥H(b)′

)−1
)
,(21)

AR(β)
d→ χ2

HNz ,

where MZ⊥ = IT − PZ⊥ is the residualizing matrix and dAR = Nz + Nx

is a degrees of freedom correction. Rather than the moment covariance
matrix, we use the normalizing matrix typically used with the AR statistic,
asymptotically equivalent under the null hypothesis.

KLM Statistic The AR statistic can have poor power when there are
over-identifying restrictions. This is the case when HNz > K, i.e. when
the number of IRF coefficients exceeds the number of endogenous regres-
sors. As this may often be the case, we consider the Kleibergen (2005)
KLM statistic, which can improve power (Andrews et al. 2019).

Following Kleibergen (2005),

K(b) = (T − dK) vec
(
Ξ−1u⊥H(b)Y̌ ′H

)′
R(22)

×
(
R′(Y̌H Y̌

′
H ⊗ Ξ−1u⊥H(b)u⊥′H (b)Ξ−1)R

)−1

×R′ vec
(
Ξ−1u⊥H(b)Y̌ ′H

)′
,

K(β)
d→ χ2

K ,

where Y̌H = Y ⊥H PZ⊥−v̌⊥H ǔ⊥′H (b)
(
ǔ⊥H(b)ǔ⊥′H (b)

)−1
u⊥H(b)PZ⊥ is the projection

of Y ⊥ on Z⊥, Ξ = u⊥H(b)MZ⊥u⊥′H (b), v̌⊥H = v⊥HMZ⊥ , ǔ⊥H(b) = u⊥H(b)MZ⊥ ,
and dK = Nz +Nx is a degrees of freedom correction. Intuitively, instead
of the covariance of u⊥H and (Z⊥Z⊥′)−1/2Z⊥, the numerator of the KLM
statistic features the covariance of u⊥H and the projection of a transforma-
tion of Y ⊥H on (Z⊥Z⊥′)−1/2Z⊥. Our formulation differs from Kleibergen
(2005) only by the replacement of u⊥H and v⊥H with ǔ⊥H and v̌⊥H . This choice
is consistent with the IV statistic in Kleibergen (2002) and asymptotically
equivalent to the form in Kleibergen (2005) under the null.
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3 Performance of SP-IV in Model Simulations

In this section, we demonstrate the performance improvements offered by
SP-IV in simulations. The objective in all simulations is to estimate the
parameters of the Phillips Curve in (2) using data generated from the
macroeconomic model of Smets and Wouters (2007) (SW).8 The Phillips
Curve in (2) is one of the equations in the SW model within a system of
fourteen simultaneous equations for the dynamics of key macroeconomic
aggregates. An important feature of the estimated SW model is that the
shocks underlying the error term ut in the Phillips curve explain a very
large fraction of the variance of inflation. This means that, in realistic
sample sizes, the weak instrument problem is generally severe. Moreover,
the error term ut is persistent, as are most of the macro aggregates gen-
erated by the model. Both features make the estimation of the Phillips
curve parameters challenging. Conventional IV methods tend to perform
poorly, and our simulation setup is therefore an ideal laboratory to eval-
uate the potential improvements offered by SP-IV.

As mentioned in the introduction, using a sequence of lagged endoge-
nous variables as instruments – as in Galí and Gertler (1999) and subse-
quent literature – is not valid for identification in this setting. In the SW
model, the error term in (2) is the ARMA(1,1) process

ut = ρuut−1 + εpt − µpε
p
t−1 , ρu = 0.99, µp = 0.83(23)

where εpt is an i.i.d. normally distributed price markup shock.9 Inverting
the autoregressive term in (23) yields ut = εpt + ρu(1 − µp)εpt−1 + ρu(ρu −
µp)ε

p
t−2 + ρ2

u(ρu− µp)ε
p
t−3 + . . ., which shows that the error term ut gener-

ally depends on the entire history of price markup shocks εpt , ε
p
t−1, ε

p
t−2, . . ..

The period t values of the endogenous model variables are functions of all
current and lagged values of a 7× 1 shock vector εt, including εpt . Lagged
values of these endogenous variables therefore violate the lag exogeneity
requirement, and lose relevance if the data is first conditioned on prede-

8The data is generated from the SW model using the Dynare replication code kindly provided
by Johannes Pfeifer at https://sites.google.com/site/pfeiferecon/dynare.

9We assume that the econometrician cannot exploit the ARMA(1,1) error structure in (23).

19

https://sites.google.com/site/pfeiferecon/dynare


termined variables to avoid the lag exogeneity requirement.
Because lagged endogenous variables are not valid instruments, we

consider a measure of the monetary policy shock as zt, as in Barnichon
and Mesters (2020). We present two sets of simulations. In the first, we
use a measure of monetary policy shocks that violates the lag exogeneity
requirement in an arguably realistic manner; the SP-IV estimator – unlike
the 2SLS estimator – remains consistent. In the second, we use the true
model monetary policy shock as the instrument to level the playing field
across estimators and compare the small sample performance of 2SLS
and SP-IV when both are consistent. Additional simulation results with
multiple shocks as instruments and the generalized (or efficient GMM)
version of SP-IV are available in the Online Appendix.

We do not assume that the econometrician possesses a set of controls
spanning the full history of model shocks. Instead, we use a realistic set
of controls, four lags of seven endogenous model variables: the short-term
interest rate, inflation, marginal cost, output, consumption, investment,
and the real wage. Inflation expectations πet+1 are unobserved and are
replaced in (2) by realized future inflation πt+1, as is typical in the liter-
ature when expectations appear in structural equations. Under rational
expectations – as assumed in the SW model – the resulting measurement
error depends only on future realizations of the model shocks, which does
not create any additional endogeneity problems given that all instruments
satisfy lead exogeneity.

3.1 Simulations with Violations of Lag Exogeneity

Our first set of simulations demonstrates how SP-IV can help ensure exo-
geneity by conditioning on lagged macroeconomic variables. We are mo-
tivated by the identification of the Phillips Curve, for example, with mon-
etary policy shock measures like those constructed by Romer and Romer
(2004), or based on high-frequency changes in Fed Funds futures as in
Kuttner (2001). A practical concern with such measures is that, despite
careful construction, they may still contain a meaningful predictable com-
ponent (Barakchian and Crowe 2013; Bauer and Swanson 2022; Coibion
2012; Miranda-Agrippino and Ricco 2021; Ramey 2016). Consequently,
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researchers identifying IRFs using these measures typically include vari-
ous lagged macro variables as controls in their models. However, when the
same measures are used as instruments in structural equations via 2SLS
– as in Barnichon and Mesters (2020) for example – estimation proceeds
without controls.

To illustrate the potential implications of excluding controls, we sim-
ulate “Romer and Romer (2004) instruments” that consist of the true
monetary policy shocks in the SW model, augmented with a linear func-
tion of inflation over the past four quarters. We estimate the coefficients
on lagged inflation by regressing the actual Romer and Romer (2004)
measures on four lags of the log change in the GDP deflator (the inflation
measure used to estimate the SW model) over the 1969-2004 sample. The
resulting instruments have non-zero covariances with lagged inflation that
are calibrated to the U.S. data (with an R2 of 0.08), and therefore violate
the lag exogeneity requirement. However, the simulated instruments are
exogenous conditional on suitable controls. In our simulations, we con-
sider both LP and VAR implementations of SP-IV using four lags of the
previously described conditioning set, Xt−1.

The left panel in Table 1 reports mean estimates of β = [γb, γf , λ]′

across 5000 Monte Carlo samples. We consider specifications with hori-
zons of H = 8 and H = 20 quarters. To focus on the violation of the
exogeneity requirements, Table 1 considers a long sample T = 5000, to
minimize small-sample features. The true model parameters are shown
in the first row, with OLS estimates in the second. The remaining rows
report results for 2SLS with H lags of the monetary policy instrument,
2SLS conditioning on Xt−1 (2SLS-C), the SP-IV based on LP without
controls (SP-IV LP), and LP and VAR implementations of SP-IV (SP-IV
LP-C and SP-IV VAR) conditioning on Xt−1.

Unsurprisingly, the OLS estimates are severely biased because of endo-
geneity, pointing incorrectly to a completely flat Phillips curve. Because
of the violation of lag exogeneity, the 2SLS estimates are also strongly bi-
ased. The average estimate of λ even has the wrong sign for both H = 8

and H = 20. The 2SLS-C estimates show smaller bias for γb and γf ,
but the average estimate of λ continues to have the wrong sign for both
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Table 1: Results with Lag Endogenous Instrument, T = 5000

Mean Estimates
γb γf λ

True Value 0.15 0.85 0.05
OLS 0.48 0.48 0.00

H = 8
2SLS 0.26 0.58 -0.09
2SLS-C 0.19 0.87 -0.06
SP-IV LP 0.26 0.60 -0.08
SP-IV LP-C 0.16 0.84 0.05
SP-IV VAR 0.12 0.83 0.09

H = 20
2SLS 0.24 0.76 -0.02
2SLS-C 0.21 0.84 -0.05
SP-IV LP 0.24 0.75 -0.02
SP-IV LP-C 0.23 0.81 0.02
SP-IV VAR 0.17 0.83 0.05

Empirical Size of Nominal 5% Tests
H = 8 H = 20

WALD 2SLS 52.10 95.80
WALD 2SLS-C 81.30 87.80
WALD SP-IV LP 59.10 95.90
WALD SP-IV LP-C 7.80 29.70
WALD SP-IV VAR 5.50 13.10

AR 2SLS 73.10 71.40
AR 2SLS-C 71.00 55.10
AR SP-IV LP 69.50 57.00
AR SP-IV LP-C 4.90 5.00
AR SP-IV VAR 4.90 4.80

KLM 2SLS 83.20 86.50
KLM 2SLS-C 30.90 21.30
KLM SP-IV LP 82.50 76.40
KLM SP-IV LP-C 5.30 4.80
KLM SP-IV VAR 5.00 4.60

Notes: In the left panel, the top row reports the true Smets and Wouters (2007) model
parameters, and the remaining rows the means estimates across 5000 Monte Carlo sam-
ples. All IV estimators use h = 0, ...,H − 1 and the lag endogenous monetary policy
instruments described in the text. SP-IV LP and LP-C denote implementations based on
local projections without and with Xt−1 (described in the text) as controls, respectively.
SP-IV VAR denotes implementation with a vector autoregression for Xt with four lags.
Robust tests for 2SLS use a Newey-West HAR variance matrix with Sun (2014) fixed-b
critical values; inference procedures for SP-IV are described in Section 2.

H = 8 and H = 20. While conditioning may remove dependence on past
inflation, doing so weakens the relevance of the instruments and induces
endogeneity of its own, as explained in Section 1.3. The next row shows
the SP-IV estimator without controls Xt−1; it is also biased because, like
2SLS, it requires lag exogeneity to hold. The bias is almost identical to
that of 2SLS since they exploit similar moments for identification. The
next two rows show SP-IV estimators that condition on Xt−1 using either
LPs or a VAR. Both procedures produce mean estimates with the correct
sign and values that are much closer to the truth. The reason for the
smaller bias is the conditioning step, which helps eliminate the persistent
influence of past cost-push shocks that leads to a violation of the lag exo-
geneity requirement. While the SP-IV LP-C and SP-IV VAR estimators
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have much smaller bias, some bias remains. This residual bias arises either
because Xt−1 does not fully span the history of cost-push shocks, because
the IRFs are misspecified, or because weak instrument bias remains even
as T = 5000.

The right panel of Table 1 reports empirical rejection rates for a nom-
inal 5% test that β equals the true value for the various SP-IV infer-
ence procedures described in Section 2 and analogous HAR procedures
for 2SLS. When exogeneity fails, rejection rates will not match nomi-
nal levels. Every test associated with estimators for which exogeneity is
violated (OLS, 2SLS, 2SLS-C, and SP-IV LP) is badly oversized. Con-
versely, for the SP-IV estimators that condition on Xt−1, (SP-IV LP-C
and SP-IV VAR), the robust AR and KLM tests, defined in (21) and
(22) respectively, exhibit empirical rejection rates very close to 5%, again
demonstrating that the conditioning step adequately protects against the
violation of lag exogeneity. The Wald tests for these estimators remain
somewhat oversized, especially when H = 20. The fact that robust infer-
ence procedures effectively control size indicates that the residual bias is
primarily related to the weakness of the instruments, even in a relatively
large sample.

The results in Table 1 illustrate the advantage of weakening the exo-
geneity condition by using SP-IV with lagged controls instead of 2SLS.
The same controls cannot be included in 2SLS specifications, because do-
ing so renders the lagged instruments irrelevant. The results in Table 1
also show that instrument weakness is a concern, even at T = 5000. Next,
we demonstrate the additional advantages of SP-IV in simulations with
smaller samples, and therefore more severe weak instrument problems.

3.2 Small Sample Performance

Given the limited role of monetary policy shocks for inflation dynamics
in the SW model, estimating the parameters of the Phillips curve using
monetary policy shocks as instruments is especially challenging in small
samples. The main goal of the next simulations is to show how the con-
ditioning step in SP-IV can not only weaken exogeneity requirements but
also substantially alleviate weak instrument problems. To level the play-
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ing field across estimators, we now assume that the econometrician has
the true monetary policy shocks as instruments. This assumption is un-
realistic but permits a fair comparison between the various estimators as
the exogeneity requirement is now satisfied for all 2SLS and SP-IV esti-
mators. We consider a sample of T = 250 quarters, a best-case in most
macro applications, roughly corresponding to the postwar period, but also
report results for T = 500 and T = 5000 to verify the asymptotic prop-
erties of the estimators and inference procedures.10 Results for Nz = 3 in
the Online Appendix are qualitatively similar.

Bias. Table 2 reports the mean estimates of β = [γb, γf , λ]′ for the var-
ious samples sizes. The first two rows report the true model parameters
and OLS results. As expected, OLS is severely biased regardless of T due
to endogeneity. The other rows show the results for the various 2SLS and
SP-IV estimators with H = 8 or H = 20 quarters.

As the first row under H = 8 in Table 2 shows, 2SLS produces esti-
mates that on average are closer to the true parameter values than OLS.
Because the instruments are now also lag exogenous, the 2SLS estimates
also converge to the truth as the sample size grows. However, despite the
use of valid instruments, there remains considerable bias in realistic sam-
ples with T = 250. The Phillips Curve slope, λ, is estimated to be much
flatter on average than in the model: 0.01 compared to 0.05. The back-
ward and forward-looking inflation terms are also heavily misweighted,
with γf too low on average, and γb too high. The next row, labeled 2SLS-
C, shows that adding the lagged controls Xt−1 to 2SLS does not mitigate
the small sample problems; rather, the bias is worse than for 2SLS with-
out controls, except for γf in some specifications. Moreover, the bias for
λ grows even worse as T increases. This is because conditioning not only
weakens the relevance of the lag instruments but also renders them en-
dogenous when the controls do not span all past shocks. The next row

10In further simulations, available on request, we consider Barnichon and Mesters’s (2020) 2SLS
estimator with Almon shrinkage. The performance is poor, with bias highly variable over H, T ,
and parameters, and standard deviations one to two orders of magnitude larger than the other
estimators. No inference procedure controls size well across all specifications. In contrast, we find
that SP-IV LP-C and VAR perform very well when tested on Barnichon and Mesters’s (2020) DGP.
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Table 2: Mean parameter estimates

T = 250 T = 500 T = 5000
γb γf λ γb γf λ γb γf λ

True Value 0.15 0.85 0.05 0.15 0.85 0.05 0.15 0.85 0.05
OLS 0.47 0.47 0.00 0.48 0.48 0.00 0.48 0.48 0.00

H = 8
2SLS 0.27 0.51 0.01 0.23 0.60 0.01 0.17 0.83 0.04
2SLS-C 0.31 0.68 -0.06 0.27 0.76 -0.04 0.18 0.89 -0.11
SP-IV LP 0.26 0.50 0.01 0.23 0.60 0.01 0.17 0.83 0.04
SP-IV LP-C 0.29 0.64 0.04 0.24 0.74 0.05 0.16 0.84 0.05
SP-IV VAR 0.23 0.81 0.03 0.18 0.84 0.05 0.12 0.83 0.09

H = 20
2SLS 0.39 0.53 0.01 0.36 0.61 0.00 0.23 0.80 0.01
2SLS-C 0.37 0.57 -0.07 0.33 0.64 -0.06 0.21 0.85 -0.08
SP-IV LP 0.38 0.53 0.01 0.35 0.61 0.00 0.23 0.80 0.01
SP-IV LP-C 0.40 0.55 0.02 0.37 0.63 0.01 0.23 0.81 0.02
SP-IV VAR 0.27 0.80 0.01 0.23 0.84 0.02 0.17 0.83 0.05

Notes: The top row gives the true parameter values in the Smets and Wouters (2007)
model. The others report the mean estimates across 5000 Monte Carlo samples. All
IV estimators are based on h = 0, ...,H − 1 and use true model shocks as instruments.
2SLS-C denotes the 2SLS estimator including Xt−1 (described in the text) as controls.
SP-IV LP and LP-C denote implementations based on local projections without and with
Xt−1, respectively. SP-IV VAR denotes implementation with a vector autoregression for
Xt with four lags.

shows that, without controls, the bias of SP-IV is almost identical to that
of 2SLS for all T . This is again unsurprising, as in this case, both exploit
essentially the same identifying moments.

The next two rows under H = 8 illustrate the possible bias reduc-
tions when using the LP-C or VAR implementations of SP-IV, both of
which condition on Xt−1. For the LP-C implementation, the estimates
of λ average 0.04 in samples with T = 250, which is much closer to the
true value of 0.05 than for 2SLS. The forward-looking coefficient in the
Phillips Curve, γf , is also considerably closer to the truth, and the bias in
the backward-looking coefficient, γb, is only marginally worse. The VAR
implementation of SP-IV also delivers substantial bias improvements in
all three coefficients relative to 2SLS, although the improvement for λ is
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slightly smaller than for the LP-C implementation. Taken together, the
reductions in small sample bias by adopting SP-IV LP-C or SP-IV VAR
are substantial. These reductions are also economically meaningful, as the
average differences in parameter estimates have considerable implications
for inflation dynamics and the inflation-output gap trade-off. As discussed
in Section 1.3, the improvements relative to 2SLS arise because the con-
ditioning step amplifies the signal provided by the monetary policy shock
instruments, which is generally weak in the SW DGP.

The improvements in small sample performance of SP-IV relative to
2SLS depend on the choice of H. Including additional horizons can add
useful identifying variation. On the other hand, the endogenous variables
become harder to predict at longer horizons. The results in Table 2 for
H = 20 show that the relative performance of the estimators is qualita-
tively the same as for H = 8. Quantitatively, however, the reductions
in bias under the LP-C or VAR implementations of SP-IV are smaller
than they are for H = 8. In general, as predicted in Section 1.3, the
advantages of SP-IV over 2SLS diminish as the number of lags included
as instruments in 2SLS – which is also the maximum forecast horizon in
SP-IV – grows larger.

Variance. Table 3 reports the standard deviations of the various esti-
mators. We omit OLS and 2SLS-C given their poor performance in terms
of bias. Section 1.3 showed that SP-IV can be asymptotically more effi-
cient than 2SLS after conditioning on controls when H is not too large
and the error term ut is a sufficiently persistent AR(1) process. While
the error term in our simulations is the ARMA(1,1) process in (23), sim-
ilar efficiency gains can arise. Table 3 indeed shows efficiency gains for
T = 5000. For H = 8, the standard deviations of the SP-IV LP-C esti-
mates are uniformly smaller than those of the 2SLS estimates. For the
VAR implementation, the standard deviation is smaller for estimates of
γf , and roughly similar to 2SLS for the other two parameters. Consistent
with the theory, the relative efficiency of SP-IV disappears for larger H,
as can be seen for H = 20 and T = 5000 in the bottom panel. Also
consistent with the theory is that the conditioning step is essential to re-
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Table 3: Standard deviation of parameter estimates

T = 250 T = 500 T = 5000
γb γf λ γb γf λ γb γf λ

H = 8
2SLS 0.26 0.33 0.21 0.24 0.30 0.20 0.13 0.09 0.09
SP-IV LP 0.28 0.34 0.23 0.25 0.30 0.21 0.13 0.09 0.09
SP-IV LP-C 0.28 0.29 0.27 0.26 0.21 0.24 0.12 0.06 0.08
SP-IV VAR 0.31 0.37 0.28 0.30 0.25 0.26 0.14 0.06 0.09

H = 20
2SLS 0.11 0.12 0.06 0.10 0.11 0.06 0.07 0.05 0.03
SP-IV LP 0.12 0.13 0.07 0.11 0.11 0.06 0.07 0.05 0.03
SP-IV LP-C 0.09 0.11 0.06 0.09 0.10 0.06 0.08 0.05 0.04
SP-IV VAR 0.21 0.25 0.10 0.20 0.19 0.09 0.11 0.06 0.05

Notes: The table shows standard deviations of the estimates across 5000 Monte Carlo
samples from the Smets and Wouters (2007) model. All IV estimators are based on
h = 0, ...,H − 1 and use true model shocks as instruments. SP-IV LP and LP-C denote
implementations based on local projections without and with Xt−1 (described in the text)
as controls, respectively. SP-IV VAR denotes implementation with a vector autoregression
for Xt with four lags.

alize any efficiency gains: the SP-IV estimates that do no condition on
Xt−1, in the second row of each panel, have similar or larger variance than
2SLS. In smaller samples, the LP-C implementation of SP-IV has similar
variance to 2SLS, with most standard deviations being somewhat smaller
than 2SLS, and some only slightly larger. The standard deviations of the
VAR implementation of the SP-IV, on the other hand, are systematically
somewhat greater than those of 2SLS with T = 250 or T = 500.

At least for the DGP considered here, the LP-C implementation of
SP-IV consistently generates lower bias than 2SLS, while it has similar or
smaller variance. The VAR implementation yields further reductions in
bias in our setting, but generally also has slightly higher variance. That
the VAR implementation has smaller bias but greater variance may be
surprising given the bias-variance trade-off between VARs and LPs for
the estimation of IRFs.11 However, the SP-IV estimators are not IRFs,
but relationships between IRFs. Biases and covariances across IRFs can

11Typically, imposing VAR dynamics introduces bias in the IRFs but yields efficiency gains relative
to the LP approach, see Plagborg-Møller and Wolf (2021), Li et al. (2021). In the Online Appendix,
we show that this trade-off is also present for the IRFs in our simulations.
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have offsetting or reinforcing effects on the bias and variance of the SP-IV
estimators. The relative bias-variance properties of the LP-C and VAR
implementations of SP-IV are likely application-specific.

Finally, all standard deviations in Table 3 are decreasing in H, indi-
cating that additional horizons reduce the variability of all estimators.
Given our bias results, this implies a bias-variance trade-off when choos-
ing the maximum horizon H for SP-IV: larger H provides smaller bias
improvements relative to 2SLS, but generates less variable estimates.

Inference. Given that monetary policy shocks are weak instruments,
a key question is how severe size distortions are using standard Wald
inference, and how well the weak instrument robust procedures control
size in practice. It is well known that robust procedures may still perform
poorly when the number of instruments is large (Bekker 1994). Barnichon
and Mesters (2020), for example, report severe size distortions for AR
inference for 2SLS with long lag sequences of instrumenting shocks. Since
SP-IV uses HNz moments, it potentially faces the same theoretical “many
moments” problem as 2SLS withHNz instruments (Han and Phillips 2006;
Newey and Windmeijer 2009).

Table 4 reports empirical rejection rates for nominal 5% tests of the
true values of the full parameter vector, β = [γb, γf , λ]′ for sample sizes of
T = 250, 500 and 5000. We also report results for Nz = 3 with H = 20,
see the Online Appendix for details. Any size distortions will generally
decrease with T , since the first-stage relationships remain fixed. Identifi-
cation strength therefore improves with T .

Wald tests for 2SLS exhibit meaningful size distortions for H = 8, with
empirical rejection rates substantially above the nominal 5%. The size
distortions become much larger for H = 20 and Nz = 3. These distortions
are not surprising given the weakness of the instruments and demonstrate
the need for robust inference procedures. For H = 8 and Nz = 1, the
2SLS AR test is relatively well-sized in small samples. Indicative of many
instrument problems, the 2SLS AR test becomes noticeably oversized in
small samples when H = 20, dramatically so for Nz = 3. The 2SLS KLM
test controls size better but can be conservative, potentially due to the use
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Table 4: Empirical size of nominal 5% tests

H = 8, Nz = 1 H = 20, Nz = 1 H = 20, Nz = 3
T = 250 500 5000 250 500 5000 250 500 5000

WALD 2SLS 8.6 7.3 9.3 65.1 58.0 40.9 100.0 99.8 92.5
WALD 2SLS-C 22.1 22.3 91.3 63.7 56.3 92.7 99.9 99.1 96.9
WALD SP-IV LP 15.2 12.7 12.9 68.5 64.1 43.8 99.9 99.9 91.7
WALD SP-IV LP-C 13.0 11.6 7.8 72.0 63.5 29.7 100.0 99.7 76.6
WALD SP-IV VAR 7.8 7.1 5.5 32.2 27.4 13.1 86.1 76.5 53.8

AR 2SLS 6.6 6.0 4.1 11.9 8.1 4.2 55.3 25.7 3.9
AR 2SLS-C 8.8 11.9 84.9 10.3 9.0 67.3 32.4 16.0 44.2
AR SP-IV LP 5.7 5.7 4.6 9.7 7.1 4.9 14.6 8.7 4.9
AR SP-IV LP-C 6.7 5.8 4.9 11.4 7.7 5.0 17.3 9.9 5.2
AR SP-IV VAR 4.6 4.6 4.9 5.3 5.8 4.8 6.3 5.9 4.7

KLM 2SLS 3.9 3.5 3.7 6.0 5.5 3.9 0.5 12.7 4.9
KLM 2SLS-C 3.8 5.2 36.8 2.9 2.7 20.2 1.2 3.1 7.3
KLM SP-IV LP 5.6 5.5 4.8 8.3 6.2 4.7 8.2 6.3 5.3
KLM SP-IV LP-C 6.9 6.0 5.3 11.9 7.1 4.8 11.3 7.9 5.1
KLM SP-IV VAR 5.4 5.1 5.0 8.1 6.4 4.6 10.7 8.6 5.3

Notes: The table shows empirical rejection rates of nominal 5% tests of the true values
of β = [γb, γf , λ]

′ in 5000 Monte Carlo samples from the Smets and Wouters (2007)
model. All IV estimators are based on h = 0, ...,H − 1 and use true model shocks as
instruments. SP-IV LP and LP-C denote implementations based on local projections
without and with Xt−1 (described in the text) as controls, respectively. SP-IV VAR
denotes implementation with a vector autoregression for Xt with four lags. Robust tests
for 2SLS use a HAR Newey-West variance matrix with Sun (2014) fixed-b critical values;
inference procedures for SP-IV are described in Section 2.

of only approximate fixed-b critical values for HAR inference. The same
tests for 2SLS-C all have unit size asymptotically since the instruments
are not generally exogenous after conditioning.

Just like 2SLS, the SP-IV Wald size distortions for H = 8 are substan-
tial and very large for H = 20. The SP-IV AR tests are well-sized overall.
For the LP and LP-C implementations, they do over-reject in small sam-
ples when H = 20, but not to the extent seen for 2SLS. The SP-IV KLM
tests in the final three rows are also generally well-sized. Just like the AR
tests, the KLM tests exhibit some over-rejection in small samples when
H = 20. Overall, however, the size distortions of the robust SP-IV tests
with large HNz are considerably milder than those for robust 2SLS tests,
especially for the VAR implementation. A likely reason that the robust
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SP-IV procedures control size distortions better is that the 2SLS errors
exhibit mechanical serial correlation due to the lag sequence of zt, requir-
ing HAR covariance estimates. Since 2SLS requires an autocorrelation
robust covariance matrix, the number of parameters to be estimated in-
creases much more quickly with HNz than for SP-IV covariances. Because
of many-instrument problems, we nevertheless recommend avoiding very
large HNz also when using SP-IV.

In practice, there is no need to use all horizons for identification. Re-
searchers can, for example, select impulse response horizons at lower fre-
quencies than that of the time series (e.g. quarterly horizons in monthly
data, annual horizons in quarterly data, etc.), especially since adjacent
horizons do not necessarily contain much independent identifying infor-
mation for typical shapes of IRFs. Further refinements are also possible to
address any remaining many instrument problems, see for example Miku-
sheva (2021) for suggestions. In the context of 2SLS with DLs of shocks
as instruments, Barnichon and Mesters (2020) propose quadratic approx-
imations to the IRFs to avoid many instrument problems, and similar ap-
proximations are possible with SP-IV. Other test statistics could possibly
be adapted to SP-IV and offer improvements over the AR and KLM tests,
for example, those based on Moreira (2003) or Andrews (2016). Given the
relatively good performance of our test statistics in the simulations, we
leave such extensions for future work.

4 Application to the Phillips Curve with U.S. Data

In this section, we use SP-IV to estimate the parameters of the Phillips
curve in (2) using U.S. data and compare the results with 2SLS. We con-
sider the following specification for quarterly inflation,

π1q
t = (1− γf )π1y

t−3 + γfπ
1y
t+12 + λUt + ut ,(24)

where π1q
t is the annualized percent change in the Core CPI from a quarter

ago in month t, π1y
t is the percent change in the Core CPI over the preced-

ing year in month t, and Ut is the headline unemployment rate in month
t. The specification and variable definitions are exactly as in Barnichon
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and Mesters (2020), but we use monthly data from 1979:M1 to 2018:M4
(472 monthly observations) instead of quarterly data. As is common in
the literature, e.g. Mavroeidis et al. (2014), (24) restricts the coefficients
on lagged and future inflation to sum to unity, γb+γf = 1, which imposes
that there is no long-run trade-off between unemployment and inflation.
The restriction is implemented by rewriting the structural equation as
π1q
t −π

1y
t−3 = γf (π

1y
t+12−π

1y
t−3)+λUt+ut. We consider a maximum forecast

horizon of 3 years (36 months). To make efficient use of the identifying
information in the IRF dynamics and mitigate many-instrument prob-
lems, we only use the coefficients in the first month of each of the first 12
quarters of the response horizons – that is, h = 0, 3, 6, . . . , 33. We con-
sider identification with a single economic shock, such that for both SP-IV
and 2SLS there are twelve identifying moments. We use the VAR imple-
mentation of SP-IV, using a VAR with six lags in the following standard
monthly macro variables as controls: the annualized one-month percent
change in the core CPI, the unemployment rate, the 12-month change in
log industrial production, the 12-month percent change in the PPI for all
commodities, the 3-month Treasury rate, and the 10-year Treasury rate.

As the instrument, we use a monthly version of the Angeletos et al.
(2020) Main Business Cycle (MBC) Shock, identified within our monthly
VAR by maximizing the contribution to cyclical unemployment fluctu-
ations in the frequency domain. Angeletos et al. (2020) find that the
resulting shock is interchangeable with shocks identified by maximizing
the cyclical variance contribution to other major macro aggregates, such
as GDP, consumption, investment, or hours worked. This interchange-
ability suggests a single main driver of business cycles with a common
propagation mechanism. Empirically, this propagation mechanism best
fits the notion of an aggregate demand shock, making the MBC shock a
plausible instrument for estimating the Phillips curve.

We choose the MBC shock for two main reasons. The first reason is
that it serves as a good illustration of how SP-IV can be useful when
interpreting empirical IRFs. Observing the disconnect between the un-
employment and inflation impulse responses to the MBC shock, a key
conclusion in Angeletos et al. (2020) is that the Phillips curve must be
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nearly completely flat. Rather than relying on informal visual inspections
of IRFs, SP-IV allows a formal econometric investigation of the Phillips
curve relationship embedded in the VAR-based IRFs. The second rea-
son is that the MBC shock is likely the strongest available instrument
for identifying the Phillips curve. By construction, the MBC shock is
highly predictive for unemployment fluctuations over business cycle hori-
zons. We find that the MBC shock also has some strength for inflation at
horizons up to three years. The first two columns in the first row of Table
5 show test statistics and critical values of the weak instruments test for
SP-IV, along with those for 2SLS (without controls) based on the HAR
first-stage test of Lewis and Mertens (2022). For illustrative purposes,
the other columns in Table 5 report results for each endogenous regressor
separately. The test statistic is 7.3 for SP-IV, with a critical value of 22.1

for the null of at most 10 percent bias at the 5% level. The test statistics
are 17.9 and 7.8, respectively, for unemployment and inflation separately
(critical values of 21.7 and 18.5). The test statistics for 2SLS are all much
lower relative to similar critical values of around 20, which illustrates how
including the additional predictors in SP-IV amplifies the signal of the
instrument relative to 2SLS. Despite this amplification, the MBC shock
is still judged to be weak at conventional tolerance levels according to
the SP-IV first-stage test. The MBC shock is, nevertheless, by far the
strongest instrument across all candidate shocks that we explored.

In principle, many other shock measures could be used to identify the
parameters of (24), including monetary policy shocks as in Barnichon and
Mesters (2020). Table 5 reports the first stage test results for various pop-
ular monetary policy shock measures.12 The main takeaway is that, at
least in the sample that we consider, each of the monetary policy shocks
is far too weak as an instrument to be useful for identifying the Phillips
curve in practice. A few have some strength for inflation separately in the
first stage of 2SLS, but none do for both endogenous regressors jointly,
which is what matters for identification. Moreover, any hint of instru-
ment strength disappears entirely after including lagged macroeconomic

12The SP-IV IRFs are identified in an “internal instrument” VAR, i.e. by adding the shocks to the
other six macro variables in the VAR (see, e.g., Plagborg-Møller and Wolf (2021)).
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Table 5: First-Stage Test Results

π, U jointly U separately π separately

2SLS SPIV 2SLS SPIV 2SLS SPIV
g cv g cv g cv g cv g cv g cv

MBC 1.9 21.8 7.3 22.1 4.0 20.0 17.9 21.7 2.1 20.0 7.8 18.5

Monetary Policy Shock Measures:

RR 0.3 20.3 0.5 20.9 0.3 17.5 0.7 20.1 1.3 17.8 1.1 18.0

GK 0.5 21.7 0.1 22.3 0.9 21.1 0.1 22.0 7.9 18.5 0.1 19.1

MAR 0.3 22.9 0.0 22.3 0.9 20.3 0.9 22.0 0.3 18.9 0.0 18.7

JK 0.4 20.0 0.1 22.3 1.0 18.3 0.4 22.0 2.3 19.0 0.1 19.1

SWA 0.8 18.9 0.1 17.2 0.8 16.9 0.3 17.1 3.3 16.5 0.2 15.0

BC 1.2 20.9 0.0 22.3 1.9 19.6 1.6 22.0 6.8 18.7 0.0 19.2

NS 1.1 20.1 0.0 22.4 1.1 19.3 0.1 22.1 6.7 17.4 0.1 18.9

Notes: The table reports test results for the null hypothesis of weak instrument bias less
than or equal to 10% of the worst-case benchmark. g is the test statistic, cv is the 5%
critical value. U and π are the endogenous regressors in the restricted equation, i.e. Ut

and π1y
t+12 − π

1y
t−3. For 2SLS, results are for the HAR test of Lewis and Mertens (2022).

For SP-IV, the test is described in the Online Appendix. MBC is the main business
cycle shock of Angeletos et al. (2020). The monetary policy shock measures are Romer
and Romer (2004) (RR), Gertler and Karadi (2015) (GK), Miranda-Agrippino and Ricco
(2021) (MAR), Jarociński and Karadi (2020) (JK), Swanson (2021) (SWA), Barakchian
and Crowe (2013) (BC), Nakamura and Steinsson (2018) (NS). RR, GK and BC are
updated versions from Ramey (2016); the other series are from the original sources.

variables as controls in SP-IV. That none of the 2SLS/SP-IV first-stage
tests with monetary policy shocks comes close to rejecting the null of
weak instruments is not surprising, as it reflects the broadly held view
that monetary disturbances are relatively unimportant as drivers of in-
flation and economic activity. We also considered several other plausible
demand shock measures, such as the credit spread shock of Gilchrist and
Zakrajšek (2012) and the Bloom (2009) uncertainty shock, but none are

33



Figure 1: Impact of the MBC Shock on Inflation and Unemployment
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Notes: Inflation is the annualized Core CPI inflation rate from a quarter ago (π1q
t ). IRFs

in red in (a) and (b) are from a VAR with six lags using the annualized one-month
percent change in the core CPI, the unemployment rate, the 12-month change in log
industrial production, the 12-month percent change in the PPI for all commodities, the
3-month Treasury rate, and the 10-year Treasury rate. The estimation sample is 1979:M1
to 2018:M4. Blue lines in (a) and (b) show results from the DL regressions in the first
stage of 2SLS. Panel (c) shows the FEV contributions of the MBC shock in the VAR.

nearly as strong as the MBC shock in the post-1979 sample. Using mul-
tiple shocks could improve identification strength but creates potential
many-instrument problems. To the extent the MBC shock indeed collects
a range of demand disturbances that satisfy the exogeneity requirements,
it is by far the most informative available instrument for the identification
of the Phillips curve.

Our monthly version of the MBC shock produces IRFs that are very
similar to those in Angeletos et al. (2020). The red lines in Figures 1a-1b
plot VAR-based IRFs of π1q

t and Ut to a one standard-deviation MBC
shock. The figures show the first twelve IRF coefficients that are used in
the estimation, and also show the next eight quarters to visualize the full
dynamics. As in Angeletos et al. (2020), the MBC shock looks like an ag-
gregate demand shock, driving unemployment higher and inflation lower.
At the same time, the MBC shock explains a relatively small fraction of
the forecast error contribution (FEVD) of inflation, nearly zero on im-
pact and only 20% after two years, see Figure 1c. This finding illustrates
the apparent “disconnect” between inflation and the shock that explains
most of the cyclical variation in unemployment, see also Del Negro et al.
(2020). As previously explained, both 2SLS and SP-IV estimates can be
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expressed as the coefficients in regressions of IRFs. In SP-IV, these IRFs
are the red lines in Figures 1a-1b.13 The 2SLS estimator instead uses the
IRFs obtained from DL regressions of π1q

t (and π1y
t−3 and π1y

t+12) and Ut on
the current and lagged values of the MBC shock. For illustration, these
IRFs are shown in blue in Figures 1a-1b.

Figure 2 displays the estimates of γf and λ, together with 68%, 90%
and 95% confidence sets. Since neither of the first-stage tests in Table 5
rejects the null of weak instruments, the confidence sets are both based on
the KLM statistic. The point estimates of γf , the weight on future infla-
tion, are 0.57 for both 2SLS and SP-IV. The slope estimates are also close,
λ = −0.13 in SP-IV versus λ = −0.11 in 2SLS, and have the expected
negative sign since unemployment is the gap measure. The similarity in
point estimates is not too surprising, given that we use the VAR-identified
MBC shock to construct the 2SLS instruments. The inference results, on
the other hand, are much less similar. The 2SLS confidence sets do not
reject any plausible values of γf , nor do they rule out a wide range of
possible values of λ. The 90% set includes values of λ as high as 0.2 and
as low −0.4, and the 95% set includes an even wider range for λ. Com-
pared with 2SLS, inference for SP-IV is much sharper for the weight on
future inflation, with the confidence set ruling out values of γf that are
meaningfully below 0.4 or above 1. At the same time, the SP-IV sets also
do not rule out a wide range of possible Phillips curve slopes, with values
of λ ranging from -0.5 to slightly greater than zero within the 90% set.
We attribute the relatively more informative SP-IV confidence sets to the
greater effective strength of the instruments, as discussed in Section 1.3.
Our earlier simulation results also showed that KLM inference for SP-IV
was more reliable overall than for 2SLS.

As to the inflation-activity disconnect, our robust inference results act
as a warning against drawing strong conclusions from informal compar-
isons of IRF point estimates. When judging relationships across IRFs,
it is important to take into account that these estimates are inevitably
uncertain. SP-IV estimates the posited relationships between IRFs from
VARs or LPs formally and allows inference that is robust to the distor-

13The IRF of π1y
t+12 − π

1y
t−3 is straightforward to construct from the IRF of π1q

t .
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Figure 2: 2SLS and SP-IV Confidence Sets for Estimates of Phillips Curve Parameters
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Notes: Figures show point estimates and 68%, 90% and 95% confidence sets based on
the KLM statistic described in Section 2.3 and a HAR version for 2SLS.

tions caused by sampling error in the IRF estimates. The confidence
sets in Figure 1b, for example, are consistent with weak but also rela-
tively strong cyclical connections between inflation and unemployment.
The business cycle anatomy of Angeletos et al. (2020), therefore, does
not provide strong evidence that inflation and activity have been largely
disconnected in the post-1979 sample.

5 Concluding Remarks and Future Research

While we focused mainly on the (challenging) problem of estimating the
parameters of the inflation Phillips curve, SP-IV should be useful for es-
timating a wide variety of structural relationships in macroeconomics,
such as Euler equations for consumption or investment, the wage Phillips
curve, monetary or fiscal policy rules, and aggregate production functions.
SP-IV can be used more broadly to conduct inference on ratios (or other
relationships) of impulse response coefficients, such as Okun coefficients,
sacrifice ratios, multipliers, etc., conditional on economic shocks. Our
methodology could be extended to panel data settings and should be more
generally useful in applications that commonly rely on lagged variables as
instruments, such as the estimation of production functions in industrial
organization. SP-IV could also be used in cross-sectional applications. If
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h = 0, ..., H − 1 indexes cross-sectional groups rather than time horizons,
then SP-IV amounts to instrumental variables in the cross-section with
heterogeneity in the first stage coefficients. Future work can also develop
methods to optimally select the horizons/groups used for identification.
We plan to pursue these and other avenues in future research.
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Appendix

A Practical Implementation of SPIV with LPs or VARs

Let yH denote the H×T matrix of leads of the outcome variable, i.e. with
yt+h in the h+ 1-th row and t-th column. Let YH be the HK × T matrix
vertically stacking the H×T matrices Y k

H for k = 1, . . . , K, each of which
has Y k

t+h in the h+ 1-th row and t-th column, and Y k
t the k-th variable in

the vector Yt. Let Xt be the period t observation of an Nx × 1 collection
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of predetermined control variables (including a constant). Xt can include
not only current values, but also lags of yt, Yt, Zt, or any other time series.

Local Projections Define the Nx × T matrix X with controls Xt−1 in
the t-th column, the projection matrix PX = X ′(XX ′)−1X, and residu-
alizing matrix MX = IT − PX . Using a direct forecasting approach, the
forecast errors after projection on Xt−1 are given by

y⊥H = yHMX , Y ⊥H = YHMX , Z⊥ = ZMX ,(A.1)

which can be used in (9) to obtain the SP-IV estimator β̂. By the Frisch-
Waugh-Lovell Theorem, this direct forecasting approach is equivalent to
estimating Jordà (2005) local projections of yt+h and Yt+h on zt and Xt−1

for h = 0, . . . , H−1, using the estimated coefficients on zt to construct the
rows of Θ̂y and Θ̂Y and subsequently constructing the SP-IV estimator
using the alternative expression for β̂ in (13). When Z⊥ are measures of
economic shocks, the LP estimates are IRF coefficients representing the
dynamic causal effects of the shocks. Some studies estimate IRFs by local
projections of an endogenous outcome variable at t + h on an endoge-
nous explanatory variable Y k

t and controls Xt−1 using zt as instruments, a
procedure often referred to as “LP-IV”. Such IRFs can be used for identi-
fication in the SP-IV estimator exactly as described above, i.e. using the
reduced form projections of the outcome variables on zt and Xt−1.

Vector Autoregressions Suppose that yt, and the elements of Yt and
Zt, are – possibly together with other variables – all contained in Xt and
that Xt evolves according to a VAR,

Xt = AXt−1 + et .(A.2)

The representation in terms of a VAR of order one is without loss of
generality, as any VAR of order p can be rewritten as a VAR of order one
(in “companion form”). As before, let X denote the Nx × T matrix with
Xt−1 in the t-th column, and let Xf denote the Nx × T matrix with Xt

in the t-th column. The standard estimator of A is Â = XfX ′(XX ′)−1,
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leading to the h-step ahead forecast errors

X⊥t (h) =
h∑
j=0

Âh−j êt+j , êt = Xt − ÂXt−1 .(A.3)

The appropriate selection of elements in X⊥t (h) leads to y⊥H , Y ⊥H and
Z⊥, which can be used to obtain the SP-IV estimator β̂ in (9). “Struc-
tural” VARs are VARs in which researchers make assumptions to identify
columns of D in et = Dεt, allowing the estimation of IRFs that are inter-
pretable as dynamic causal effects of the associated economic shocks in εt.
If ε̂1:Nz

t are the Nz identified shocks in the structural VAR, it is possible
to use z⊥t = ε̂1:Nz

t to form Z⊥ and use these shock estimates for identi-
fication in the SP-IV estimator. This procedure also nests identification
with “external instruments”, which can be directly included in the VAR
and combined with zero restrictions in D as proposed by Plagborg-Møller
and Wolf (2021), or used indirectly as instruments to identify columns in
D as in the “proxy SVAR” or “SVAR-IV” approach (Mertens and Ravn
2013; Stock and Watson 2012; Stock and Watson 2018). Note that (11),
or equivalently (12), are consistent estimators of the IRFs associated with
ε̂1:Nz
t . In finite samples, however, these IRF estimates will not be numeri-
cally identical to those obtained from Θ̂V AR

X,h = ÂhD1:Nz, h = 0, . . . , H−1,
where D1:Nz denotes the first Nz columns of D. The reason is that the re-
strictions implied by the VAR dynamics are imposed on the reduced form
forecast errors, but (11) or (12) do not impose the same VAR dynamics on
the IRFs. Our preferred implementation of SP-IV with structural VARs is
instead to select the elements corresponding to yt and Yt in Θ̂V AR

X,h to form
Θ̂y and Θ̂Y , and then obtain the SP-IV estimator from the regression of
impulse responses as in (13). This alternative implementation imposes
the VAR dynamics on both the reduced form forecast errors as well as on
the impulse responses. In general, imposing the VAR dynamics is easily
done in all formulas above by replacing y⊥HPZ⊥Y ⊥H by Θ̂V AR

y Θ̂V AR
Y

′ and
Y ⊥H PZ⊥Y ⊥H by Θ̂V AR

Y Θ̂V AR
Y

′, where Θ̂V AR
Y is the HK ×Nz matrix stacking

the K blocks of the VAR IRF coefficients of Yt, and Θ̂V AR
y contains the
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H × Nz VAR IRF coefficients of yt.14 When comfortable imposing VAR
dynamics, it makes sense to impose these restrictions consistently, and we
therefore recommend this second implementation for SP-IV with VARs.

B Generalized and CUE SP-IV

Using the weighting matrix Φs(β, ζ) = (Σ−1
u⊥H
⊗ Q−1), where Σu⊥H

is the
covariance of u⊥H,t, leads to the efficient GMM estimator of β. This esti-
mator is also the “Generalized Least Squares” version of SP-IV minimizing
Tr
(

(u⊥HPZ⊥u⊥′H )Σ−1
u⊥H

)
. Given Σu⊥H

, the closed form generalized SP-IV es-
timator is

β̂G =
(
R′
(
Y ⊥H PZ⊥Y ⊥′H ⊗ Σ−1

u⊥H

)
R
)−1

R′
(
Y ⊥H PZ⊥ ⊗ Σ−1

u⊥H

)
vec(y⊥HPZ⊥) .

(B.1)

For inference, we replace Assumption 2.d by

Assumption 2.d′. R′(ΘY Θ′Y ⊗ Σ−1
u⊥H

)R is a fixed matrix with full rank.

Under Assumptions 2.a-2.c, Assumption 2.d′ and Assumption 3,

(B.2)
√
T (β̂G − β)

d→ N(0, VβG) , VβG =
(
R′
(

ΘY Θ′Y ⊗ Σ−1
u⊥H

)
R
)−1

.

The Generalized SP-IV estimator is feasible replacing Σu⊥H
with a con-

sistent estimator like the one in Section 2.1, using a two-step or iterated
procedure. Alternatively, the CUE estimator minimizes the AR statistic
in (21) with respect to b. The KLM statistic in (22) is zero at the CUE
estimator, so both AR and KLM confidence sets contain the CUE.

C Proof of Proposition 2

Proof. The asymptotic variance of the SP-IV estimator in (9) is

(C.1) aV ar(β̂) = (Θ′Y ΘY )−1Θ′Y
(
INz ⊗ var(u⊥H,t)

)
ΘY (Θ′Y ΘY )−1 ,

14To impose the VAR dynamics in the Generalized SP-IV formula (B.1), replace y⊥HPZ⊥ by
Θ̂V AR

y (ZMXZ
′/T )−

1
2ZMX and to construct Y̌H in the KLM statistic in (22), replace Y ⊥H PZ⊥ by

Θ̂V AR
Y (ZMXZ

′/T )−
1
2ZMX .

43



The asymptotic variance of the 2SLS estimator is

(C.2) aV ar(β̂2SLS) = (Θ′Y ΘY )−1 var(ut) .

We consider β̂j asymptotically more efficient than β̂i if aV ar(β̂i)−aV ar(β̂j)
is positive semi-definite (Rothenberg and Leenders 1964).

If ut is i.i.d., then it is unpredictable and E[u2
t ] = E[ut(h)2] ∀h and

E[ut(s)ut(h)] = 0, s 6= h, so var(u⊥H,t) = var(ut)IH , and part i) follows.
Suppose that Xt−1 is only a constant, or uninformative; then u⊥H,t =

uH,t. aV ar(β̂)−aV ar(β̂2SLS) will be positive definite as long as var(ut) =

σ2
υ/(1 − ρ2

u) < maxeval (var(uH,t)). var(uH,t) is a matrix with h, i entry
ρ
|h−i|
u σ2

υ/(1−ρ2
u). When ρu > 0, by the Perron-Frobenius theorem this ma-

trix has a unique positive dominant eigenvalue that is bounded from below
by the minimum row sum. The minimum row sum is (

∑H−1
h=0 ρ

h
u)σ

2
υ/(1−ρ2

u)

which is strictly larger than var(ut) when ρu > 0 and H > 1. Therefore,
maxeval var(uH,t) > var(ut) when ρu > 0, H > 1, completing part ii).

Finally, aV ar(β̂2SLS)−aV ar(β̂) is positive definite if var(ut) = σ2
υ/(1−

ρ2
u) > maxeval

(
var(u⊥H,t)

)
, giving the first part of (iii) . If Xt−1 spans the

full history of υt up to t − 1, u⊥t (h) =
∑h

j=0 ρ
j
uυt+h−j, and the condition

specializes to σ2
υ/(1 − ρ2

u) > maxeval var(u⊥H,t), where the h, i entry of
var(u⊥H,t) is

∑min{h,i}
j=1 σ2

υρ
h+v−2j
u , as stated in the proposition.

D Proof of Proposition 3

Proof. Consider the weak instruments asymptotic embedding ΘY = C/
√
T

where C is a HK × Nz fixed matrix. When K = 1, the concentration
parameter for 2SLS is Tr(CC ′)/(HNz)/σ

2
ω, where σ2

ω is the variance of
the first stage error term. For SP-IV without conditioning on Xt−1, the
concentration parameter is Tr(CC ′)/(Nz Tr(ΣvH )), see Definition 1 in the
Online Appendix. For SP-IV with conditioning on Xt−1, the concentra-
tion parameter is Tr(CC ′)/(Nz Tr(Σv⊥H

)), see Definition 1 in the Online
Appendix. Tr(ΣvH ) is larger than Tr(Σv⊥H

) unless Xt−1 is completely irrel-
evant for predicting Yt+h, h = 0, ..., H − 1. Parts (i) and (ii) follow from
the expressions for the concentration parameters.
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Figure C.1: Asymptotic Efficiency of SP-IV and 2SLS
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Notes: Results are for an AR(1) error term with persistence ρu. H is horizon length.
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