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We propose System Projections on Instrumental Variables (SP-IV) to estimate structural 

relationships using regressions of structural impulse responses obtained from local 

projections or vector autoregressions. Relative to IV with distributed lags of shocks as 

instruments, SP-IV imposes weaker exogeneity requirements and can improve efficiency 

and increase effective instrument strength relative to the typical 2SLS estimator. We 

describe inference under strong and weak identification. The SP-IV estimator outperforms 

other estimators of Phillips Curve parameters in simulations. We estimate the Phillips 

Curve implied by the main business cycle shock of Angeletos et al. (2020) and find that 

the impulse responses are consistent with weak but also relatively strong cyclical 

connections between inflation and unemployment. 
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This paper studies the estimation of β in structural time series equa-
tions of the form

yt = β′Yt + ut ,(1)

where yt is a scalar observation of an outcome variable in period t, Yt is a
K × 1 vector of explanatory variables, ut is an error term (which may or
may not be i.i.d.), and β contains the K structural parameters of inter-
est. The explanatory variables Yt may contain contemporaneous variables
but also lagged variables or agents’ expectations of future variables that
the econometrician may not measure well. We are interested in applica-
tions where E[Ytut] 6= 0, such that standard regression techniques yield
inconsistent estimates of β due to endogeneity.

Equation (1) nests a wide range of dynamic relationships of interest
in macroeconomics. Consider the example of the Hybrid New Keynesian
Phillips Curve (henceforth, the “Phillips Curve”),

πt = γbπt−1 + γfπ
e
t+1 + λgapt + ut ,(2)

where πt denotes inflation, πet+1 is a measure of price setters’ period t ex-
pectation of inflation in t + 1, and gapt is an output gap measure (the
deviation of actual economic activity from the level without price rigidi-
ties). Equation (2) maps into the more general problem in (1) with yt = πt,
Yt = [πt−1, π

e
t+1, gapt]

′ and β = [γb, γf , λ]′. The estimation of β is com-
plicated by a number of well-known problems that result in E[Ytut] 6= 0,
see for instance Mavroeidis et al. (2014), McLeay and Tenreyro (2019)
or Barnichon and Mesters (2020). One source of endogeneity is measure-
ment error, as in practice the output gap and inflation expectations must
be replaced with proxy measures. A second source of endogeneity is si-
multaneity since the error term generally includes structural shocks that
also influence the endogenous variables in Yt. Many theoretical dynamic
relationships include expectations and other endogenous explanatory vari-
ables and, therefore, face similar problems.

A common approach in the literature is to rely on dynamics for identi-
fication and use lagged variables as instrumental variables. In the Phillips
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Curve application, it is, for instance, typical to use gapt−1, gapt−2, . . . and
πt−2, πt−3, . . ., or lags of other readily available macroeconomic variables.1

Instrument exogeneity, in this case, requires that the error term ut is un-
correlated with any of the instrumenting lagged macroeconomic variables.
In other words, the shocks (and lags thereof) influencing the error term ut

must be uncorrelated with the shocks influencing the lagged variables used
as instruments. There is no general reason to believe that restrictions of
this sort hold when the instruments are lags of standard macroeconomic
variables since the latter may be functions of the same past shocks that
determine the error term. Lags of the output gap or inflation are, for
example, not valid instruments for (2) in medium-scale macroeconomic
models such as the Smets and Wouters (2007) model.

For this reason, Barnichon and Mesters (2020) propose IV with cur-
rent and lagged values of external measures of monetary policy shocks as
instruments, as these measures are potentially more credibly uncorrelated
with ut than lagged macro variables. In general, however, the literature
is rarely comfortable with imposing the strong assumption of uncondi-
tional lag exogeneity on available external measures of structural shocks
and typically avoids doing so by including a rich set of lagged macroeco-
nomic controls in vector autoregressive models (VARs) and local projec-
tions (LPs). Unfortunately, when estimating structural equations rather
than impulse responses, including such controls in conventional single-
equation IV (SE-IV) regressions with a distributed lag (DL) of shocks
as instruments shrinks the explanatory power of the instruments to that
of only the contemporaneous shock, resulting in weaker or even under-
identification. A researcher may, for example, wish to follow the recom-
mendations of Stock and Watson (2018) and include lags of the external
shock measure as controls when estimating structural impulse response
functions (IRFs) using local projections. However, including those lags as
controls is not possible when they are used as instruments as in Barnichon
and Mesters (2020). Similar problems arise when the controls do not in-

1For example, in an influential paper, Galí and Gertler (1999) use four lags of inflation, the labor
income share, the output gap, the long-short interest rate spread, wage inflation, and commodity
price inflation. They treat πt−1 as exogenous, and so also use it as an instrument.
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clude lags of the shock measure but contain variables that are correlated
with the lagged shock measures.

In this paper, we propose a novel approach to identifying and esti-
mating β that allows the inclusion of lagged variables as controls without
weakening identification. Specifically, we replace the single equation (1)
with an H-dimensional system of structural equations in forecast errors
of yt and Yt, where H is the number of leads. The forecast errors can be
derived from a variety of forecasting models, including VARs or LPs with
a rich set of controls. The contemporaneous values of the Nz instrumental
variables generate HNz moment conditions, which we solve in closed form
for β, yielding a restricted IV estimator in the system of reduced form
forecast errors. We refer to this methodology as System Projections on
Instrumental Variables, or SP-IV.

SP-IV estimates structural equations on the basis of the relationships
between empirical estimates of the dependent and independent variables’
impulse responses to economic shocks. We show that SP-IV is equivalent
to a straightforward regression of the IRF of yt on the IRFs of Yt, where the
IRFs can be obtained from a VAR, LPs, or other valid impulse response
estimators. Intuitively, SP-IV finds the linear combination of IRFs of the
endogenous variables to one or more suitably chosen structural shocks
that most closely matches the IRFs of the dependent variable to the same
shocks. Moreover, these IRFs can be obtained from any LP or VAR
identification scheme and – unlike the SE-IV approach of Barnichon and
Mesters (2020) – SP-IV, therefore, does not require the availability of
external shock measures.

Depending on the data generating process (DGP), SP-IV also has sev-
eral further advantages relative to SE-IV using a DL of instruments. First,
it can leverage existing external shock measures just like SE-IV, but with
adequate controls, it requires only the weaker assumptions of contempora-
neous and lead exogeneity of the instruments, compared to contemporane-
ous, lead, and lag exogeneity for SE-IV. Second, the use of forecast errors
instead of raw variables can improve efficiency in estimating β relative to
the typical 2SLS implementation of SE-IV. Third, similar efficiency gains
in the first stage can increase effective instrument strength, thereby mit-
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igating weak instrument problems. The latter two advantages of SP-IV
are more likely when the error term/endogenous variables are more per-
sistent/predictable and are, therefore, likely to be relevant in many macro
time series applications.

As SP-IV is a GMM estimator, inference is straightforward under
strong identification. We develop a first-stage test for instrument strength
by extending the popular bias-based test in Stock and Yogo (2005) to the
SP-IV setting. As instruments are often weak in practice, we propose
weak instrument robust inference procedures based on the Anderson and
Rubin (1949) AR statistic and Kleibergen’s (2005) KLM statistic.

We demonstrate the potential performance gains of SP-IV in simula-
tions estimating the Phillips curve parameters using data generated from
the Smets and Wouters (2007) model. When the instrument is lag endoge-
nous, 2SLS with DL instruments is prohibitively biased, but SP-IV with
suitable (but realistic) controls is not. When the instruments are valid for
both estimators, SP-IV with controls exhibits considerably smaller bias
than 2SLS with DL instruments in finite samples. A VAR implementa-
tion of SP-IV has the lowest bias of all estimators we consider, while LP
implementations have lower variance. Robust inference procedures for SP-
IV control size in realistic sample sizes and exhibit smaller size distortions
when HNz is large than similar procedures for conventional SE-IV.

As an empirical application, we estimate the Phillips curve in US data
using the Main Business Cycle (MBC) shock of Angeletos et al. (2020)
as an instrument. Identified as the shock that maximally explains the
cyclical variation in unemployment, Angeletos et al. (2020) conclude from
its muted impact on inflation that the Phillips curve must be very flat.
However, we find that robust confidence sets for the slope of the Phillips
curve are consistent with weak but also fairly strong cyclical connections
between inflation and economic activity. This application illustrates how
SP-IV enables formal assessments of structural relationships between IRFs
over multiple horizons while accounting for the sampling error in the IRF
estimates. After properly accounting for estimation uncertainty, the ev-
idence from IRFs to an MBC shock does not provide strong support for
inflation dynamics that are disconnected from the business cycle.
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Researchers frequently draw conclusions about structural economic re-
lationships by looking at relative magnitudes of IRF coefficients. However,
only a few existing studies use regressions with IRFs to more formally es-
timate the parameters in these relationships. An early contribution by
Jordà and Kozicki (2011) proposes a regression of IRFs from LPs as a so-
lution to a minimum distance problem to identify structural parameters.
However, Jordà and Kozicki (2011) abstract from issues of identification
and consider only reduced-form IRFs, relying on a high-level assump-
tion for consistency. Our paper instead develops theory for regressions
with “structural” IRFs from both LPs or VARs. More recently, Barnichon
and Mesters (2020) show that 2SLS with a DL of an economic shock as
instruments is equivalent to a regression with IRFs estimated from DL
regressions. The SP-IV approach in this paper allows the IRFs to come
from general VAR or LP specifications and identification schemes, and
we demonstrate several other advantages of SP-IV relative to 2SLS with
DL instruments. Inspired by Barnichon and Mesters (2020), Del Negro
et al. (2020) regress posterior draws of impulse response coefficients from
a Bayesian VAR to estimate Phillips Curve parameters, but they do not
provide a theoretical development of their method; in particular, they do
not relate it to IV. Finally, Galí and Gambetti (2020) identify markup
shocks in a VAR and estimate the Phillips curve parameters using coun-
terfactual data generated from the VAR after setting all realizations of the
markup shocks to zero. This approach can also be viewed as a regression
with IRFs, in this case to all relevant shocks except the markup shock
that causes simultaneity problems.

Henceforth, ⊗ denotes the Kronecker product, Tr(·) the trace opera-
tor, vec(·) the vectorization operator, mineval{·} /maxeval{·} the mini-
mum/maximum eigenvalue, p→ convergence in probability, d→ convergence
in distribution, and PX = X ′(XX ′)−1X the projection matrix.

1. System Projections on Instrumental Variables

We begin by reformulating the dynamic relationship in (1) in terms of
forecast errors. Taking h-horizon leads and taking residuals after condi-
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tioning on an Nx × 1 vector of predetermined variables Xt−1 yields

y⊥t (h) = β′Y ⊥t (h) + u⊥t (h) ,(3)

where y⊥t (h) = yt+h − E[yt+h | Xt−1], Y ⊥t (h) = Yt+h − E[Yt+h | Xt−1],
and u⊥t (h) = ut+h − E[ut+h | Xt−1]. Let zt denote an Nz × 1 vector of
instrumental variables, and define z⊥t = zt − E[zt | Xt−1]. As explained
in the introduction, we focus on applications that rely on dynamics for
identification, exploiting orthogonality conditions between the error term
ut and zt, zt−1, ... Instead of the usual approach of imposing orthogonality
between zt−h and ut for various h ≥ 0, we impose

E[u⊥t (h)z⊥t ] = 0 ; h = 0, . . . , H − 1 .(4)

Without conditioning on Xt−1 and under stationarity, the orthogonality
conditions in (4) are equivalent to imposing E[utzt−h] = 0, as in con-
ventional SE-IV. The key departure compared to using a DL of zt as
instruments is that the moments in (4) are not in terms of the uncon-
ditional data but in terms of forecast errors after conditioning on the
predetermined predictors Xt−1, where lags of zt may be included in Xt−1.

1.1. The Generalized Method of Moments Problem

The conditions in (4) provide a set of HNz moment conditions that can be
used to identify the K elements of β. Let y⊥H,t and u⊥H,t denote the H × 1

vectors in which the (h+1)-th element is y⊥t (h) or u⊥t (h) respectively. Let
Y ⊥H,t denote the HK×1 vector stacking the H×1 vectors Y k,⊥

H,t , where Y
k
t

is the k-th variable in Yt. Using this notation, the moment conditions are

E[u⊥H,t(β)⊗ z⊥t ] = 0 ,(5)

where u⊥H,t(b) ≡ y⊥H,t − (b′ ⊗ IH)Y ⊥H,t and the truth is b = β. Note that,
after expressing u⊥t (h) explicitly as a function of β, this expression simply
stacks (4) across horizons.

The moment conditions in (5) can be augmented to account for the
estimation of the forecast errors. We consider the class of forecasting
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models for the conditional expectations underlying (3) that are linear in
Xt−1 but possibly nonlinear in a set of parameters collected in the vector
d. This class includes LPs and VARs, both of which are widely used in
applied macroeconomics.2 The forecasting moment conditions are

E
[
Xt−1 ⊗

[
y⊥′H,t(ζ), Y ⊥′H,t(ζ), z⊥′t (ζ)

]′]
= 0,(6)

where y⊥H,t(d), Y ⊥H,t(d), z⊥t (d) are functions of parameters d that depend
on the forecasting model chosen, and the true value of d is ζ.

The moments in (5) and (6) can be stacked in a moment function
f(yH,t, YH,t, zt, Xt−1; b, d) with E[f(yH,t, YH,t, zt, Xt−1; β, ζ)] = 0. LetWt =

[y′H,t, Y
′
H,t, z

′
t, X

′
t−1]′. The associated GMM objective function is

FT (b, d) =
1

T

(
T∑
t=1

f(Wt; b, d)

)′
Φ(b, d)

(
T∑
t=1

f(Wt; b, d)

)
,(7)

where Φ(b, d) is a positive definite weighting matrix. We assume that Φ

is block-diagonal, for instance because the forecast errors are the stan-
dard LP or VAR residuals. This ensures that the forecasting step and
the structural estimation step are separable for estimation and inference
purposes based on a straightforward application of Frisch-Waugh-Lovell.
More formally, for inference purposes, we make the assumption,

Assumption 1. There exists a unique solution, ζ, to the forecasting mo-
ments (6), which are linear in Xt−1; the associated GMM estimator satis-
fies
√
T
(
ζ̂ − ζ

)
d→ N (0, Vζ) and for some feasible block-diagonal weight-

ing matrix Φ(β, ζ) and positive definite Vζ.

Under Assumption 1, the Jacobian of (5) with respect to d is zero in
expectation at ζ, which, with the structure of Φ(β, ζ), implies that the
asymptotic variance of β̂ depends only on the asymptotic variance of the
sample counterpart of (5), as explained in detail in Appendix C. This
means that estimating forecast errors and plugging them into fs(· , b), the
part of f(Wt, b, d) corresponding to the structural moments (5), and using

2For recent assessments of both methods, see Stock and Watson (2018), Plagborg-Møller and
Wolf (2021), or Li et al. (2021).
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standard formulas based on just those moments yields a valid asymptotic
variance. Henceforth, we therefore take the forecasts as given and focus
solely on the structural estimation step. For notational simplicity, we sup-
press the dependence of the forecast errors on ζ and we use the same “⊥”
superscript to refer to the sample counterpart of the population forecast
errors, since no adjustment is needed in our plug-in approach.

1.2. The SP-IV Estimator

Let Φs(b, d) denote the block in the weighting matrix Φ(b, d) corresponding
to the moments identifying the structural equation, (5). Our baseline
estimator uses Φs(b, d) = IH ⊗ Q−1, where Q = E[z⊥t z

⊥′
t ], to standardize

and orthonormalize z⊥t .3 In population the solution to (7) identifies β as

β =
(
R′(E[Y ⊥H,tz

⊥′
t ]Q−1E[Y ⊥H,tz

⊥′
t ]′ ⊗ IH)R

)−1(8)

×R′ vec(E[y⊥H,tz
⊥′
t ]Q−1E[Y ⊥H,tz

⊥′
t ]′) ,

where R = IK ⊗ vec(IH). Let the H × T matrix y⊥H , the HK × T matrix
Y ⊥H , and the Nz × T matrix Z⊥ collect the sample of observations of y⊥H,t,
Y ⊥H,t, and z⊥t respectively. The sample analog of (8) is

β̂ =
(
R′(Y ⊥H PZ⊥Y ⊥′H ⊗ IH)R

)−1
R′ vec(y⊥HPZ⊥Y ⊥′H ) ,(9)

which minimizes (7) with respect to b, using the sample weighting matrix,
IH ⊗ (Z⊥Z⊥′/T )−1. That minimization problem is equivalent to minimiz-
ing Tr(u⊥HPZ⊥u⊥′H ), or the sum of squared residuals in the system

y⊥H = (β′ ⊗ IH)Y ⊥H + u⊥H ,(10)

after projection on the instruments z⊥t . Thus, β̂ is also the restricted IV
estimator in the system of equations in (10), where the only restriction
is that β applies at all horizons, as already implied by (1). Because of
this formulation, we refer to our framework as System Projections on
Instrumental Variables (SP-IV), and β̂ as the SP-IV estimator.

3Efficient GMM uses Φs(β, ζ) = (Σ−1
u⊥
H

⊗ Q−1), where Σu⊥
H

= E
[
u⊥H,t(β)u⊥H,t(β)′

]
. Appendix B

presents the resulting GLS version of SP-IV, as well as the CUE SP-IV estimator.
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The SP-IV estimator has a useful interpretation in terms of the im-
pulse response functions of yt and Yt to innovations in the instruments zt.
Consider the following IRF estimates,

Θ̂Y =
Y ⊥H Z

⊥′

T

(
Z⊥Z⊥′

T

)− 1
2

; Θ̂y =
y⊥HZ

⊥′

T

(
Z⊥Z⊥′

T

)− 1
2

,(11)

which are OLS coefficients from regressing Y ⊥H,t and y⊥H,t on standardized

innovations to the instruments,
(
Z⊥Z⊥′/T

)− 1
2 z⊥t . Using Θ̂y, construct

the HNz × 1 vector Θ̂y stacking the Nz vectors of IRF coefficients of yt.
Construct the HNz ×K matrix Θ̂Y similarly stacking Θ̂Y . Formally,

Θ̂Y = ((Z⊥Z⊥′/T )−
1
2Z⊥ ⊗ IH/T )Y⊥H ;(12)

Θ̂y = ((Z⊥Z⊥′/T )−
1
2Z⊥ ⊗ IH/T )y⊥H ,

where y⊥H = vec
(
y⊥H
)
is TH × 1 and Y⊥H = [vec(Y ⊥H,1), . . . , vec(Y ⊥H,K)] is

TH ×K. Then the SP-IV estimator β̂ in (9) is equivalent to

β̂ = (Y⊥′H (PZ⊥ ⊗ IH)Y⊥H)−1Y⊥′H (PZ⊥ ⊗ IH)y⊥H ,(13)

= (Θ̂′Y Θ̂Y )−1Θ̂′Y Θ̂y ,

so β̂ is the slope in the OLS regression of Θ̂y on Θ̂Y , the coefficients in a
regression of the IRFs of yt and Yt to zt, conditional on Xt−1.

The expression for β̂ in (13) suggests a simple two-stage procedure
for implementing SP-IV. The first stage consists of estimating IRFs using
instruments satisfying the exogeneity conditions, which are frequently es-
timated objects in empirical macroeconomics. In the second stage, given
such a set of IRF estimates, the SP-IV estimator is obtained by regress-
ing the IRF of the outcome variable, yt, on the IRFs of the endogenous
variables, Yt. To theoretically justify the moment conditions in (4), it
will often be natural to choose instruments leading to impulse responses
to interpretable economic shocks, such as monetary policy shocks, gov-
ernment spending shocks, etc. For the Phillips curve example in (2), the
first stage estimates IRFs of inflation πt and the slack measure gapt to a
monetary policy shock (or other aggregate demand shocks orthogonal to
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the cost-push term, ut). In the second stage, the IRF of πt is regressed
on the IRF of gapt as well as the IRFs of lagged and expected future in-
flation, πt−1 and πet+1. The latter can be obtained simply by lagging and
leading the IRF of πt by one horizon. Appendix A gives practical details
on implementation using LPs or VARs.

A large literature studies the identification of economic shocks pre-
senting potential instruments for SP-IV; see Ramey (2016) or Kilian and
Lütkepohl (2017) for surveys. However, any valid strategy for identifying
structural IRFs based on LPs or VARs can be used in conjunction with SP-
IV provided the underlying shocks satisfy the exogeneity conditions (5).
SP-IV recovers the coefficients that best fit the structural economic rela-
tionship between IRFs of the variables in that relationship to the shocks
chosen by the econometrician. Technically, SP-IV only requires IRFs to
an identified rotation of economic shocks that satisfy the exogeneity con-
ditions. In other words, the shocks and their associated IRFs need not
necessarily be separately identified. In practice, it is also possible to per-
form SP-IV with a subset of horizons rather than all h = 0, . . . , H − 1, as
we discuss further below.

1.3. SP-IV versus 2SLS Implementations of SE-IV

The standard SE-IV approach for identifying β in (1) with zt, ..., zt−H+1

as instruments exploits the HNz orthogonality conditions

E[utzt−h] = 0 ; h = 0, . . . , H − 1 .(14)

Practitioners typically implement these conditions using the 2SLS esti-
mator, in which case the first stage consists of regressing the endogenous
variables Yt on the lag sequence zt, ..., zt−H+1, and the second stage con-
sists of regressing yt on the predicted values. When zt consists of measures
of economic shocks, the first stage implicitly estimates the IRF coefficients
of Yt to the shocks zt using a DL model. Barnichon and Mesters (2020)
observe that, after similarly estimating the IRF of yt, the 2SLS estimates
equal the estimates from OLS regression of the IRF of yt on the IRFs of
Yt. The 2SLS estimator with a DL of shocks as instruments, therefore,
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can – like SP-IV – be interpreted in terms of a regression with IRFs. In
2SLS, the regression uses IRFs estimated by single-equation DL models,
i.e., regressions of yt and Yt on zt, ..., zt−H+1 without additional controls.
In contrast, in SP-IV the IRFs can be obtained from LPs with controls
Xt−1 or from VARs with yt, Yt and other variables in Xt as endogenous
variables. In the literature, IRFs are typically identified from such LPs or
VARs with additional controls, not DL models, since plausible uncondi-
tionally exogenous instruments are generally hard to find. One advantage
of SP-IV is, therefore, that it estimates structural relationships across
IRFs as they are estimated in practice. Another advantage is that SP-IV
greatly expands the options for identification. Whereas the IRFs for 2SLS
rely on the availability of external measures of economic shocks, the IRFs
for SP-IV can also be identified by internal instruments generated from
recursivity assumptions, or any other covariance restrictions that do not
involve external variables.

Depending on the DGP, the ability to accommodate controls yields
three further potential advantages of SP-IV.

1. Weaker Exogeneity Requirements for zt The first advantage is
that, with suitable predetermined controls Xt−1, practical identification
arguments can be based on weaker assumptions regarding zt. To see this
more clearly, we adopt the conventional impulse-propagation paradigm of
representing yt and Yt in terms of linear combinations of current and past
realizations of ‘structural shocks’, εt, where E[εt] = 0, E[εtε

′
t] = Idim(ε) and

E[εtε
′
s] = 0 for s 6= t.4 Such a representation is consistent with a large

class of DGPs, including all stationary SVAR models (from a reduced-
form perspective) and all discrete-time linearized DSGE models (from a
structural perspective); see, e.g., Plagborg-Møller and Wolf (2021). Given
the representations for yt and Yt as linear combinations of the history of
εt, (1) implies that the error term ut is generally also a linear combination

4This paradigm is common in the literature, e.g., Ramey (2016), Stock and Watson (2018),
Plagborg-Møller and Wolf (2021) or Plagborg-Møller and Wolf (2022) for recent examples.
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of current and past structural shocks:

ut = µ′0εt + µ′1εt−1 + µ′2εt−2 + . . . ,(15)

i.e., ut is an MA(∞) in the structural shocks.
Given the representation of the error term ut in (15) and stationarity,

the necessary orthogonality condition for SE-IV in (14) can be restated as∑∞
l=0 µ

′
lE[εt+h−lz

′
t] = 0. Without any controls, substituting (15) into the

orthogonality condition for SP-IV in (4) yields exactly the same orthog-
onality condition. Although it is theoretically possible for nonzero terms
in the summation of this condition to cancel each other out, practical
identification approaches will almost always rely on the sufficient condi-
tions that each individual term in the summation is zero since, otherwise,
a very particular relationship must be assumed to hold among the non-
zero µl coefficients. With suitably chosen controls Xt−1, these sufficient
conditions are weaker for SP-IV than for SE-IV:

Proposition 1. Suppose (15) and stationarity hold; the exogeneity con-
dition for SE-IV with lags of zt in (14) holds when

(16) µ′lE[εt+h−lz
′
t] = 0 ; l = 0, . . . ,∞ ; h = 0, . . . , H − 1.

Suppose (15) holds and Xt−1 spans past shocks included in ut such that
u⊥t = µ′0εt; the exogeneity condition for SP-IV in (4) holds when

(17) µ′lE[εt+h−lz
′
t] = 0 ; l = 0, . . . , h ; h = 0, . . . , H − 1.

Proof. The SE-IV result follows from substituting (15) in (14) and station-
arity. The SP-IV result follows similarly after conditioning on Xt−1.

Analogous to Stock and Watson (2018), we denote the sufficient condi-
tions in (16) with l > h as lag exogeneity, with l = h as contemporeneous
exogeneity, and with l < h as lead exogeneity. The SE-IV exogeneity
condition holds when all three forms of exogeneity hold. In contrast,
the SP-IV exogeneity condition is implied by only contemporaneous and
lead exogeneity, since by assumption conditioning on Xt−1 eliminates the
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influence of all past realizations of εt on u⊥t (h). With a suitable set of
predictors, the exogeneity conditions on zt are thus substantially weaker.5

Furthermore, there are alternative intuitive sufficient conditions for the
SP-IV exogeneity conditions in (4). For instance, ifXt−1 instead spans any
past shocks entering zt, so that z⊥t is a function of only contemporaneous
shocks other than those entering ut, then the conditions are satisfied.
Indeed, various combinations of conditions like this one and that with
respect to u⊥t in Proposition 1 will imply (4).

As a concrete example of how controls can matter for instrument va-
lidity, consider again the Phillips Curve in (2). As instruments, Barnichon
and Mesters (2020) use a DL of Romer and Romer’s (2004) measure of
monetary policy surprises, zRRt , which are the residuals in a regression of
the intended funds rate change at FOMC meetings on the current rate and
Greenbook forecasts of output growth and inflation. Assume no measure-
ment error and that the error term in (2) is just an exogenous cost-push
shock following ut = ρuut−1 + υt, with 0 ≤ ρu < 1, and υt is white noise.
Unless ρu = 0, ut depends on υt, and on all lags υt−1, υt−2, . . . If zRRt
is uncorrelated with υt, its leads up to H − 1, and all of its lags, then
zRRt , ..., zRRt−H+1 satisfy the sufficient conditions (16) for estimation of the
Phillips Curve. Suppose, however, that the regression generating zRRt is
misspecified by omitting one or more lags of inflation. In that case, zRRt
generally still depends on lags of υt, and the lag exogeneity requirement is
not satisfied. However, by including lags of inflation amongst predictors
Xt−1, the exogeneity requirements for SP-IV remain satisfied as long as
contemporaneous and lead exogeneity hold. We return to this example
later in the simulations of Section 3.

The identification results in Proposition 1 mirror those in Stock and
Watson (2018) showing that the inclusion of suitable lagged controls in
LP-IV, or equivalently ‘invertibility’ in SVARs, avoids lag exogeneity re-
quirements when estimating structural impulse responses. Here though,

5If u⊥t+h =
∑h

j=0 µ
′
jεt+h−j for h = 0, ...,H − 1 , the necessary condition for SP-IV is∑h

l=0 µ
′
lE[εt+h−lz

⊥′
t ] = 0, compared to the necessary condition

∑∞
l=0 µ

′
lE[εt+h−lz

′
t] = 0 for SE-IV.

With nonzero terms in the summations, it is strictly speaking possible that the necessary condition
holds for SE-IV but not for SP-IV. However, we are unaware of any application in the literature
with identification arguments that would imply nonzero terms in either summation.
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the requirements are in principle weaker than those needed to estimate dy-
namic causal effects using LPs of SVARs with lag endogenous instruments,
since conditioning onXt−1 must remove only the influence of lagged shocks
that are included in (15) – i.e. shocks in εt with corresponding nonzero
elements in µl – and not necessarily that of lags of all shocks εt driving yt
and Yt.6

2. Efficiency Gains Conditioning on predictors Xt−1 can also lead to
asymptotic efficiency gains relative to 2SLS with DL instruments. Whether
SP-IV improves efficiency depends on the DGP for ut and the infor-
mativeness of the predictors Xt−1. Intuitively, the SP-IV estimator is
more efficient than 2SLS if the variances of the forecast errors u⊥t (h) at
h = 0, ..., H−1 are small relative to the variance of the error term ut. Let
Σu⊥H

= var(u⊥H,t) and ΣuH = var(uH,t).

Proposition 2. Suppose zt is i.i.d. and independent of ut; then

(i) If ut is i.i.d., or if Xt−1 is empty or is otherwise uninformative for
ut, . . . , ut+H−1, SP-IV is asymptotically as efficient as 2SLS.

(ii) β̂ is asymptotically more efficient than β̂2SLS if maxeval
(
ΣuH

)
>

maxeval
(

Σu⊥H

)
.

Proof. See Appendix D.

When ut is i.i.d., the errors in both estimators are identical in popula-
tion since Xt−1 does not predict ut, . . . ut+H−1 and forecast errors do not
accumulate over h = 0, . . . , H − 1. More generally, if Xt−1 is uninforma-
tive for ut, . . . ut+H−1, the forecast error variance of ut(h)⊥ accumulates in
exactly the same way as autocovariance terms in the long-run variance of
the 2SLS estimator; intuitively, if the estimators use equivalent moments
(under stationarity) and weighting, their asymptotic variances must be
identical. Part (ii) states that SP-IV can be asymptotically more efficient
than 2SLS if Xt−1 has sufficient predictive power for ut, . . . ut+H−1. If ut

6In the Phillips curve example, other demand shocks could still contaminate zRR
t after condition-

ing on Xt−1, and the IRFs identified with zRR
t in VARs or LPs with Xt−1 as controls may therefore

not represent the causal effects of monetary policy shocks; nevertheless, zRR
t remains a valid instru-

ment for SP-IV with controls Xt−1 as long as Xt−1 eliminates the influence of υt−1, υt−2, . . .

15



follows an AR(1), for example, and Xt−1 spans all past shocks, applying
this formula shows that SP-IV is more efficient than 2SLS for any H > 1

and |ρ| > 0. Intuitively, efficiency gains from SP-IV are more likely when
ut is more persistent such that Xt−1 explains a larger fraction of the vari-
ance of ut, . . . ut+H−1. Since the predictive power of Xt−1 diminishes as
the forecast horizon grows larger, relative efficiency of SP-IV requires that
the maximum forecast horizon, H, is not too large.

3. Stronger Identification The ability to condition on Xt−1 in SP-IV
can also improve the effective strength of the instruments, as measured
by the concentration parameter; see, e.g., Stock and Yogo (2005). Weak
instruments lead to bias in IV estimators and make conventional inference
methods invalid. In many time series applications, instruments are weak,
while the endogenous variables can be highly persistent and thus pre-
dictable. Let ωt be the error term in the first stage of 2SLS with variance
σ2
ω. Denote the H × 1 vector of errors in the SP-IV first stage regression

of YH,t on zt (but no additional predictors) as vH,t, with covariance ΣvH .
Similarly, denote the errors in the first-stage SP-IV regression of YH,t on zt
and the additional predictors Xt−1 by v⊥H,t, with covariance Σv⊥H

. Finally,
consider the case where zt is strictly exogenous (i.e., lead/lag and contem-
poraneously exogenous) since otherwise, the concentration parameter for
2SLS is not well-defined.

Proposition 3. Assume K = 1 and zt is i.i.d. and satisfies (16):

(i) Unless Y ⊥t (h) = Yt+h for h = 0, ..., H − 1, such that Xt−1 are irrele-
vant predictors, the concentration parameter for SP-IV with controls
Xt−1 is larger than for SP-IV without controls;

(ii) If Tr(Σv⊥H
)/H < σ2

ω, the concentration parameter for SP-IV is larger
than that for 2SLS.

Proof. See Appendix E.

Part (i) in Proposition 3 states that when the predictors have explana-
tory power for the endogenous regressors, their inclusion in SP-IV in-
creases the effective strength of the instruments, as measured by the con-
centration parameter, and conditioning on Xt−1 therefore decreases bias.
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Part (ii) states that the effective instrument strength can also increase
relative to 2SLS, depending on the persistence and predictability of the
errors, as well as on H. As the predictability of the endogenous variables
diminishes with the forecast horizon H, the advantage of conditioning on
Xt−1 can be outweighed by the recency of zt for Yt in 2SLS. With multiple
endogenous regressors (K > 1), instrument strength depends on the entire
eigenstructure of the first stage parameters (and that of Σv⊥H

), making a
fully general result hard to obtain analytically. Intuitively, however, con-
ditioning on Xt−1 should still strengthen the instruments when Xt−1 has
explanatory power and K > 1.

Each of the three potential advantages of SP-IV above derives from the
ability to include lagged controls when estimating the first-stage IRFs,
and they will be demonstrated by the simulation evidence in Section 3
below. As we illustrate with further simulation results in Online Appendix
II.4, it is not possible to replicate the same advantages by incorporating
the controls Xt−1 into 2SLS implementations of the conventional SE-IV
setting. First, adding Xt−1 as additional regressors in both stages of 2SLS
with DL instruments weakens identification. As an extreme case, suppose
conditioning on Xt−1 eliminates the influence of all past realizations of the
structural shocks εt on Yt and zt. IncludingXt−1 as additional regressors in
2SLS then implies that only the contemporaneous instruments zt remain
relevant. Since Xt−1 also removes the influence of lags of zt, these lags
are completely irrelevant as instruments after including Xt−1 as controls.
Moreover, when Nz < K the model is under-identified without identifying
information from the lags of zt.

Second, it is generally also not possible to circumvent the lag exogeneity
requirement of 2SLS by first projecting zt on Xt−1 and using the residuals,
z⊥t , ..., z

⊥
t−H+1 as the instrumental variables in 2SLS. This is the implicit

procedure, for example, when a shock is first identified in a VAR or LPs
with Xt−1 as controls, and a DL of that shock is then used as instruments
in 2SLS. The reason is that ut must still be orthogonal to all lags of
the identified shock, which is not necessarily the case. Even when such a
weaker form of lag exogeneity is plausible, this approach does not have the
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other advantages of SP-IV when Xt−1 has substantial predictive power.7

Finally, adding Xt−H to both stages of a 2SLS regression of yt on Yt

with zt−1, ...zt−H+1 as instruments also does not replicate the advantages
of SP-IV. This approach is based on instrumenting more distantH−1-step
ahead forecast errors and still requires lag exogeneity at horizons smaller
than H. Moreover, by instrumenting only more distant H − 1-step-ahead
forecast errors, this approach does not increase identification strength to
the same extent as SP-IV with Xt−1 as controls.

We conclude this section with some practical considerations for choos-
ing the controls in empirical applications. First, the choice of controls
matters in cases when the instruments zt are suspected to be lag endoge-
nous. In that case, conditioning on Xt−1 must remove the influence of all
past structural shocks that are not excluded from the structural MA(∞)
representation of the error term ut in (15) from u⊥t , z⊥t , or both. So if ut+h
is not i.i.d., but, for example in the Phillips curve application, depends
on the realizations of cost-push shocks before period t, then Xt−1 must be
such that the period t h+ 1-step ahead conditional forecast error, u⊥t (h),
is orthogonal to the cost-push shocks prior to period t, the orthogonal-
ized instrument z⊥t is orthogonal to cost-push shocks prior to period t, or
both. When ut+h is also influenced by other structural shocks, for exam-
ple, because of mismeasurement of inflation expectations or the output
gap, then conditioning on Xt−1 must generally remove the influence of the
entire history of those other confounding shocks as well. Researchers who
want to remain entirely agnostic about which structural shocks prior to
t influence ut+h can aim for a set of controls Xt−1 that is information-
ally equivalent to the (infinite) history of all macroeconomic shocks that
drive yt and Yt. The latter provides the greatest amount of ‘exogeneity
insurance’ – as Ramey (2016) calls it in the context of structural impulse
response estimation. It is also a testable assumption, and various tests
are available in the literature. As mentioned before, the controls Xt−1

can also include lags of zt itself, such that the first-stage IRFs can be esti-
7See also Lloyd and Manuel (2023) for further discussion of why residualizing instruments – but

not regressors – to controls is not advisable.
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mated using ‘lag-augmented’ local projections as discussed in Montiel Olea
and Plagborg-Møller (2021) or internal instrument VARs as discussed in
Plagborg-Møller and Wolf (2021).

Second, even when the instruments zt are strictly exogenous and the
controls Xt−1 are not strictly necessary for valid identification, the choice
of controls still matters for realizing the efficiency and/or instrument
strength improvements of SP-IV relative to 2SLS. Intuitively, these ben-
efits are maximized when the forecast errors have the smallest possible
variance, and this will be the case when Xt−1 contains all relevant pre-
dictive information, i.e. when Xt−1 is informationally equivalent to the
(infinite) history of all structural shocks that drive yt and Yt. Each of the
above two roles for Xt−1 (exogeneity insurance and efficiency/ stronger
identification) point to including all relevant predictive information for
the endogenous variables in Xt−1. In this sense, the considerations for
choosing the controls are not different from those when estimating struc-
tural IRFs, see Stock and Watson (2018). Of course, choosing larger Xt−1

in practice must be weighed against small sample issues, and taking maxi-
mum advantage could involve lagged factors from factor models, shrinkage,
or Bayesian methods. We leave these refinements for future work.

1.4. Consistency of the SP-IV Estimator

Consider the following high-level assumptions on covariances:

Assumption 2. The following probability limits and rank condition hold:

Z⊥Z⊥′/T
p→ E[z⊥t z

⊥′
t ] = Q, where Q is positive definite,(2.a)

Y ⊥H Z
⊥′/T

p→ E[Y ⊥H,tz
⊥′
t ] = ΘYQ

1
2 , a real HK ×Nz matrix,(2.b)

Z⊥u⊥′H /T
p→ E[z⊥t u

⊥′
H,t] = 0,(2.c)

R′(ΘY Θ′Y ⊗ IH)R is a fixed matrix with full rank.(2.d)

The convergence in probability in 2.a-2.c holds under standard prim-
itive conditions and laws of large numbers. Condition 2.a ensures linear
independence of the instruments and consistency of the sample weighting
matrix. Condition 2.b states that the covariance between Y ⊥H and Z⊥ is
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consistently estimated. The population covariance ΘYQ
1
2 is a rotation of

ΘY , a matrix containing the impulse response coefficients of Y ⊥t to z⊥t ,
after standardization. Condition 2.c is the exogeneity condition. Finally,
the rank condition 2.d is sufficient for the existence of a unique solution to
the moment conditions (5) and ensures that the denominator of the closed
form solution (8) is full rank, with the definition of ΘY implying that the
instruments are relevant. 2.b and 2.d jointly imply that the instruments
are strong, an assumption we relax in Section 2.

Assumption 2 resembles the usual (strong) IV assumptions; see, for
instance, Stock and Yogo (2005). Note that condition 2.d does not require
that there are at least as many instruments as endogenous regressors,
Nz ≥ K. Since rank(R′(ΘY Θ′Y ⊗ IH)R) = min{K,H rank(ΘY Θ′Y )}, the
order condition is HNz ≥ K, since there are HNz moment conditions in
(5). Adding leads of yt and Yt makes up for Nz < K just as adding lags
of zt as instruments does for SE-IV.

Proposition 4 establishes consistency of the SP-IV estimator in (9).

Proposition 4. Under Assumptions 1 and 2, β̂ p→ β.

Proof. Both terms in (9) converge by the stated assumptions, and the
result follows from the continuous mapping theorem.

2. Inference for SP-IV

2.1. Inference under Strong Instruments

When the instruments are strong, under the conditions in Assumptions
1 and 2, inference for SP-IV can proceed analogously to standard 2SLS.
With a further high-level assumption, the limiting distribution of β̂ fol-
lows:

Assumption 3. T−1/2 vec(Z⊥u⊥′H )
d→ N(0, (Σu⊥H

⊗Q)),where Σu⊥H
is full rank.

Proposition 5. Under Assumptions 1-3,

(18)
√
T (β̂ − β)

d→ N(0, Vβ) ,

where Vβ = (R′(ΘY Θ′Y ⊗ IH)R)−1R′
(

ΘY Θ′Y ⊗ Σu⊥H

)
R (R′(ΘY Θ′Y ⊗ IH)R)−1.
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Proof. The result is immediate after rearranging (9), from Proposition 4,
the stated assumptions, and the continuous mapping theorem.

Vβ can be estimated by replacing Σu⊥H
with a consistent estimate, and

ΘY Θ′Y with Y ⊥H PZ⊥Y ⊥′H . Inference can be based on standard Wald tests.
A natural consistent estimator is

(19) Σ̂u⊥H
= û⊥H û

⊥′
H /(T −Nx −K),

since, as noted following Assumption 1, estimation error in the forecast er-
rors does not impact their asymptotic variances. Including adequate lags
in Xt−1 (which can include lags of zt) obviates the need for an autocorrela-
tion robust estimate by eliminating autocorrelation in z⊥t . Any mechanical
correlation between u⊥t (0) and u⊥t−h(h), say, drops out of var(u⊥H,t ⊗ z⊥t ),
since when z⊥t is serially uncorrelated, so too is u⊥H,t⊗ z⊥t .8 This is not the
case for 2SLS, which generally requires autocorrelation-robust methods
due to mechanical autocorrelation in the overlapping lag sequence of zt.
The same logic also prevents strong dependence in the forecast errors at
long horizons from causing spurious regression problems when estimating
first-stage or reduced-form IRFs.

2.2. A Test for Weak Instruments

In many applications, the available instruments may be weak. If so, Wald
inference will be invalid, leading to empirical rejection rates that generally
exceed nominal levels. In the Online Appendix, we derive a bias-based
test of instrument strength for SP-IV that is analogous to the popular
Stock and Yogo (2005) bias-based test of weak instruments for standard
2SLS. We consider a Nagar approximation of the bias under weak in-
strument asymptotics, as in Montiel-Olea and Pflueger (2013) and Lewis
and Mertens (2022). Like Stock and Yogo (2005) and Lewis and Mertens
(2022), we use a weighted `2-norm of the bias to accommodate multiple
endogenous regressors (K>1). Weak instruments are defined as those for
which the bias in β̂ is at least τ percent of a worst-case benchmark under

8The argument is analogous to that of Montiel Olea and Plagborg-Møller (2021) for LP with
instrumental variables.
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weak instrument asymptotics. The test statistic is similar to that of Cragg
and Donald (1993), and the test rejects the null hypothesis of weak instru-
ments when the statistic exceeds the level-α critical value of a bounding
distribution. The test nests the Stock and Yogo (2005) test when H = 1.

2.3. Weak Instrument Robust Inference for SP-IV

We describe two robust test statistics for SP-IV with local projections.
Appendix A describes the implementation of the tests when using a VAR.

AR Statistic The “S-statistic” of Stock and Wright (2000) extends the
AR statistic to the GMM setting. For SP-IV, the statistic and its limiting
distribution under the null hypothesis are

AR(b) = (T − dAR) Tr

(
u⊥H(b)PZ⊥u⊥H(b)′

(
u⊥H(b)MZ⊥u⊥H(b)′

)−1
)
,(20)

AR(β)
d→ χ2

HNz
,

where MZ⊥ = IT − PZ⊥ is the residualizing matrix and dAR = Nz + Nx

is a degrees of freedom correction. Rather than the moment covariance
matrix, we use the normalizing matrix typically used with the AR statistic,
asymptotically equivalent under the null hypothesis. Note that estimation
error in the first stage does not affect inference based on the AR statistic
since it does not impact the asymptotic variance of the u⊥H,t ⊗ z⊥t , for the
same reasons given under Assumption 1.

KLM Statistic The AR statistic can have poor power when there are
over-identifying restrictions. This occurs when HNz > K, i.e., when the
number of IRF coefficients exceeds the number of endogenous regressors.
As this will often be the case, we consider the Kleibergen (2005) KLM
statistic, which can improve power (Andrews et al. 2019).
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Following Kleibergen (2005),

K(b) = (T − dK) vec
(
Ξ−1u⊥H(b)Y̌ ′H

)′
R(21)

×
(
R′(Y̌H Y̌

′
H ⊗ Ξ−1u⊥H(b)u⊥′H (b)Ξ−1)R

)−1

×R′ vec
(
Ξ−1u⊥H(b)Y̌ ′H

)′
,

K(β)
d→ χ2

K ,

where Y̌H = Y ⊥H PZ⊥−v̌⊥H ǔ⊥′H (b)
(
ǔ⊥H(b)ǔ⊥′H (b)

)−1
u⊥H(b)PZ⊥ , Ξ = u⊥H(b)MZ⊥u⊥′H (b),

v̌⊥H = v⊥HMZ⊥ , ǔ⊥H(b) = u⊥H(b)MZ⊥ , and dK = Nz + Nx is a degrees
of freedom correction. Intuitively, instead of the covariance of u⊥H and
(Z⊥Z⊥′)−1/2Z⊥, the numerator of the KLM statistic features the covari-
ance of u⊥H and the projection of a transformation of Y ⊥H on (Z⊥Z⊥′)−1/2Z⊥.
Our formulation differs from Kleibergen (2005) only by the replacement
of u⊥H and v⊥H with ǔ⊥H and v̌⊥H . This choice is consistent with the IV
statistic in Kleibergen (2002) and asymptotically equivalent to the form
in Kleibergen (2005) under the null.

3. Performance of SP-IV in Model Simulations

In this section, we demonstrate the performance improvements offered by
SP-IV in simulations, supporting our theoretical claims. The objective
in all simulations is to estimate the parameters of the Phillips Curve in
(2) using data generated from the macroeconomic model of Smets and
Wouters (2007) (SW).9 The Phillips Curve in (2) is one of the equations
in the SW model within a system of fourteen simultaneous equations for
the dynamics of key macroeconomic aggregates. An important feature
of the estimated SW model is that the shocks underlying the error term
ut in the Phillips curve explain a very large fraction of the variance of
inflation. This means that, in realistic sample sizes, the weak instrument
problem is generally severe due to the small role played by other shocks.
Moreover, the error term ut is persistent, as are most of the macro ag-
gregates generated by the model. Both features make the estimation of

9The data is generated from the SW model using the Dynare replication code kindly provided
by Johannes Pfeifer at https://sites.google.com/site/pfeiferecon/dynare.
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the Phillips curve parameters challenging. Conventional SE-IV methods
tend to perform poorly, and our simulation setup is, therefore, an ideal
laboratory to evaluate the potential improvements offered by SP-IV.

As mentioned in the introduction, using a sequence of lagged endoge-
nous variables as instruments – as in Galí and Gertler (1999) and the
subsequent literature – is not valid for identification in this setting. In the
SW model, the error term in (2) is the ARMA(1,1) process

ut = ρuut−1 + εpt − µpε
p
t−1 , ρu = 0.99, µp = 0.83(22)

where εpt is an i.i.d. normally distributed price markup shock.10 Inverting
the autoregressive term in (22) yields ut = εpt + ρu(1 − µp)εpt−1 + ρu(ρu −
µp)ε

p
t−2 + ρ2

u(ρu − µp)ε
p
t−3 + . . ., showing that the error term ut generally

depends on the entire history of price markup shocks εpt , ε
p
t−1, ε

p
t−2, . . . The

period t values of the endogenous model variables are functions of all
current and lagged values of a 7× 1 vector εt, including εpt . Lagged values
of these endogenous variables thus violate the lag exogeneity requirement.

Because lagged endogenous variables are not valid instruments, we
consider a measure of the monetary policy shock as zt, as in Barnichon
and Mesters (2020). We present two sets of simulations. In the first, we
use a measure of monetary policy shocks that violates the lag exogeneity
requirement in an arguably realistic manner to illustrate that the SP-IV
estimator – unlike the 2SLS estimator – remains consistent. In the second,
we use the true model monetary policy shock as the instrument to level the
playing field across estimators and compare the small sample performance
of 2SLS and SP-IV when both are consistent.

Inflation expectations πet+1 are treated as unobserved and are replaced
in (2) by realized future inflation πt+1, as is common in the literature when
expectations appear in structural equations. Under rational expectations
– as assumed in the SW model – the resulting measurement error depends
only on future realizations of the model shocks, which does not create any
additional endogeneity problems given that the instruments used in all
simulations satisfy lead exogeneity.

10We assume that the econometrician cannot exploit the ARMA(1,1) error structure in (22).
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We do not assume that the econometrician possesses a set of controls
spanning the full history of model shocks. Instead, we use a realistic set
of controls consisting of seven endogenous model variables: the short-
term interest rate, inflation, marginal cost, output, consumption, invest-
ment, and the real wage. In the simulations, we consider both LP and
VAR implementations of SP-IV that include four lags of these endogenous
model variables in the control set, Xt−1. Note that the SW model does
not permit a finite-order structural VAR representation in the seven en-
dogenous model variables listed above. As shown in Plagborg-Møller and
Wolf (2021), this implies that the VAR-based estimates of the IRFs are
(asymptotically) biased for horizons beyond the lag length of the VAR,
whereas the LP-based IRFs remain consistent at all horizons as long as
the necessary exogeneity requirements are satisfied. This disadvantage of
VAR-based IRFs must be weighed against the efficiency gains relative to
LP-based IRFs, see Li et al. (2021). We consider both LP and VAR im-
plementations of SP-IV in the simulations, as it is not clear ex ante how
the different bias-variance properties of the IRF estimators translate to
the SP-IV estimators.

We also report key insights from additional simulations for specifica-
tions with multiple demand shocks as instruments, for the generalized
(or efficient GMM) versions of the SP-IV estimators, and for alternative
specifications for 2SLS that incorporate controls. The full results for these
additional simulations are available in the Online Appendix.

3.1. Simulations with Violations of Lag Exogeneity

Our first set of simulations demonstrates how SP-IV can help ensure exo-
geneity by conditioning on lagged macroeconomic variables. We are mo-
tivated by the identification of the Phillips Curve, for example, with mon-
etary policy shock measures like those constructed by Romer and Romer
(2004), or based on high-frequency changes in Fed Funds futures as in
Kuttner (2001). A practical concern with such measures is that, despite
careful construction, they may still contain a meaningful predictable com-
ponent (Barakchian and Crowe 2013; Bauer and Swanson 2022; Cieslak
2018; Coibion 2012; Miranda-Agrippino and Ricco 2021; Ramey 2016).
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Consequently, researchers identifying monetary IRFs using these measures
typically include various lagged macro variables as controls in their mod-
els. However, when the same measures are used as instruments to estimate
structural equations using 2SLS – as in Barnichon and Mesters (2020) for
example – estimation proceeds without controls.

To illustrate the potential implications of excluding controls, we sim-
ulate “Romer and Romer (2004) instruments” that consist of the true
monetary policy shocks in the SW model, augmented with a linear func-
tion of inflation over the past four quarters. We calibrate the coefficients
on lagged inflation by regressing the actual Romer and Romer (2004)
measures on four lags of the log change in the GDP deflator (the infla-
tion measure used to estimate the SW model) over the 1969-2004 sample.
The resulting instruments have non-zero covariances with lagged inflation
that match the U.S. data (with an R2 of 0.08) and therefore violate the
lag exogeneity requirement. However, by construction, the simulated in-
struments are exogenous conditional on Xt−1 since the relevant lags of
inflation are included among the variables in the control set.

The left panel in Table 1 reports mean estimates of β = [γb, γf , λ]′

across 5000 Monte Carlo samples. We consider specifications with hori-
zons of H = 8 and H = 20 quarters. To minimize small-sample features
and focus on the violation of the exogeneity requirements, Table 1 consid-
ers a long sample T = 5000. The true model parameters are shown in the
first row, with OLS estimates in the second. The remaining rows report
results for 2SLS with H lags of the monetary policy instrument, SP-IV
based on LP without controls (SP-IV LP), and LP and VAR implemen-
tations of SP-IV (LP-C and VAR) that include controls Xt−1.

Unsurprisingly, the OLS estimates are severely biased because of endo-
geneity, pointing incorrectly to a completely flat Phillips curve. Because
of the violation of lag exogeneity, the estimates based on 2SLS with DL
instruments are also strongly biased. The average estimate of λ even has
the wrong sign for both H = 8 and H = 20. The next row shows the SP-
IV estimator without controls Xt−1; it is also biased because, like 2SLS,
it requires lag exogeneity to hold. The bias is almost identical to that
of 2SLS since, in this case, SP-IV and 2SLS exploit very similar sample
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Table 1: Results with Lag Endogenous Instrument, T = 5000

Mean Estimates
γb γf λ

True Value 0.15 0.85 0.05
OLS 0.48 0.48 0.00

H = 8
2SLS 0.27 0.58 -0.09
SP-IV LP 0.26 0.60 -0.08
SP-IV LP-C 0.16 0.84 0.05
SP-IV VAR 0.12 0.83 0.09

H = 20
2SLS 0.24 0.76 -0.02
SP-IV LP 0.24 0.75 -0.02
SP-IV LP-C 0.23 0.81 0.02
SP-IV VAR 0.17 0.83 0.05

Empirical Size of Nominal 5% Tests
H = 8 H = 20

Wald 2SLS 55.0 96.0
Wald SP-IV LP 61.2 96.0
Wald SP-IV LP-C 9.3 34.9
Wald SP-IV VAR 5.5 13.3

AR SE-IV 72.5 72.3
AR SP-IV LP 67.6 54.4
AR SP-IV LP-C 4.6 5.8
AR SP-IV VAR 4.9 4.5

KLM SE-IV 82.5 85.9
KLM SP-IV LP 81.5 72.4
KLM SP-IV LP-C 5.2 5.5
KLM SP-IV VAR 4.9 4.6

Notes: Left: top row reports the true Smets and Wouters (2007) model pa-
rameters, and the remaining rows the mean estimates across 5000 Monte Carlo
samples. All IV estimators use h = 0, ...,H−1 and the lag endogenous monetary
policy instrument described in the text. SP-IV LP and LP-C denote implemen-
tations based on LPs without and with Xt−1 (described in the text) as controls,
respectively. SP-IV VAR denotes implementation with a VAR for Xt with four
lags. Right: Tests for 2SLS/SE-IV use a Newey-West HAR variance matrix with
Sun (2014) fixed-b critical values; inference procedures for SP-IV are described
in Section 2 and Appendix A.

moments for identification.
The next two rows show the SP-IV estimators that condition on Xt−1

using either LPs or a VAR. Both procedures produce mean estimates with
the correct sign and values that are much closer to the truth. The reason
for the smaller bias is the conditioning step, which helps eliminate the
persistent influence of past markup shocks that leads to a violation of
the lag exogeneity requirement. The lag-truncation bias present at longer
horizons in the IRF coefficients underlying the SP-IV VAR estimates is
relatively inconsequential. For H = 20, the SP-IV VAR estimates are, in
fact, closer to the truth than the SP-IV LP-C estimates.

The right panel of Table 1 reports empirical rejection rates for nomi-
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nal 5% tests that β equals the true value for the various SP-IV inference
procedures described in Section 2 and Appendix A. Table 1 also reports
analogous HAR procedures for the single equation specification with DL
instruments.11 When exogeneity fails, rejection rates will not match nom-
inal levels. As Table 1 shows, every test based on exogeneity conditions
that are violated (Wald 2SLS, AR/KLM SE-IV, and AR/KLM SP-IV
LP) is indeed badly oversized. Conversely, for the SP-IV estimators that
condition on Xt−1, (SP-IV LP-C and SP-IV VAR), the robust AR and
KLM tests, defined in (20) and (21) respectively, exhibit empirical rejec-
tion rates very close to 5%, again demonstrating that the conditioning
step adequately protects against the violation of lag exogeneity.12 While
the SP-IV estimators with controls have much smaller bias, some bias re-
mains. The fact that robust inference procedures effectively control size
indicates residual bias is related to the weakness of the instruments, even
in a relatively large sample. This is consistent with the corresponding
Wald test remaining somewhat oversized, especially when H = 20.

The results in Table 1 illustrate the advantage of SP-IV with controls
relative to 2SLS in terms of weakening the exogeneity requirements. As
explained in Section 1.3, adding Xt−1 or Xt−H as controls to both stages
of 2SLS does not similarly remove the lag endogeneity bias. Simulation
results reported in the Online Appendix show that both these alternative
2SLS estimators perform very poorly under lag endogeneity. In our sim-
ulation setup, a version of 2SLS without controls but using a DL of z⊥t –
the residual in a regression of zt on Xt−1 – as instruments does success-
fully remove the endogeneity bias in large samples. The reason is that the
Phillips curve residual ut in the SW model does not depend on lags of the
uncontaminated monetary policy shock. However, for the reasons given
in Section 1.3, the same 2SLS estimator with a DL of z⊥t as instruments
does not perform as well as SP-IV with controls in simulations with small
samples, which we discuss next.

11Both tests require HAR covariance estimates because of serial correlation in the Phillips curve
residual ut and the DL structure of the instrument set.

12As explained in Appendix A, the fact that IRF estimates at horizons beyond the VAR lag length
are inconsistent does not affect the asymptotic validity of the AR or KLM tests for SP-IV VAR used
in the simulations.
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3.2. Small Sample Performance

Given the limited role of monetary policy shocks for inflation dynamics
in the SW model, estimating the parameters of the Phillips curve using
monetary policy shocks as instruments is especially challenging in small
samples. The main goal of the next simulations is to show how the con-
ditioning step in SP-IV may not only weaken exogeneity requirements
but also substantially alleviate weak instrument problems. To level the
playing field across estimators, we now assume that the econometrician
has the true monetary policy shocks as instruments. This assumption is
unrealistic but permits a comparison between the various estimators fo-
cused solely on instrument strength, as the exogeneity requirement is now
satisfied for all IV estimators. We consider a sample of T = 250 quarters,
a best-case scenario in most macro applications roughly corresponding to
the postwar period, but also report results for T = 500 and T = 5000

to verify the asymptotic properties of the estimators and inference proce-
dures. Note that our theoretical results are either asymptotic in nature
or otherwise abstract from estimation error based on the inclusion of con-
trols, so these simulations also present a laboratory to assess the trade-off
of added estimation uncertainty in finite samples.

Bias. Table 2 reports the mean estimates of β = [γb, γf , λ]′ for various
samples sizes. The first two rows report the true model parameters and
OLS results. As expected, OLS is severely biased regardless of T due to
endogeneity. The other rows show the results for 2SLS with DL instru-
ments and the various SP-IV estimators with H = 8 or H = 20 quarters.

As the first row under H = 8 in Table 2 shows, 2SLS produces esti-
mates that are closer on average to the true parameter values than OLS.
Because the instruments are now lag exogenous, the 2SLS estimates con-
verge to the truth as the sample size grows. However, despite the use
of valid instruments, there remains considerable bias in realistic samples
with T = 250. The Phillips Curve slope, λ, is estimated to be much flatter
on average than in the model: 0.01 compared to 0.05. The backward and
forward-looking inflation terms are also heavily misweighted, with γf too
low on average and γb too high. The results are consistent with weak in-

29



Table 2: Mean parameter estimates

T = 250 T = 500 T = 5000
γb γf λ γb γf λ γb γf λ

True Value 0.15 0.85 0.05 0.15 0.85 0.05 0.15 0.85 0.05
OLS 0.47 0.47 0.00 0.48 0.48 0.00 0.48 0.48 0.00

H = 8
2SLS 0.27 0.51 0.01 0.24 0.61 0.00 0.17 0.83 0.04
SP-IV LP 0.26 0.51 0.01 0.24 0.60 0.00 0.17 0.83 0.04
SP-IV LP-C 0.29 0.64 0.05 0.25 0.74 0.04 0.16 0.84 0.05
SP-IV VAR 0.22 0.80 0.03 0.18 0.84 0.05 0.12 0.83 0.09

H = 20
2SLS 0.39 0.53 0.00 0.36 0.61 0.00 0.23 0.80 0.01
SP-IV LP 0.38 0.53 0.00 0.35 0.61 0.00 0.23 0.80 0.01
SP-IV LP-C 0.41 0.55 0.01 0.37 0.64 0.01 0.23 0.81 0.02
SP-IV VAR 0.27 0.80 0.01 0.23 0.84 0.02 0.17 0.83 0.05

Notes: Top row reports the true parameter values in the Smets and Wouters
(2007) model. The other rows report the mean estimates across 5000 Monte
Carlo samples. All IV estimators are based on h = 0, ...,H − 1 and use true
model shocks as instruments. SP-IV LP and LP-C denote implementations
based on LPs without and with Xt−1 as controls, respectively. SP-IV VAR
denotes implementation with a VAR for Xt with four lags.

struments that bias 2SLS towards OLS. The next row shows that, without
controls, the bias of SP-IV is almost identical to that of 2SLS for all T .
This is again unsurprising as, in this case, both 2SLS and SP-IV exploit
essentially the same identifying moments.

The next two rows under H = 8 illustrate the possible bias reductions
when using the LP-C or VAR implementations of SP-IV, both of which
condition on Xt−1. For the LP-C implementation, the estimates of λ av-
erage approximately the true value of 0.05 in samples with T = 250. The
forward-looking coefficient in the Phillips Curve, γf , is also considerably
closer to the truth, and the bias in the backward-looking coefficient, γb, is
only marginally worse. The VAR implementation of SP-IV also delivers
substantial bias improvements in all three coefficients. Relative to the LP-
C implementation, the improvements are substantially larger for γb and
γf , while the improvement for λ is somewhat smaller. Taken together,
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the reductions in small sample bias by adopting SP-IV LP-C or SP-IV
VAR are sizeable. These reductions are also economically meaningful, as
the differences in mean parameter estimates have considerable implica-
tions for inflation dynamics and the inflation-output gap trade-off. As
discussed in Section 1.3, the improvements relative to 2SLS arise because
the conditioning step amplifies the signal provided by the monetary pol-
icy shock instrument, which is generally weak in the Smets and Wouters
(2007) DGP. The Online Appendix presents additional results with multi-
ple demand shocks as instruments (Nz = 3) that are qualitatively similar.

The extent of the improvements in the small sample performance of
SP-IV relative to 2SLS depends on the choice of H. Including additional
horizons can add useful identifying variation. On the other hand, the
endogenous variables become harder to predict at longer horizons. The
results in Table 2 for H = 20 show that the relative performance of the
estimators is qualitatively the same as forH = 8. Quantitatively, however,
the reductions in bias under the LP-C or VAR implementations of SP-IV
are smaller than they are for H = 8. In general, as predicted in Section
1.3, the advantages of SP-IV over 2SLS diminish as the number of lags
included as instruments in 2SLS – which is also the maximum forecast
horizon in SP-IV – grows larger.

The Online Appendix shows that alternative versions of 2SLS that
incorporate controls do not generate the same bias reductions as SP-IV
with controls. Adding Xt−1 as regressors in both stages greatly weakens
identification and, on average, results in estimates of λ that have the wrong
sign for all sample sizes. Regressing zt on Xt−1 and including a DL of the
residual as instruments yields essentially the same results as 2SLS with
a DL of zt. Finally, including Xt−H as regressors in both stages leads to
some improvement relative to 2SLS without controls, but the reductions
in bias are meaningfully smaller than for SP-IV with controls.

Variance. Table 3 reports the standard deviations of the various IV
estimators. Section 1.3 noted that SP-IV with controls is asymptotically
more efficient than 2SLS when the error term ut is an AR(1) process with
|ρ| > 0. While the error term in our simulations is the ARMA(1,1) process
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Table 3: Standard deviation of parameter estimates

T = 250 T = 500 T = 5000
γb γf λ γb γf λ γb γf λ

H = 8
2SLS 0.27 0.33 0.20 0.24 0.30 0.21 0.13 0.08 0.09
SP-IV LP 0.27 0.35 0.22 0.25 0.30 0.22 0.13 0.08 0.09
SP-IV LP-C 0.28 0.27 0.25 0.26 0.20 0.23 0.12 0.06 0.08
SP-IV VAR 0.32 0.36 0.30 0.30 0.24 0.26 0.14 0.06 0.09

H = 20
2SLS 0.11 0.12 0.05 0.10 0.11 0.06 0.07 0.05 0.03
SP-IV LP 0.12 0.13 0.06 0.11 0.11 0.06 0.07 0.05 0.03
SP-IV LP-C 0.09 0.11 0.06 0.09 0.09 0.05 0.08 0.05 0.04
SP-IV VAR 0.21 0.25 0.11 0.20 0.19 0.09 0.11 0.06 0.06

Notes: Standard deviations of the estimates across 5000 Monte Carlo samples
from the Smets and Wouters (2007) model. All IV estimators are based on
h = 0, ...,H − 1 and use true model shocks as instruments. SP-IV LP and LP-
C denote implementations based on LPs without and with Xt−1 as controls,
respectively. SP-IV VAR denotes implementation with a VAR for Xt with four
lags.

in (22), similar efficiency gains can arise. Table 3 indeed shows efficiency
gains for T = 5000. ForH = 8, the standard deviations of the SP-IV LP-C
estimates are uniformly smaller than those of the 2SLS estimates. For the
VAR implementation, the standard deviation is smaller for estimates of
γf , and roughly similar to 2SLS for the other two parameters. Consistent
with the theory, the relative efficiency of SP-IV diminishes for larger H,
as can be seen for H = 20 and T = 5000 in the bottom panel.

Also consistent with the theory is that the conditioning step is essential
to realize any efficiency gains: the SP-IV estimates that do not condition
on Xt−1, in the second row of each panel, have similar or slightly larger
variance than 2SLS. In smaller samples with T = 250 or 500, the LP-
C implementation of SP-IV has some standard deviations smaller than
2SLS, and some larger. For T = 250 or 500, the standard deviations of
SP-IV VAR, on the other hand, are systematically greater than 2SLS. The
simulations also show that in small samples, there may be a trade-off to
including controls due to estimation error in the forecast errors: for some
parameters, there is increased standard deviation for SP-IV LP-C over
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SP-IV LP for H = 8, T = 250 and T = 500.
At least for the DGP considered here, the LP-C implementation of

SP-IV consistently generates lower bias than 2SLS, while it has similar or
smaller variance. The VAR implementation yields further reductions in
bias in our setting but generally also has slightly higher variance. That
the VAR implementation has smaller bias but greater variance may be
surprising given the bias-variance trade-off between VARs and LPs for
the estimation of IRFs, see Li et al. (2021).13 However, SP-IV does not
estimate IRFs but relationships between IRFs. Biases and covariances
across IRFs can have offsetting or reinforcing effects on the bias and vari-
ance of the SP-IV estimators. The balance of these effects, however, is
application-specific.

Table 3 further shows that all standard deviations are decreasing in
H, indicating that additional horizons reduce the variability of all IV es-
timators. Given our bias results, this implies a bias-variance trade-off
when choosing the maximum horizon H for SP-IV: larger H provides
smaller bias improvements relative to 2SLS with DL instruments but also
generates less variable estimates. Simulations reported in the Online Ap-
pendix with three model shocks as instruments (Nz = 3) show a similar
bias-variance trade-off for choosing Nz: using three instruments results in
smaller bias improvements but also lower variances.

The Online Appendix also reports results for the feasible 2-step efficient
GMM versions of SP-IV (or ‘generalized’ SP-IV), which are, in theory,
asymptotically more efficient than our baseline estimators. Unfortunately,
the feasible versions do not generally improve performance in practice, at
least not for realistic sample sizes and our DGP.

A perhaps natural question is whether SP-IV offers advantages when
multiple horizons are unnecessary to satisfy the order condition. In simula-
tions available upon request, using Nz = 6 (all shocks except the cost-push
shock), we found that the standard deviation of 2SLS estimates using only
contemporaneous shocks was up to an order of magnitude higher than the
SP-IV estimates using the same shocks and comparable to the SP-IV esti-
mates using only Nz = 1. This is likely due to the hump-shaped nature of

13The Online Appendix shows that this trade-off is also present for the IRFs in our simulations.
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IRFs in the Smets and Wouters (2007) model with contemporaneous re-
sponses that are fairly muted, resulting in very weak identification. SP-IV
is therefore appealing even when many shocks are available and Nz ≥ K.

Inference. Given that monetary policy shocks are weak instruments
in the Smets and Wouters (2007) DGP and realistic sample sizes, a key
question is how severe size distortions are using standard Wald inference
and how well the weak instrument robust procedures control size in prac-
tice. It is well known that robust procedures may still perform poorly
when the number of instruments is large (Bekker 1994). Barnichon and
Mesters (2020), for example, report severe size distortions for AR infer-
ence with long lag sequences of instrumenting shocks. Since SP-IV uses
HNz moments, it potentially faces the same theoretical “many-moments”
problem as 2SLS with HNz instruments (Han and Phillips 2006; Newey
and Windmeijer 2009).

Table 4 reports empirical rejection rates for nominal 5% tests of the
true values of the full parameter vector, β = [γb, γf , λ]′ for sample sizes
of T = 250, 500, and 5000. To better assess distortions due to many
moments, Table 4 also reports results for Nz = 3 and H = 20; see the
Online Appendix for details. Note that size distortions related to weak in-
struments will generally decrease with T since the first-stage relationships
remain fixed, and identification strength improves with T .

As Table 4 shows, Wald tests for 2SLS exhibit meaningful size distor-
tions for H = 8, with empirical rejection rates substantially above the
nominal 5%. The size distortions increase meaningfully as H and/or Nz

become larger. These distortions are not surprising given the weakness of
the instruments and demonstrate the need for robust inference procedures.
For H = 8 and Nz = 1, the conventional AR test for SE-IV is relatively
well-sized in small samples. Indicative of many-moment problems, the AR
SE-IV test becomes noticeably oversized in small samples when H = 20,
and even more so when in addition Nz = 3. The KLM test for SE-IV
controls size better but can be conservative, which is potentially due to
the use of only approximate fixed-b critical values for HAR inference.

Just like for 2SLS, the SP-IV Wald tests show size distortions that
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Table 4: Empirical size of nominal 5% tests

H = 8, Nz = 1 H = 20, Nz = 1 H = 20, Nz = 3
T = 250 500 5000 250 500 5000 250 500 5000

Wald 2SLS 9.1 7.5 10.9 67.2 60.8 45.4 100.0 99.9 94.3
Wald SP-IV LP 16.4 12.9 14.3 71.2 67.0 47.7 100.0 99.9 93.8
Wald SP-IV LP-C 14.8 12.5 9.3 74.6 67.0 34.9 100.0 99.8 83.0
Wald SP-IV VAR 7.9 6.5 5.5 33.7 27.0 13.3 86.7 76.7 54.1

AR SE-IV 7.6 6.8 4.6 14.0 10.5 5.2 60.0 36.3 6.4
AR SP-IV LP 6.3 5.7 5.0 10.4 6.9 5.8 14.3 8.0 5.0
AR SP-IV LP-C 6.4 5.7 4.6 11.3 7.1 5.8 16.9 9.2 5.1
AR SP-IV VAR 4.2 4.9 4.9 5.8 5.6 4.5 6.5 5.2 4.6

KLM SE-IV 3.9 3.7 3.8 4.7 5.1 4.9 0.0 7.2 5.0
KLM SP-IV LP 6.0 5.2 5.0 7.5 6.5 4.9 7.6 6.5 5.3
KLM SP-IV LP-C 7.4 5.4 5.2 11.2 7.4 5.5 11.4 7.6 6.1
KLM SP-IV VAR 5.6 5.3 4.9 8.5 6.8 4.6 11.7 8.5 5.5

Notes: Empirical rejection rates of nominal 5% tests of the true values of β =
[γb, γf , λ]

′ in 5000 Monte Carlo samples from the Smets and Wouters (2007)
model. All IV estimators are based on h = 0, ...,H − 1 and use true model
shocks as instruments. Tests for 2SLS/SE-IV use a Newey-West HAR variance
matrix with Sun (2014) fixed-b critical values; inference procedures for SP-IV
are described in Section 2 and Appendix A.

become very large as H and Nz increase. The SP-IV AR tests are overall
well-sized. Both the LP and LP-C implementations over-reject in small
samples when H = 20, but somewhat less so than AR SE-IV. The SP-
IV KLM tests are also generally well-sized. Just like the AR tests, the
KLM tests exhibit some over-rejection in small samples when H = 20

and/or Nz = 3. Overall, however, the size distortions of the robust SP-IV
tests with large HNz appear milder than those for the SE-IV versions.14

Because of many-moment problems, we nevertheless recommend avoiding
very large HNz also when using SP-IV. Even with a single instrument,
the rejection rates of the robust tests likely approach many applied re-
searchers’ tolerance for size distortions for T = 250 and H = 20. While
based on just a single DGP, H = 20 therefore appears as an upper bound
for T = 250 in this setting, with the optimal number of horizons likely

14One likely reason that the robust SP-IV procedures control size distortions better is that SE-IV
requires HAR covariance estimates, see footnote 11. As a result, the number of parameters to be
estimated increases much more quickly with HNz than for the SP-IV covariances.
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considerably lower.
In practice, there is fortunately no need to use all horizons for identi-

fication. Researchers can, for example, select impulse response horizons
at lower frequencies than that of the time series (e.g., quarterly horizons
in monthly data, annual horizons in quarterly data, etc.), especially since
adjacent horizons do not necessarily contain much independent identifying
information for typical shapes of IRFs. Further refinements are also possi-
ble to address any remaining many instrument problems, see for example
Mikusheva (2021) for suggestions. In the context of 2SLS with DL instru-
ments, Barnichon and Mesters (2020) propose quadratic approximations
to the IRFs to avoid many instrument problems, and similar approxima-
tions are possible with SP-IV.15 Other test statistics could possibly be
adapted to SP-IV and offer improvements over the AR and KLM tests,
for example, those based on Moreira (2003) or Andrews (2016). Given the
relatively good performance of our robust test statistics in the simulations,
we leave such extensions for future work.

4. Application to the Phillips Curve with U.S. Data

In this section, we use SP-IV to estimate the parameters of the Phillips
curve in (2) using U.S. data and compare the results with 2SLS with DL
instruments. We consider the following specification for monthly inflation,

π1m
t = (1− γf )π1y

t−1 + γfπ
1y
t+12 + λUt + ut ,(23)

where π1m
t is the annualized monthly percent change in the Core CPI, π1y

t

is the percent change in the Core CPI over the preceding year in month t,
and Ut is the headline unemployment rate in month t. The specification
and variable definitions are similar to Barnichon and Mesters (2020), but
we use monthly data from Jan 1978 to Feb 2020 (506 observations) instead
of quarterly data. As is common in the literature, e.g., Mavroeidis et al.

15In simulations available on request, we consider Barnichon and Mesters’s (2020) 2SLS estimator
with Almon shrinkage. The performance is poor, with bias highly variable over H, T , and pa-
rameters, and standard deviations one to two orders of magnitude larger than those of the other
estimators. No inference procedure controls size well across all specifications. In contrast, we find
that SP-IV LP-C and VAR perform very well when tested on Barnichon and Mesters’s (2020) DGP.
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(2014), (23) restricts the coefficients on lagged and future inflation to sum
to unity, γb + γf = 1, which imposes that there is no long-run trade-off
between unemployment and inflation. The restriction is implemented by
rewriting (23) as π1m

t − π
1y
t−1 = γf (π

1y
t+12− π

1y
t−1) + λUt + ut. We consider a

maximum forecast horizon of 3 years (36 months). To make efficient use
of the identifying information in the IRF dynamics and mitigate many-
moment problems, we only use the coefficients in the first month of each of
the first 12 quarters of the response horizons – that is, h = 0, 3, 6, . . . , 33.
We consider identification with a single economic shock, such that for
both SP-IV and 2SLS there are 12 identifying moments. We use the VAR
implementation of SP-IV, using a VAR with six lags in the following stan-
dard monthly macro variables as controls: the annualized monthly percent
change in the core CPI, the unemployment rate, the 12-month change in
log industrial production, the 12-month percent change in the PPI for all
commodities, the 3-month Treasury rate, and the 10-year Treasury rate.

As the instrument, we use a monthly version of the Angeletos et al.
(2020) Main Business Cycle (MBC) Shock, identified within our VAR
by maximizing the contribution to cyclical unemployment fluctuations in
the frequency domain. Angeletos et al. (2020) find that the resulting
shock is interchangeable with shocks identified by maximizing the cycli-
cal variance contribution to other major macro aggregates, such as GDP,
consumption, investment, or hours worked. This interchangeability sug-
gests a single main driver of business cycles with a common propagation
mechanism. Empirically, this propagation mechanism best fits the notion
of an aggregate demand shock, in which case the MBC shock is a valid
instrument for estimating the Phillips curve.

While one can certainly question the validity of the MBC shock as an
instrument, we chose it for two main reasons. The first reason is that it
serves as a good illustration of how SP-IV can be useful when interpreting
empirical IRFs. Observing the disconnect between the unemployment and
inflation impulse responses to the MBC shock, a key conclusion in An-
geletos et al. (2020) is that the Phillips curve must be nearly completely
flat. Rather than relying on informal visual inspections of IRFs, SP-IV
allows a formal econometric investigation of the Phillips curve relation-
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ship embedded in the VAR-based IRFs. The second reason is that the
MBC shock is likely the strongest available instrument for identifying the
Phillips curve. By construction, the MBC shock is highly predictive of
unemployment fluctuations over business cycle horizons. We find that the
MBC shock also has some strength for inflation at horizons up to three
years. The first two columns in the first row of Table 5 show test statis-
tics and critical values of the weak instruments test for SP-IV, along with
those for 2SLS (without controls) based on the HAR first-stage test of
Lewis and Mertens (2022). For illustrative purposes, the other columns
in Table 5 report results for each endogenous regressor separately. The
test statistic is 6.3 for SP-IV, with a critical value of 22.0 for the null of
relative bias of at most 10% at the 5% significance level (the threshold
suggested by Stock and Yogo (2005)). The test statistics are 19.8 and 6.4,
respectively, for unemployment and inflation separately (critical values of
21.7 and 18.6). The test statistics for 2SLS are all much lower relative to
similar critical values of around 20, which illustrates how including the ad-
ditional predictors in SP-IV amplifies the signal of the instrument relative
to 2SLS. Despite this amplification, the MBC shock is still judged to be
weak at conventional tolerance levels according to the SP-IV first-stage
test. The MBC shock is, nevertheless, by far the strongest instrument
across all candidate shocks that we explored.

In principle, many other shock measures could be used to identify the
parameters of (23), including monetary policy shocks as in Barnichon and
Mesters (2020). Table 5 reports the first stage test results for various
popular monetary policy shock measures. The main takeaway is that, at
least in the sample that we consider, each of the monetary policy shocks
is far too weak as an instrument to be useful for identifying the Phillips
curve in practice. A few have some strength for inflation separately in the
first stage of 2SLS, but none do for both endogenous regressors jointly,
which is what matters for identification. Moreover, any hint of instru-
ment strength disappears entirely after including lagged macroeconomic
variables as controls in SP-IV. That none of the 2SLS/SP-IV first-stage
tests with monetary policy shocks comes close to rejecting the null of
weak instruments is not surprising, as it reflects the broadly held view
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Table 5: First-Stage Test Results

π, U jointly U separately π separately

2SLS SP-IV 2SLS SP-IV 2SLS SP-IV
g cv g cv g cv g cv g cv g cv

MBC 2.3 21.9 6.3 22.0 4.2 20.4 19.8 21.7 2.3 19.5 6.4 18.6

Monetary Policy Shock Measures:

RR 0.3 20.2 0.4 21.2 0.3 17.7 0.5 20.0 1.9 17.8 0.9 18.6

GK 3.5 21.0 0.1 22.3 3.5 20.3 0.4 22.1 7.4 18.8 0.1 17.3

MAR 0.1 19.7 0.0 21.0 0.2 17.8 0.1 20.9 0.8 18.6 0.0 17.3

JK 0.6 19.9 0.0 22.3 1.5 18.9 0.2 22.1 2.0 18.6 0.1 17.3

SWA 1.0 19.7 0.0 22.3 1.0 19.4 0.1 22.1 5.7 17.2 0.0 17.3

BC 1.3 21.1 0.0 22.3 2.1 19.7 0.1 22.1 5.4 18.9 0.0 17.3

SN 1.0 20.2 0.0 22.5 1.1 19.4 0.1 22.1 7.1 17.0 0.0 17.6

Notes: The table reports test results for the null hypothesis of weak instrument bias less
than or equal to 10% of the worst-case benchmark. g is the test statistic, cv is the 5%
critical value. U and π are the endogenous regressors in the restricted equation, i.e. Ut

and π1y
t+12 − π

1y
t−3. For 2SLS, results are for the HAR test of Lewis and Mertens (2022).

For SP-IV, the test is described in the Online Appendix. MBC is the main business
cycle shock of Angeletos et al. (2020). The monetary policy shock measures are Romer
and Romer (2004) (RR), Gertler and Karadi (2015) (GK), Miranda-Agrippino and Ricco
(2021) (MAR), Jarociński and Karadi (2020) (JK), Swanson (2021) (SWA), Barakchian
and Crowe (2013) (BC), Nakamura and Steinsson (2018) (NS). RR, GK, and BC are
updated versions from Ramey (2016); the other series are from the original sources.

that monetary disturbances are relatively unimportant as drivers of in-
flation and economic activity. We also considered several other plausible
demand shock measures, such as the credit spread shock of Gilchrist and
Zakrajšek (2012) and the Bloom (2009) uncertainty shock, but none are
nearly as strong as the MBC shock in the post-1978 sample. Using mul-
tiple shocks could improve identification strength but creates potential
many-instrument problems. To the extent that the MBC shock indeed
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Figure 1: Impact of the MBC Shock on Inflation and Unemployment
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Notes: Inflation is the annualized Core CPI inflation rate from a quarter ago (π1q
t ). IRFs

in red in (a) and (b) are from a VAR with six lags using the annualized monthly core CPI
inflation, the unemployment rate, the 12-month change in log industrial production, the
12-month percent change in the PPI for all commodities, the 3-month Treasury rate, and
the 10-year Treasury rate. The estimation sample is from Jan 1978 to Feb 2020. Blue
lines in (a) and (b) show results from the DL regressions in the first stage of 2SLS. Panel
(c) shows the FEV contributions of the MBC shock in the VAR.

collects a range of demand disturbances that satisfy the exogeneity re-
quirements, it is by far the most informative available instrument for the
identification of the Phillips curve.

Our monthly version of the MBC shock produces IRFs that are consis-
tent with those in Angeletos et al. (2020). The red lines in Figures 1a-1b
plot VAR-based IRFs of π1m

t and Ut to a one-standard-deviation MBC
shock. The figures show the first twelve IRF coefficients that are used in
the estimation and also show the next eight quarters to visualize the full
dynamics. As in Angeletos et al. (2020), the MBC shock looks like an ag-
gregate demand shock, driving unemployment higher and inflation lower.
At the same time, the MBC shock explains a relatively small fraction of
the forecast error variance (FEV) of inflation, nearly zero on impact and
only 20% after two years, see Figure 1c. This finding illustrates the appar-
ent “disconnect” between inflation and the shock that explains most of the
cyclical variation in unemployment, see also Del Negro et al. (2020). As
previously explained, both 2SLS and SP-IV estimates can be expressed
as the coefficients in regressions of IRFs. In SP-IV, these IRFs are the
red lines in Figures 1a-1b.16 The 2SLS estimator instead uses the IRFs

16The IRF of π1y
t+12 − π

1y
t−1 is straightforward to construct from the IRF of π1m

t .
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Figure 2: 2SLS and SP-IV Confidence Sets for Estimates of Phillips Curve Parameters

(a) 2SLS
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Notes: Figures show point estimates and 68%, 90% and 95% confidence sets
based on the KLM statistic for SP-IV VAR described in Appendix A. Confidence
sets for 2SLS are based on the KLM test and a Newey-West HAR covariance
matrix with Sun (2014) fixed-b critical values.

obtained from DL regressions of π1m
t (and π1y

t−1 and π1y
t+12) and Ut on the

current and lagged values of the MBC shock. For illustration, these IRFs
are shown in blue in Figures 1a-1b.

Figure 2 displays the estimates of γf and λ, together with 68%, 90%
and 95% confidence sets. Since neither of the first-stage tests in Table 5
rejects the null of weak instruments, the confidence sets are both based
on the KLM statistic. The point estimates of γf , the weight on future
inflation, are 0.65 for 2SLS and 0.66 for SP-IV. The slope estimates are
also close, λ = −0.15 in SP-IV versus λ = −0.14 in 2SLS, and have
the expected negative sign since unemployment is the gap measure. The
similarity in point estimates is not too surprising, given that we use the
VAR-identified MBC shock to construct the instruments for 2SLS. The
inference results, on the other hand, are much less similar. The confidence
sets based on the 2SLS’s SE-IV moments do not reject any plausible values
of γf , nor do they rule out a wide range of possible values of λ. Compar-
atively, inference for SP-IV is much sharper for the weights on inflation,
with the confidence set ruling out values of γf that are meaningfully be-
low 0.5 or above 1. At the same time, the SP-IV sets also do not rule
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out a wide range of possible Phillips curve slopes, with values of λ rang-
ing from close to -0.6 to somewhat greater than zero within the 90% set.
We attribute the relatively more informative SP-IV confidence sets to the
greater effective strength of the instruments, as discussed in Section 1.3.

As to the inflation-activity disconnect, our robust inference results act
as a warning against drawing strong conclusions from informal compar-
isons of IRF point estimates. When judging relationships across IRFs,
it is important to take into account that these estimates are inevitably
uncertain. SP-IV estimates the posited relationships between IRFs from
VARs or LPs formally and allows inference that is robust to the distortions
caused by sampling error in the IRF estimates. The confidence sets in Fig-
ure 2b, for example, are consistent with weak but also relatively strong
cyclical connections between inflation and unemployment. The business
cycle anatomy of Angeletos et al. (2020), therefore, does not provide clear-
cut evidence that inflation and activity are largely disconnected.

5. Concluding Remarks and Future Research

While we focused mainly on identifying the parameters of the inflation
Phillips curve, SP-IV can help identify a wide variety of structural rela-
tionships in macroeconomics, such as Euler equations for consumption or
investment, the wage Phillips curve, monetary or fiscal policy rules, and
aggregate production functions.17 SP-IV can be used more broadly to
conduct inference on ratios (or other relationships) of impulse response
coefficients, such as Okun coefficients, sacrifice ratios, multipliers, etc.,
conditional on economic shocks. Our methodology could be extended to
panel data settings and should be more generally useful in applications
that commonly rely on lagged variables as instruments, such as the es-
timation of production functions in industrial organization. SP-IV could
also be used in cross-sectional applications. If h = 0, ..., H − 1 indexes
cross-sectional groups rather than time horizons, then SP-IV amounts to
instrumental variables in the cross-section with heterogeneity in the first

17Fieldhouse and Mertens (2023), for example, use SP-IV to estimate the aggregate output elas-
ticity to public R&D capital using IRFs to shocks to federal appropriations for R&D funding.
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stage coefficients. Future work can also develop Bayesian implementations
or methods to select the horizons/groups used for identification optimally.
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Appendix

A. Practical Implementation of SP-IV with LPs or VARs

Let yH denote the H × T matrix of leads of the outcome variable, i.e.
with yt+h in the h + 1-th row and t-th column. Let YH be the HK × T
matrix vertically stacking the H × T matrices Y k

H for k = 1, . . . , K, each
of which has Y k

t+h in the h + 1-th row and t-th column, and Y k
t the k-th

variable in the vector Yt. Let Xt be the period t observation of an Nx× 1

collection of predetermined control variables (including a constant). Xt

can include not only current values, but also lags of yt, Yt, zt, or any other
time series. Since the focus is computing forecast errors, we now make
estimated forecast errors explicit using ŷ⊥H , etc.

Local Projections Define the Nx × T matrix X with controls Xt−1 in
the t-th column, the projection matrix PX = X ′(XX ′)−1X, and residu-
alizing matrix MX = IT − PX . Using a direct forecasting approach, the
forecast errors after projection on Xt−1 are given by

ŷ⊥H = yHMX , Ŷ ⊥H = YHMX , Ẑ⊥ = ZMX ,(A.1)

which can be used in (9) to obtain the SP-IV estimator β̂. By the Frisch-
Waugh-Lovell Theorem, this direct forecasting approach is equivalent to
estimating Jordà (2005) local projections of yt+h and Yt+h on zt and Xt−1

for h = 0, . . . , H−1, using the estimated coefficients on zt to construct the
rows of Θ̂y and Θ̂Y and subsequently constructing the SP-IV estimator
using the alternative expression for β̂ in (13). When Ẑ⊥ are measures of
economic shocks, the LP estimates are IRF coefficients representing the
dynamic causal effects of the shocks. Some studies estimate IRFs by local
projections of an endogenous outcome variable at t + h on an endoge-
nous explanatory variable Y k

t and controls Xt−1 using zt as instruments, a
procedure often referred to as “LP-IV”. Such IRFs can be used for identi-
fication in the SP-IV estimator exactly as described above, i.e. using the
reduced form projections of the outcome variables on zt and Xt−1.
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Vector Autoregressions Suppose that yt, Yt, and zt, are – possibly
together with other variables – all contained in Xt and that Xt evolves
according to a VAR,

Xt = AXt−1 + et .(A.2)

The representation in terms of a VAR of order one is without loss of
generality, as any VAR of order p can be rewritten as a VAR of order one
(in “companion form”). As before, let X denote the Nx × T matrix with
Xt−1 in the t-th column, and let Xf denote the Nx × T matrix with Xt

in the t-th column. The standard estimator of A is Â = XfX ′(XX ′)−1,
leading to the h-step ahead forecast errors

X̂⊥t (h) =
h∑
j=0

Âh−j êt+j , êt = Xt − ÂXt−1 .(A.3)

The appropriate selection of elements in X̂⊥t (h) leads to ŷ⊥H , Ŷ ⊥H and Ẑ⊥,
which can be used to obtain the SP-IV estimator β̂ in (9). Note that if
Yt contains lagged or lead variables, as in the HNKPC, only the contem-
poraneous value must be included in the VAR, and the estimated IRFs
themselves can be time-shifted forwards or backwards when constructing
Θ̂Y . “Structural” VARs are VARs in which researchers make assump-
tions to identify columns of D in et = Dεt, allowing the estimation of
IRFs that are interpretable as dynamic causal effects of the associated
economic shocks in εt. If ε̂1:Nz

t are the Nz identified shocks in the struc-
tural VAR, it is possible to use ẑ⊥t = ε̂1:Nz

t to form Ẑ⊥ and use these shock
estimates for identification in the SP-IV estimator. This procedure also
nests identification with “external instruments”, which can be directly in-
cluded in the VAR and combined with zero restrictions in D as proposed
by Plagborg-Møller and Wolf (2021), or used indirectly as instruments to
identify columns in D as in the “proxy SVAR” or “SVAR-IV” approach
(Mertens and Ravn 2013; Stock and Watson 2012; Stock and Watson
2018). Note that (11), or equivalently (12), are consistent estimators of
the IRFs associated with ε̂1:Nz

t if the VAR restrictions imposed hold in the
DGP. In finite samples, however, these IRF estimates will not be numeri-
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cally identical to those obtained from Θ̂V AR
X,h = ÂhD1:Nz, h = 0, . . . , H−1,

where D1:Nz denotes the first Nz columns of D. The reason is that the re-
strictions implied by the VAR dynamics are imposed on the reduced form
forecast errors, but (11) or (12) do not impose the same VAR dynamics
on the IRFs.

Our preferred implementation of SP-IV with structural VARs is instead
to select the elements corresponding to yt and Yt in Θ̂V AR

X,h to form Θ̂y

and Θ̂Y , and then obtain the SP-IV estimator from the regression of
impulse responses as in (13). This alternative implementation imposes the
VAR dynamics on both the reduced form forecast errors and the impulse
responses. In general, imposing the VAR dynamics is easily done in all
formulas above by replacing ŷ⊥HPẐ⊥Ŷ ⊥H by Θ̂V AR

y (Θ̂V AR
Y )′ and Ŷ ⊥H PẐ⊥Ŷ ⊥H

by Θ̂V AR
Y (Θ̂V AR

Y )′, where Θ̂V AR
Y is the HK × Nz matrix stacking the K

blocks of the VAR IRF coefficients of Yt, and Θ̂V AR
y contains the H ×Nz

VAR IRF coefficients of yt. When comfortable imposing VAR dynamics,
it makes sense to impose these restrictions consistently, and we therefore
recommend this second implementation for SP-IV with VARs.

To impose the VAR dynamics in the Generalized SP-IV formula (B.1),
replace ŷ⊥HPẐ⊥ by Θ̂V AR

y (ZMXZ
′/T )−

1
2ZMX . To impose the VAR dynam-

ics in the KLM statistic in (21), replace Ŷ ⊥H PẐ⊥ by Θ̂V AR
Y (ZMXZ

′/T )−
1
2ZMX ,

replace û⊥H(b)PẐ⊥ by
(

Θ̂V AR
y − (b′ ⊗ IH)Θ̂V AR

Y

)
(ZMXZ

′/T )−
1
2ZMX , and

û⊥H(b)MẐ⊥ by û⊥H(b)−
(

Θ̂V AR
y − (b′ ⊗ IH)Θ̂V AR

Y

)
(ZMXZ

′/T )−
1
2ZMX . When

imposing the VAR restrictions in the AR test for SP-IV, some additional
care is warranted. First, when replacing û⊥H(b)PẐ⊥ in (20), it is important
that the VAR IRFs are consistent for all horizons. This requires that the
VAR restrictions hold in the DGP for inference based on the AR statistic
to be a correctly sized test of the null hypothesis. Second, the normal-
izing variance in (20) must also take the VAR restrictions into account,
which can be done in practice by computing the variance using the Delta
Method.

As explained in the main text, the SW model used in the simulations
of Section 3 does not permit a finite-order VAR representation in Xt. As
a result, the IRFs based on a VAR with four lags are not (asymptoti-
cally) unbiased for horizons exceeding the lag length, see Plagborg-Møller
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Table A.1: SPIV-VAR: Empirical size of nominal 5% tests

H = 8, Nz = 1 H = 8, Nz = 3
T = 250 500 5000 250 500 5000

AR SP-IV VAR, FE only 4.2 4.9 4.9 3.9 5.1 4.8
AR SP-IV VAR, IRFs and FE 4.7 3.1 7.6 3.4 1.9 91.7
AR SP-IV VAR, IRFs and FE, 8 lags 25.2 11.7 5.7 49.2 19.2 6.1

KLM SP-IV VAR, FE only 5.5 5.3 5.1 5.9 5.6 4.7
KLM SP-IV VAR, IRFs and FE 5.6 5.3 4.9 6.9 6.6 4.9
KLM SP-IV VAR, IRFs and FE, 8 lags 5.0 5.1 5.0 6.7 6.0 4.7

Notes: Empirical rejection rates of nominal 5% tests of the true values of β =
[γb, γf , λ]

′ in 5000 Monte Carlo samples from the Smets and Wouters (2007)
model. All results are for SP-IV based on a VAR in Xt using true model shocks
as the instrument. ‘FE only’ uses the VAR only to obtain forecast errors, but
does not impose the VAR restrictions on the IRFs. ‘IRFS and FE Only’ impose
the VAR restrictions as described in the text. ‘8 lags’ means that a VAR with
eight lags was used instead of a VAR with four lags.

and Wolf (2021). Table A.1 reports empirical rejection rates for different
versions of the robust SP-IV test statistics for simulations using the true
monetary policy shock as the instrument. The “FE only” version uses the
forecast errors implied by the VAR but does not impose the VAR restric-
tions on the IRFs. The “IRFs and FE” version additionally imposes the
VAR restrictions on both the forecast errors and the IRFs. In this case,
the denominator in the AR statistic is obtained using the Delta Method.
The “IRFs and FE, 8 lags” version does the same, except that it is based on
a VAR with eight lags such that the VAR IRFs are consistent for the first
eight IRF horizons. We restrict attention to specifications with H = 8, as
the Delta Method approximation quickly becomes computationally costly
as H increases.

The first row in the table shows that misspecification in the IRFs due
to lag truncation in the VAR does not lead to meaningful size distortions
in the AR test if the VAR is only used to generate the forecast errors.
In contrast, the second row shows that lag truncation bias in the IRFs at
longer horizons creates size distortions when the VAR restrictions are also
imposed on the IRFs. The distortions become larger as sampling error
fades with larger T , and when a larger number of biased IRF estimates
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are used for identification as Nz increases. The third row shows that,
when T is large, increasing the lag length in the VAR to eight essentially
eliminates the size distortions. However, including more lags in the VAR
creates large distortions in small samples because of the larger number of
VAR parameters to be estimated. In practice, researchers concerned with
VAR lag truncation bias can choose lag length as a function of sample
size, or else simply not impose the VAR restrictions on the IRFs when
using the AR test for inference. In the simulations in Section 3, we chose
the latter option and report the “FE only” AR test while keeping the VAR
lag length at four for all sample sizes.

Finally, the next three rows in Table A.1 show that our implementation
of the KLM test for SP-IV is not affected by lag truncation bias. All
empirical rejection rates remain close to nominal size regardless of T ,
Nz, the number of lags in the VAR, or whether the VAR restrictions
are imposed on the IRFs or not. Given the greater robustness in the
simulations, we recommend inference based on the KLM test when using
the VAR implementation for SP-IV. In the simulations in Section 3 as
well as the empirical application in Section 4, we use the “IRFs and FE”
version of the KLM test that imposes the restrictions implied by a VAR
on the IRFs.

B. Generalized and CUE SP-IV

Using the weighting matrix Φs(β, ζ) = (Σ−1
u⊥H
⊗ Q−1), where Σu⊥H

is the
covariance of u⊥H,t, leads to the efficient GMM estimator of β. This esti-
mator is also the “Generalized Least Squares” version of SP-IV minimizing
Tr
(

(u⊥HPZ⊥u⊥′H )Σ−1
u⊥H

)
. Given Σu⊥H

, the closed form generalized SP-IV es-
timator is

β̂G =
(
R′
(
Y ⊥H PZ⊥Y ⊥′H ⊗ Σ−1

u⊥H

)
R
)−1

R′
(
Y ⊥H PZ⊥ ⊗ Σ−1

u⊥H

)
vec(y⊥HPZ⊥) .

(B.1)

For inference, we replace Assumption 2.d by

Assumption 2.d′. R′(ΘY Θ′Y ⊗ Σ−1
u⊥H

)R is a fixed matrix with full rank.
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Under Assumptions 1, 2.a-2.c, Assumption 2.d′, and Assumption 3,

(B.2)
√
T (β̂G − β)

d→ N(0, VβG) , VβG =
(
R′
(

ΘY Θ′Y ⊗ Σ−1
u⊥H

)
R
)−1

.

The Generalized SP-IV estimator is feasible after replacing Σu⊥H
with a

consistent estimator like the one in Section 2.1, using a two-step or iter-
ated procedure. Alternatively, the continuously updating (CUE) GMM
estimator minimizes the AR statistic in (20) with respect to b. The KLM
statistic in (21) is zero at the CUE estimator, so both AR and KLM
confidence sets contain the CUE.

C. The Impact of Estimation Error on Inference

As noted in the text, after plugging in estimated forecast errors, it is
not necessary to conduct any explicit adjustment for estimation error in
ζ̂ for asymptotically valid inference on β̂. This follows from the stan-
dard asymptotic variance of the GMM estimator implicitly defined by
the objective function (7). However, to make the reasoning explicit, de-
note the forecasting model as E[yH,t|Xt−1] = g1(ζ)Xt−1, E[YH,t|Xt−1] =

g2(ζ)Xt−1, E[zt|Xt−1] = g3(ζt)Xt−1, which nests both LPs and VARs.
Computing the expected Jacobian of the moments in (5) with respect
to d at d = ζ, b = β yields

E

[
∂z⊥t ⊗ u⊥H,t

∂ζ ′

]
= E

[
−∂g3(ζ)

∂ζ ′
Xt−1 ⊗ u⊥H,t + z⊥t ⊗

(
−∂g1(ζ)

∂ζ ′
Xt−1 + β

∂g2(ζ)

∂ζ ′
Xt−1

)](C.3)

= −∂g3(ζ)

∂ζ ′
E
[
Xt−1 ⊗ u⊥H,t

]
+ E

[
z⊥t ⊗

(
−∂g1(ζ)

∂ζ ′
+ β

∂g2(ζ)

∂ζ ′

)
Xt−1

]
(C.4)

= 0,(C.5)

where the last equality follows because u⊥H,t and z⊥t are orthogonal to
Xt−1 by construction. The Jacobian of (6) with respect to β is likewise
zero since the forecasting moments do not depend on β. Therefore, the
expected Jacobian, J(β, ζ), of f(· ; β, ζ) is block diagonal. If Φ(b, d), the
weighting matrix, is also block diagonal, then J ′ΦJ is block diagonal, as

52



is its inverse. Let Vf denote the variance-covariance of f(· ; β, ζ). Then,
in the asymptotic variance of (β′, ζ ′)′, (J ′ΦJ)−1J ′ΦVfΦJ(J ′ΦJ)−1, each
diagonal block depends only on the corresponding diagonal block of Vf .
Therefore, plugging in the estimated forecast errors into the moments
fs(· ; β) and henceforth treating them as data and using the standard
formula based on just those moments yields a valid asymptotic variance,
without further adjustment. Alternatively, a delta method argument can
be applied directly to the sample counterpart of (5) to show that its
asymptotic variance does not depend on estimation error in ζ̂ due to
(C.5).

D. Proof of Proposition 2

Proof. The asymptotic variance of the SP-IV estimator in (9) is

(D.1) aV ar(β̂) = (Θ′Y ΘY )−1Θ′Y
(
INz ⊗ var(u⊥H,t)

)
ΘY (Θ′Y ΘY )−1 ,

The asymptotic variance of the 2SLS estimator is

(D.2) aV ar(β̂2SLS) = (Θ′Y ΘY )−1Θ′Y Ω(zH,tut)ΘY (Θ′Y ΘY )−1 ,

where Ω(zH,tut) is the long-run variance of zH,tut, and zH,t stacks the Nz

H × 1 vectors zH,it of lags 0, . . . , H − 1 of zit. Without loss of gener-
ality, assume zt is normalized to have identity covariance. Because zt
is i.i.d., only the first H − 1 autocovariances of zH,t are non-zero, me-
chanically due to the overlapping lag structure. For lag l, |l| < H,
cov(zH,it, zH,i(t−l)) = ι−l, where ι−l is the −l-diagonal matrix (i.e., a ma-
trix of zeros except for ones along the diagonal l entries below the main
diagonal), and cov(zH,t, zH,t−l) = INz ⊗ ι−l. It follows that

(D.3) cov(zH,tut, z
′
H,t−lut−l) = (INz ⊗ ι−l)γl, |l| < H,

and zero otherwise, where γl is the lth autocovariance of ut. Then

(D.4) Ω(zH,tut) =
∞∑

l=−∞

cov(zH,tut, z
′
H,t−lut−l) =

H−1∑
l=−H+1

(INz ⊗ ι−l)γl.
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The last sum is block-diagonal, and under stationarity each H ×H block
is equal to the matrix with γl along the lth diagonal, which is the auto-
covoariance matrix of ut (up to lag H − 1), or ΣuH . If ut is i.i.d., or if
Xt−1 is an irrelevant predictor or just a constant, ut+h = ut(h) = u⊥t (h),
so ΣuH = Σu⊥H

, and Ω(zH,tut) = INz ⊗ Σu⊥H
, establishing (i).

For (ii), we consider β̂j asymptotically more efficient than β̂i if aV ar(β̂i)−
aV ar(β̂j) is positive semi-definite (Rothenberg and Leenders 1964). aV ar(β̂2SLS)−
aV ar(β̂) is positive definite if maxeval (ΣuH ) > maxeval

(
Σu⊥H

)
.

E. Proof of Proposition 3

Proof. Consider the weak instruments asymptotic embedding ΘY = C/
√
T

where C is a HK × Nz fixed matrix. When K = 1, the concentra-
tion parameter for 2SLS is Tr(CC ′)/Tr(Ω(zH,tωt)) = Tr(CC ′)/(HNzσ

2
ω),

where σ2
ω is the variance of the first stage error term, since the long-run

variance of zH,tωt has the same structure as that of zH,tut above (see
definitions in Lewis and Mertens (2022) and Montiel-Olea and Pflueger
(2013)). For SP-IV without projecting onto Xt−1, the concentration pa-
rameter is Tr(CC ′)/(Nz Tr(ΣvH )), see Definition 1 in the Online Appendix.
For SP-IV with conditioning on Xt−1, the concentration parameter is
Tr(CC ′)/(Nz Tr(Σv⊥H

)), see Definition 1 in the Online Appendix. Tr(ΣvH )

is larger than Tr(Σv⊥H
) unless Xt−1 is completely irrelevant for predicting

Yt+h, h = 0, ..., H − 1. Parts (i) and (ii) follow from the expressions for
the concentration parameters.
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