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ONLINE APPENDIX

E Additional Proofs

E.1 Proof of Proposition 3.

The cdf under the Imhof (1961) approximation in Definition 5 is

FI(x;κ1, κ2, κ3) = Fχ2
ν
((x− κ1)4ω + ν) =

∫ x

κ1−ν(4ω)−1

f(z)dz ,where

(E.34)

ν = 8κ2ω
2 ; ω = κ2/κ3 ; f(z) =

(
1 +

z − κ1

2κ2ω

)ν/2−1

e
− ν

2

(
1+

z−κ1
2κ2ω

)
(ν/2)ν/2−1ω

2ν/2−2Γ(ν/2)
.

The pdf f(z) has a mode at zm = κ1 − (2ω)−1 if ν ≥ 2, and at zero
otherwise. The critical value associated with the upper α-percentile, x(α), is
implicitly defined by α =

∫∞
x(α)

f(z)dz. To find the largest possible critical
value among all possible distributions, we solve the following optimization
problem:

max
κ1,κ2,κ3

x(α) s.t. κn ≤ κ̄n for n = 1, 2, 3 .(E.35)

Consider the Kuhn-Tucker conditions∫ ∞
x(α)

∂f(z)

∂κn
dz = µn,(E.36)

together with µn ≥ 0, n = 1, 2, 3, the constraints and the complementary
slackness conditions, where µn are the multipliers times f(x(α)) > 0. The
Kuhn-Tucker conditions follow from the implicit function theorem and Leib-
niz’s rule: 1 = −f(x(α))∂x(α)

∂y
+
∫∞
x(α)

∂f(z)
∂y

dz ⇒ ∂x(α)
∂y

=
∫∞
x(α)

∂f(z)
∂y

dz/f(x(α))

with f(x(α)) > 0 for α ∈ (0, 1).
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The partial derivatives are

∂f(z)

∂κ1

=
1 + (z − κ1)2ω

2κ2ω

(
1 +

z − κ1

2κ2ω

)−1

f(z),(E.37)

∂f(z)

∂κ2

=
f(z)

κ2

G1 ((z − κ1)4ω + ν) ,(E.38)

∂f(z)

∂κ3

=
f(z)

κ3

G2 ((z − κ1)4ω + ν) ,(E.39)

where

G1(y) = −1

2
(y − 2ν(ν − 2)/y + ν) + 3/2(ln(y/2)− ψ(ν/2))ν,(E.40)

G2(y) =
1

2
(y − ν(ν − 2)/y)− (ln(y/2)− ψ(ν/2))ν,(E.41)

and ψ(x) = Γ′(x)/Γ(x) is the digamma function (the logarithmic derivative of
the gamma function Γ(x)). From Alzer (1997) (Equation 2.2), we know that

1/ν < ln (ν/2)− ψ(ν/2) < 2/ν.(E.42)

For n = 1, the LHS of (E.36) is always positive to the right of the mode,
which means the constraint on the mean (n = 1) is always binding. The
Alzer bounds imply that in the right tail of any optimal distribution, the
LHS of (E.36) is always strictly positive for n = 2, 3, which means that the
constraints are also binding as long as α is sufficiently small.

E.2 Proof of Corollary 1

The absolute bias criterion for the j-th element is

Bj
abs =

√
eN ′j ΣveNj e

N ′
j E [β∗2SLS] /σu(E.43)

Using the definitions of h and ρabs in the main text,

Bj
abs =

√
eN ′j ΣveNj e

N ′
j Φ−

1
2hρabs(E.44)

Defining the N × 1 vector µj =
√
eN ′j ΣveNj Φ−

1
2 eNj and using the Nagar ap-

proximation of h yields the Nagar bias

Bj
abs,n = µ′jhnρabs(E.45)
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Using the definition of ρabs in (B.9), and following the same steps as in (B.10),

sup
β∈RN

Bj
abs,n = K−

1
2 ||µ′jhnΨabs||2(E.46)

Using the same arguments as in the proof of Theorem 1,

sup
DΛ≥λminIN

K−
1
2 ||µ′jhnΨabs||2 = K−

1
2λ−1

min||µ′jQΛM1(QΛ ⊗ L0 ⊗ L0)M2Ψabs||2
(E.47)

where all objects are defined as in Theorem 1 and Appendix B.
Since sup

L0∈ON×K
||M1(QΛ⊗L0⊗L0)M2Ψabs||2 = sup

L0∈ON×K
||M1(IN⊗L0⊗L0)M2Ψabs||2

for any QΛ ∈ ON×N and since it is possible to choose QΛ such that the or-
thonormal vector Q′Λµj/||µj||2 selects the largest singular value of M1(IN ⊗
L0 ⊗ L0)M2Ψabs, it follows that a sharp upper bound on the Nagar bias is

Bj∗
abs,n(W, λmin) = ||µj||2 × λ−1

minK
− 1

2 sup
L0∈ON×K

{||M1(IN ⊗ L0 ⊗ L0)M2Ψabs||2}
(E.48)

= ||µj||2 ×B∗abs,n

where B∗abs,n is defined in Appendix B and ||µj||2 =
√
eN ′j ΣveNj ||Φ−

1
2 eNj ||2

is the constant in the adjustment to the tolerance level for the absolute bias
criterion in Corollary 1.

For the relative bias criterion, the worst-case 2SLS bias benchmark changes
due to the change in weights. In particular, using (9) and evaluating the bias
criterion gives the worst-case benchmark
(E.49)√

Tr(S1)

(
sup
||x||≤1

x′Φ−
1
2 eNj e

N ′
j ΦeNj e

N ′
j Φ−

1
2x

) 1
2

=
√

Tr(S1)
√
eN ′j ΦeNj ||Φ−

1
2 eNj ||2

Therefore

Bj∗
rel,n(W, λmin) =

||µj||2√
eN ′j ΦeNj ||Φ−

1
2 eNj ||2

×Bj∗
rel,n ,(E.50)

= Bj∗
rel,n .

where B∗rel,n is defined in Appendix B, such that no adjustment is required to
the tolerance level for the relative bias criterion.
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E.3 Proof of Corollary 2

First, note that the Schur complement of Y ′jPZYj in Y ′PZY is given by

(E.51) Y ′jPZYj − Y ′jPZY−j(Y ′−jPZY−j)−1Y ′−jPZYj = Y ⊥′j PZ⊥Y
⊥
j .

Using standard formulas for the inverse of a partitioned matrix and properties
of projection matrices, partition β̂2SLS − β = (Y ′PZY )−1Y PZu as

β̂2SLS,j − βj = (Y ⊥′j PZ⊥Y
⊥
j )−1(Yj − Y−j δ̂)′PZu ,(E.52)

β̂2SLS,−j − β−j = (Y ′−jPZY−j)
−1Y ′−jPZu− δ̂

(
β̂2SLS,j − βj

)
,

where u⊥ = MŶ−j
u and δ̂ = (Y ′−jPZY−j)

−1Y ′−jPZYj. Since δ̂
p→ δ and

(Y ′−jPZY−j)
−1Y ′−jPZu

p→ 0,

β̂2SLS − β
d→ β∗2SLS = δ̃β∗2SLS,j ,where δ̃j = 1 , δ̃−j = −δ.(E.53)

Under Assumption 3, the bias criterion is therefore

Bi = |E[β∗2SLS,j]| × ||Ξ
1
2
i δ̃||2/

√
bi .(E.54)

The bias in the transformed single-regressor regression for j is

B⊥i = |E[β∗2SLS,j]| ×
√

Ξ⊥i /
√
b⊥i .(E.55)

where Ξ⊥i and b⊥i are the weighting and scaling for the transformed regression
with a single regressor.

Therefore,

Bi = B⊥i ×
||Ξ

1
2
i δ̃||2√
Ξ⊥i

√
b⊥i√
bi

.(E.56)

Since babs = b⊥abs = σ2
u and Ξabs = Σv and Ξ⊥abs = δ̃′Σv δ̃,

Babs = B⊥abs ×
||Σ

1
2
v δ̃||2√
δ̃′Σv δ̃

= B⊥abs .(E.57)

As the bias Babs in the original regression with multiple endogenous regressors
is identical to the bias B⊥abs in the transformed regression with a single regres-
sor , the full-vector weak instruments test can be based on a weak instruments
test in the transformed regression as stated in part (i).

The absolute bias criterion for the j-th element in (E.58) is a simple
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reweighting of B⊥abs,

Bj
abs = B⊥abs ×

√
eN ′j ΣveNj√
δ̃′Σv δ̃

(E.58)

such that part (ii) and the stated adjustment to the tolerance level follow
immediately.

F Illustrative Comparison of Critical Values Across Tests

This Appendix discusses the relationship between the critical values of our
generalized robust weak instruments tests and others in the literature. Figure
F.1 shows critical values for α = 0.05 and τ = 0.10 across several tests and
for a range of specifications with N = 1, 2, or 3 endogenous regressors.

We first discuss the panels for CHSU models in the first column of Figure
F.1. With conditionally homoskedastic and serially uncorrelated errors, the
two measures of the bias – absolute bias and relative bias – are identical,
and the critical values only depend on N and K. The figures in the left
column report the critical values for our robust test, as well as the alternative
conservative simplified values. Each panel also plots the critical values from
the Stock and Yogo (2005) tables for comparison, which are available for
K > N + 1. The top left panel for N = 1 also reports the critical values from
the Montiel Olea and Pflueger (2013) test for K ≥ 1, as well as the analytical
critical values derived for K > 1 by Skeels and Windmeijer (2018).

For CHSU models with K > N + 1, the differences in the critical values
are relatively small. These differences arise exclusively because of the use
of a Nagar approximation (our test and Montiel Olea and Pflueger 2013),
Monte Carlo integration (Stock and Yogo 2005), or analytical expressions
(Skeels and Windmeijer 2018). As discussed in detail in Section 2.5, for
N = 1 and K = 1 or K = 2, the robust critical values from our test differ
from those of Montiel Olea and Pflueger (2013) in the top left panel. When
K = 1, our critical value is lower because it is based on the median bias, and
when K = 2, it is larger because we use a more conservative bound. The
accuracy problems of not adopting this bound are evident in the figure, as
the Montiel Olea and Pflueger (2013) critical value is 3.00 for K = 2, whereas
the analytical critical value of Skeels and Windmeijer (2018) is 7.85. In the
CHSU model, our approach leads to a much more conservative critical value
close to 20. Finally, as expected, the simplified critical values are conservative
for K > N+1. The difference between the simplified critical values and those
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Figure F.1: Comparison of Critical Values

(a) N = 1, CHSU

0 5 10 15 20 25 30
Number of Instruments K

0

5

10

15

20

25

5%
 C

rit
ic

al
 V

al
ue

s

Robust Critical Values
Simplified Robust Critical Values
Monte Carlo Non-Robust Critical Value (Stock and Yogo)
Critical Value (Montiel Olea and Pflueger)
Analytical Critical Value (Skeels and Windmeijer)

(b) N = 1, General
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(c) N = 2, CHSU
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(d) N = 2, General
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(e) N = 3, CHSU
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(f) N = 3, General
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Notes: The left column reports critical values for α = 0.05 and τ = 0.10 for models with
conditional homoskedasticity and no serial correlation (CSHU) and for various numbers of
endogenous regressors (N) and instruments (K). The right column repeats the exercise for
models with arbitrary heteroskedasticity and/or autocorrelation. Critical values depend on
W and therefore vary for each application. The figures show averages of over 500 draws of W
as described in Section 4 for illustrative purposes only. For comparison, we plot applicable
critical values from Montiel Olea and Pflueger (2013), Stock and Yogo (2005), and Skeels and
Windmeijer (2018).
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based on the worst-case Nagar bias diminishes as K increases.
The right column in Figure F.1 shows critical values non-CHSU models

with general W. As the critical values depend additionally on the covariance
matrix W (and Σwv for absolute bias), they will be different for each applica-
tion. To nevertheless give a sense of the critical values that arise in practice,
the figures show the average robust critical values across 500 different general
covariance matrices drawn randomly from the process described in Section
G. The top panel for the model with N = 1 additionally reports the robust
Montiel Olea and Pflueger (2013) critical values. The averages across DGPs
mask considerable variation in critical values across W’s, but they are still
useful to illustrate a number of noteworthy features.

As the figures show, the absolute and relative bias criteria now lead to
different critical values. On average, the absolute and relative critical values
are very similar. The absolute bias critical values are marginally larger on
average, and the difference with the relative bias critical values vanishes as K
grows large. For N = 1 and K > 2, our critical values for the relative bias
coincide almost exactly with those of Montiel Olea and Pflueger (2013), and
for N = 1 and K ≤ 2, they differ for the same reasons discussed above and in
Section 2.5. As in the left panel, the simplified critical values are conservative
for K > N + 1, and the difference with those based on the worst-case Nagar
bias vanishes for large K.

G Asymptotic Simulation Study

This section reports the results from simulations in which the random vec-
tors entering β̂2SLS are drawn directly from their asymptotic distribution, see
Equation (7). These asymptotic simulations complement the finite sample
simulations in Section 4 as they make it computationally feasible to verify the
performance of the robust tests across a much larger set of models.

We consider models with six different combinations for the number of en-
dogenous variables and the number of instruments: N = 2, withK = 2, 3, 4, 6,
and N = 3, with K = 5, 9. For each combination of N and K, we consider
five million randomly drawn DGPs {β, C,W}. We first generate 10,000 W

matrices. To do so, we draw a random Σwv from the standard Wishart dis-
tribution with N + 1 degrees of freedom and then generate W, conditional
on Σwv, following a similar process to that described for the baseline simula-
tions in the main text. In particular, we assume

[
wt, v′t

]′
∼ N (0,Σwv) and
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Z̄t ∼ N (0, Qt), where

(G.59) Qt = IK + Γ

[
wt

vt

] [
wt v′t

]′
Γ′,

and

(G.60) Zt = (Z̄ ′Z̄/T )−
1
2 Z̄t.

We then evaluate

(G.61) W = cov

([
Ztwt

vec(Ztv
′
t)

]
,

[
Ztwt

vec(Ztv
′
t)

]′)

analytically using the higher moments of the multivariate Gaussian distribu-
tion. This procedure ensures that Σwv and W are mutually consistent, as
both are needed for our absolute bias test. For each W, we draw 10 differ-
ent pairs of values for β and directions C0, defined such that C =

√
λminC0.

For each of the resulting 100,000 draws, we consider a grid of 50 minimum
eigenvalues of the concentration matrix, λmin, over a range from 0.25 to 100.
To have good coverage of the region where the Nagar bias is maximized for
a given λmin, half of the draws for β and C0 are in a neighborhood of the
‘worst-case’ values {βwc, Cwc

0 } where the Nagar bias is at the upper bound
for a given W. The other half of the draws for β and C0 are from a wider
region of the parameter space.1 For each of the resulting five million DGPs,
we generate 1000 samples for the random vectors η1 and η2 in (7) to draw
from the limiting distribution of gmin and obtain the empirical rejection rates
of the first-stage tests.

G.1 Accuracy of the Nagar Approximation

Because the Nagar bias is only an approximation of the bias, it is not immedi-
ate that the worst-case Nagar bias is an effective upper bound on the bias in

1For β, the draws close to the worst-case Nagar bias are β = βwc + 0.1υ where υ ∼ N (0, IN ), and
the other draws comprise N independent draws from the uniform distribution on [−100, 100]. For C0,
we use the reparametrization vec(C ′0) = S

1
2
2 S−1

√
K vec(L′0D

1
2

Λ0
Q′Λ), where L0 is an orthonormal matrix

as in Theorem 1, and λminDΛ0 and QΛ contain the eigenvalues and -vectors of the concentration matrix
Λ. The orthonormal matrix QΛ is always drawn from the Haar distribution. For the draws close to
the worst-case Nagar bias, we set L0 = ((Lwc

0 + ξ)(Lwc
0 + ξ)′)

−1
(Lwc

0 + ξ) where the elements of ξ are
drawn independently from a uniform distribution on [−0.1, 0.1] and Lwc

0 is the orthonormal matrix that
maximizes B〉(W) in Theorem 1. The other draws of L0 are from the Haar distribution. Finally, the
nonzero diagonal elements of DΛ0 are generated as 1 + 0.1υ with υ ∼ χ2(1) for the draws close to the
worst case, and from a χ2(1) distribution in the other draws. In both cases, the draws are normalized
such that the smallest diagonal element of DΛ0

is unity.
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practice. We therefore first assess numerically whether the worst-case Nagar
bias (which depends on λmin and W) is a valid bound for the bias (which
depends on β, C, and W) across the DGPs. To do so, we evaluate the bias
using Monte Carlo integration for each DGP. More specifically, to compute
the Monte Carlo bias we evaluate the bias criterion in Definition 2 by replac-
ing E[β∗2SLS] with simulated sample averages of β∗2SLS. As discussed in Section
2.5, in just-identified models, the test is based on the median bias rather than
the mean, and so in those models, the Monte Carlo bias is the median across
simulated samples. We restrict attention to the results for the absolute bias
criterion for brevity, but those for the relative bias are very similar.

For the models with K > N +1, we find in the simulations that the worst-
case Nagar bias is a highly effective upper bound on the Monte Carlo bias at
a conventional bias tolerance level of τ = 0.10. Across all four specifications
with K > N + 1, the Monte Carlo bias exceeds 0.10 in fewer than 0.0001% of
the DGPs for which the worst-case Nagar bias is smaller than 0.10. In the two
models with K ≤ N+1, on the other hand, the Monte Carlo bias exceeds 0.10

in 0.0004% (K = N = 2) and 0.33% (N = 2, K = 3) of the DGPs with worst-
case Nagar bias less than 0.10. These relatively more frequent failures of the
Nagar approximation in models with K ≤ N + 1 is why we adopt the more
conservative upper bound in our testing procedure whenever K ≤ N + 1.2

Using these more conservative bounds, the bound never falls below τ = 0.10

when the Monte Carlo bias is above τ = 0.10 for either K ≤ N + 1 DGP.
For a broader perspective on the quality of the Nagar approximation, Fig-

ure G.2 plots the log of the Monte Carlo bias against the log of the Nagar
bias as in Definition 4 (i.e., not the worst-case Nagar bias but the Nagar bias
evaluated at the true parameters). As the figure shows, the relationship be-
tween the Nagar and Monte Carlo bias becomes considerably stronger with
the degree of overidentification. The dashed lines in Figure G.2 mark a bias
range of 0.05 to 0.15. This is likely to be the most relevant range in prac-
tice, and the accuracy of the Nagar bias in this range is, therefore, the most
important. The figure shows that over that range, the relationship between
the Monte Carlo bias and the Nagar bias is very strong in all models with
K > N+1. For models with K ≤ N+1, Figure G.2 illustrates the limitations
of the Nagar approximation, as the relationship with the Monte Carlo bias is
meaningfully weaker.

2Section G.3 shows that the failures of the Nagar approximation for K = N + 1 become even more
dramatic in homoskedastic models, as also discussed in Section 2.5.

9



Figure G.2: Comparison of Nagar Bias and Monte Carlo Bias, Absolute Bias

N = 2,K = 2 N = 2,K = 3 N = 2,K = 4

N = 2,K = 6 N = 3,K = 5 N = 3,K = 9

Notes: For each specification, we consider five million DGPs as described in the main text. For
each DGP, we take 1000 samples and compute the Monte Carlo bias by numerical integration.
The figure plots the (log of) Monte Carlo bias against the Nagar bias, Babs,n. For N =
2,K = 2, both consider the median bias. The heatmap indicates the density of DGPs with a
particular combination of Nagar and Monte Carlo biases. The dashed horizontal and vertical
lines indicate bias levels of 0.05 and 0.15 to demarcate the typically relevant region for first-
stage tests.

G.2 Size and Power of the Robust First-Stage Test

Figures G.3 and G.4 present scatter plots of the empirical rejection rates of
the absolute and relative bias tests of Section 2 as a function of bias across
the five million DGPs. In all cases, τ = 0.10 (vertical lines) and α = 0.05

(horizontal lines). The red dots plot the rejection rates as a function of the
worst-case Nagar bias (when K > N + 1) or the more conservative bound
(when K ≤ N + 1), evaluated at the values of λmin and W in each DGP.
For illustration, the blue dots also plot the rejection rates against the Monte
Carlo bias given the values of {β,

√
λminC0,W} in each DGP (but not taking

the worst case over all possible β and C0). Of course, the test will have
weakly lower rejection rates when plotted against these values since the null
hypothesis pertains to upper bounds on (the Nagar approximation of) the
bias.

If the test is perfectly sized, the empirical rejection rates should equal the
nominal size of α = 0.05 when the worst-case Nagar bias is precisely τ = 0.10.
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Figure G.3: Size and Power of the First-Stage Test, Absolute Bias

N = 2,K = 2 N = 2,K = 3 N = 2,K = 4

N = 2,K = 6 N = 3,K = 5 N = 3,K = 9

Notes: Rejection rates across 1,000 samples for each of five million DGPs generated as ex-
plained in the text for the test based on the absolute bias. The red dots show the rejection
rates as a function of the worst-case Nagar bias or the alternative conservative bound on
the bias. The blue dots show the rejection rates as a function of the Monte Carlo bias. For
N = 2,K = 2, both consider the median bias. The vertical full line marks the bias tolerance
level τ = 0.10 in the null hypothesis, the dashed vertical line marks a bias level of 0.05 for
reference, and the horizontal full line plots the nominal size α = 0.05.

Figure G.3 shows that the empirical rejection rates never meaningfully exceed
0.05 at worst-case Nagar bias levels of 0.10 or higher. The rejection rates
are frequently below 0.05. This is not surprising given our use of a bounding
asymptotic distribution for the test statistic gmin, which implies that the test is
conservative by construction. As there are no DGPs with meaningful positive
size distortions, the test controls size well at the nominal level. As discussed
in the main text, the alternative conservative bound is effective in bounding
the Monte Carlo bias in the simulations when K ≤ N + 1. Section G.3 below
will illustrate that this is not the case when, instead, the sharp bound on the
Nagar bias is used as in the models with K = N + 1.

Despite the fact that the test is conservative, Figure G.3 shows that it
nevertheless has meaningful power. The dashed vertical line marks a bias
level of 0.05. At that level, the rejection rates in the K = N + 2 models, for
example, rise as high as 0.434, while in the K > N + 2 models, the rejection
rates reach up to 0.732. At lower – but still strictly positive – bias levels, the
empirical rejection rates rise to unity for all DGPs. The simulations, therefore,
demonstrate that our testing procedure is not excessively conservative.
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Figure G.4: Size and Power of the First-Stage Test, Relative Bias

N = 2,K = 2 N = 2,K = 3 N = 2,K = 4

N = 2,K = 6 N = 3,K = 5 N = 3,K = 9

Notes: Rejection rates across 1,000 samples for each of five million DGPs generated as ex-
plained in the text for the test based on the relative bias. The red dots show the rejection
rates as a function of the worst-case Nagar bias or the alternative conservative bound on
the bias. The blue dots show the rejection rates as a function of the Monte Carlo bias. For
N = 2,K = 2, both consider the median bias. The vertical full line marks the bias tolerance
level τ = 0.10 in the null hypothesis, the dashed vertical line marks a bias level of 0.05 for
reference, and the horizontal full line plots the nominal size α = 0.05.

The results for the relative bias test in Figure G.4 are very similar to those
of the absolute bias test in Figure G.3. Just like the absolute bias test, the
relative bias test controls size at the nominal level and has substantial power;
for no DGP with Monte Carlo bias greater than τ = 0.10 does the rejection
rate exceed α = 0.05. For worst-case relative bias of 0.05, the rejection rates
in the K = N + 2 models, for example, rise as high as 0.376, while in the
K > N + 2 models, the rejection rates reach up to 0.682. At lower – but still
strictly positive – bias levels, the empirical rejection rates rise to unity for all
DGPs.

G.3 The Need for the Conservative Bound When K = N + 1.

The asymptotic simulations in the previous section demonstrate that our test-
ing procedures perform as intended across a large number of randomly chosen
DGPs. This is also true for models with K ≤ N + 1 as long as the more
conservative bound in part(ii) of Theorem 1 is used in those cases.

Figures G.5 and G.6 demonstrate the need for the more conservative bound
in models with degrees of overidentification equal to one, K = N + 1. As
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Figure G.5: Size and Power of the First-Stage Test, General Model

(a) Using More Conservative Bound on the Bias

N = 2,K = 3, abs N = 2,K = 3, rel

(b) Using Worst-Case Nagar Bias

N = 2,K = 3, abs N = 2,K = 3, rel

Notes: Rejection rates across 1,000 samples for each of five million DGPs generated as ex-
plained in the text. The blue dots show the rejection rates as a function of the Monte Carlo
bias. The red dots shows the rejection rates as a function of the alternative conservative
bound on the bias (Panel a) or the worst-case Nagar bias (Panel b). The vertical full line
marks the bias tolerance level τ = 0.10, the null hypothesis, the dashed vertical line marks a
bias level of 0.05 for reference, and the horizontal full line plots the nominal size α = 0.05.

before, the various panels plot rejection frequencies against the Monte Carlo
bias in blue. Panel (a) in Figure G.5 repeats the second panels in Figure G.3
and G.4 for ease of comparison and shows rejection frequencies based on the
more conservative bound in red. In Panel (b), the rejection frequencies in red
are instead based on the sharp bound on the Nagar bias (the worst-case Nagar
bias), i.e. as in the models with K > N + 1. The results clearly illustrate
that the worst-case Nagar bias is not adequate for a bias-based first-stage test
in the models with N = 2, K = 3. There are a significant number of DGPs
for which the Monte Carlo bias exceeds the bias tolerance while at the same
time, the rejection rate is meaningfully above the nominal level of 0.05.
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Figure G.6: Size and Power of the First-Stage Test, Homoskedastic Model

Conservative bound, N = 2,K = 3 Sharp bound, N = 2,K = 3

Notes: Rejection rates across 1,000 samples for each of five million DGPs generated as ex-
plained in the main text, except that W is of the Kronecker form. The blue dots show the
rejection rates as a function of the Monte Carlo bias. The red dots shows the rejection rates
as a function of the alternative conservative bound on the bias (left) or the worst-case Nagar
bias (right). The absolute and relative bias tests are identical under homoskedasticity. The
vertical full line marks the bias tolerance level τ = 0.10 in the null hypothesis, the dashed
vertical line marks a bias level of 0.05 for reference, and the horizontal full line plots the
nominal size α = 0.05.

As explained in Section 2.5 of the main text, large positive size distortions
can also occur in models with K = N + 1 under homoskedasticity and zero
serial correlation. In that case, the worst-case Nagar bias is, in fact, analyti-
cally equal to zero. To illustrate the extent of the problem, Figure G.6 shows
results from simulations for N = 2 and K = 3 where now W is restricted
to have the exact Kronecker form in all five million DGPs. The left panel in
Figure G.6 shows that the test based on the conservative bound continues to
ensure that no rejection rates exceed 0.05 for DGPs with Monte Carlo bias
larger than the tolerance level of 0.10. The right panel shows that, when the
test is based on the worst-case Nagar bias, there is a very large number of
DGPs for which rejection frequencies are well above the nominal size of 0.05
at bias levels exceeding 0.10.

G.4 Controlling Median Bias when K = N

As discussed in the main text, the bias criterion in Definition 2 does not exist
for just-identified models, K = N , because the expected value E[β∗2SLS] does
not exist. In order to maintain a bias-based testing approach also for just-
identified models, we instead replace the expected value with the median of
β∗2SLS in the bias criterion.

When K = N = 1, the Nagar approximation can be easily adapted to
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Figure G.7: Size and Power of the First-Stage Test, Median bias

(a) Absolute median bias

N = 1,K = 1 N = 2,K = 2 N = 3,K = 3

(b) Relative median bias

N = 1,K = 1 N = 2,K = 2 N = 3,K = 3

Notes: Rejection rates across 1,000 samples for each of five million DGPs generated as ex-
plained in the text. The blue dots show the rejection rates as a function of the Monte Carlo
median bias. The red dots shows the rejection rates as a function of the alternative conserva-
tive bound on the bias, rescaled as described in the text in the case of N = K = 1. Panel (a)
considers absolute bias and (b) relative bias. The vertical full line marks the bias tolerance
level τ = 0.10 in the null hypothesis, the dashed vertical line marks a bias level of 0.05 for
reference, and the horizontal full line plots the nominal size α = 0.05.

analytically approximate the median 2SLS bias, as described in Section 2.5.
The first column of Figure G.7 plots the rejection rates from the resulting me-
dian bias-based tests across five million DGPs generated as described above.
Now, the red region represents rejection rates plotted against the alternative
conservative bound on the median bias criterion, which is the bound in part
(ii) of Theorem 1 rescaled by median(χ2

1) = 0.455. The blue region plots
rejection rates against the Monte Carlo median bias. As the figure shows,
both versions of the test control size effectively. In the simulations, there is
no DGP for which the Monte Carlo median bias is greater than τ = 0.10

while at the same time the rejection rate exceeds α = 0.05. The simulation
evidence, therefore, supports the validity of our testing approach based on the
median bias for models with N = K = 1.

When K = N > 1, there is, unfortunately, no straightforward analytical
approximation to the median bias using the Nagar approximation as in the
N = K = 1 model. However, the bound in part (ii) of Theorem 1 remains an
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Figure G.8: Size of t-Statistic Inference on β, Absolute Bias
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Notes: For each specification, we consider five million DGPs as described in the text. For each
DGP, we take 1000 samples, and for each sample, we calculate the first-stage test statistic
gmin and conduct a two-sided t-test for each element of β. The figure shows the average and
95 percentiles of the t-test rejection rates as a function of the average gmin, relative to the
absolute bias critical value, for 100 equally spaced bins.

effective, if more conservative, bound on the Monte Carlo median bias without
modification. This can be seen in the middle and right columns of Figure
G.7, which shows simulations for models with N = K = 2 and N = K = 3,
respectively. The red dots plot rejection rates using the simplified critical
values based on the conservative bound, while the blue dots plot rejection
rates against the Monte Carlo median bias. There are no DGPs with Monte
Carlo bias greater than 0.10 for which the rejection rate exceeds α = 0.05.

G.5 Size Distortions of t-Statistic Inference on β

Alternative testing strategies for weak instruments can be based on controlling
size distortions of Wald or t-statistic inference on β. The generalization of
the size-based test of Stock and Yogo (2005) to heteroskedastic and serially
correlated models is beyond the scope of this paper. Nevertheless, in this
section, we explore the relationship between the test statistic gmin and the
distortions of a standard two-sided t-test in Figures G.8 (absolute bias) and
G.9 (relative bias). The t-tests are for the null hypothesis that a given element
in β̂2SLS equals the true value. Each panel shows binned averages of the
rejection rates across the N t-tests in the five million DGPs as a function of
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Figure G.9: Size of t-Statistic Inference on β, Relative Bias
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Notes: For each specification, we consider five million DGPs as described in the text. For each
DGP, we take 1000 samples, and for each sample, we calculate the first-stage test statistic
gmin and conduct a two-sided t-test for each element of β. The figure shows the average and
95 percentiles of the t-test rejection rates as a function of the average gmin, relative to the
relative bias critical value, for 100 equally spaced bins.

the average ratio of gmin to the corresponding critical value of the first-stage
test. The shaded area plots the 95 percent interval of the rejection rates within
each bin. The full horizontal line shows the 0.05 nominal level of the t-test.
For reference, the dashed horizontal line marks the 0.15 level, corresponding
to a common tolerance level of 0.10 in size-based tests of weak instruments.

Figure G.8 shows that the size distortions generally grow larger as gmin

becomes smaller relative to the critical value. In addition, the size distortions
vanish, at least within the central 95% interval, as gmin grows larger. On
average across the DGPs, the t-tests lead to over-rejection for low values of
gmin relative to the critical value. The size distortions are relatively small in
the N = 2, K = 2 model even when gmin is well below the critical value of
the bias-based test. The size distortions become more severe at lower values
of gmin as the degree of over-identification increases. The highest rejection
rate observed for gmin/critical value ≥ 1 is 0.125, for N = 2, K = 6. Overall,
these patterns are qualitatively the same as those discussed in Stock and
Yogo (2005) for CHSU models. They indicate that size distortions are well
controlled (with a tolerance of 0.10) at values of gmin well below those required
to control bias at τ = 0.10 when the number of instruments is small. In
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their results, as the number of instruments increases, gmin eventually needs
to exceed the threshold for the bias-based test to control size in t-statistic
inference on β; the same appears to be the case here if these simulations
were extended to larger K. Figure G.9 repeats the exercise, plotting against
the ratio of gmin to the relative bias critical values. The results are visually
indistinguishable. The highest rejection rate observed for gmin/critical value ≥
1 is 0.126 for N = 2, K = 6.

The relationships shown in Figures G.8 and G.9 naturally suggest an ad-
justment for t-based confidence intervals based on gmin similar to the one
suggested recently in Lee et al. (2022) for N = 1, K = 1 models based on
the first-stage F -statistic. We leave the development of such a procedure for
future work.

H Empirical Simulations

This appendix presents simulation results based on a DGP that is calibrated
to the empirical application of Ramey and Zubairy (2018) in Section 5. The
purpose of these simulations is to evaluate the performance of the robust first-
stage tests in an empirically realistic setting. More specifically, we construct
a DGP that is calibrated to the regression associated with the first impulse
response horizon for the specification that uses the full sample and the slack
measure as the regime indicator, see Panel (a) in Figure 3. To construct this
DGP, we first orthogonalize Z,w, v, to the controls (i.e. lagged variables). We
take the point estimates of β and Π as given. We then use a kernel estimator
(based on the Bartlett kernel) applied to the squared instruments and errors
to estimate the time paths of their variances. After normalizing the esti-
mated residuals by the corresponding time-varying volatilities, we separately
estimate VAR models for Z and w, v to fit the serial correlation patterns
present in the data. With these estimated processes in hand, we can then
simulate data by drawing Gaussian innovations to the estimated VAR pro-
cesses, computing the implied simulated paths for the normalized variables,
and then multiplying them by the estimated empirical volatility paths. We
scale the singular values of Π to match different values for λmin.

Figure H.10 plots power curves for various tests in this empirical design.
As the power curve in yellow shows, the Stock-Yogo test exhibits very large
size distortions, with an empirical size of essentially 1 when the worst-case
bias is at the tolerance level of 0.10. In contrast, the robust absolute bias test
(in blue) is conservative, with a null rejection rate of about 0.01, although
power rises sharply to the left (0.38 for bias of 0.05). The robust relative bias
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Figure H.10: Power of tests in empirical simulations
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Notes: Power curves for various tests in simulations calibrated to an empirical specification
from Ramey and Zubairy (2018), as described in the text. Blue is the absolute bias test,
red is the relative bias test. The Stock and Yogo (2005) test is plotted in yellow against the
worst-case Nagar bias under the absolute bias criterion.

test (in red) also effectively controls size: the null rejection rate is 0.02, and
the test has meaningful power (0.54 at a relative bias of 0.05).

While we only report results calibrated to a single specification and impulse
horizons, we found that the results for other specifications and horizons are
qualitatively similar.

I Additional Results for the Empirical Application

Figure I.1 reports the first-stage test results for the regime subsamples, repli-
cating those in the original Ramey and Zubairy (2018) paper. Within each
regime subsample (expansion/recession, or in/out of ZLB), there is a just a
single endogenous regressor, N = 1, and there are two instruments, K = 2.
The model for the regime subsamples therefore has a degree of overidentifi-
cation of one. As explained in the main text, this is one of the cases where
the critical values from our relative bias test will not coincide with those from
the Montiel Olea and Pflueger (2013) test. The figure therefore reports the
results for both tests.

The blue and yellow lines in Figure I.1 report the difference between the
effective F -statistic and the Montiel Olea and Pflueger (2013) critical values
for τ = 0.10 and α = 0.05. As in Ramey and Zubairy (2018), we cap the
results at 30 for visibility. These test results exactly replicate those reported
in Figure 4 and 10 in Ramey and Zubairy (2018).

The red and purple lines in Figure I.1 report the differences between the
effective F -statistic – which is identical to our gmin statistic when N = 1 –
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Figure I.1: Robust Weak IV Test Results in Regime Subsample Regressions with N = 1
and K = 2
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(b) ZLB Regimes
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Notes: All panels report first-stage test results for regime subsamples within different sample
periods: 1890-2015, 1947-2015 (post-WWII), and 1890-2015 excluding WWII. The blue line
and yellow lines report the difference between the test statistics and Montiel Olea and Pflueger
(2013) τ = 0.10 and α = 0.05 critical values. As in Ramey and Zubairy (2018), we cap the
results at 30 for visibility. The red and purple lines show the corresponding results when
using our relative bias critical values.

and the critical values from our relative bias test for τ = 0.10 and α = 0.05.
As we opt for a more conservative bound on the bias in models that are
over-identified with degree one, the resulting higher critical values lead to
more failures of the first-stage test. Generally speaking, this means that the
instruments are considered weak 1 to 4 horizons earlier than when using the
Montiel Olea and Pflueger (2013) values.

Figure 3 in the main text reports the difference between the test statistic
and the critical values for the full model in (19) with two endogenous variables,
N = 2, and four instruments, K = 4. Figure I.2 separately reports the values
for the robust test statistic gmin and the absolute bias critical values; Figure
I.3 does the same for the relative bias.

Finally, Figure I.4 reports results for the Andrews (2018) procedure for
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Figure I.2: Robust Weak IV Test Statistics and Absolute Bias Critical Values

(a) Government Spending Interacted with Indicator of Slack
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(b) Government Spending Interacted with ZLB Indicator
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Notes: Panel (a) reports results for specifications with government spending interacted with
an indicator for whether the economy was in a state of slack, using combined instruments
for different sample periods: 1890-2015, 1947-2015 (post-WWII), and 1890-2015 excluding
WWII. The blue line reports the robust test statistics for the interacted regression, and the
red line reports the τ = 0.10 and α = 0.05 robust critical values based on the absolute bias
criterion. Panel (b) reports analogous results for specifications with government spending
interacted with an indicator for whether monetary policy is constrained by the zero lower
bound for different sample periods, 1890-2015 and 1890-2015 excluding WWII.
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Figure I.3: Robust Weak IV Test Statistics and Relative Bias Critical Values

(a) Government Spending Interacted with Indicator of Slack
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(b) Government Spending Interacted with ZLB Indicator
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Notes: Panel (a) reports results for specifications with government spending interacted with
an indicator for whether the economy was in a state of slack, using combined instruments
for different sample periods: 1890-2015, 1947-2015 (post-WWII), and 1890-2015 excluding
WWII. The blue line reports the robust test statistics for the interacted regression, and the
red line reports the τ = 0.10 and α = 0.05 robust critical values based on the relative bias
criterion. Panel (b) reports analogous results for specifications with government spending
interacted with an indicator for whether monetary policy is constrained by the zero lower
bound for different sample periods, 1890-2015 and 1890-2015 excluding WWII.
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Figure I.4: Results for the Andrews (2018) procedure

(a) Government Spending Interacted with Indicator of Slack

Full sample Post-WWII Excluding WWII

(b) Government Spending Interacted with ZLB Indicator

Full sample Excluding WWII

Notes: Panel (a) reports results for specifications with government spending interacted with
an indicator for whether the economy was in a state of slack, using combined instruments
for different sample periods: 1890-2015, 1947-2015 (post-WWII), and 1890-2015 excluding
WWII. The blue line reports the difference between a maximum coverage distortion of γ =
0.10 and γ̂, the distortion cutoff supported by the data; negative values are evidence of weak
instruments. Panel (b) reports analogous results for specifications with government spending
interacted with an indicator for whether monetary policy is constrained by the zero lower
bound for different sample periods, 1890-2015 and 1890-2015 excluding WWII.

detecting weak instruments. The blue lines plot the difference between a
maximum coverage distortion of γ = 0.10 and γ̂, the distortion cutoff sup-
ported by the data. Negative values are evidence of weak instruments; note
that the values are capped above at 0.05 due to the calibration of γmin in
the Sun (2018) twostepweakiv Stata package. A value of zero indicates that
non-robust (Wald) inference leads to a coverage distortion of γ = 0.10, the
maximum distortion tolerated, and the cut-off for weak instruments. Note
that this is akin to a size-based test, so the results are not expected to align
with those for the bias-based tests reported above. This procedure indicates
strong instruments for more specifications than the bias-based tests. However,
the results are qualitatively similar, with instruments weaker at longer hori-
zons. Moreover, omitting WWII or starting the sample after WWII generally
reduces evidence of strong instruments, much as for the bias-based tests.
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