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I. Introduction 
 
Stock wealth can have large effects on consumption at the aggregate (e.g., Ando and 

Modigliani, 1963) and individual levels (e.g., Dynan and Maki, 2001, and Mankiw and Zeldes, 

1991) and has implications for inequality. Recent research on the latter indicates that inequality-

reducing effects of greater stock ownership have been dominated by stock price gains that widen 

the wealth gap between stockholders and nonstockholders (Favilukis, 2013) and that 

disproportionately benefit the very wealthy who hold the vast bulk of stock wealth (Bilias, 

Georgarakos, and Haliassios, 2016). Stock price booms and busts since the 1980s and the Mehra 

and Prescott (1995) paper on the equity premium puzzle have spurred studies of what determines 

stock ownership at the individual level and the frequency of household portfolio adjustment (e.g., 

Cocco, 2004; Gomes and Michaelides 2005; Guo, 2004; Heaton and Lucas (2000), Liu (2004), 

Longstaff, 2009; and Polkovnichenko, 2007). While the older literature on equity participation 

focused on why stock ownership was lower amid high equity premiums than what simple theory 

would imply (e.g., Haliassos and Bertaut 1995), the literature also needs to address why U.S. equity 

participation rates have doubled (Figure 1). We focus on the role of transfer costs (specifically, 

mutual fund loads) in this significant shift. Later in this section, we review some of the theoretical 

literature on limited participation, as well as evidence on other factors that could have contributed 

to the substantial change in U.S. equity participation. 

Calibration studies by Heaton and Lucas (2000) and by Gomes and Michaelides (2005) 

suggest that the combination of a high equity premium and low participation could stem from 

background labor market risk and costs of equity participation, and that higher stock ownership 

rates could stem from lower asset transfer costs, background risk, or risk aversion. However, labor 

market developments and surveys suggest that households likely face greater risk of job loss 

compared to several decades ago, while surveys suggest that households are less optimistic about  
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Figure 1: Inverted Stock Mutual Fund Costs Very Correlated with Stock Ownership Rates 

(Sources: Surveys of Consumer Finances and authors’ calculations.) 
 

future economic conditions and do not suggest an underlying increase in preference toward risk.  

This leaves changes in taxes, demographics, or asset transfer costs as possible explanations, 

with declines in the lattermost consistent with Calvet, et al’s (2004) contention of a role for  

financial innovation. The rise in mutual fund ownership is consistent with changes in tax 

regulations promoting a shift toward retirement savings in the form of individual retirement 

accounts and defined contribution (401K/403B) pension plans. However, tax changes alone cannot 

account for shifts toward mutual fund holdings outside of such accounts and regulatory shift 

dummies are unable to significantly explain higher stock ownership rates (see Duca, 2005). Also, 

IRAs were introduced in 1981, but stock ownership only started rising in the 1989 Survey of  

Consumer Finances. In addition, two other possible long-run factors—an aging of the population 

and changes in capital gains taxes—have trends that are inconsistent with those in the stock 
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ownership rate (see Appendix  A). The role of lower asset transfer costs linked to financial 

innovation is consistent with Duca’s (2005) evidence that information cost declines led large 

declines in mutual fund load fees, which, in turn, led shifts in the mutual fund share of household 

equity holdings (with or without IRAs and thrift plan assets). Consistent with Heaton and Lucas 

(2000), Liu and Lowenstein (2002), Liu (2004), and Gomes and Michaelides (2005) we provide 

time series evidence that asset transfer costs (see Figure 1) and swings in background labor risk 

significantly affect stock ownership rates, with estimated long-run relationships closely tracking 

equity participation over the past half century. 

 There are possible broader implications of variation in stock ownership for the 

macroeconomy and wealth inequality. Notable among earlier macroeconomic studies that 

incorporated limited financial market participation are Christiano and Eichenbaum (1995) and 

Christiano, Eichenbaum, and Evans (1996) who explored settings in which firms that used finance 

to produce were more initially exposed to monetary policy changes than households, who did not 

participate in financial markets and were subject to cash-in-advance constraints. As a result of the 

asymmetry in participation, monetary policy changes give rise to liquidity effects on short-term 

interest rates and have short run nonneutral effects. By implication, an increase in participation 

could lead to monetary policy being less non-neutral in the short run in this framework.  

On the other hand, Dynan and Maki (2001) find that the stock wealth effect on consumption 

was much larger for stockowners than nonowners, suggesting that higher participation could 

expose more households to monetary and other shocks to stock prices, thereby leading to more 

pronounced aggregate stock wealth effects on consumption. However, the net aggregate effect 

could be obscured or different for two possible reasons. First, stock wealth has become more highly 

concentrated within the set of households owning stock (Bilias, et al., 2016) during the period 

when stock ownership rates rose. Arguably, the marginal propensity to consume out of stock 
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wealth is lower among the wealthiest, implying that the aggregate sensitivity of consumption to 

stock wealth may not have risen as the intensive margin effect worked against the impact of higher 

participation. Second, as stock ownership has risen, the exposure of the median shareholder to 

shocks to firm valuation are spread out over a larger share of the population and Morelli (2021) 

argues that this intensive margin effect could more than offset the extensive margin impact of 

higher participation on the sensitivity of consumption to stock wealth.  As a result, the stock wealth 

effects of monetary policy on consumption could have weakened as the stock ownership rate rose.   

 Higher equity participation could have distributional effects.  Dynan and Maki (2001) and 

Morelli (2021) find that the consumption of stockowners is more affected by stock prices than the 

consumption of non-owners. And absent an intensive margin effect, higher participation could 

help reduce wealth inequality. However, intensive margin effects have effectively countervailed 

inequality-reducing effects from the extensive margin in practice. As Bilias, et al. (2016) find, the 

overall inequality of wealth did not fall as the stock ownership rate rose because stock wealth 

became much more highly concentrated—particularly among the richest 1 percent of households. 

Our study focuses on extensive-margin effects, exploring the influence of transaction costs 

(via mutual fund loads) and background labor risk on broadening access to stock ownership. Fund 

loads have played a pivotal role in driving the major trends in stock ownership over the past several 

decades. This is robust even to very conservative upper-bound estimates of standard errors. 

Further, several measures of background labor risk help to refine predictions of equity 

participation. We thus find support for the calibration work of Heaton and Lucas (2000) and Gomes 

and Michaelides (2005), and also Liu and Lowenstein (2002) and Liu (2004). In addition to 

demonstrating the importance of transfer costs in widening equity participation, our study 

facilitates further research into stock ownership’s macroeconomic implications and importance in 
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two ways. We provide researchers with time series estimates of annual stock ownership and a 

guide to robust inference using existing irregularly spaced equity participation data. 

To present our findings, this paper is organized along the following lines. The second 

section discusses related literature that helps motivate the stylized time series models later 

estimated. The third section briefly describes how annual data on stock market mutual fund costs 

spanning 65 years are constructed, along with discussing other factors affecting equity 

participation. Section IV uses ARDL models and cointegration tests to link these data to irregular 

readings on U.S. stock ownership rates and finds that annual mutual fund cost and the gap between  

the unemployment rate and its natural level help proxy time variation in stock ownership rates.1 

II. Related Literature 

Early theoretical work on asset market participation stressed transaction costs and liquidity 

(Allen and Gale, 1994 and Williamson, 1994). For tractability, many later papers focus on one of 

those sources. An exception is Heaton and Lucas (2000), who find that high transfer costs, 

idiosyncratic labor income risk, and habit formation can lead to low stock ownership and high 

equity premiums. Consistent with the view that transfer costs matter, Halliassos and Bertarut 

(1995) find that risk aversion, heterogeneity, habits, investment account minimums, and gaps 

between borrowing and lending rates are insufficient to account for low equity participation.  

Although some research avoids imposing a correspondence between rates of time 

preference and the degree of risk aversion (Epstein and Zin, 1989), many models deriving utility 

function parameters in calibrations or simulations assume that the financial architecture (transfer 

costs and liquidity constraints) are time invariant. However, as Heaton and Lucas (2000) stress, 

high transfer costs can lead to lower stock ownership rates and higher equity premia, and lower 

 
1Related series have helped model substitution between money and bonds (Duca, 2000; Anderson and Duca, 2003). 
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asset transfer costs would induce greater stock ownership. In a more complicated model in which 

fixed and proportional asset transfer costs affect the optimal consumption and portfolio behavior 

of households with constant relative risk aversion, Liu (2004, p.322) finds that portfolio shares 

reflect differentials in pecuniary yields between safer and risky assets that should be scaled by 

proportional asset transfer costs,2 implying that portfolio shares reflect negative linear tradeoffs 

between expected return differentials and proportional transfer costs. His model and that of Liu 

 and Lowenstein (2002, p. 818) imply that stock ownership is decreasing in transactions costs and  

increasing in expected stock returns, holding risk and risk aversion constant. Calvet et al. (2004) 

show how by expanding asset choice, financial innovation can induce greater asset market 

participation and a lower equity risk premium. In this framework, lower mutual fund costs can be 

seen as a form of financial innovation, consistent with evidence that lower information costs 

temporally led lower mutual fund loads and higher household holding of stocks (see Duca, 2005). 

Consistent with Heaton and Lucas (2000), Liu (2004), and Gomes and Michaelides (2005),  

Duca (2005, 2006) shows that average equity fund loads and stock ownership rates from the 

Surveys of Consumer Finances (SCFs) had a significant negative correlation of about –0.9 for 

overall and indirect (e.g., mutual fund) stock ownership rates (Figure 1).3 These SCFs show that 

higher stock ownership occurred via mutual funds and had risen the most for middle-income 

families, whose median holdings of transaction accounts and time deposits grew slower relative to 

total financial assets than did the deposits of high-income families during the transition to higher 

stock-ownership rates. Consequently, unless researchers control for time series variation in asset 

 
2 For computational reasons, many studies calibrating asset participation treat investment costs (e.g., brokerage fees 
and learning about stocks) as an entry cost that is proportional to labor income (Alan, 2006; Gomes and Michaeli-
des, 2005; Guo, 2004; and Guvenen, 2009). This assumption is counter to the role played by proportional mutual 
fund fees. Brunner and Meltzer (1967) show how proportional costs matter more than fixed costs of transferring 
between bonds and money in a general version of the Baumol-Tobin money demand model.  Duca (2000) finds that 
bond fund loads—which are proportional transfer costs—account for a large shift in M2 demand in the early 1990s.  
3The present study more formally investigates factors—not just mutual fund costs—that may affect stock ownership. 
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transfer costs, making inferences about the average state of risk preferences or the degree of 

financial frictions from overly simple models is subject to potential omitted variable bias. 

Models of equity participation should be consistent with evidence that liquidity constraints 

or the costs of obtaining a diversified stock portfolio (e.g., stock mutual fund loads, as in Duca, 

2005) have shifted over time. The findings of some studies that ignore such time series variation 

while trying to infer the average or marginal degree of risk aversion might plausibly be affected 

by omitted variable bias. In a related study, Duca (2005) shows that trends in mutual fund costs—

which lead and drive the mutual fund share of nonIRA/non401K equity holdings by households—

are mainly driven by underlying trends in financial technology (e.g., bank productivity is weakly 

exogenous to mutual fund costs, but not the converse). This implies that mutual fund costs do not 

mainly reflect the impact of exogenous tax shocks, which push down mutual fund costs indirectly 

through time invariant economies of scale. That is, financial technology shocks lowered asset 

transfer costs facing households and thereby raised asset market participation. In runs not shown, 

a dummy for the advent of 401K plans and individual retirement accounts (=1 since 1983), starting 

with the IRS’s issuance of guidelines for 401K plans in 1981 and the expansion of IRA eligibility 

rules, was insignificant by itself and if entered interacted with either mutual fund costs or consumer 

sentiment/equity risk premium variables. Together the above findings are consistent with the 

interpretation that improvements in technology drove down mutual fund costs, thereby spurring 

increased equity participation via mutual funds including and excluding 401K accounts.  

Some theoretical models of asset participation recognize that the equity risk premium 

reflects both investors’ assessments about the expected differences in returns on stocks versus 

bonds, as well as the inherent riskiness/uncertainty about stock returns and the degree of risk 

aversion (e.g., Cao, Wang, and Zhang, 2005). As a result, the sign of the correlation between the 

equity risk premium and participation rates is, a priori, unclear. Intuitively, if changes in the equity 
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premium are dominated by shifting perceptions of expected risk-adjusted return differentials, then 

higher equity premiums could be positively correlated with measures of equity risk premiums. If, 

however, time series movements in equity risk premium are dominated by shifts in investor 

discount factors (the levels of risk/uncertainty interacted with the degree of risk/uncertainty 

aversion), then the equity risk premium could be negatively correlated with stock ownership over 

time.  As a result, high levels of measured equity risk premiums can conceivably coincide with 

low participation if risk or the degree of risk aversion is high (e.g., Basak and Cuoco, 1998; and 

Cao, Wang, and Zhang, 2005). Thus, without controlling for the degree of risk aversion or 

confidence, one may observe negative correlations of equity risk premia and participation rates, 

whereas if adequate controls for time variation in discount factors are included, the remaining or 

marginal information in equity risk premium measures could be positively correlated with equity 

participation rates. Thus, in contrast to the negative correlation between stock ownership rates and 

transactions costs implied in the literature, the sign of the estimated relationship between stock 

ownership rates and the equity premium is unclear and may turn positive if time series  

movements in risk aversion or confidence are separately tracked, as summarized in Table 1.  

Factor Asset 
Transfer 

Costs 
(proportional 
mutual fund 
costs, loads) 

Background 
Labor Market 

Risk 
(unemployment, 

labor market 
confidence) 

Consumer 
Confidence 
(about current 

or future 
economy) 

Equity Risk 
Premium absent 
controls for risk 

aversion or 
confidence) 

Equity Risk 
Premium with 

separate controls 
for risk aversion,  

confidence) 

Implied 
Empirical 

Correlation 

Negative  
(see Heaton & 
Lucas, 2000; 

Lin, 2000; Liu 
& Lowenstein, 

2002) 

Negative 
(see Heaton & 
Lucas, 2000) 

Positive 
(could reflect 
expectations 

of risk or 
returns in 

labor or equity 
markets) 

Ambiguous 
(- if premia dominated 

by Δ’s in risk aver-
sion, Cao, et al., 2005;  
+ if premia dominated 

by equity returns) 

Positive 
(marginal information 
in premiums reflects 
risk-adjusted relative 
equity returns, see see 
Cao, et al., 2005, and 

Liu, 2004) 

Table 1: Implied Correlations with Equity Participation Rates 
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III. Empirical Specification and Data 
 
IIIA. Basic Specification 

The literature suggests that equilibrium stock ownership rates reflect several factors aside 

from proportional asset transfer costs, including background labor market risk (Heaton and Lucas, 

2000) and the equity premium, which reflect a confluence of expectations regarding profits, 

interest rates, and discount factors, where the latter may reflect the uncertainty facing investors 

(see, e.g., Cao, Wang, and Zhang, 2005). These factors are generally stationary whereas stock 

ownership rates (StockOwn) and loads have unit roots (see Table 2).    

This mixture of the order of integration of the main variables suggests estimating long-run 

cointegrating vectors in a vector–error correction model using the Johansen (1991, 1995) method, 

where the equilibrium level of equity participation and its change are specified as: 

lnStockOwn*t ≡ α0 + α1lnSloadt + μt       (1) 
 
ΔlnStockOwnt ≡ β0 + β1ECt-1 + β2Riskt + εt      (2) 
 

respectively, where Sload are mutual fund loads, EC ≡ lnStockOwn – lnStockOwn*, Risk is a 

vector of short-run, stationary risk factors, α1 < 0, and β1 < 0 as changes in stock ownership tend 

to be lower if ownership exceeds equilibrium in t-1. The limited number of stock ownership 

readings creates a practical n need to limit the number of short-run variables whose correlations 

could result in multicollinearity. Owing to the irregular spacing of observations on stock 

ownership, we need to use imputation methods that require calculating standard errors, for which 

a single-equation autoregressive distributed lag (ARDL) equivalent to (1) and (2) is needed4: 

  ΔlnStockOwnt = γ0 + γ1lnStockOwnt-1 + γ2lnSloadt-1 + γ3ΔlnStockOwnt-1 + γ4ΔlnSloadt-1 + γ5Riskt + εt  (3) 

 
4 Essentially, the long-run relationship implied by the ECM term is substituted into the first difference eq. in eq. (2). 
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In equilibrium, the change in stock ownership is zero (as are all first difference and shock terms) 

and the long-run equilibrium relationship can be backed out as: 

lnStockOwn*t ≡ (-γ0/ γ1) + (-γ2/ γ1) lnSloadt       (4) 

IIIB. Addressing Irregularly Spaced Observations; Multiple Imputation Methods 

Our main data series has two features that require special consideration: firstly, equity 

participation is typically observed every three years rather than annually; and secondly, three gaps 

(1973, 1980, and 1986) are present in the series from 1964 to 2019. Given the first feature, we 

estimate ARDL models using lag levels from three years prior and differences over the preceding 

three years. This does require meshing the series around one four-year gap, from 1973 to 1977 

instead of to 1976. To address the second issue, we use multiple imputation, a standard technique 

in the statistical literature (see Rubin (1987), Schenker and Taylor (1996), and Reiter and 

Raghunathan (2007)). Multiple imputation first generates sets of plausible imputed values, then  

runs the desired model using each set, and aggregates the results using a form of model averaging.  

We use three standard methods to generate imputed values: linear, spline, and the Kalman  

filter. (Kalman filter results are presented in the main body of this paper; linear and spline results 

are similar, with some in Appendix D and others available from the authors upon request.) In each, 

the only input to the imputation process is the stock ownership series itself, so we do not impose 

any assumptions on relationships the equity participation series may or may not have with other 

series. However, these imputed values are not necessarily equal to the true value of the series at 

any or all of our three imputed points in time. We estimate how far our imputed values should be, 

on average, from the truth; using this estimate, we can establish a range of plausible values the 

series might truly have taken on at missing points in time. We then ensure that empirical results 

are robust to this range of plausible variation. 
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We thus ensure that the core results are robust to potential inaccuracies in the imputed 

values. The initial imputed values are our “best guess” for the true value of the series at a point in 

time; in a sense, given a missing equity participation datapoint 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡, imputed value 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� 𝑡𝑡, 

and estimator used for imputation 𝜃𝜃, we have 

 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� 𝑡𝑡 = 𝐸𝐸[𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡|𝜃𝜃].        (5) 

 
 

To obtain a better sense of the range of possible values which the true value 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 could take, 

conditional upon 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� 𝑡𝑡, we need a measure of the variance of our estimate from actual values of 

the series. This paper uses two main measures of imputed value inaccuracy: the variance of the 

equity participation series over the entire sample period, used as a (probably rather loose) upper 

bound on the extent to which our estimates are inaccurate (high variance); and the variance of the 

residuals formed by comparing the estimates that we would have imputed for any non-missing 

datapoint with the actual non-missing datapoints (tighter variance). 

The variance of the series as a whole is suitable as an upper bound on imputation inaccuracy 

because, if we had simply imputed the series mean for each missing datapoint, the expected 

inaccuracy would be at most the series variance. Imputing the overall series mean obviously does 

not leverage much information about the data, or the fact that it is a time series. Local linear 

imputation, imputation via spline, and imputation via Kalman filter all utilize more information 

about the equity participation series, including the fact that it is a time series. Using more 

information about the data should at least weakly improve our imputation accuracy (so the overall 

series variance is an upper bound). Non-missing values in the portion of the series where we impute 

are clustered close to the observed series minimum, and the series trends up relatively smoothly 

afterwards. These properties suggest that mean imputation would be particularly ill-suited for our 

application, so the expected variance of its use likely provides a loose upper bound. Overstating  
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the inaccuracy of our imputed values in this way may bias our coefficient estimates towards 

insignificance in model estimation and model averaging. 

“Tighter variance” specifications base the anticipated inaccuracy of our imputations on the 

inaccuracy of modeled or imputed values for non-missing datapoints, when we treat these non-

missing points as unobserved. Since the three missing datapoints are not missing for any reason 

related to the rate of equity participation in the relevant years (i.e., they are functionally missing 

at random, MAR), this method provides a reasonable estimate of the imputed value inaccuracy. In 

the case of Kalman filtration results presented in the main body of this paper, and for spline results, 

we use a variance estimate analogous to leave-one-out cross validation (described in greater detail 

below). For imputed values from simple linear imputation, we take all sets of three non-missing 

datapoints t-1,t,t+1 and perform simple linear imputation to estimate t based on the average of t-1 

and t+1. The variance of the residuals is then computed by averaging the squared deviations of the 

“imputed values” from the observed time-t datapoints. 

In deriving Kalman filter and spline variance estimates, we would ideally like to focus on 

cases closest to the situation of our actual missing values: at most one consecutive missing value, 

which is neither the first nor last observation. In light of the limited sample size, we relax the “at 

most one consecutive missing value” constraint to have variance estimates from a greater variety 

of points in the series (and in particular, from more points close to the region our truly-missing 

values lie in). Allowing multiple missing values in a row would generally be expected to increase 

our estimate of the imputation inaccuracy. 
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For each data points save the first, last, and seventh,5 we remove this data point from the 

series and calculate Kalman or spline imputed values using the resulting four-missing-value 

version of the data. We then obtain variance estimates by averaging 

 
(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� 𝑡𝑡)2                (6) 

 
where 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� 𝑡𝑡 is the imputed value from the four-missing-value series with 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 as the fourth 

“missing” value. 

Since all three imputation methods ultimately yielded similar results, we focus on Kalman 

filtration models in the main body of this paper, with linear and spline imputation models serving 

as a proof of results’ robustness to variation in imputation method. 

After obtaining estimates of imputation inaccuracy to accompany the estimator-conditional 

means for each missing datapoint, we are able to parameterize a generation process for additional 

plausible imputed values. For each needed estimate of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡|𝜃𝜃, we match a beta distribution to 

its estimated mean, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� 𝑡𝑡 , and standard deviation, 𝜎𝜎. That is, 

 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡|𝜃𝜃 ~ 𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸(𝛼𝛼,𝛽𝛽) ∗ 100,       (7) 

 
where 𝛼𝛼,𝛽𝛽 are chosen to parameterize a beta distribution with expected value 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� 𝑡𝑡/100 and 

variance 𝜎𝜎2/10,000. This rescaling is necessary because, while the beta distribution ranges 

between 0 and 1, the equity participation series is measured in percentage points and could range 

0 to 100. For example, an index value of 24.7 indicates that 24.7 percent of households own equity. 

We focus on the beta distribution because it, like the series of interest, is bounded. It can therefore 

 
5 The seventh data point is excluded from being treated as missing since this would create a sequence of three missing 
values very close to a region where the series trend changes significantly, but we do allow other sequences of three 
consecutive missing values. Results are robust to variation in the data points, which can be treated as missing to 
calculate imputation variance. 
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likely match the series better than a normal distribution, though we have also run models with 

distribution draws based on the normal distribution 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡|𝜃𝜃 ~ 𝑁𝑁(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� 𝑡𝑡 ,𝜎𝜎2). These models 

produced qualitatively similar results. For convenience, the standard equations for a beta 

distribution’s mean and variance in terms of its parameters are provided in Appendix E. To derive 

the beta distribution parameters, we solve these equations with the appropriate values substituted 

for mean and variance for each rescaled 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡|𝜃𝜃. 𝛼𝛼 and 𝛽𝛽 vary depending on the time- and 

imputation-method specific “mean” 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� 𝑡𝑡, and depending on 𝜎𝜎, which is constant for all 

parameterizations within a high-variance or (conditional on imputation method) tighter-variance 

run of our models. 

 We next estimate ARDL models using eq. (3) over a variety of plausible completed datasets 

and average the results. Each dataset is completed by making an independent random draw from 

the distribution, conditioned on 𝜃𝜃, for each missing value of the equity participation series.6 For 

each choice of imputation estimator 𝜃𝜃 and each of the two variance estimates, we generated two 

sets of 800 completed datasets for each of the 18 ARDL models presented. For each completed 

dataset, we estimate an ARDL model and record the coefficients, standard errors, and model 

suitability test statistics (Durbin-Watson, max-lambda, and trace statistics, as well as adjusted R2). 

Standard errors are adjusted for between-dataset variation within each block of 800 plausible 

completed datasets, using an adaptation of the method described in Reiter and Raghunathan (2007) 

for small-sample multiple imputation. We also apply Reiter and Raghunathan-style penalties to 

the allowed degrees of freedom in t-distributions for significance testing. Coefficients, non-

adjusted error variance, and model suitability test statistics are averaged across completed datasets 

within the block; then both they and the adjusted error variances are averaged across the two blocks 

 
6 Since the draws are software generated, we check robustness to changes in the random seed. 
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of 800 completed datasets. Due to how the adjusted standard errors are calculated, there may be a 

slight penalty (biasing the coefficients towards insignificance) for adjusting within multiple 

smaller blocks rather than one larger block. 

 We report Durbin-Watson, max-lambda, and trace statistics, as well as adjusted R-squares, 

averaged across 1600 model runs for both tighter and upper-bound variance specifications. Due to 

the presence of a lagged dependent variable in the models, the information from Durbin-Watson 

statistics was checked against Durbin’s h whenever possible. The two statistics agreed in all cases 

examined. Durbin’s h is not reported for all models because some specifications have too large of 

coefficient variance on the lagged dependent variable for h to be used. 

 The imputed stock ownership rates for the “missing” years of 1973, 1980, and 1986 are 

very similar using the three basic imputation methods.  For purposes of illustration, Figure 2 plots 

the imputed values along with actual observations using the preferred model (Kalman filter using 

UGAPSq as a short-run background labor risk variable), which is discussed in Section IV. 

IIIC. (Risk) Factors Other Than Mutual Fund Costs that May Drive Stock Ownership 

 Several other plausible factors affecting stock ownership include relative expected returns 

on stocks, households’ tolerance for investment risk, and labor income risk, all of which are 

stationary and enter as lagged levels (members of the X vector in eq. (3)). The first and second 

factors can be tracked by a measure of the equity premium, for which we tested several. One is  

Damodaran’s (2013) implied equity risk premium (Eprem) series, which uses analysts’ 

expectations to form free cash flow estimates of S&P 500 returns relative to the Treasury bill rate 

and thus is more forward-looking that historical equity risk premium measures. Another stock 
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Figure 2: Actual and Imputed Triennial Readings on the U.S. Stock ownership Rate 

(Sources: Various Surveys of Consumer Finance and authors’ calculations) 
market-based risk factor examined is a proxy for volatility, the standard deviation of the daily 

returns on the Dow Jones Industrial Average over a year (Volality), which plausibly could have a 

negative short-run effect on stock ownership. While not as comprehensive as broader measures, 

such as the VIX, these data are consistently available into the 1960s.     

An alternative to a gauge of the equity risk premium is the overall index of consumer 

sentiment (Con) and its subindex of sentiment about the future (Conexp) from the University of 

Michigan Survey of consumer sentiment. In addition, its subcomponents can separately track 

household assessments of labor income risk and of future family finances. Labor risk is reflected  

in household assessments of whether jobs are currently plentiful or hard to get (Conjob). Variation 

in household tolerance for taking financial risk is tracked by the University of Michigan index of 

households’ assessment of their family’s future financial condition (ConExpFn). For each, more 
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optimistic views are reflected in higher readings (1966=100, Figure 3).7 While Conjob reflects 

background labor risk, while ConExpFin may be more reflective of shifts in discount rates and 

Con likely includes information from both, it is an empirical issue which index better aligns with 

stock ownership. To conserve space, the tables report results using Con, Conexp, and Conjob 

which outperformed ConExpFin. In models not shown, these sentiment measures outperformed 

statistically insignificant bond yield spreads, including those between Baa- and Aaa-rated 

corporate bonds and the Baa corporate and 10-year Treasury bond yields.  As with equity premia 

measures, it is hard to disentangle how ConfExp reflects the effects of risk assessments or shifts in 

discount rates from those of fundamentals about future income or profit expectations. In addition, 

ConfExp may also reflect household assessments of background labor risk insofar as their answers 

may reflect perceptions of how robust their wealth and debt positions are to future economic 

  
Figure 3: Consumer Confidence Measures Considered 

(sources: University of Michigan Survey Research Center and author calculations) 
 

 
7 Unlike the Baker-Wurgler (2006) index, EXPFIN is nonstationary and can help estimate long-run trends. 
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shocks. Nevertheless, this index, as with the equity risk premium, can track the combined effect 

of standard factors, whose movements differ from the trends in mutual fund costs. 

Finally, we try to proxy for background labor market risk with the gap (UGap) between 

the actual civilian (H-3) unemployment rate and the CBO’s estimate of the noncyclical rate (the  

“natural rate”) of unemployment. This gap abstracts from trends in the unemployment rate 

associated with trends in demographics (e.g., age and education characteristics of the labor force). 

Since UGap should be increasing in household labor risk, the analysis of Heaton and Lucas (2000) 

suggests that UGap should be negatively associated with stock ownership. The tendency for the 

unemployment rate to swing half as much as the GDP output gap (Okun’s Law) suggests that the 

risk to labor income could be nonlinear in UGap (see Bordo and Duca, 2022). Hence, we also test 

a specification using UGap multiplied by its absolute value (UGapSq ≡ UGap x │UGap│). UGap 

and UgapSq are plotted in Figure 4 and have a negative correlation with Conjob. A last measure 

is the output gap (GDPGap), calculated as the difference between actual and potential GDP (CBO 

estimates) scaled by potential GDP. This is similar to the Hodrick-Prescott-based measure of 

Morelli (2021), who stresses that stock ownership has been procyclical since 1998 (which is after 

major increases that we find are linked to earlier declines in mutual fund costs). 

IIID. Tracking Mutual Fund Costs  

Because data before the mid-1980s are sketchy and incomplete, mutual fund costs are 

based on a sample of large mutual funds (Appendix B). Funds were selected if their assets were at 

least $1 billion at year-end 1991 if the fund existed before the mid-1980s; were at least $2 billion 

at year-end 1994 if the fund's inception date occurred after 1983; were at least $5 billion at year-

end 2003; or were at least $250 million at year-end 1975. The third criterion reflects whether a 

fund remained large following the stock market bust of the early 2000s. Given the stock and bond 

appreciation of the early 1990s, the hurdles for newer funds were higher for the 1994 and 2003  
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Figure 4: Unemployment Gap Measures of Background Labor Risk 

(Sources: CBO, U. Michigan SRC, Bureau of Labor Statistics, and authors’ calculations) 
 
cutoff dates to keep data gathering costs from exploding. The fourth criterion avoids excluding 

funds that were relatively large in 1975 from distorting averages when fewer funds existed. Also 

excluded were funds that were closed-end, only open to employees of a specific firm, or 

institutional. One member, the Windsor Fund, became closed-end but was included because its 

open-end cousin (Windsor II) was started when it became closed-end, and both funds are large. 

Also omitted are funds with high minimum balances ($100,000 or more) because such high hurdles  

make such funds less reflective of extensive margin decisions facing middle- and low-income 

households. 133 equity mutual funds are in the sample (a list is available) using data from funds 

and various issues of Morningstar, IBC/Donoghue, and CDA/Wiesenberger (a, b).  

Four measures of stock mutual fund loads were constructed. SLoad1 is the average load on 

stock funds held over a one-year horizon, which counts any front-end load plus any back-end load 

for withdrawals within 1 year of purchasing a fund.  Because fund managers may alter expense 
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ratios along with loads to raise fees from investors, another measure adds the annual expense ratio 

to the one-year horizon to form an expense-adjusted load (SELoad1). Because many investors have 

longer horizons, such as 5 years, two five-year horizon measures (SLoad5 and SELoad5) were 

created that annualize the sum of any front-end load and a back-end load for withdrawals within 

years 4 and 5 following a purchase). As discussed in Duca (2005, 2006), SELoad1 and SELoad5 

behave very similarly with the annual, industry-side, overall equity fund cost estimates of Rea and 

Reid (1998, 1999). Which load series best predicts stock ownership is an empirical issue. In 

general, the measure using a 1-year horizon without an expense ratio adjustment (SLoad1) yielded 

the best fitting and most sensible models of household equity participation.    

Each of the load series leads stock ownership rates by about three years. Because of the 

limited number of irregularly spaced observations on stock ownership rates, it is infeasible to 

incorporate long lag structures in the estimation of long-run coefficients. Accordingly, the long 

run vectors were estimated using the t-3 lag of log mutual fund costs with an appropriately timed 

first difference term of mutual fund costs for each. Of these, a lag of 3 yielded the best combination 

of evidence of cointegration, clean residuals, statistically significant long-run coefficients, and 

yielded sensible estimates of the speed of adjustment.  

IIIE. Calculating Standard Errors with Some Imputed Values of Stock Ownership 

 Because three of the nineteen stock ownership readings are imputed, standard errors on 

the coefficients need to be adjusted, for which we investigated three methods. As a lower bound 

set of standard error estimates, the first method treats the imputed values as wholly accurate 

estimates of the participation series’ value at the time of imputation. For these estimates, we do 

not generate or average across multiple plausible completed datasets. The second method estimates 

standard errors based on method-specific inaccuracy. Our missing values are functionally missing 

at random (i.e., not missing for reasons related to the level of equity participation at the time). 
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Thus, the typical inaccuracy of an imputation method when used to "impute" a value that is not 

actually missing, conditional on observed data aside from that value, should be representative of 

its inaccuracy when used for actually-missing data points.  This method provides a plausible set 

of standard errors. For this method, we generate 1600 completed datasets per model of interest and 

method of imputation, averaging estimates across these datasets and increasing standard error 

estimates to reflect between-dataset variation. Our third method of calculating standard errors uses 

similar averaging and adjustment across 1600 plausible completed datasets per model of interest 

and imputation method, but this method assumes that our imputed values are, on average, much 

less accurate. This third method uses the variance of stock ownership over the entire sample (1964-

2019) as an upper-bound estimate for the variance between our imputed values and actual series 

values at a given point in time. The upper bound is loose: using the series mean for all “best guess” 

imputation values would have this expected variance. We report results for imputation based on 

the Kalman filter using all three estimates of imputation inaccuracy—no inaccuracy; some 

inaccuracy; and an overestimate of inaccuracy. Results using linear and spline imputation as a base 

are qualitatively similar; some are presented in Appendix D and others are available upon request. 

IV. Empirical Findings 

The main tables report results using a Kalman imputation of the three missing triennial 

observations, while the Appendix tables report results using the spline and simple linear 

interpolations, which yielded similar findings. Results favored using mutual fund loads over a one-

year horizon. Tables 3 and 4 report results using the mutual fund load series SLoad1 and SELoad1, 

respectively, across nine versions of eq. (3) using the middle-case estimate of standard errors. 

Tables 5 and 6 correspond to Tables 2 and 3 except that they use the upper bound S.E. estimates, 

while the narrowest bands are used in Tables 7 and 8. Model 1 is a baseline model that omits any 

controls for background labor risk or the equity risk premium, for which the remaining models 
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include one control, each of which is dated at time t. (Lagged measures of risk variables were 

generally insignificant or less significant.) The next four models focus on background labor market 

risk, with Models 2-5 adding UGap, UGapSq, GDPGap, and ln (Conjob), respectively. Instead, 

Models 6 and 7 include the overall consumer sentiment index and the index of expected future  

conditions, respectively, while Models 8 and 9 only add Eprem and Volatility, respectively.   

There are several noteworthy patterns in the long-run relationships across Tables 3 through 

8. First, the trace and max-eigenvalue statistics imply that in all but one case, a unique and 

statistically significant cointegrating long-run relationship is identified. The exception is Model 2 

in Table 2, which uses Sload1 and Ugap to track mutual fund costs and labor risk, respectively.8 

In this model, the statistics rejected that at most one significant vector existed.  Second, the lagged 

level of the stock ownership rate is statistically significant with a negative sign, implying that 

equity participation changes tend to close the gap between actual and equilibrium equity 

participation rates and at a speed equal to the third root of the absolute value of the coefficient on 

StockOwnt-1. Third, each load term has a significant and negative long-run relationship, implying 

that lower mutual funds induce higher stock ownership, consistent with the implications of the 

theoretical frameworks of Heaton and Lucas (2000) and (Liu, 2004). The lagged log level and its 

lagged first difference are jointly significant, indicating that stock ownership is not weakly 

exogenous to mutual fund loads.  

 Results are less uniform for the impact of short-run risk factors on stock ownership; these 

display several patterns. First, in the tables using the lower bound and preferred sets of standard 

errors, (3, 4, 7 and 8), the unemployment gap is always significant, with the expected negative 

sign. In addition, as reflected in the higher R-square across the models in each of these tables, 

 
8 In other regressions (see Appendix Table D5) that added the CPI inflation rate, a significant and unique long-run 
relationship was found in all models and all other results held, but the inflation rate was statistically insignificant.  
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UGap adds more marginal information (Model 2) than other short-run risk factors, especially the 

statistically significant output gap (Model 4), the quadratic version of UGap (Model 3), and the 

logged index of consumer assessments of the job market (Conjob). As all of these terms reflect 

background labor risk, they provide support for the emphasis that Heaton and Lucas (2000) place 

on labor risk. In contrast, the broader measures of overall and future consumer sentiment (Con and 

Conexp, respectively), volatility (Volality) and—with one exception—the equity premium are 

always insignificant, irrespective of how standard errors are calculated.9 With the exception of the 

volatility measure, the estimated short-run risk coefficients have the expected signs. Together, 

evidence on risk factors favors the view that variation in background labor risk—and not some 

much overall expectations or equity risk premia—can have important short-run effects on stock 

ownership.  Overall, models using UGapSq perform well, yielding high R-squares, clean residuals, 

and unique and significant cointegrating vectors with sensible signs. 

 The qualification to this overview of findings about short-run factors is that none of the 

short-run risk factors are statistically significant when the widest estimates of standard error bands 

are applied in contrast to the lagged level of mutual fund loads. Nevertheless, there are good 

reasons why the set of standard error estimates are too wide, as discussed earlier. That said, a very 

skeptical interpretation of the findings is that the only truly robust result is that only mutual fund 

loads have a significant effect on stock ownership rates in time series. 

Of the models that implied a unique and significant cointegrating vector, the one using 

Sload1 and UGapSq (Model 3, Table 3) has a nice combination of a high fit with little evidence of 

serial correlation in the residuals. As show in Figure 5, the implied long-run equilibrium value 

from this model plus the estimated short-run effect of UGapSq tracks the stock ownership rate 

 
9 The one exception for Eprem is the unrealistic case of treating imputed stock ownership readings as certain using 
expense-ratio adjusted loads, and Eprem is only marginally significant (90% confidence level) in this case. 
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over the past six decades. Overall, the estimates favor an unemployment-based measure of 

background labor risk and support Heaton and Lucas’ view that labor risk is a key determinant of 

stock ownership. These patterns hold using the spline and linear imputation alternatives (see 

Appendix D). Table 9 provides the long-run equilibrium relationships and the implied annual  

speeds of adjustment from the models in Table 3. For the preferred Model 3, a one percent rise in  

mutual fund loads lowers long-run stock ownership by approximately 0.64 percent, with an  

annualized speed of adjustment of approximately 37 percent.   

IVB. Proxying Missing Annual Equity Participation Rates with Simulation Results 

 Earlier literature on equity participation found that stock ownership rates were lower than 

implied by basic theory. At the same time, annual readings on the stock ownership rate have risen 

over time, and in line with empirical models, which incorporate asset transfer costs involving 

mutual funds. Rather than interpolate missing annual readings between irregularly estimated stock 

ownership rates from various SCFs, missing annual readings can be simulated using the estimated 

coefficients from the preferred Model 3 from Table 3 in conjunction with actual annual values of 

mutual fund costs (SLoad1) and the quadratic unemployment gap (UgapSq). The resulting annual 

series on stock ownership rates from this model are similar to the triennial estimates plotted in 

Figure 5. They are listed in Appendix C and are available for use with attribution.  
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Figure 5: Stock Ownership Rates in Line with Equilibrium Levels Implied by Mutual Fund 

Costs and Background Labor Risk (Sources: SCF, BLS, and authors’ calculations) 
 

 

V. Concluding Comments and Future Research 

This study addresses two gaps in the literature. First, it finds a significant and economically 

substantial long-run role for variation in asset transfer costs—specifically, the one-year horizon 

mutual fund loads—in empirical models of equity participation rates. This result is consistent with 

calibration studies stressing how asset transfer costs influence asset participation (Heaton and 

Lucas, 2000, and Gomes and Michaelides 2005, inter alia) and portfolio choice and composition 

(Liu and Lowenstein, 2002 and Liu, 2004, inter alia). Further increases in equity participation may 

need to stem from other factors than changes to fund loads, as loads are currently low and may 

remain so. However, decreasing other sources of transfer costs could broaden future equity 

participation. For example, automatic enrollment in employer thrift plans—which reduces time 

and search costs on individuals desiring to transfer assets into equity—has been shown to increase 

equity participation in individual-level studies (Cribb and Emmerson, 2021, Madrian and Shea, 
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2001, and Goldin, et al., 2017). Indeed, Yogo et al. (2022) estimate that making employer thrift 

plans more available would notably increase retirement saving among lower-income middle-aged 

households. 

Results also support a short-run role for labor market risk or slack, as tracked by the gap 

between the headline unemployment rate and its natural rate, the GDP output gap, or by household 

assessments of current labor market conditions. In contrast, the measures of the equity premium  

and stock price volatility did not add significant information. Overall, the time series findings 

regarding risk premia, expectations, slack, and labor market variables favor Heaton and Lucas’ 

(2000) emphasis on background labor market risk as a determinant of stock ownership and 

Morelli’s (2021) view that stock ownership rates are procyclical. That said, the short-run impacts 

of labor market risk and slack are not as robust as the long-run effect of mutual fund loads. 

This study also addresses another gap in the literature. In particular, the long-run coefficient 

estimates from the preferred model along with annual mutual fund and unemployment 

rate data can provide simulated readings on annual stock ownership rates. Such readings could be 

used in time series studies of stock portfolio, net worth, consumption, and GDP, and could aid 

research involving the calibration of equity participation or the undertaking of case studies.  In 

addition to providing simulated equity participation series readings, we illustrate methods for 

robust inference with the existing irregularly spaced participation data that could be applicable to 

other studies and other economically relevant irregularly spaced series.  
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Table 2: Unit Root Tests 
 

                                     19 1964 – 2019 Observations 
 

Variable 
 

Dickey-Fuller GLS 
    (ERS) statistic 

    Reject          KPSS     Reject 
 Unit Root? statistic Stationarity? 

     
lnSTOCKOWNKFt         -0.9250   No     0.5240** Yes 
∆lnSTOCKOWNKF         -2.8486**   Yes     0.1217 No 
lnSTOCKOWNLint         -0.9018   No     0.5214** Yes 
∆lnSTOCKOWNLint         -2.9255**   Yes     0.7390 No 
lnSTOCKOWNSplt         -1.0633   No     0.5214** Yes 
∆lnSTOCKOWNSplt         -2.5693**   Yes     0.1155 No 
lnSLOAD1t         -2.5948**   Yes     0.5153** Yes 
∆lnSLOAD1t          -2.0836**    Yes     0.2069 No 
lnSELOAD1t         -0.8850    No     0.5268** Yes 
∆lnSELOAD1t          -2.6787**    Yes     0.1970 No 
Ugapsqt         -3.5147***    Yes     0.1873 No 
lnCont         -3.3151***     Yes     0.0897 No 
lnConexpt         -3.3606***   Yes     0.0724 No 
lnConjobt         -3.1326***     Yes     0.1105 No 
GDPgapt         -3.2922***     Yes     0.2507 No 
EPremt         -1.6436***     Yes     0.1769 No 
Volatility         -3.5270***       Yes     0.2890                       No 
     

                          **, *** denote significant at the 95 and 99 % confidence levels.  
 
 

56 Continuous Annual 1964 – 2019 Observations 
  Variable 

 
  Phillips-Perron 
        Statistic 

    Reject          KPSS     Reject 
 Unit Root? statistic Stationarity? 

lnSLOAD1t        -1.0544   No    0.8125** Yes 
∆lnSLOAD1t         -3.5844***   Yes    0.2933 No 
lnSELOAD1t        -0.9632   No    0.8302** Yes 
∆lnSELOAD1t         -3.7956***   Yes    0.2815 No 



Table 3: Models of U.S. Stock Ownership 1970-2019 
(Stock loads not expense ratio-adjusted (SLOAD1); Kalman Imputation) 

 

Model:   ΔlnStockOwnt ≡ γ0 + γ1lnStockOwnt-1 + γ2lnSloadt-1 + γ3ΔlnStockOwnt-1 + γ4ΔlnSloadt-1 + γ5Riskt + εt   
Model # 1 2 3 4 5 6 7 8 9  

Baseline Ungap UngapSq GDPgap ln(Conjob) ln(Con) ln(Conexp) Eprem Volatility 
lnStockOwn(t-1) -0.912** -1.142** -1.203** -1.096** -1.051** -0.862* -0.851* -0.757* -0.832* 

  Averaged SE (0.319) (0.242) (0.268) (0.289) (0.268) (0.319) (0.321) (0.335) (0.338) 

  Corrected SE (0.379) (0.321) (0.350) (0.358) (0.328) (0.375) (0.387) (0.388) (0.380) 

  Eff. df (t-dist.) 7.4 5.3 5.5 6.1 6.3 6.8 6.5 7.0 7.4 

ΔlnStockOwn(t-1) 0.221 0.208 0.304 0.132 0.204 0.211 0.217 0.109 0.168 

  Averaged SE (0.228) (0.163) (0.177) (0.195) (0.188) (0.231) (0.231) (0.241) (0.250) 

  Corrected SE (0.270) (0.201) (0.211) (0.223) (0.230) (0.259) (0.260) (0.276) (0.293) 

  Eff. df (t-dist.) 7.4 6.2 6.6 7.2 6.3 7.5 7.4 7.2 6.8 

lnSLoad(t-1) -0.584** -0.737** -0.774** -0.710** -0.643** -0.538* -0.534* -0.482* -0.538* 

  Averaged SE (0.200) (0.153) (0.170) (0.184) (0.166) (0.202) (0.203) (0.211) (0.209) 

  Corrected SE (0.238) (0.211) (0.225) (0.230) (0.208) (0.238) (0.246) (0.246) (0.238) 

  Eff. df (t-dist.) 7.3 5.0 5.4 6.0 6.0 6.8 6.4 6.9 7.3 

ΔlnSLoad(t-1) 0.411 0.766* 0.939* 0.601 0.646 0.430 0.410 0.426 0.298 

  Averaged SE (0.434) (0.335) (0.389) (0.384) (0.371) (0.439) (0.434) (0.427) (0.467) 

  Corrected SE (0.471) (0.368) (0.431) (0.422) (0.397) (0.464) (0.461) (0.455) (0.494) 

  Eff. df (t-dist.) 8.9 7.8 7.7 7.8 8.3 8.4 8.3 8.3 8.4 

S-Run Risk variables 
 

-0.0299** -0.00786** 0.0206* 0.168** 0.137 0.118 -0.125 5.878 

  Averaged SE 
 

(0.00887) (0.00276) (0.00878) (0.0662) (0.177) (0.158) (0.103) (9.005) 

  Corrected SE 
 

(0.00933) (0.00288) (0.0101) (0.0691) (0.220) (0.210) (0.111) (9.468) 

  Eff. df (t-dist.)) 
 

8.5 8.6 7.1 8.6 6.1 5.4 8.2 8.5 

Constant 4.108** 5.175** 5.452** 4.975** 3.943** 3.257 3.307 3.023 3.704* 

  Averaged SE (1.423) (1.083) (1.201) (1.295) (1.166) (1.692) (1.678) (1.635) (1.526) 

  Corrected SE (1.690) (1.444) (1.572) (1.608) (1.442) (2.094) (2.169) (1.894) (1.719) 

  Eff. Df (t-dist.) 7.4 5.3 5.5 6.1 6.2 6.2 5.6 7.0 7.4 

DW test stat. 1.820 2.268 2.140 1.969 2.087 1.900 1.907 2.058 1.698 

Max λ, H0: zero  
cointegrating vectors 

19.255 23.502 24.473 20.627 20.372 20.448 20.482 18.184 21.814 

Max λ, H0: at most 1 
cointegrating vector 4.290 10.192 7.700 8.755 3.441 2.787 3.039 3.165 5.020 
Trace stat., H0: zero 
cointegrating vectors 23.545 33.693 32.173 29.382 23.813 23.235 23.521 21.349 26.834 
Trace stat., H0: at most 1. 
Cointegrating vector 4.290 10.192 7.700 8.755 3.441 2.787 3.039 3.165 5.020 
Adj. R2 0.490 0.741 0.698 0.643 0.660 0.492 0.497 0.514 0.467 

                                  *,**, *** denote significant at the 90, 95, and 99 % confidence levels.  
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Table 4: Models of U.S. Stock Ownership 1970-2019 
(Stock loads expense ratio-adjusted (SELOAD1); Kalman Imputation) 

 

  ΔlnStockOwnt ≡ γ0 + γ1lnStockOwnt-1 + γ2lnSloadt-1 + γ3ΔlnStockOwnt-1 + γ4ΔlnSloadt-1 + γ5Riskt + εt   
Model # 1 2 3 4 5 6 7 8 9  

Baseline Ungap UngapSq GDPgap ln(Conjob) ln(Con) ln(Conexp) ln(Eprem) Volatility 
lnStockOwn(t-1) -0.870* -1.106** -1.135** -1.052** -1.030** -0.832* -0.819* -0.729 -0.832* 
  Averaged SE (0.335) (0.264) (0.290) (0.298) (0.289) (0.340) (0.335) (0.340) (0.340) 
  Corrected SE (0.390) (0.333) (0.362) (0.368) (0.343) (0.395) (0.396) (0.387) (0.384) 
  Eff. df (t-dist.) 7.7 5.9 6.0 6.2 6.7 7.0 6.8 7.2 7.4 
ΔlnStockOwn(t-1) 0.230 0.219 0.327 0.133 0.228 0.211 0.235 0.0956 0.168 
  Averaged SE (0.249) (0.183) (0.203) (0.212) (0.209) (0.254) (0.252) (0.253) (0.259) 
  Corrected SE (0.301) (0.229) (0.245) (0.246) (0.260) (0.291) (0.289) (0.298) (0.317) 
  Eff. df (t-dist.) 7.1 6.0 6.4 7.0 6.1 7.2 7.1 6.8 6.3 
lnSLoad(t-1 -0.677* -0.869** -0.887** -0.830** -0.764** -0.630* -0.623* -0.566* -0.654* 
  Averaged SE (0.255) (0.203) (0.223) (0.231) (0.218) (0.262) (0.257) (0.259) (0.258) 
  Corrected SE (0.295) (0.263) (0.278) (0.285) (0.262) (0.303) (0.303) (0.297) (0.292) 
  Eff. df (t-dist.) 7.8 5.6 6.1 6.1 6.5 7.0 6.8 7.2 7.4 
ΔlnSLoad(t-1) 0.381 0.813 0.986 0.576 0.712 0.419 0.412 0.439 0.288 
  Averaged SE (0.582) (0.461) (0.527) (0.505) (0.510) (0.594) (0.585) (0.563) (0.592) 
  Corrected SE (0.642) (0.506) (0.588) (0.562) (0.551) (0.636) (0.628) (0.612) (0.640) 
  Eff. df (t-dist.) 8.5 7.8 7.6 7.6 8.1 8.2 8.2 8.0 8.1 
S-Run Risk variables 
(t) 

 
-0.0294** -0.00730** 0.0211* 0.167** 0.143 0.117 -0.142 7.876 

  Averaged SE 
 

(0.00916) (0.00280) (0.00881) (0.0684) (0.179) (0.161) (0.0966) (8.604) 
  Corrected SE 

 
(0.00964) (0.00296) (0.0102) (0.0717) (0.222) (0.210) (0.102) (9.079) 

  Eff. df (t-dist.) 
 

8.5 8.4 7.1 8.6 6.1 5.5 8.4 8.5 
Constant 4.199* 5.379** 5.514** 5.125** 4.169** 3.361 3.425 3.081 3.953* 
  Averaged SE (1.603) (1.267) (1.393) (1.435) (1.346) (1.884) (1.827) (1.732) (1.633) 
  Corrected SE (1.864) (1.606) (1.739) (1.769) (1.609) (2.298) (2.309) (1.972) (1.842) 
  Eff. df (t-dist.) 7.7 5.9 6.0 6.2 6.6 6.3 5.9 7.3 7.4 
DW test stat. 1.852 2.316 2.171 2.102 2.120 1.937 1.954 2.195 1.738 
Max λ, H0: zero 
coint. vectors 

17.671 21.744 22.865 20.447 19.605 19.816 19.829 16.697 18.010 

Max λ, H0: at most 1 
coint. vector 3.546 7.892 5.864 6.507 2.570 2.516 2.706 2.979 4.413 
Trace stat., H0: zero 
coint. vectors 21.217 29.635 28.729 26.955 22.175 22.332 22.535 19.676 22.423 
Trace stat., H0: at 
most 1 
coint. vector 3.546 7.892 5.864 6.507 2.570 2.516 2.706 2.979 4.413 
Adj. R2 0.471 0.718 0.660 0.636 0.639 0.476 0.477 0.525 0.473 
                                  *,**, *** denote significant at the 90, 95, and 99 % confidence levels. 
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Table 5: Models of U.S. Stock Ownership 1970-2019 

(Stock loads not expense ratio-adjusted (SLOAD1); Kalman Imputation; High variance) 
  ΔlnStockOwnt ≡ γ0 + γ1lnStockOwnt-1 + γ2lnSloadt-1 + γ3ΔlnStockOwnt-1 + γ4ΔlnSloadt-1 + γ5Riskt + εt   

Model # 1 2 3 4 5 6 7 8 9  
Baseline Ungap UngapSq GDPgap ln(Conjob) ln(Con) ln(Conexp) ln(Eprem) Volatility 

lnStockOwn(t-1) -1.312** -1.415** -1.412** -1.394** -1.350** -1.266* -1.252* -1.314* -1.289* 
  Averaged SE (0.393) (0.414) (0.416) (0.404) (0.410) (0.406) (.400) (0.431) (0.416) 
  Corrected SE (0.509) (0.506) (0.510) (0.533) (0.510) (0.532) (0.546) (0.561) (0.532) 
  Eff. df (t-dist.) 6.2 6.3 6.3 5.4 6.1 5.5 5.1 5.6 5.8 
ΔlnStockOwn(t-1) 0.171 0.197 0.211 0.147 0.172 0.130 0.166 0.154 0.160 
  Averaged SE (0.255) (0.254) (0.256) (0.245) (0.265) (0.279) (0.273) (0.271) (0.271) 
  Corrected SE (0.367) (0.353) (0.361) (0.355) (0.375) (0.365) (0.375) (0.369) (0.382) 
  Eff. df (t-dist.) 5.0 4.9 4.7 4.5 4.7 5.5 5.0 5.1 4.7 
lnSLoad(t-1) -0.918* -0.996* -0.985* -0.975* -0.922* -0.855* -0.851* -0.906* -0.904* 
  Averaged SE (0.293) (0.312) (0.313) (0.303) (0.305) (0.302) (0.298) (0.312) (0.307) 
  Corrected SE (0.410) (0.427) (0.407) (0.418) (0.424) (0.420) (0.418) (0.433) (0.425) 
  Eff. df (t-dist.) 5.3 5.0 5.6 5.0 4.9 4.8 4.8 4.9 4.9 
ΔlnSLoad(t-1) 0.719 1.011 1.064 0.850 0.886 0.742 0.794 0.983 0.686 
  Averaged SE (0.995) (0.977) (1.056) (0.898) (1.020) (0.987) (0.975) (1.132) (0.963) 
  Corrected SE (1.066) (1.142) (1.220) (1.111) (1.182) (1.110) (1.087) (1.253) (1.090) 
  Eff. df (t-dist.) 7.9 6.9 7.1 6.2 7.0 7.5 7.6 7.7 7.4 
S-Run Risk variables (t) 

 
-0.0355 -0.00793 0.0222 0.176 0.200 0.277 -0.150 0.578 

  Averaged SE 
 

(0.0431) (0.0125) (0.0338) (0.307) (0.667) (0.593) (0.365) (31.029) 
  Corrected SE 

 
(0.0529) (0.0137) (0.0576) (0.347) (1.011) (0.940) (0.440) (34.040) 

  Eff. df (t-dist.) 
 

6.2 7.9 3.2 7.4 4.1 3.8 6.5 7.8 
Constant 5.975** 6.486** 6.466** 6.383** 5.331 4.846 4.473 5.505 5.870* 
  Averaged SE (1.775) (1.887) (1.902) (1.846) (2.148) (3.510) (3.198) (2.303) (1.916) 
  Corrected SE (2.292) (2.304) (2.305) (2.402) (2.804) (5.365) (5.019) (3.056) (2.455) 
  Eff. df (t-dist.) 6.2 6.3 6.4 5.6 5.5 4.0 3.8 5.3 5.7 
DW test stat. 2.126 2.271 2.210 2.228 2.192 2.056 2.063 2.238 2.101 
Max λ, H0: zero 
cointegrating vectors 

15.555 16.027 16.120 17.213 15.626 15.772 16.121 15.330 15.670 

Max λ, H0: at most 1 
cointegrating vector 

4.218 5.986 5.724 5.130 2.459 3.585 3.766 3.982 
4.575 

Trace stat., H0: zero 
cointegrating vectors 

20.040 22.089 21.942 22.938 17.935 19.478 20.086 19.307 
20.245 

Trace stat., H0: at most 1 
cointegrating vector 

4.299 5.969 5.753 5.473 2.597 3.612 3.773 3.998 
4.575 

Adj. R2 0.533 0.570 0.546 0.601 0.544 0.548 0.553 0.514 0.507 
                                                                         *,**, *** denote significant at the 90, 95, and 99 % confidence levels.  
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Table 6: Models of U.S. Stock Ownership 1970-2019 
(Stock loads expense ratio-adjusted (SELOAD1); Kalman Imputation; High variance) 

 

  ΔlnStockOwnt ≡ γ0 + γ1lnStockOwnt-1 + γ2lnSloadt-1 + γ3ΔlnStockOwnt-1 + γ4ΔlnSloadt-1 + γ5Riskt + εt   
Model # 1 2 3 4 5 6 7 8 9  

Baseline Ungap UngapSq GDPgap ln(Conjob) ln(Con) ln(Conexp) ln(Eprem) Volatility 
lnStockOwn(t-1) -1.349** -1.407** -1.408** -1.387* -1.334** -1.242* -1.248* -1.332* -1.306* 
  Averaged SE (0.401) (0.423) (0.422) (0.408) (0.415) (0.410) (0.406) (0.434) (0.415) 
  Corrected SE (0.534) (0.530) (0.531) (0.544) (0.524) (0.543) (0.565) (0.581) (0.545) 
  Eff. df (t-dist.) 5.8 6.0 6.0 5.3 5.9 5.4 4.9 5.3 5.5 
ΔlnStockOwn(t-1) 0.192 0.192 0.213 0.145 0.177 0.124 0.168 0.161 0.177 
  Averaged SE (0.259) (0.259) (0.262) (0.248) (0.268) (0.281) (0.277) (0.272) (0.270) 
  Corrected SE (0.372) (0.367) (0.372) (0.360) (0.383) (0.377) (0.384) (0.375) (0.391) 
  Eff. df (t-dist.) 5.0 4.7 4.7 4.4 4.6 5.2 4.9 5.0 4.5 
lnSLoad(t-1 -1.142* -1.210* -1.199* -1.176* -1.096* -1.031 -1.023 -1.134* -1.109* 
  Averaged SE (0.361) (0.391) (0.387) (0.373) (0.373) (0.372) (0.363) (0.386) (0.374) 
  Corrected SE (0.505) (0.530) (0.509) (0.511) (0.529) (0.513) (0.510) (0.560) (0.515) 
  Eff. df (t-dist.) 5.3 5.1 5.5 5.0 4.7 4.9 4.8 4.5 5.0 
ΔlnSLoad(t-1) 0.744 1.084 1.125 0.897 0.967 0.762 0.853 1.118 0.688 
  Averaged SE (1.200) (1.331) (1.380) (1.193) (1.352) (1.317) (1.270) (1.476) (1.236) 
  Corrected SE (1.435) (1.635) (1.656) (1.504) (1.652) (1.519) (1.437) (1.655) (1.465) 
  Eff. df (t-dist.) 7.3 6.2 6.5 5.9 6.3 7.1 7.4 7.5 6.7 
S-Run Risk variables (t) 

 
-0.0347 -0.00716 0.0248 0.177 0.198 0.257 -0.183 4.204 

  Averaged SE 
 

(0.0447) (0.0124) (0.0344) (0.307) (0.666) (0.577) (0.351) (30.431) 
  Corrected SE 

 
(0.0559) (0.0137) (0.0566) (0.356) (1.017) (0.914) (0.414) (33.454) 

  Eff. df (t-dist.) 
 

6.0 7.8 3.5 7.0 4.0 3.8 6.8 7.8 
Constant 6.615** 6.958** 6.947** 6.842** 5.704 5.188 4.965 5.973 6.372* 
  Averaged SE (1.955) (2.087) (2.086) (2.015) (2.289) (3.618) (3.250) (2.367) (2.042) 
  Corrected SE (2.586) (2.600) (2.585) (2.644) (3.066) (5.543) (5.117) (3.211) (2.671) 
  Eff. df (t-dist.) 5.9 6.1 6.1 5.5 5.2 4.0 3.8 5.1 5.5 
DW test stat. 2.138 2.287 2.234 2.273 2.201 2.067 2.072 2.285 2.119 
Max λ, H0: zero 
cointegrating vectors 

15.562 15.600 15.730 17.145 15.420 16.265 16.668 15.399 15.420 

Max λ, H0: at most 1 
cointegrating vector 

3.981 5.504 5.009 4.860 2.495 4.026 4.008 4.014 
4.256 

Trace stat., H0: zero 
cointegrating vectors 

19.547 20.982 20.732 22.095 17.622 20.231 20.516 19.647 
19.676 

Trace stat., H0: at most 1 
cointegrating vector 

3.995 5.441 4.986 4.883 2.544 4.047 3.918 4.061 
4.256 

Adj. R2 0.539 0.573 0.541 0.604 0.540 0.544 0.550 0.527 0.515 
                                   
                                        *,**, *** denote significant at the 90, 95, and 99 % confidence levels.  
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Table 7: Models of U.S. Stock Ownership 1970-2019 
(Stock loads not expense ratio-adjusted (SLOAD1); Kalman Imputation; Treating imputed as certain) 

  ΔlnStockOwnt ≡ γ0 + γ1lnStockOwnt-1 + γ2lnSloadt-1 + γ3ΔlnStockOwnt-1 + γ4ΔlnSloadt-1 + γ5Riskt + εt   
 1 2 3 4 5 6 7 8 9 

 Baseline Ungap UngapSq GDPgap ln(Conjob) ln(Conexp) ln(Con) ln(EPrem) Volatilty 

lnStockOwn(t-1) -0.757** -1.030*** -1.094*** -0.975*** -0.927*** -0.713** -0.727** -0.595* -0.699** 

 (0.281) (0.188) (0.211) (0.244) (0.223) (0.286) (0.281) (0.287) (0.298) 
ΔlnStockOwn(t-1) 0.279 0.223 0.356** 0.156 0.246 0.272 0.276 0.141 0.217 

 (0.216) (0.137) (0.149) (0.183) (0.167) (0.217) (0.215) (0.224) (0.237) 
lnSLoad(t-1) -0.482** -0.662*** -0.699*** -0.629*** -0.563*** -0.443** -0.447** -0.377* -0.450** 

 (0.175) (0.118) (0.133) (0.154) (0.137) (0.180) (0.178) (0.180) (0.184) 
ΔlnSLoad(t-1) 0.295 0.665** 0.865** 0.504 0.549* 0.317 0.344 0.297 0.199 

 (0.376) (0.252) (0.297) (0.318) (0.301) (0.378) (0.377) (0.357) (0.407) 
S-Run Risk var.(t)    -0.0278***    -0.00759*** 0.0187** 0.155** 0.126 0.152 -0.130 5.425 

  (0.00637) (0.00198) (0.00709) (0.0510) (0.131) (0.144) (0.0849) (7.569) 
Constant   3.404**   4.669***   4.955*** 4.424*** 3.442*** 2.647 2.576 2.276 3.105** 

 (1.254) (0.842) (0.947) (1.096) (0.964) (1.481) (1.474) (1.400) (1.346) 
DW test stat. 1.691 2.162 1.948 1.821 1.970 1.927 1.895 1.921 1.558 

Max λ, H0: zero. 
cointegrating vectors 

31.715 40.669 35.948 39.442 28.383 31.901 31.917 32.439 31.855 

Max λ, H0: at most 1 
cointegrating vector 

.228 1.390 1.040 .615 .137 .0971 .00526 .384 .263 

Trace stat., H0: zero 
cointegrating vectors 

31.943 42.059 36.989 40.056 28.520 31.998 31.922 32.823 32.118 

Trace stat., H0: at most 1 
cointegrating vector 

.228 1.390 1.040 .615 .137 .0971 .00526 .384 .263 

R2 0.625 0.863 0.840 0.770 0.797 0.655 0.660 0.691 0.479 
                                
               *,**, *** denote significant at the 90, 95, and 99 % confidence levels.  
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Table 8: Models of U.S. Stock Ownership 1970-2019 
(Stock loads expense ratio-adjusted (SELOAD1); Kalman Imputation; Treating imputed as certain) 

Model: ΔlnStockOwnt ≡ γ0 + γ1lnStockOwnt-1 + γ2lnSloadt-1 + γ3Riskt + εt   
 1 2 3 4 5 6 7 8 9 

 Baseline Ungap UngapSq GDPgap ln(Conjob) ln(Conexp) ln(Con) ln(EPrem) Volatilty 

lnStockOwn(t-1) -0.739** -0.999*** -1.034*** -0.934*** -0.913*** -0.698** -0.707** -0.577* -0.710** 
 (0.293) (0.204) (0.233) (0.251) (0.238) (0.296) (0.293) (0.283) (0.297) 

ΔlnStockOwn(t-1) 0.299 0.260 0.391** 0.165 0.285 0.294 0.297 0.138 0.235 
 (0.238) (0.158) (0.177) (0.201) (0.187) (0.237) (0.236) (0.235) (0.249) 

lnSLoad(t-1) -0.571** -0.780*** -0.804*** -0.735*** -0.672*** -0.525** -0.527** -0.445* -0.554** 
 (0.222) (0.156) (0.178) (0.192) (0.178) (0.226) (0.225) (0.215) (0.224) 

ΔlnSLoad(t-1) 0.290 0.722* 0.924** 0.475 0.623 0.335 0.359 0.309 0.209 
 (0.507) (0.352) (0.418) (0.421) (0.414) (0.508) (0.508) (0.464) (0.517) 

S-Run Risk var.(t)  -0.0273*** -0.00706***  0.0189** 0.154** 0.135 0.156 -0.144* 6.836 
  (0.00674) (0.00211) (0.00720) (0.0529) (0.132) (0.146) (0.0787) (7.278) 

Constant  3.561**   4.853***   5.020***   4.547***   3.660*** 2.757 2.689 2.339 3.367** 
 (1.402) (0.980) (1.118) (1.207) (1.100) (1.604) (1.614) (1.447) (1.424) 

DW test stat. 1.762 2.277 2.050 1.970 2.054 2.008 1.958 2.063 1.633 
Max λ, H0: zero 

cointegrating vectors 
31.860 41.733 36.633 41.065 28.943 32.587 33.277 32.563 32.378 

Max λ, H0: at most 1. 
cointegrating vector 

.349 1.565 1.155 .758 .165 .158 .0260 .463 .347 

Trace stat., H0: zero 
cointegrating vectors 

32.209 43.298 37.787 41.823 29.108 32.745 33.303 33.025 32.724 

Trace stat., H0: at most 1 
cointegrating vector 

.349 1.565 1.155 .758 .165 .158 .0260 .463 .347 

R2 0.611 0.844 0.808 0.761 0.781 0.645 0.648 0.702 0.477 
                                
               *,**, *** denote significant at the 90, 95, and 99 % confidence levels.  
 
 



Table 9: Implied Long-Run Relationships of Models in Table 3 
 

Model #              Long-Run Equilibrium          Short-Run Annualized Speed  
                        Relationship                       Risk Effect            of Adjustment    

 
      1  lnStockOwn  = 4.501 – 0.638 lnSload1    27% 

 
      2  lnStockOwn  = 4.531 – 0.643 lnSload1   – 0.0285 Ugap  36% 

 
      3  lnStockOwn  = 4.528 – 0.640 lnSload1   – 0.0767 UgapSq  37% 

 
      4  lnStockOwn  = 4.535 – 0.645 lnSload1   + 0.0193 GDPgap  37% 

 
      5  lnStockOwn  = 3.721 – 0.608 lnSload1   + 0.1590 lnConjob  32% 

 
      6  lnStockOwn  = 3.624 – 0.618 lnSload1   + 0.1480 lnCon  26% 

 
      7  lnStockOwn  = 3.775 – 0.623 lnSload1   + 0.1480 lnConexp  25% 

 
      8  lnStockOwn  = 3.876 – 0.635 lnSload1   - 0.1290 Eprem  21% 
 
      9  lnStockOwn  = 4.444 – 0.645 lnSload1   + 5.562 Volatility  25%
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Appendix A: Trends in Capital Gains Taxes and Age Composition Do Not Line Up 
Well with Stock ownership Rates 

 
 In theory, there are two possible explanations for the long-run trends in stock ownership 

that were unexamined by the referenced theoretical and calibration studies. One is that an aging of 

the population could induce more households to save for retirement and thereby boost the incentive 

for more families to own stocks.  The second is that cuts in capital gains taxes could induce more 

households to invest in long-run assets like stocks.  With regard to the former, the trends in the age 

40 and over share of the adult population are inconsistent with trends in stock ownership rates as 

illustrated in Figure A1 and as we found in other regressions not shown.  In particular, this age 

share fell in the 1960s when stock ownership was flat.  Later the age 40+ share recovered from its 

1983 low to its 1964 level by 1998, but the stock ownership share had doubled during the 1980s 

and 1990s from the flat range that had prevailed from 1964 to 1983. 

 
Figure A1: Trends in Age Composition Do Not Line Up With Equity Participation Rates 

(Sources: Various SCFs, Census Bureau and authors’ calculations) 

0

10

20

30

40

50

60

70

46

50

54

58

62

1964 1967 1969 1970 1977 1983 1989 1992 1995 1998 2001 2004 2007 2010 2013 2016 2019

percent of 
households

Age 40+ share adult  
population, percent

% Households
Owning Equity
(bars, right axis)

= Only Indirectly Owning Stock

= Directly Owning Stock

Age 40+ share of adult 
population (line, left axis)



 41 

Trends in the maximum tax rate on long-term capital gains also do not line up consistently 

with stock ownership, as is illustrated in Figure A2 and as is found in other regressions not shown.  

For example, even though marginal tax rates on capital gains had risen notably in the 1970s before 

falling in the early 1980s, the equity participation rate was essentially flat from 1964 to 1983.  

Then, stock ownership rates rose a good deal between 1983 and 1998 even though capital gains 

tax rates rose.  Finally, the fall in capital gains tax rates following the Bush tax cuts of the early 

2000s followed rather than led the sharp run-up of the stock ownership rate from the early 1980s 

to the late 1990s. 

 
Figure A2: Trends in Capital Gains Tax Rates Do Not Line Up With Stock ownership 

Rates 
(Sources: Various SCFs and Tax Policy Institute) 
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Appendix B: Mutual Fund Data 

Because data before the mid-1980s are sketchy and incomplete, mutual fund cots were 

based on a sample of large mutual funds. Funds were selected if their assets were at least $1 billion 

at year-end 1991 if the fund existed before the mid-1980s; were at least $2 billion at year-end 1994 

if the fund's inception date occurred after 1983; were at least $5 billion at year-end 2003; or were 

at least $250 million at year-end 1975. The first criterion reflects whether a fund was sizable during 

early missing M2 period of the early 1990s. The second criterion reflects whether a growing but 

new fund was large near the end of the missing M2 period. The third criterion reflects whether a 

fund remained large following the stock market bust of the early 2000s.  Given the stock and bond 

appreciation of the early 1990s, the hurdles for newer funds were higher for the 1994 and 2003 

cutoff dates to keep data gathering costs from exploding.  The fourth criterion avoids excluding 

funds that were relatively large in 1975 from distorting averages when fewer funds existed. Also 

excluded were funds that were closed-end, only open to employees of a specific firm, or 

institutional.  One member, the Windsor Fund, became closed-end but was included because its 

open-end cousin (Windsor II) was started when it became closed-end, and both funds are large. 

Also omitted are funds with high minimum balances (100,000 or more) because such high hurdles 

make such funds poor substitutes for M2, which is predominantly held by middle income 

households. 46 non-municipal bond and 133 equity mutual funds are in the sample (a list is 

available from the author) using data from the funds and various issues of Morningstar, 

IBC/Donoghue, and CDA/Wiesenberger (a, b).  

Because only year-end asset data for many equity funds are available, quarterly asset 

weights are interpolated from a year-end data and quarterly inception dates of the funds. Using 

annual data for benchmark weights is common and is used in at least one of the conventional 
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money variables (OC). Given the lack of large year-to-year changes in asset weights and the more 

important impact of load cuts in year-end to year-end changes in weighted-average loads, the series 

track quarterly load changes well. As discussed in Duca (2005, 2006), if expense ratios are added 

to Sload and if they were redefined using a 5-year horizon, the resulting overall mutual fund cost 

variables would behave very similarly with the annual, industry-side, overall equity fund cost 

estimates of Rea and Reid (1998, 1999). 
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Appendix C: Equilibrium Stock Ownership Readings Implied by Model 3, Table 3 

Year 

Stock 
Owner- 

ship Rate  Year 

Stock 
Owner- 

ship Rate 
1960 25.06  1990 36.93 
1961 24.79  1991 38.83 
1962 24.83  1992 39.12 
1963 24.61  1993 41.43 
1964 24.67  1994 45.24 
1965 24.90  1995 47.85 
1966 25.20  1996 48.96 
1967 25.06  1997 49.81 
1968 25.37  1998 51.05 
1969 25.58  1999 52.15 
1970 24.77  2000 53.58 
1971 24.57  2001 54.07 
1972 24.54  2002 54.18 
1973 24.95  2003 53.26 
1974 25.03  2004 52.16 
1975 24.19  2005 53.49 
1976 24.79  2006 56.03 
1977 25.44  2007 55.51 
1978 25.93  2008 53.24 
1979 26.68  2009 44.79 
1980 27.29  2010 42.37 
1981 27.22  2011 44.84 
1982 25.98  2012 48.18 
1983 26.91  2013 48.79 
1984 29.42  2014 49.97 
1985 30.79  2015 50.82 
1986 32.10  2016 51.02 
1987 33.59  2017 50.91 
1988 35.42  2018 50.89 
1989 35.94  2019 51.30 
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Appendix D: Additional Results 

Table D1: Models of U.S. Stock Ownership 1970-2019 
(Stock loads not expense ratio-adjusted (SLOAD1), linear imputation) 

 
  ΔlnStockOwnt ≡ γ0 + γ1lnStockOwnt-1 + γ2lnSloadt-1 + γ3ΔlnStockOwnt-1 + γ4ΔlnSloadt-1 + γ5Riskt + εt   

Model # 1 2 3 4 5 6 7 8 
 Baseline 

No risk 
Ungap UngapSq GDPgap ln(Conjob) ln(Con) ln(Conexp) ln(EPrem) 

lnStockOwn(t-1) -0.933** -1.175** -1.245** -1.116** -1.091** -0.909* -0.883* -0.806* 
Averaged SE (0.324) (0.244) (0.269) (0.292) (0.273) (0.327) (0.327) (0.349) 
Corrected SE (0.393) (0.337) (0.362) (0.366) (0.351) (0.395) (0.405) (0.419) 
Eff. df (t-dist.) 7.0 4.9 5.2 6.0 5.7 6.5 6.2 6.6 
ΔlnStockOwn(t-1) 0.209 0.194 0.303 0.123 0.196 0.204 0.207 0.0982 
Averaged SE (0.229) (0.163) (0.177) (0.196) (0.189) (0.234) (0.233) (0.245) 
Corrected SE (0.273) (0.202) (0.214) (0.225) (0.236) (0.265) (0.264) (0.281) 
Eff. df (t-dist.) 7.3 6.1 6.4 7.1 6.0 7.4 7.3 7.2 
lnSLoad(t-1) -0.597** -0.754** -0.798** -0.721** -0.666** -0.566* -0.554* -0.512 
Averaged SE (0.202) (0.154) (0.171) (0.185) (0.169) (0.206) (0.207) (0.219) 
Corrected SE (0.245) (0.221) (0.232) (0.234) (0.224) (0.250) (0.256) (0.265) 
Eff. df (t-dist.) 7.1 4.5 5.1 5.9 5.4 6.4 6.1 6.4 
ΔlnSLoad(t-1) 0.423 0.786* 0.976* 0.614 0.675 0.462 0.431 0.455 
Averaged SE (0.439) (0.334) (0.389) (0.388) (0.375) (0.445) (0.441) (0.437) 
Corrected SE (0.482) (0.371) (0.436) (0.428) (0.405) (0.475) (0.474) (0.471) 
Eff. df (t-dist.) 8.6 7.6 7.5 7.7 8.1 8.3 8.2 8.1 
S-Run risk variables (t)  -0.0302** -0.00800** 0.0207* 0.170** 0.122 0.110 -0.120 
Averaged SE  (0.00880) (0.00275) (0.00884) (0.0671) (0.181) (0.161) (0.106) 
Corrected SE  (0.00936) (0.00289) (0.0104) (0.0707) (0.226) (0.216) (0.114) 
Eff. df (t-dist.)  8.3 8.5 6.8 8.5 6.0 5.2 8.1 
Constant 4.202** 5.321** 5.640** 5.062** 4.109** 3.533 3.490 3.256 
Averaged SE (1.443) (1.091) (1.208) (1.307) (1.191) (1.729) (1.709) (1.701) 
Corrected SE (1.753) (1.519) (1.625) (1.642) (1.552) (2.181) (2.272) (2.040) 
Eff. df (t-dist.) 7.0 4.9 5.2 6.0 5.5 5.9 5.3 6.6 
DW test stat. 1.828 2.286 2.166 1.987 2.110 1.922 1.916 2.069 
Max λ, H0: ≤ 0 coint. 19.034 23.624 24.619 20.692 20.513 20.092 20.147 17.697 
Max λ, H0: ≤ 1 coint. 4.321 9.886 7.591 8.599 3.374 2.883 3.114 3.233 
Trace stat., H0: ≤ 0 coint. 23.355 33.511 32.210 29.291 23.887 22.975 23.261 20.930 
Trace stat., H0: ≤ 1 coint. 4.321 9.886 7.591 8.599 3.374 2.883 3.114 3.233 
Adj. R2 0.492 0.749 0.708 0.647 0.667 0.493 0.500 0.516 

 
 *,**, *** denote significant at the 90, 95, and 99 % confidence levels. 
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Table D2: Models of U.S. Stock Ownership 1970-2019 
(Stock loads not expense ratio-adjusted (SLOAD1), spline imputation)

 
  ΔlnStockOwnt ≡ γ0 + γ1lnStockOwnt-1 + γ2lnSloadt-1 + γ3ΔlnStockOwnt-1 + γ4ΔlnSloadt-1 + γ5Riskt + εt   
Model # 1 2 3 4 5 6 7 8 

 Baseline 
No risk 

Ungap UngapSq| GDPgap ln(Conjob) ln(Con) ln(Conexp) ln(EPrem) 

lnStockOwn(t-1) -0.826** -1.047*** -1.104** -1.020** -0.969** -0.792** -0.778* -0.683* 
Averaged SE (0.293) (0.222) (0.256) (0.258) (0.249) (0.294) (0.293) (0.305) 
Corrected SE (0.328) (0.269) (0.308) (0.306) (0.286) (0.329) (0.333) (0.333) 
Eff. df (t-dist.) 8.3 6.4 6.5 6.7 7.1 7.5 7.3 7.9 
ΔlnStockOwn(t-
1) 

0.284 0.261 0.354 0.181 0.280 0.271 0.284 0.171 

Averaged SE (0.223) (0.159) (0.178) (0.187) (0.185) (0.226) (0.225) (0.232) 
Corrected SE (0.262) (0.196) (0.213) (0.214) (0.226) (0.254) (0.253) (0.267) 
Eff. df (t-dist.) 7.5 6.2 6.6 7.2 6.3 7.5 7.4 7.1 
lnSLoad(t-1) -0.525** -0.671*** -0.705** -0.6578** -0.583** -0.487** -0.482* -0.430* 
Averaged SE (0.183) (0.141) (0.162) (0.164) (0.154) (0.186) (0.185) (0.192) 
Corrected SE (0.204) (0.174) (0.195) (0.196) (0.179) (0.206) (0.209) (0.210) 
Eff. df (t-dist.) 8.4 6.2 6.5 6.6 7.0 7.7 7.4 7.9 
ΔlnSLoad(t-1) 0.384 0.744* 0.908* 0.597 0.641 0.423 0.400 0.434 
Averaged SE (0.422) (0.328) (0.396) (0.363) (0.368) (0.426) (0.419) (0.412) 
Corrected SE (0.452) (0.357) (0.434) (0.400) (0.392) (0.451) (0.444) (0.443) 
Eff. df (t-dist.) 9.0 8.0 7.9 7.8 8.3 8.4 8.4 8.2 
S-Run risk variables (t)  -0.0310** -0.00782** 0.0227* 0.172** 0.150 0.120 -0.142 
Averaged SE            (0.00934) (0.00302) (0.00904) (0.0703) (0.185) (0.164) (0.107) 
Corrected SE            (0.00982) (0.00316) (0.0102) (0.0733) (0.225) (0.215) (0.112) 
Eff. df (t-dist.)  8.5 8.6 7.4 8.7 6.4 5.5 8.6 
Constant 3.713** 4.746*** 5.000** 4.629** 3.550** 2.877 2.968 2.633 
Averaged SE (1.306) (0.996) (1.149) (1.157) (1.080) (1.621) (1.586) (1.508) 
Corrected SE (1.462) (1.210) (1.381) (1.375) (1.255) (1.911) (1.963) (1.636) 
Eff. df (t-dist.) 8.3 6.4 6.5 6.7 7.0 6.8 6.1 8.0 
DW test stat. 1.845 2.273 2.163 1.970 2.086 1.900 1.902 2.116 
Max λ, H0: ≤ 0 coint. 20.827 24.561 25.465 22.437 22.003 22.369 22.367 19.828 
Max λ, H0: ≤ 1 coint. 4.001 9.897 7.325 8.879 3.173 2.505 2.774 2.814 
Trace stat., H0: ≤ 0 
coint. 24.829 34.458 32.790 31.316 25.176 24.874 25.141 22.643 
Trace stat., H0: ≤ 1 
coint. 4.001 9.897 7.325 8.879 3.173 2.505 2.774 2.814 
Adj. R2 0.468 0.729 0.665 0.647 0.641 0.473 0.479 0.507 

 
*,**, *** denote significant at the 90, 95, and 99 % confidence levels. 
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Table D3: Models of U.S. Stock Ownership 1970-2019 
(Stock loads not expense ratio-adjusted (SLOAD1), linear imputation, high variance)

 
  ΔlnStockOwnt ≡ γ0 + γ1lnStockOwnt-1 + γ2lnSloadt-1 + γ3ΔlnStockOwnt-1 + γ4ΔlnSloadt-1 + γ5Riskt + εt   

Model # 1 2 3 4 5 6 7 8 
 Baseline 

No risk 
Ungap UngapSq GDPgap ln(Conjob) ln(Con) ln(Conexp) ln(EPrem) 

lnStockOwn(t-1) -1.328** -1.407** -1.417** -1.396** -1.382** -1.256* -1.258* -1.329* 
Averaged SE (0.395) (0.415) (0.417) (0.407) (0.404) (0.405) (0.402) (0.432) 
Corrected SE (0.513) (0.504) (0.506) (0.531) (0.506) (0.532) (0.549) (0.571) 
Eff. df (t-dist.) 6.2 6.4 6.4 5.6 6.0 5.4 5.1 5.4 
ΔlnStockOwn(t-1) 0.172 0.187 0.208 0.148 0.193 0.126 0.158 0.161 
Averaged SE (0.255) (0.255) (0.256) (0.246) (0.261) (0.278) (0.272) (0.271) 
Corrected SE (0.359) (0.349) (0.358) (0.356) (0.371) (0.368) (0.370) (0.365) 
Eff. df (t-dist.) 5.2 5.0 4.8 4.5 4.7 5.4 5.1 5.2 
lnSLoad(t-1) -0.919* -0.988* -0.990* -0.979* -0.927* -0.855* -0.846* -0.919* 
Averaged SE (0.292) (0.312) (0.313) (0.307) (0.298) (0.302) (0.296) (0.313) 
Corrected SE (0.410) (0.428) (0.412) (0.421) (0.428) (0.420) (0.413) (0.447) 
Eff. df (t-dist.) 5.3 5.0 5.4 5.0 4.6 4.9 4.8 4.6 
ΔlnSLoad(t-1) 0.741 0.979 1.029 0.825 0.880 0.723 0.773 0.961 
Averaged SE (0.926) (0.968) (1.038) (0.917) (0.953) (0.982) (0.967) (1.124) 
Corrected SE (1.055) (1.141) (1.218) (1.134) (1.117) (1.106) (1.078) (1.242) 
Eff. df (t-dist.) 8.0 6.8 6.9 6.2 6.9 7.4 7.6 7.7 
S-Run risk variables (t)  -0.0345 -0.00758 0.0204 0.171 0.210 0.238 -0.140 
Averaged SE  (0.0428) (0.0122) (0.0349) (0.289) (0.664) (0.586) (0.361) 
Corrected SE  (0.0528) (0.0135) (0.0584) (0.334) (0.991) (0.930) (0.430) 
Eff. df (t-dist.)  6.2 7.6 3.4 7.1 4.2 3.7 6.6 
Constant 6.040** 6.444** 6.486** 6.392** 5.484 4.764 4.660 5.606 
Averaged SE (1.781) (1.891) (1.902) (1.859) (2.116) (3.497) (3.160) (2.289) 
Corrected SE (2.304) (2.294) (2.290) (2.394) (2.829) (5.292) (4.972) (3.081) 
Eff. df (t-dist.) 6.2 6.4 6.5 5.7 5.3 4.1 3.8 5.2 
DW test stat. 2.136 2.272 2.217 2.220 2.203 2.057 2.057 2.240 
Max λ, H0: ≤ 0 coint. 15.555 16.027 16.120 17.404 15.626 15.772 16.121 15.330 
Max λ, H0: ≤ 1 coint. 4.218 5.986 5.724 5.396 2.459 3.585 3.766 3.982 
Trace stat., H0: ≤ 0 coint. 19.772 22.013 21.843 22.800 18.085 19.358 19.887 19.312 
Trace stat., H0: ≤ 1 coint. 4.218 5.986 5.724 5.396 2.459 3.585 3.766 3.982 
Adj. R2 0.533 0.573 0.551 0.601 0.555 0.546 0.557 0.516 

 
*,**, *** denote significant at the 90, 95, and 99 % confidence levels. 
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Table D4: Models of U.S. Stock Ownership 1970-2019 
(Stock loads not expense ratio-adjusted (SLOAD1), spline imputation, high variance)

 
  ΔlnStockOwnt ≡ γ0 + γ1lnStockOwnt-1 + γ2lnSloadt-1 + γ3ΔlnStockOwnt-1 + γ4ΔlnSloadt-1 + γ5Riskt + εt   

Model # 1 2 3 4 5 6 7 8 
 Baseline 

No risk Ungap UngapSq GDPgap ln(Conjob) ln(Con) ln(Conexp) ln(EPrem) 

lnStockOwn(t-1) -1.298** -1.395** -1.383** -1.358** -1.328** -1.213* -1.229* -1.290* 
Averaged SE (0.391) (0.413) (0.416) (0.407) (0.405) (0.401) (0.400) (0.430) 
Corrected SE (0.507) (0.503) (0.508) (0.523) (0.497) (0.520) (0.538) (0.559) 
Eff. df (t-dist.) 6.2 6.4 6.3 5.7 6.3 5.6 5.2 5.6 
ΔlnStockOwn(t-1) 0.174 0.188 0.201 0.137 0.179 0.109 0.149 0.152 
Averaged SE (0.255) (0.255) (0.257) (0.247) (0.265) (0.276) (0.272) (0.272) 
Corrected SE (0.366) (0.352) (0.361) (0.352) (0.375) (0.367) (0.368) (0.365) 
Eff. df (t-dist.) 5.0 5.0 4.8 4.6 4.7 5.3 5.1 5.2 
lnSLoad(t-1) -0.896* -0.980* -0.959* -0.955* -0.888* -0.817* -0.826* -0.876* 
Averaged SE (0.289) (0.312) (0.312) (0.309) (0.300) (0.302) (0.297) (0.310) 
Corrected SE (0.395) (0.418) (0.401) (0.422) (0.416) (0.404) (0.408) (0.430) 
Eff. df (t-dist.) 5.5 5.3 5.7 5.1 4.9 5.3 5.0 4.9 
ΔlnSLoad(t-1) 0.774 1.033 1.113 0.884 0.965 0.787 0.820 1.009 
Averaged SE (0.948) (1.016) (1.098) (0.967) (1.039) (1.036) (0.986) (1.156) 
Corrected SE (1.076) (1.179) (1.245) (1.167) (1.201) (1.162) (1.098) (1.283) 
Eff. df (t-dist.) 8.1 7.0 7.3 6.5 7.1 7.5 7.6 7.6 
S-Run risk variables (t)  -0.0373 -0.00853 0.0261 0.202 0.224 0.293 -0.151 
Averaged SE  (0.0447) (0.0129) (0.0369) (0.315) (0.692) (0.600) (0.374) 
Corrected SE  (0.0545) (0.0139) (0.0585) (0.354) (1.066) (0.978) (0.449) 
Eff. df (t-dist.)  6.3 8.1 3.8 7.5 4.0 3.5 6.6 
Constant 5.902** 6.398** 6.332** 6.232** 5.096 4.502 4.291 5.387 
Averaged SE (1.763) (1.886) (1.899) (1.858) (2.146) (3.629) (3.250) (2.339) 
Corrected SE (2.271) (2.282) (2.293) (2.365) (2.737) (5.558) (5.198) (3.077) 
Eff. df (t-dist.) 6.3 6.4 6.5 5.8 5.8 4.0 3.7 5.4 
DW test stat. 2.124 2.277 2.208 2.235 2.200 2.052 2.052 2.241 
Max λ, H0: ≤ 0 coint. 15.753 15.986 16.042 17.022 15.250 15.804 16.023 15.261 
Max λ, H0: ≤ 1 coint. 4.242 5.991 5.715 5.501 2.535 3.612 3.714 3.916 
Trace stat., H0: ≤ 0 coint. 19.995 21.977 21.757 22.523 17.785 19.416 19.737 19.177 
Trace stat., H0: ≤ 1 coint. 4.242 5.991 5.715 5.501 2.535 3.612 3.714 3.916 
Adj. R2 0.520 0.562 0.534 0.584 0.531 0.532 0.545 0.503 

 
*,**, *** denote significant at the 90, 95, and 99 % confidence levels. 
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Table D5: Models of U.S. Stock Ownership 1970-2019 Adding CPI Inflation 
Kalman Filter imputations, middle-case estimate of standard errors 

 

Unadjusted (SLOAD1) 

 
*,**, *** denote significant at the 90, 95, and 99 % confidence levels. 
 

Expense-Adjusted (SELOAD1) 

 1 2 3 
Ungap UngapSq GDPgap 

-0.937** -0.970** -0.870** 
(0.263) (0.296) (0.321) 
(0.306) (0.349) (0.359) 

6.2 6.1 6.8 
0.208 0.333 0.118 

(0.173) (0.195) (0.216) 
(0.191) (0.216) (0.227) 

6.9 6.9 7.6 
-0.718** -0.738** -0.670* 
(0.218) (0.244) (0.267) 
(0.259) (0.291) (0.303) 

6.0 5.9 6.6 
0.607 0.799 0.359 

(0.431) (0.503) (0.514) 
(0.476) (0.570) (0.554) 

6.9 6.6 7.3 
-0.0273*** -0.00701** 0.0188** 
(0.00724) (0.00227) (0.00765) 
(0.00738) (0.00235) (0.00799) 

8.1 7.9 7.8 
-0.00347 -0.00369 -0.00348 
(0.00600) (0.00668) (0.00737) 
(0.00840) (0.00890) (0.00952) 

4.3 4.8 5.1 

4.547** 4.700** 4.230** 
(1.273) (1.432) (1.558) 
(1.485) (1.691) (1.744) 

6.2 6.1 6.8 

2.254 2.072 2.005 
21.471 23.933 19.444 

3.287 2.069 2.467 

24.758 26.002 21.911 

3.287 2.069 2.467 
0.761 0.703 0.640 

Model # 1 2 3 
 Ungap UngapSq GDPgap 

lnStockOwn(t - 1) -0.989** -1.038** -0.935** 
Averaged SE (0.235) (0.262) (0.304) 
Corrected SE (0.277) (0.309) (0.338) 
Eff. df (t-dist.) 6.1 6.1 6.8 
∆ lnStockOwn(t - 1) 0.190 0.315 0.127 
Averaged SE (0.147) (0.162) (0.193) 
Corrected SE (0.161) (0.176) (0.201) 
Eff. df (t-dist.) 7.0 7.1 7.8 
lnSLoad(t - 1) -0.625** -0.651** -0.593** 
Averaged SE (0.160) (0.178) (0.207) 
Corrected SE (0.192) (0.213) (0.234) 
Eff. df (t-dist.) 5.8 5.9 6.7 
∆ lnSLoad(t - 1) 0.602 0.781* 0.444 
Averaged SE (0.304) (0.355) (0.383) 
Corrected SE (0.333) (0.397) (0.409) 
Eff. df (t-dist.) 7.0 6.8 7.4 
S-Run Risk var. (t) -0.0280*** -0.00753*** 0.0187** 
Averaged SE (0.00683) (0.00216) (0.00755) 
Corrected SE (0.00696) (0.00223) (0.00789) 
Eff. df (t-dist.) 8.2 7.9 7.8 
CPI (t) -0.00300 -0.00348 -0.00280 
Averaged SE (0.00548) (0.00601) (0.00707) 
Corrected SE (0.00768) (0.00808) (0.00895) 
Eff. df (t-dist.) 4.3 4.7 5.3 

Constant 4.480** 4.699** 4.239** 
Averaged SE (1.055) (1.179) (1.369) 
Corrected SE (1.765) (1.393) (1.525) 
Eff. df (t-dist.) 6.0 6.1 6.8 

DW test stat. 2.175 2.000 1.878 
Max λ, H0: zero 23.215 26.252 20.288 
cointegrating vectors 
Max λ, H0: at most 1 5.416 3.304 4.141 
cointegrating vector 
Trace stat., H0: zero 28.631 29.556 24.429 
cointegrating vectors 
Trace stat., H0: at most 
1 5.416 3.304 4.141 
cointegrating vector 
Adj. R2 0.789 0.747 0.651 
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Appendix E: Statistical reference information 
 
Beta parameter formulae 

𝛼𝛼 = � 
1 −  𝜇𝜇
𝜎𝜎2

−  
1
𝜇𝜇

 � 𝜇𝜇2 

𝛽𝛽 =  𝛼𝛼 �
1
𝜇𝜇
− 1�  

 
Critical values for rejection of H0, Lambda and Trace (must exceed) 
 Max-Lambda Trace 
H0: ≤ 0 coint. 15.67 19.96 
H0: ≤ 1 coint. 9.24 9.24 
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