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1 Introduction

This paper provides a new methodology for the analysis of multiple long-run relations

in panel data models where the cross section dimension, n, is large relative to the

time series dimension, T . While there is an extensive literature that considers multiple

long-run (cointegrating) relations for time series models, for panel data models with

large n researchers have mainly focussed on a single long-run relation with known long-

run causal links. The panel literature that does consider multiple long-run relations

assumes n is fixed as T → ∞, or adopt sequential asymptotics whereby T → ∞
first followed by n → ∞, effectively requiring T to be large relative to n and do not
cover many applications of interest in economics and finance that involve many cross

section units, such as firms and countries, observed over relatively short time spans.

One example is empirical corporate finance, which investigates the stability of long-

run relations, including financial ratios, using accounting data, such as Compustat,

where thousands of firms are observed over relatively few time periods. Coles and Li

(2023) provide examples from a number of sub-fields of corporate finance, including:

propensity to pay dividends, leverage, investment policy, and firm performance.

Another example is cross country empirical growth studies that use data sets such as

the Penn World Tables that provide annual data on a range of macro variables for as

many as n = 183 countries over different time periods, with a maximum time span

of T = 70. For both panel data sets one would expect multiple long-run relations

between the variables, some of which may be the mean reverting ratios discussed in

the macroeconomic and finance literatures.

This paper proposes an estimation and testing strategy that applies to panel data

models with n possibly much larger than T . We consider an m × 1 vector wit for

units i = 1, 2, ..., n over the time periods t = 1, 2, ..., T , with an unknown number,

r0 ∈ {0, 1, ...,m− 1}, of linear combinations that are stationary. We refer to such
linear combinations as long-run relations. If it is known that all elements of wit are

I (1) then the stationary relations can be viewed as cointegrating relations. The fo-

cus of our analysis is to estimate r0, the number of common long-run relations, and

their coeffi cients, when r0 ≥ 1. We filter out the short run dynamics by means of

q (≥ 2) non-overlapping sub-sample time averages, w̄i`, ` = 1, 2, ..., q, as deviations

from their full-sample counterpart, w̄i◦, namely w̄i`−w̄i◦, and then construct a pooled

sample covariance matrix of these deviations which we denote byQw̄w̄. The number of
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long-run relations and their coeffi cients are estimated using the eigenvalues and eigen-

vectors of Qw̄w̄. We refer to this procedure as pooled minimum eigenvalue (PME),

and note that it is simple to implement, extends readily to unbalanced panels, and is

shown to be robust to stationary interactive time effects. It is semi-parametric since

it does not require modelling the short run dynamics and applies to general linear

process, thus allowing for moving average processes and is not confined to vector au-

toregressions (VAR). Most importantly, the PME approach does not require knowing

long-run causal linkages that might exist amongst the variables under consideration.

To our knowledge, no other panel estimation procedure exists for such a setting.

Denoting the first r0 eigenvectors of Qw̄w̄ by β̂j0, for j = 1, 2, ..., r0, we then

consider structural estimation of the long-run relations assuming they are subject to

r0×r0 exact identifying restrictions. Assuming r0 is known, we derive the asymptotic

distribution of the exactly identified long-run relations and propose consistent esti-

mators for their covariance matrices that does not require estimation of the dynamics

of individual wit processes; thus allowing us to test restrictions on the elements of the

exactly identified long-run relations with relatively short T . The identified long-run

relations are shown to be consistent and asymptotically normally distributed as n

and T →∞ jointly such that T ≈ nd. For consistency only d > 0 is required, but for

asymptotic normality a faster relative rate of d > 1/2 is required. Many panel time

series estimation and inference procedures require d > 1 (n/T → 0). Our requirement

d > 1/2 indicates that the procedure should work well with large n and moderate T

allowing one to estimate the coeffi cients of multiple long-run relations in such cases,

without estimating short-run dynamics.

We propose to estimate r0 by the number of eigenvalues of Qw̄w̄ that fall below

a given threshold CT = CT−δ, for some C > 0 and δ > 0. One could use cross

validation procedures to set C and δ, but based on extensive Monte Carlo experiments

we have found that setting C = 1 works well if we base our selection procedure on the

eigenvalues of the correlation matrix, Rw̄w̄ = [diag (Qw̄w̄)]−1/2 Qw̄w̄ [diag (Qw̄w̄)]−1/2.

Such an estimator can be written conveniently as r̃ =
∑m

j=1 I
(
λ̃j < T−δ

)
, where

λ̃j, j = 1, 2, ...,m are the eigenvalues of Rw̄w̄ , and I (A) = 1 if A is true and zero

otherwise. In the Monte Carlo experiments and the empirical applications we report

results for δ = (1/4, 1/2), and find that overall setting δ = 1/4 works well.

Monte Carlo experiments show near-perfect performance of r̃ as an estimator of r0,

when δ = 1/4, for all n = 50, 500, 1, 000, 3, 000 and T = 20, 50, 100 sample size com-
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binations and across a large number of VAR and VARMA data generating processes,

with and without interactive time effects, non-Gaussian errors, generalized autore-

gressive conditional heteroskedasticity (GARCH), threshold autoregressions (TAR),

and for different patterns of long-run causal ordering. r̃ performs almost equally well

for the smallest sample sizes of T = 20 and n = 50, as well as for the largest T = 100

and n = 3, 000. As an alternative approach we considered Johansen’s trace tests

applied to each cross section unit separately, and then estimated r0 by the simple

average of these individual estimates. This was done purely for comparison since to

the best of our knowledge there are no other methods that apply to panels in the lit-

erature. We found that this average type estimator performed reasonably well when

T was large, but still fell short as compared to the thresholding estimator.

The finite sample performance of PME estimator of the coeffi cients of the long-

run relations is found to be satisfactory with inference based on PME estimator with

q = 2 (sub-sample time averages) generally more accurate in terms of empirical size

of the tests, compared with q = 4, in line with intuition that suggest a larger choice of

q is likely to result in a larger finite-sample bias. We also considered a simple VAR(1)

design with m = 2, r0 = 1 and one-way long-run causality to see how PME performs

compared to the many single equation estimators proposed in the literature (and cited

below). We found that in this simple case the PME estimator is less effi cient in terms

of root mean square errors only when T = 100. However, PME with q = 2 proved to

be less biased and performed much better in terms of size than the single equation

approaches for all sample size combinations.

To illustrate the utility of PME procedure we present one micro and one macro

application. The micro application considers a number of key financial variables (in

logs) and investigates if they are cointegrated, and whether financial ratios can be

regarded as stationary variables. To this end we used accounting data for individual

firms from CRSP/Compustat on their book value (BV), market value (MV), short-

term debt (SD), long-term debt (LD), total assets (TA) and total debt outstanding

(DO). The panels involving these variables are unbalanced and cover the period 1950−
2021. We consider firms with at least 20 years of data, with n varying between about

1, 000 and 2, 500. The variables are grouped into three sets, where we have prior

expectations about possible cointegration and identification. The first set considered

has just two variables: the logarithm of total debt outstanding and logarithm of

total assets: {DOit, TAit}. The ratio of total debt outstanding to total assets is
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often used as a measure of leverage, which suggests a single hypothesized long-run

relation. The other two variable sets are: the logarithms of short and long term debt

and total assets, {SDit, LDit, TAit}; and the logarithms of total debt outstanding,

book value and market value, {DOit, BVit, MVit}. We expect two hypothesized

long-run relations in these sets with three variables. For each set of variables we

provide estimates for the full sample 1950-2021 as well as for a shorter sample that

ends in 2010. The estimates provide strong evidence of one long-run relation when

we consider two variables, and, with one exception, two long-run relations when we

consider panels with three variables. In the case of panels with m = 2, we illustrate

that the PME estimates are invariant to normalization, which is in contrast to the

estimates obtained using panel regressions that depend on which way the regression

is run. For the relation between logarithms of debt and total assets, we find the

estimates of the long-run coeffi cients are close to one in all cases, ranging from 1.113

to 1.143, and precisely estimated. In the case of panels with m = 3 we find r̃ = 2,

and the null hypothesis that long-run coeffi cients are equal to unity is not rejected in

about a quarter of the panel estimates. These results provide partial support for use

of logarithm of financial ratio in corporate finance. In cases where the use of log ratio

is not supported, one could use the PME estimates of long-run relations in second

stage regressions on stationary variables that also include short run dynamics as well

as other stationary variables.

The macro application investigates long-run relations using unbalanced cross coun-

try macroeconomic time series data from the Penn World Tables, featuring up to

n = 177 countries over the years 1950 − 2019. This dataset has a much smaller

cross-section dimension and a larger average time dimension compared with the mi-

cro application. We focus on four key macro variables: per capita real merchandise

exports (exit) and imports (imit), real labour productivity per hour worked (prodit),

and real wages per hour worked (wageit). The choice of these variables was mo-

tivated by two widely maintained hypotheses. Firstly, real wages and productivity

should balance for steady state growth to be feasible. Secondly export and imports

should balance for international solvency, though the constraint may not be binding

for reserve-currency countries such as the US. These hypotheses are largely confirmed

for emerging economies, and, with notable departures from unit long-run elasticities,

also for advanced economies. In addition, when we consider all the four variables

together we uncover cross country evidence on the long-run relation between exports
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and productivity without making any assumption about the direction of causality

between these variables.

Related literature: We first discuss the literature for a single time series process,
which could be viewed as the p×1 (p = m n) stacked vector, wt = (w′1t,w

′
2t, ...,w

′
nt)
′.

Our approach is related to that of Phillips and Ouliaris (1988, 1990) in that they also

start from general linear processes. They propose testing the null of no cointegration

using the smallest eigenvalues of the spectral density of ∆wt evaluated at zero fre-

quency. However, it is diffi cult to obtain reasonably precise estimates of the spectral

density, particularly in the presence of high persistence in first differences. Attempt-

ing to eliminate the effects of the short run dynamics by using time averages of sub-

samples of time series data is also widely used. Müller and Watson (2018) consider

using sub-sample averages to estimate the long-run relation between two variables

(yt and xt). Their estimated long-run coeffi cient from regression of sub-sample aver-

ages of yt on those of xt is not the same as the reciprocal of the estimate that will

be obtained from the reverses regression. A panel version of their procedure can be

considered, but will be subject to the same limitations, namely it can handle only

one long-run relation and will require knowing the direction of long-run causality.

In not requiring any assumptions regarding the direction of long-run causality our

approach is comparable to the maximum likelihood approach pioneered by Johansen

(1988, 1991) that allows for multiple long-run relations without assuming any long-

run causal orderings of the variables, but assumes a V AR(s) specification in wt where

p and s are fixed (and quite small) relative to T . Onatski and Wang (2018, 2019)

investigate the asymptotic properties of Johansen test when wt follows VAR(1) but

allow p, T →∞, such that p/T → c ∈ (0, 1]. They provide theoretical arguments why

Johansen’s test of cointegration rank is likely to be severely over-sized even if p takes

moderate values. Extensions to higher order VARs are provided by (Bykhovskaya

and Gorin 2022). This is a promising approach which is yet to be fully developed

for the analysis of multiple cointegrations across many units, which is the primary

focus of this paper. Since the ordering of the variables in the VAR does not affect

the Johansen’s tests of the cointegration rank, without further restrictions the use of

high-dimensional VARs in wt does not distinguish between cointegration across units

as compared to cointegration between the variables specific to the cross section units.

Also, the condition p/T = nm/T → c ∈ (0, 1] is unlikely to be met when m > 1 and

n is of the same order of magnitude as T .
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Turning to the panel cointegration literature, most studies consider I(1) variables

with a single cointegrating vector where the direction of long-run causality is known.

These estimators are typically generalizations of the time series procedures such as the

panel Fully Modified OLS of Pedroni (1996, 2001a, 2001b), the Pooled Mean Group

(PMG) estimator of Pesaran, Shin, and Smith (1999),or the panel Dynamic OLS of

Mark and Sul (2003). There are panel generalizations of Johansen’s approach, such as

Groen and Kleibergen (2003), and Larsson and Lyhagen (2007), which can be used to

test for the number of cointegrating relations and estimate their parameters. These

are based on a vector error correction model, VECM, which can deal with multiple

cointegrating vectors, but require T to be large relative to n. In their applications

Larsson and Lyhagen (2007) have m = 3, n = 4. Breitung (2005) proposes a systems

estimator, but that requires that every cross section unit cointegrate. Chudik, Pe-

saran, and Smith (2023b) suggest system pooled mean group estimator for a single

common long-run relation coeffi cient θ, that can handle any long-run causal ordering

and allow some units to fail to cointegrate, but again requires T to be large relative

to n.

A large number of other topics have been examined within the context of a panel

with a single cointegrating relation. These include: estimation with I(1) latent factors:

Bai, Kao, and Ng (2009) and Kapetanios, Pesaran, and Yamagata (2011); structural

breaks: Banerjee and i Silvestre (2024) and Ditzen, Karavias, and Westerlund (2025);

and non-linear effects: de Jong and Wagner (2025). Further details can be found in

the surveys by Breitung and Pesaran (2008) and Choi (2015) that also cover testing

for cointegration using residuals (Westerlund, 2005), and second generation panel

unit root tests allowing for cross section dependence (Pesaran, 2007). As this brief

overview indicates, none of the methods advanced in the literature consider multiple

long-run relations when n >> T .

Outline of the paper: The rest of the paper is set out as follows: Section 2
sets out the panel data model and introduces the PME estimator. Section 3 intro-

duces the assumptions and discusses the identification conditions. Section 4 gives a

formal description of the PME estimator and some of its asymptotic properties. Sec-

tion 5 considers identification and derives the asymptotic distribution of the exactly

identified PME estimator. Section 6 shows how r0 can be estimated by eigenvalue

thresholding. Section 7 allows for interactive time effects. Section 8 discusses the

choice of the number of sub-sample averages, q, and how to set the parameters of the

6



thresholding estimator of r0. Section 9 provides Monte Carlo evidence on the small

sample properties of the PME estimators of r0 and βj0, j = 1, 2, ..., r0. Section 10 dis-

cusses the empirical applications, and Section 11 provides some concluding remarks.

The proofs of the propositions and theorems are provided in an appendix, with re-

lated lemmas given in a supplement. This supplement also includes sub-sections on

extensions of PME to panels with interactive time effects, on how to implement the

proposed estimator for unbalanced panels, and gives details of the data generating

processes used in the Monte Carlo experiments, plus additional information on data

sources and the construction of the variables used in the empirical applications.

Notations: Matrices are denoted by bold upper case letters and vectors are
denoted by bold lower case letters. All vectors are column vectors. ‖x‖ denotes
the Euclidean norm of a vector x. rank (A) denotes the column rank of A. vec (A)

denotes vectorization ofA. tr(A) denotes the trace of a square matrixA. Eigenvalues

ofm×m symmetric positive semi-definite real matrixA sorted in ascending order are

0 ≤ λ1(A) ≤ λ2(A) ≤ ... ≤ λm(A). ‖A‖ is the spectral norm of A. Small and large

finite positive constants that do not depend on sample sizes n and T are denoted by

ε and K, respectively. These constants can take different values at different instances

in the paper. Tn ≈ nd if there exist n0 ≥ 1 and positive constants ε and K, such

that infn≥n0

(
Tn/n

d
)
≥ ε and supn≥n0

(
Tn/n

d
)
≤ K. For simplicity of exposition we

omit subscript n and write T ≈ nd. Convergence in probability and distribution

are denoted by →p and →d, respectively. In this paper op (1) is short for sequence

of random variables, random vectors or random matrices that converge to zero in

probability as n → ∞ for all values of d > 1/2. An = Op (1) if sequence An is

bounded in probability. an = O(bn) denotes the deterministic sequence {an} is at
most of order bn. Equivalence of asymptotic distributions is denoted by

a∼.

2 Preliminaries

Consider the following general linear model for wit

wit = ai + Gift + Cisit + vit, for t = 1, 2, ..., T ; i = 1, 2, ..., n, (1)

where wit is an m × 1 vector of outcomes, ai is m × 1 vector of fixed effects, ft is

a vector of stationary latent factors with associated loading matrices, Gi. sit is the
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partial sum process defined by

sit = ui1 + ui2 + ...+ uit, for t ≥ 1, and sit = 0, for t < 1, (2)

uit is independently distributed over i and t with mean zero and the m×m positive

definite matrix, Σi, Ci is an m×m matrix of fixed coeffi cients, and vit = C∗i (L)uit,

where C∗i (L) =
∑∞

`=0 C∗i`L
`. This model covers many specifications of interest such as

vector autoregressions, error correction models, as well as first-differenced stationary

models. It allows for interactive time effects which reduce to time effects under the

so-called parallel trends assumption, namely setting Gi = G for all i. In stacked

form the model for all n units can be written as wt = a + Gf t + Cst + C∗(L)ut,

where wt = (w′1t,w
′
2t, ...,w

′
nt)
′, a = (a′1, a

′
2, ..., a

′
n)′, G = (G′1,G

′
2, ...,G

′
n)′, and ut =

(u′1t,u
′
2t, ...,u

′
nt)
′. Under our specification C and C∗i (L) are assumed to be block-

diagonal matrices with Ci and C∗i (L) as their ith block, respectively. Such restrictions

seem inevitable when n is large relative to T , and seems plausible considering that

we allow for cross-sectional dependence through the common factors, ft.

Assuming that Ci has rank m−r0 > 0 for all i, we are interested in estimating r0,

and the associated stationary linear combinations defined by β′j0wit, j = 1, 2, ..., r0,

where B0 =
(
β10,β20, ...,βr00

)
is the m × r0 matrix of long-run relations that are

common across all i, and satisfies B′0Ci = 0. We also consider estimation of long-

run relations subject to the exactly identifying restrictions that are motivated by

the theory. The estimator we propose involves splitting the data for each unit into

q ≥ 2 sub-samples; taking time averages of these sub-samples and forming a pooled

demeaned covariance matrix we label Qw̄w̄. The eigenvalues of this matrix allow us

to estimate r0, and the eigenvectors corresponding to the first r0 eigenvalues provide

estimates of βj0. But to simplify the exposition and focus on the main contribution

of the paper, initially we abstract from the interactive time effects, but return to this

complication in Section 7, where we show that our analysis remains valid so long as

the latent factors are stationary.

It is possible to allow for non-linear features, such as GARCH and threshold

autoregressions, so long as the effects of shocks to uit decay exponentially fast. But

to keep the theoretical analyses relatively simple, we only consider the robustness

of our estimation and testing strategies to such non-linear effects using Monte Carlo

experiments.
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3 Assumptions and identification conditions

We directly work with (1) and make the following assumptions:

Assumption 1 The error terms, uit, are distributed independently over i = 1, 2, ..., n

and t = 1, 2, ...., T with E(uit) = 0, and the covariance matrix E(uitu
′
it) = Σi,

where Σi is a positive definite matrix, infi λ1 (Σi) > ε, supi λm (Σi) < K, and

supitE ‖uit‖
4+ε < K, for some ε > 0.

Assumption 2 The coeffi cient matrices Ci and C∗i`, are non-stochastic constants

such that supi ‖Ci‖ < K and supi ‖C∗i`‖ < Kρ`, where ρ lies in the range 0 < ρ < 1.

The m×m matrix Ci has rank m− r0, for i = 1, 2, ..., n.

Assumption 3 (a) Let

Ψn = n−1

n∑
i=1

CiΣiC
′
i, and Ψ = limn→∞Ψn. (3)

Then there exists n0 such that for all n > n0, rank(Ψn) = rank(Ψ) = m−r0 > 0. (b)

The orthonormalized eigenvectors associated with the r0 zero eigenvalues of
(
q−1
6q

)
Ψn

are denoted by βj0, for j = 1, 2, ..., r0, and the orthonormalized eigenvectors associated

with the ordered non-zero eigenvalues of
(
q−1
6q

)
Ψn, namely λr0+1 ≤ λr0+2 ≤ ... ≤ λm,

by βj, for r0 + 1, r0 + 2, ...,m. Specifically(
q − 1

6q

)
Ψnβj0 = 0, for j = 1, 2, ..., r0, (4)

and (
q − 1

6q

)
Ψnβj = λjβj, for j = r0 + 1, r0 + 2, ...,m. (5)

Remark 1 Under Assumptions 1-2 {vit} has absolute summable autocovariances,∑∞
h=0 supi ‖Γi(h)‖ < K, where Γi(h) = E

(
vitv

′
i,t−h

)
is the autocovariance function

of vit. See Lemma 1 in the supplement, Section S1.

Remark 2 Under Assumptions 3, β′j0Ψnβj0 = 0, for j = 1, 2, ..., r0 and λj =(
q−1
6q

)
β′jΨnβj > 0, for j = r0 + 1, r0 + 2, ...,m. Nonzero eigenvalues λj, for j =

r0 +1, r0 +2, ...,m, and the corresponding eigenvectors βj, for j = r0 +1, r0 +2, ...,m,

depend on n, but to simplify the notations we avoid using the subscript n.

9



Remark 3 Under part (b) of Assumption 3Ψn andΨ can be written asΨn = P′nPn,

and Ψ = P′P, where Pn and P are (m−r0)×m full rank matrices, with rank (Pn) =

rank (P) = m− r0, for all n > n0.

Remark 4 Condition rank (Ci) = m− r0 for all i = 1, 2, ..., n in Assumption 2 can

be relaxed to allow for no stochastic trends for some cross section units, so long as

the rank condition rank (Ψn) = rank (Ψ) = m − r0 holds. Specifically, suppose that

Ci = 0 for i = 1, 2, ..., n1, but the cointegration rank condition holds for the remaining

units. Then

Ψn = n−1

n∑
i=1

CiΣiC
′
i = (1− πn)

(
1

n− n1

n∑
i=n1+1

CiΣiC
′
i

)
,

where πn = n1/n is the proportion of units without stochastic trends. Then the rank

requirement continues to hold if πn > 0, and 1
n−n1

∑n
i=n1+1 CiΣiC

′
i tends to a matrix

having rank m− r0. But for clarity of exposition we maintain Assumption 2 without

loss of generality.

4 Estimation of long-run relations

4.1 Introducing sub-sample time averages

We base our estimation procedure on non-overlapping sub-sample time averages of

wit. For the ease of exposition, suppose the panel data under consideration is bal-

anced, T is divisible by q, and consider q (≥ 2) non-overlapping time averages of

equal length Tq defined by

w̄i` =
1

Tq

`Tq∑
t=(`−1)Tq+1

wit, for ` = 1, 2, ..., q, (6)

where Tq = T/q. To simplify the exposition we abstract from interactive effects and

apply the above time average operator to (1) to obtain1

w̄i` = ai + Cis̄i` + v̄i`, for ` = 1, 2, ..., q, (7)

1Sections S2 and S3 of the supplement consider unbalanced panels and models with interactive
effects.
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where v̄i` = T−1
q

∑`Tq
t=(`−1)Tq+1 vit and s̄i` = T−1

q

∑`Tq
t=(`−1)Tq+1 sit.We now use standard

de-meaning procedure and eliminate ai from (7) to obtain

w̄i` − w̄i◦ = Ci (̄si` − s̄i◦) + (v̄i` − v̄i◦) , for ` = 1, 2, ..., q, (8)

where w̄i◦ = q−1
∑q

`=1 w̄i`, and similarly s̄i◦ = q−1
∑q

`=1 s̄i` and v̄i◦ = q−1
∑q

`=1 v̄i`.

Consider now the m×m pooled sample covariance matrix

Qw̄w̄ = n−1

n∑
i=1

Qw̄iw̄i (9)

where

Qw̄iw̄i = T−1q−1

q∑
`=1

(w̄i` − w̄i◦) (w̄i` − w̄i◦)
′ . (10)

The limiting value of Qw̄w̄, as n, T → ∞, plays a critical role in our approach to
estimation of long-run relations. Using (8) in (10) we first note that

Qw̄iw̄i = CiQs̄is̄iC
′
i + CiQs̄iv̄i + Q′v̄is̄iC

′
i + Qv̄iv̄i , (11)

where TQs̄is̄i = q−1
∑q

`=1 (̄si` − s̄i◦) (̄si` − s̄i◦)
′ , TQs̄iv̄i = q−1

∑q
`=1 (̄si` − s̄i◦) (v̄i` − v̄i◦)

′ =

TQ′v̄is̄i , and TQv̄iv̄i = q−1
∑q

`=1 (v̄i` − v̄i◦) (v̄i` − v̄i◦)
′. Since {vit} is covariance sta-

tionary with absolute summable autocovariances and {sit} is a partial sum process

it then follows that v̄i` − v̄i◦ = Op

(
T−1/2

)
, and s̄i` − s̄i◦ = Op(T

1/2). Moreover, as

established in Lemma 3,

sup
i
E ‖Qv̄iv̄i‖ = O

(
T−2

)
, and sup

i
E ‖Qs̄iv̄i‖ = O

(
T−1

)
. (12)

4.2 Pooled minimum eigenvalue (PME) estimator

Our proposed estimation procedure is based on eigenvalues and eigenvectors of Qw̄w̄,

defined by (9). Averaging Qw̄iw̄i in (11) over all cross section units now yields:

Qw̄w̄ = n−1

n∑
i=1

CiQs̄is̄iC
′
i + n−1

n∑
i=1

CiQs̄iv̄i + n−1

n∑
i=1

Q′v̄is̄iC
′
i + n−1

n∑
i=1

Qv̄iv̄i . (13)

The pooled minimum eigenvalue (PME) estimator of βj0, j = 1, 2, ..., r0, is given

by the jth orthonormalized eigenvector of Qw̄w̄ , β̂j, associated with its r0 smallest

11



eigenvalues, λ̂1 ≤ λ̂2 ≤ ... ≤ λ̂r0 . Specifically, for j = 1, 2, ....,m, Qw̄w̄β̂j=λ̂jβ̂j, such

that β̂
′
jβ̂j = 1, and λ̂j = β̂

′

jQw̄w̄β̂j. In matrix notations we have

B̂ =
(
β̂1, β̂2, ..., β̂m

)
,
∥∥∥B̂∥∥∥ = 1, (14)

and the PME estimator of B0 is given by B̂0 =
(
β̂1, β̂2, ..., β̂r0

)
.

4.3 Consistency of the PME estimator

Under Assumption 1, Qs̄is̄i has the following exact moment (established in Lemma

2)

E (Qs̄is̄i) =
(q − 1)

6

(
1

q
+

1

T 2

)
Σi. (15)

Hence n−1
∑n

i=1 CiE (Qs̄is̄i) C′i = (q−1)
6

(
1
q

+ 1
T 2

)
Ψn, where Ψn is defined by (3),

and by Assumption 3 is assumed to have rank m − r0 > 0. Furthermore, using

supi ‖Ci‖ < K and (12) then

n−1

n∑
i=1

CiQs̄iv̄i = Op

(
T−1

)
, n−1

n∑
i=1

Q′v̄is̄iC
′
i = Op

(
T−1

)
, (16)

and n−1

n∑
i=1

Qv̄iv̄i = Op

(
n−1/2T−2

)
.

Using the above results in (13) we have

Qw̄w̄ −
(q − 1)

6q
Ψn = n−1

n∑
i=1

Ci [Qs̄is̄i − E (Qs̄is̄i)] C
′
i +Op

(
T−1

)
. (17)

Further n−1
∑n

i=1 Ci [Qs̄is̄i − E (Qs̄is̄i)] C
′
i = q−1

∑q
`=1 G` −G0, where

G` = n−1

n∑
i=1

Ci

{(
s̄i`√
T

)(
s̄i`√
T

)′
− E

[(
s̄i`√
T

)(
s̄i`√
T

)′]}
C′i , for ` = 1, 2, ..., q,

and

G0 = n−1

n∑
i=1

Ci

{(
s̄i◦√
T

)(
s̄i◦√
T

)′
− E

[(
s̄i◦√
T

)(
s̄i◦√
T

)′]}
C′i.
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Under Assumptions 1 and 2, s̄i` and s̄i◦ are cross-sectionally independent random

variables and supi ‖Ci‖ < K. Further, T−1/2
q s̄i` and T−1/2s̄i◦ are scaled partial sums of

uit and tend to bounded random variables. See, for example, result (d) of Proposition

17.1 in Hamilton (1994). Therefore, G` and G0 both converge at the rate of n−1/2

to their means that are zero, by construction. Namely G` = Op

(
n−1/2

)
and G0 =

Op

(
n−1/2

)
. Hence

n−1

n∑
i=1

Ci [Qs̄is̄i − E (Qs̄is̄i)] C
′
i = Op

(
n−1/2

)
, (18)

and using this result in (17) yields

Qw̄w̄ −
(q − 1)

6q
Ψn = Op

(
n−1/2

)
+Op

(
T−1

)
.

Therefore, for a fixed q (≥ 2), Qw̄w̄ →p
(q−1)

6q
Ψ, as n, T →∞ jointly such that Tn ≈ nd

and d > 0, whereΨ = limn→∞Ψn. This result is formally established in the following

proposition.

Proposition 1 Consider the panel data model for wit given by (1) without the in-

teractive time effects (Gi = 0), and suppose Assumptions 1 to 3 hold. Consider the

m ×m pooled sample covariance matrix Qw̄w̄ defined by (9). Then for q ≥ 2 and a

fixed m we have

Qw̄w̄ =
(q − 1)

6q
Ψn +Op

(
n−1/2

)
+Op

(
T−1

)
, (19)

Qw̄w̄βj0 = Op

(
n−1/2

)
+Op

(
T−1

)
, for j = 1, 2, ..., r0, (20)

and Qw̄w̄ →p
(q−1)

6q
Ψ, as n, T → ∞ jointly such that Tn ≈ nd and d > 0, where Ψ

and Ψn are defined in Assumption 3.

For a known r0 the PME estimator of B0, is given by B̂0 =
(
β̂1, β̂2, ..., β̂r0

)
,

where β̂j , j = 1, 2, ...,m are the orthonormalized eigenvectors of Qw̄w̄, as set out

below equation (13). Then

B̂′0Qw̄w̄B̂0 =
(q − 1)

6q
B̂′0ΨB̂0 +Op

(
n−1/2

)
+Op

(
T−1

)
. (21)
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and B̂′0Qw̄w̄B̂0 is asymptotically minimized when B̂′0ΨB̂0 = 0, and this occurs if B̂0

lies in the space spanned by the r0 eigenvectors of Ψ that are associated with its

r0 zero eigenvalues, namely if and only if B̂ = B̊0H, for some r0 × r0 non-singular

rotation matrix, H. Hence, we have B̂rH →p B̊0 as n, T → ∞ jointly such that

T ≈ nd and d > 0. A formal statement is provided in the following theorem with

proofs in the Appendix.

Theorem 1 Consider the panel data model for the m × 1 vector wit given by (1)

without the interactive time effects (Gi = 0), and suppose that Assumptions 1 to 3

hold and the number of long-run relations, r0, is known. Let B̂0 =
(
β̂1, β̂2, ..., β̂r0

)
be the m × r0 matrix formed from the orthonormalized eigenvectors of Qw̄w̄, defined

by (9), associated with its r0 smallest eigenvalues. Then for a fixed m and q (≥ 2),

B̂0H→pB̊0 as n, T → ∞ jointly such that Tn ≈ nd and d > 0, for any r0 × r0

non-singular matrix, H.

5 Identification and asymptotic distribution of PME

estimator

We focus on the case of exact identification of the long-run relations, noting that the

estimation of r0 is invariant on how exact identification is achieved.

5.1 Exact identifying conditions

We assume there exist r2
0 a priori given and theoretically meaningful exact identifying

restrictions on B0 given by

RB̊0 = (R1,R2)

(
B̊0,1

B̊0,2

)
= A, (22)

where B̊0 is the m × r0 matrix of identified long-run relations, R1,R2 and A are

r0× r0, r0× (m− r0) and r0× r0 matrices of known fixed constants, with rank (A) =

rank (R1) = r0 < m. Then it follows that H = (RB0)−1 A, and the PME estimator

of B̊0 is given by ̂̊
B0= B̂0

(
RB̂0

)−1

A, (23)
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where B̂0 =
(
β̂10, β̂20, ..., β̂r0,0

)
. The exact identifying restrictions, (22), will often

take the form B̊0 =
(
Ir0 , B̊

′
0,2

)′
, where B̊0,1 = Ir0 is an identity matrix of order

r0. Without loss of generality, we consider this formulation and denote B̊0,2 by Θ.

Once Θ is estimated it is possible to estimate B̊0,1 under more general restrictions as

B̊0,1 = R−1
1 (A−R2Θ) .

Proposition 2 Consider the r2
0 exact identifying restrictions given by (22), and sup-

pose m × r matrix of long-run relations B̊0 is normalized as B̊0 = (Ir0 ,Θ
′)′, and

Assumption 3 holds. Partition Ψ conformably with B̊0 as Ψ =

(
Ψ11 Ψ′21

Ψ21 Ψ22

)
. Then

Ir0 + Ψ11 and Ψ22 are respectively r0 × r0 and (m − r0) × (m − r0) positive definite

matrices and Θ is uniquely determined by Θ = −Ψ−1
22 Ψ21, subject to the restrictions

Ψ11 = Ψ′21Ψ
−1
22 Ψ21. A proof is provided in the Appendix.

5.2 Asymptotic distribution

To derive the asymptotic distribution of ̂̊B0 − B̊0, note from (A.10) that

Qw̄w̄

√
nT

(̂̊
B0 − B̊0

)
= −

(
n−1/2

n∑
i=1

TCiQs̄iv̄i

)
B̊0−

√
n

T

(
n−1

n∑
i=1

T 2Qv̄iv̄i

)
B̊0+Op

(
T 1
)
.

(24)

By Lemma 5, n−1
∑n

i=1 T
2Qv̄iv̄i = Op

(
n−1/2

)
and since

∥∥∥B̊0

∥∥∥ < K, then

Qw̄w̄

√
nT
(̂̊
B0 − B̊0

)
= −

(
n−1/2

n∑
i=1

TCiQs̄iv̄i

)
B̊0 +Op

(
T−1

)
. (25)

Further, write the first term as(
n−1/2

n∑
i=1

TCiQs̄iv̄i

)
B̊0 =

(
n−1/2

n∑
i=1

[TCiQs̄iv̄i −CiE (TQs̄iv̄i)]

)
B̊0

+

√
n

T

(
n−1

n∑
i=1

CiE
(
T 2Qs̄iv̄i

))
B̊0,
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and using supi ‖E (Qs̄iv̄i)‖ = O (T−2) (established in Lemma 3))

n−1

n∑
i=1

CiE
(
T 2Qs̄iv̄i

)
B̊0 = O(1). (26)

Using the above results in (25) we have

Qw̄w̄

√
nT
(̂̊
B0 − B̊0

)
= −n−1/2

n∑
i=1

Zi +Op

(√
n

T

)
, (27)

where Zi = Ci [TQs̄iv̄i − E (TQs̄iv̄i)] B̊0. Recalling that TQs̄iv̄i = q−1
∑q

`=1 (̄si` − s̄i◦) (v̄i` − v̄i◦)
′,

then Zi can be written as

Zi = Ci

[
q−1

q∑
`=1

(̄si` − s̄i◦) (v̄i` − v̄i◦)
′

]
B̊0−Ci

{
q−1

q∑
`=1

E
[
(̄si` − s̄i◦) (v̄i` − v̄i◦)

′]} B̊0.

(28)

Writing (27) in vec form

(Ir⊗Qw̄w̄)
√
nT vec

(̂̊
B0 − B̊0

)
= n−1/2

n∑
i=1

(
B̊′0⊗Ci

) [
ξ̄iq − E

(
ξ̄iq
)]

+Op

(√
n

T

)
,

where ξ̄iq = q−1
∑q

`=1 ξi`, and ξi` = vec
[
(̄si` − s̄i◦) (v̄i` − v̄i◦)

′] = (v̄i` − v̄i◦)⊗ (̄si` − s̄i◦).

Under Assumption 1, v̄i`, s̄i`, v̄i◦ and s̄i◦ are distributed independently over i. Hence,

ξ̄iq is distributed independently over i. In addition, supi

∥∥∥(B̊′0⊗Ci

)∥∥∥ =
∥∥∥B̊0

∥∥∥ supi ‖Ci‖ <
K and using Lemma 8, it follows that for (n, T )→∞ , jointly such that T ≈ nd and

d > 0, we have

n−1/2

n∑
i=1

(
B̊′0⊗Ci

) [
ξ̄iq − E

(
ξ̄iq
)]
→d N

(
0,Ωq

)
, (29)

where

Ωq = limn,T→∞

[
n−1

n∑
i=1

(
B̊′0⊗Ci

)
Ωξ̄iq

(
B̊0⊗C′i

)]
, (30)

and

Ωξ̄iq
= V ar

(
ξ̄iq
)

= q−2

q∑
`=1

q∑
`′=1

Cov (ξi`, ξi`′) . (31)
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Using (29) in (27) yields asymptotic normality of ̂̊B, which is formally established
in the following theorem.

Theorem 2 Consider the panel data model for the m × 1 vector wit, given by (1)

without interactive time effects (Gi = 0). Suppose that Assumptions 1 to 3 hold, m

and q (≥ 2) are fixed integers, and the number of long-run relations, r0 (m > r0 > 0)

is known. Suppose further that the long-run relations, B̊0, of interest are subject to

the exact identifying restrictions, RB̊0= A, given by (22), and consider the PME
estimator of B̊0 given by ̂̊

B0= B̂0

(
RB̂0

)−1

A,

where B̂0 =
(
β̂10, β̂20, ..., β̂r0,0

)
are the first r0 orthonormalized eigenvectors of Qw̄w̄

defined by (9). Then

√
nT (Ir0⊗Qw̄w̄) vec

(̂̊
B0 − B̊0

)
→d N

(
0,Ωq

)
, (32)

as (n, T ) → ∞, jointly such that T ≈ nd for d > 1/2, where Ωq is defined by (30),

and Qw̄w̄ →p
(q−1)

6q
Ψ. (see (19)). A proof is provided in the Appendix.

Theorem 2 can be readily used to obtain asymptotic distribution of any linear

combination of ̂̊B0. One notable case of interest is to consider the exact identifying

restrictions B̊0,1 = Ir0 discussed above. Under these restrictions B̊0,1 =
̂̊
B0,1 = Ir0 ,

and ̂̊B0 − B̊0 =
(

0 Θ̂′ −Θ′0

)
. Partitioning Qw̄w̄ and Ωz accordingly, we have

√
nTQw̄w̄

(̂̊
B0 − B̊0

)
=

(
Q11,w̄w̄ Q12,w̄w̄

Q21,w̄w̄ Q22,w̄w̄

)(
0

√
nT
(
Θ̂−Θ0

) ) ,
where Q22,w̄w̄ →p

(q−1)
6q

Ψ22, and Ψ22 is the (m − r0) × (m − r0) lower right block of

Ψ which is positive definite (see Proposition 2). We obtain the following corollary.

Corollary 1 Suppose assumptions of Theorem 2 hold and consider the exact identi-

fying restrictions B̊0,1 =
̂̊
B0,1 = Ir0. Suppose r0 is known, q ≥ 2, and let Θ̂ and Θ0

be the lower (m− r0)× r0 block of
̂̊
B0 and B̊0, respectively. Then,

√
nT vec

(
Θ̂−Θ0

)
→d N

(
0,Ωθq

)
, (33)
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as n, T →∞, jointly such that T ≈ nd for d > 1/2 ,where

Ωθq =

(
6q

q − 1

)2 (
Ir⊗Ψ−1

22

)
Ωq,22

(
Ir⊗Ψ−1

22

)
, (34)

Ωq,22 is the (m− r0)× (m− r0) lower right block of Ωq given by (30), and Ψ22 is the

(m− r0)× (m− r0) lower right block of Ψ.

5.3 Estimation of the asymptotic covariance of Θ̂

To consistently estimateΩθq we need a consistent estimator ofΩq,22, since [(q − 1)/6q] Ψ22

can be consistently estimated by Qw̄w̄,22. Consider Ωq given by (30). Using (8) note

that

(w̄i` − w̄i◦) (w̄i` − w̄i◦)
′ β0 = [Ci (̄si` − s̄i◦) + (v̄i` − v̄i◦)]

[
(̄si` − s̄i◦)

′C′i + (v̄i` − v̄i◦)
′] B̊0,

= Ci (̄si` − s̄i◦) (v̄i` − v̄i◦)
′ B̊0 + (v̄i` − v̄i◦) (v̄i` − v̄i◦)

′ B̊0.

Let ζi` = vec
[
(w̄i` − w̄i◦) (w̄i` − w̄i◦)

′ B̊0

]
, and ηi` = vec

[
(v̄i` − v̄i◦) (v̄i` − v̄i◦)

′],
where recall that ηi` = Op(T

−1) uniformly in i and `. Then ζi` =
(
B̊′0⊗Ci

)
ξi` +(

B̊′0⊗Im

)
ηi`, and

ζ̄iq = q−1

q∑
`=1

ζi` =
(
B̊′0⊗Ci

)(
q−1

q∑
`=1

ξi`

)
+
(
B̊′0⊗Im

)(
q−1

q∑
`=1

ηi`

)
=
(
B̊′0⊗Ci

)
ξ̄iq+Op(T

−1),

where ξ̄iq = q−1
∑q

`=1 ξi`, as before. It follows

n−1

n∑
i=1

ζ̄iqζ̄
′
iq = n−1

n∑
i=1

(
B̊′0⊗Ci

)
ξ̄iqξ̄

′
iq

(
B̊0⊗C′i

)
+Op(T

−1),

and E
(
ξ̄iq
)

= O(T−1). Hence, as n, T →∞ jointly such that T ≈ nd for d > 1/2,

n−1

n∑
i=1

ζ̄iqζ̄
′
iq →p limn,T

[
n−1

n∑
i=1

(
B̊′0⊗Ci

)
E
(
ξ̄iqξ̄

′
iq

)(
B̊0⊗C′i

)]
= Ωq.
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Therefore, Ωq can be consistently estimated by the m2 ×m2 matrix

Ω̂q = n−1

n∑
i=1

̂̄ζiq̂̄ζ ′iq =

(
Ω̂q,11 Ω̂q,12

Ω̂q,21 Ω̂q,22

)
,

where

̂̄ζiq = q−1

q∑
`=1

vec

[
(w̄i` − w̄i◦) (w̄i` − w̄i◦)

′ ̂̊B0

]
= q−1

q∑
`=1

[ ̂̊
B
′

0 (w̄i` − w̄i◦)⊗Im

]
(w̄i` − w̄i◦) .

Let ̂̊B0

′
(w̄i` − w̄i◦) = ̂̄Ei`, the r × 1 vector of error corrections for the sub-sample `,

then

Ω̂q = n−1

n∑
i=1

q−2

q∑
`=1

q∑
`′=1

(̂̄Ei`⊗Im

)
(w̄i` − w̄i◦) (w̄i`′ − w̄i◦)

′
(̂̄E′i`′⊗Im

)
. (35)

Using the above results we now have

̂
V ar

[
vec
(
Θ̂
)]

=
1

nT 2
Q−1
w̄w̄,22Ω̂q,22Q

−1
w̄w̄,22. (36)

When r0 = 1, estimate of the error correction term ̂̊
B
′

0 (w̄i` − w̄i◦) = ̂̄ei` is a scalar
and we can write ̂̄ζiq = q−1

∑q
`=1 (w̄i` − w̄i◦) ̂̄ei`, and

Ω̂q = n−1

n∑
i=1

[
q−1

q∑
`=1

(w̄i` − w̄i◦) ̂̄ei`][q−1

q∑
`=1

(w̄i` − w̄i◦)
′ ̂̄ei`] ,

= n−1

n∑
i=1

[
q−2

q∑
`=1

q∑
`′=1

(w̄i` − w̄i◦) (w̄i`′ − w̄i◦)
′ ̂̄ei`̂̄ei`′] ,

which resembles the robust covariance matrix estimator that arises in estimation of

panel data models with short T and large n. Here q plays the role of T .

6 Estimation of r0 by eigenvalue thresholding

Under Assumption 3, the true number of common long-run relations, r0, is defined by

rank(Ψn) = m − r0 > 0, where Ψn = n−1
∑n

i=1 CiΣiC
′
i. Subject to this condition,

Ψnβj,0 = 0, for j = 1, 2, ..., r0, where βj,0 is the j
th long-run relation (j ≤ r0). The
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m × r0 matrix of long-run relations is denoted by B0. It is also worth bearing in

mind that under Assumption 3, Ψnβj 6= 0, for j = r0 + 1, r0 + 2, ...m, namely cannot

be spanned by the r0 columns of B0. See (4) and (5). There is a clear shift in the

ordered eigenvalues of Ψn from λr0 = 0 to λr0+1 > 0, which allows us to propose a

thresholding estimator of r0 applied to the eigenvalues of Qw̄w̄, noting that under our

assumptions Qw̄w̄ tends to
(
q−1
6q

)
Ψ as n and T →∞. See result (19) of Proposition

1. Such an estimator can be written conveniently as

r̂ =
m∑
j=1

I
(
λ̂j < CT

)
, (37)

where λ̂1 ≤ λ̂2 ≤ .... ≤ λ̂m are ordered eigenvalues of Qw̄w̄, and I (A) = 1 if A is true
or zero otherwise, and CT = KT−δ, for some δ > 0. This estimator is invariant to

the ordering of the eigenvalues, but using the ordering helps with the exposition and

the rationale behind the proofs.

To establish the consistency of r̂ as an estimator of r0, we first note that (37) can

be written equivalently as

r̂ − r0 = −
r0∑
j=1

I
(
λ̂j ≥ CT

)
+

m∑
j=r0+1

I
(
λ̂j < CT

)
, (38)

which in turn yields:

E |r̂ − r0| ≤
r0∑
j=1

Pr
(
λ̂j ≥ CT

)
+

m∑
j=r0+1

Pr
(
λ̂j < CT

)
. (39)

Again noting the ordering of the eigenvalues, Pr
(
λ̂j ≥ CT

)
≤ Pr

(
λ̂1 ≥ CT

)
, for

j = 2, 3, ..., r0, and Pr
(
λ̂r0+1 < CT

)
≥ Pr

(
λ̂j < CT

)
, for j = r0 + 2, r0 + 3, ...,m.

Using these results in (39) we have

E |r̂ − r0| ≤ r0 Pr
(
λ̂1 ≥ CT

)
+ (m− r0) Pr

(
λ̂r0+1 < CT

)
. (40)
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Similarly,

E (r̂ − r0)2 ≤ r2
0 Pr

(
λ̂1 ≥ CT

)
+ (m− r0)2 Pr

(
λ̂r0+1 < CT

)
(41)

+2r0(m− r0)

√
Pr
(
λ̂1 ≥ CT

)
Pr
(
λ̂r0+1 < CT

)
.

Also, by Markov inequality there exists ε > 0 such that

Pr (|r̂ − r0| > ε) ≤ (r0/ε) Pr
(
λ̂1 ≥ CT

)
+ [(m− r0)/ε] Pr

(
λ̂r0+1 < CT

)
, (42)

Again by Markov inequality Pr
(
λ̂1 ≥ CT

)
≤ C−1

T E
(
λ̂1

)
, and using result (S.49)

established in Lemma 7, we have

Pr
(
λ̂1 ≥ CT

)
= O

(
C−1
T n−1/2T−2

)
. (43)

Consider now Pr
(
λ̂r0+1 < CT

)
, and recall that

Qw̄w̄β̂j = λ̂jβ̂j, and λ̂j = β̂
′
jQw̄w̄β̂j, for j = r0 + 1, r0 + 2, ...,m, (44)

with associated population values given by (see Assumption 3).

(q − 1)

6q
Ψnβj = λjβj, and

(q − 1)

6q
β′jΨnβj = λj, for j = r0 + 1, r0 + 2, ...,m. (45)

where Ψn = n−1
∑n

i=1 CiΣiC
′
i � 0, and β′jβj = 1. Furthermore, λj > 0 and Ψnβj 6=

0, for j > r0. But using (13) and results established in Lemma 3 and Proposition 1

we have E (Qw̄w̄) = (q−1)
6q

Ψn +O (T−2), and

Q̃w̄w̄ = Qw̄w̄−E (Qw̄w̄) = n−1

n∑
i=1

Ci [Qs̄is̄i − E (Qs̄is̄i)] C
′
i+Op

(
T−1

)
= Op

(
n−1/2

)
+Op

(
T−1

)
.

Using the above results then (45) can be written equivalently as E (Qw̄w̄)βj = λjβj+

O (T−2), and λj = β′jE (Qw̄w̄)βj +O (T−2). Therefore, together with (44), we have

λ̂j − λj = β̂
′
jQw̄w̄β̂j − β′jE (Qw̄w̄)βj +O

(
T−2

)
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and rearranged as

([E (Qw̄w̄)− Imλj])
(
β̂j − βj

)
−
(
λ̂j − λj

)
βj (46)

= −Q̃w̄w̄βj +
(
λ̂j − λj

)(
β̂j − βj

)
− Q̃w̄w̄

(
β̂j − βj

)
+O

(
T−2

)
.

Also, since β′jE (Qw̄w̄) = λjβ
′
j +O (T−2) , then

λ̂j−λj = β′jQ̃w̄w̄βj+2λjβ
′
j

(
β̂j − βj

)
+2β′jQ̃w̄w̄

(
β̂j − βj

)
+
(
β̂j − βj

)′
Qw̄w̄

(
β̂j − βj

)
+O

(
T−2

)
.

(47)

where Q̃w̄w̄ = Op

(
n−1/2

)
+ Op (T−1). Pre-multiplying both sides of the above equa-

tions by
√
n and stacking them in matrix notation we will have

(
1 −2λjβ

′
j

−βj E (Qw̄w̄)− λjIm

) √n(λ̂j − λj)√
n
(
β̂j − βj

)  =

( √
nβ′jQ̃w̄w̄βj

−
√
nQ̃w̄w̄βj

)
+ pnT ,

where

pnT = n−1/2

 2β′j
√
nQ̃w̄w̄

√
n
(
β̂j − βj

)
+
√
n
(
β̂j − βj

)′
Qw̄w̄

√
n
(
β̂j − βj

)
√
n
(
λ̂j − λj

)√
n
(
β̂j − βj

)
−
√
nQ̃w̄w̄

√
n
(
β̂j − βj

) +O(n1/2T−2).

It then follows that pnT is of lower order as compared to
√
n
(
λ̂j − λj

)
and
√
n
(
β̂j − βj

)
,

and as n, T →∞ jointly, such that T ≈ nd for d > 1/2, we have

Ωj

 √n(λ̂j − λj)√
n
(
β̂j − βj

)  =

( √
nβ′jQ̃w̄w̄βj

−
√
nQ̃w̄w̄βj

)
+ op(1),

where Ωj =

(
1 −2λjβ

′
j

−βj E (Qw̄w̄)− λjIm

)
. Using partitioned inverse it is easily seen

that Ωj has an inverse if Υj = E (Qw̄w̄) − λjIm − 2λjβjβ
′
j is invertible. To check

the invertibility of Υj we note that Υjβj = −2λjβj + O (T−2), and since λj > 0 for

j > r0 it then follows that Υj must be invertible. Therefore, we can now solve for√
n
(
λ̂j − λj

)
, in terms of a linear combination of

√
nβ′jQ̃w̄w̄βj and

√
nQ̃w̄w̄βj, and its

asymptotic distribution can be derived accordingly. Consider the asymptotic distribu-

tion of these two terms, and note that sinceQs̄is̄i = T−1q−1
∑q

`=1 (̄si` − s̄i◦) (̄si` − s̄i◦)
′,
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then

√
nβ′jQ̃w̄w̄βj = n−1/2

n∑
i=1

β′jCi [Qs̄is̄i − E (Qs̄is̄i)] C
′
iβj = n−1/2

n∑
i=1

q−1

q∑
`=1

[
ζ2
ij,` − E

(
ζ2
ij,`

)]
,

where ζ ij,` = T−1/2β′jCi (̄si` − s̄i◦). Also by Minkowski inequality

(
E
∣∣ζ ij,`∣∣4+ε

)1/4+ε

≤ ‖Ci‖
([
E
∥∥T−1/2s̄i`

∥∥4+ε
]1/4+ε

+
[
E
∥∥T−1/2s̄i`

∥∥4+ε
]1/4+ε

)
.

Using Lemma 4 in the supplement we have supi,`
∥∥T−1/2s̄i`

∥∥4+ε
< K, and hence(

E
∣∣ζ ij,`∣∣4+ε

)1/4+ε

< K and
√
nβ′jQ̃w̄w̄βj →d N(0, $2

j), for some $
2
j > 0. Similarly, it

follows that all m elements of
√
nQ̃w̄w̄βj = n−1/2

∑n
i=1 Ci [Qs̄is̄i − E (Qs̄is̄i)] C

′
iβj are

asymptotically normally distributed with zero means and finite variances. Therefore,

it also follows that
√
n
(
λ̂j − λj

)
a∼ N(0, $2

λj
), for some $2

λj
> 0. Using this result

and setting j = r0 + 1 we have

Pr
(
λ̂r0+1 < CT

)
a∼ Φ

[ √
n

$λr0+1

(CT − λr0+1)

]
= Φ

[
−λr0+1

√
n

$λr0+1

(
1− CT

λr0+1

)]
.

Since λr0+1 > 0, then Pr
(
λ̂r0+1 < CT

)
→ 0, as n → ∞ if CT < λr0+1. Recall also

from (43) that Pr
(
λ̂1 ≥ CT

)
= O

(
C−1
T n−1/2T−2

)
, and Pr

(
λ̂1 ≥ CT

)
→ 0 if C−1

T

does not rise too fast with T . Setting T = KT−δ, and recalling that n ≈ T 1/d,

these two conditions on CT are met if 0 < δ < 2 + (1/2d). Using this result in

(41) and (42), it follows that r̂ →p r0 and E (r̂ − r0)2 → 0, as n and T → ∞, if δ
is set close to zero such that KT−δ < λr0+1. These results also suggest that the

probability of selecting too many long-run relations is more affected by n than T , and

the probability of selecting too few long-run relations tends to zero much faster with

T than with n. We need large n for not selecting more than r0 long-run relations.

This latter probability, Pr
(
λ̂j < CT

)
for j > r0, is also affected by the size of λr0+1

which measures the degree to which there is a transition from a stationary linear

combination under which λj = 0 for j ≤ r0, to λj > 0 for j > r0.

Our theoretical derivations also provide some insight on how to set K and δ when

choosing CT . It is clear that δ need not be too large, so long asK ≈ λr0+1. In practice,

this can be achieved approximately, by appropriate scaling of the observations, wit,
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as discussed below.

Remark 5 The above derivations also suggest that our proposed selection/estimation
procedure would be valid even if there were near stationary relations, namely if λr0+1 ≈
n−b for some b > 0. Then Pr

(
λ̂r0+1 < CT

)
→ 0, so long as b < 1/2, which could be

viewed as local-to-zero eigenvalue. Such cases will not be pursued in this paper, where

we require λr0+1 > 0.

7 Allowing for interactive time effects

The model with interactive time effects is given by (1), which we reproduce here for

convenience:

wit = ai + Gift + Cisit + vit, for t = 1, 2, ..., T ; i = 1, 2, ..., n, (48)

where ft is an mf × 1 vector of latent factors with Gi the associated m×mf matrix

of factor loadings. We assume ft is covariance stationary, and treat the factor load-

ings, Gi, as nonstochastic, without placing any restrictions on them, besides being

uniformly bounded. Hence, latent factors could be strong, semi-strong or weak. How-

ever, we do not allow for the possibility of unit roots in latent factors, and therefore

do not consider the case of cointegration between wit and latent factors. Specifically,

we assume:

Assumption 4 (i) Themf×1 vector of latent factors, ft, is given by ft = Φf (L)εft =∑∞
j=0 Φf`L

`εf,t−`, for t = ...0, 1, 2, ..., T , where εft is an mf × 1 vector of errors

distributed independently over t with E(εft) = 0, and supitE ‖εft‖
4+ε < K, for some

ε > 0. εft is independently distributed of uit′, for all i, t, t′. (ii) The m×mf coeffi cient

matrices Φf` are non-stochastic constants such that ‖Φf`‖ < Kρ`, where ρ lies in the

range 0 < ρ < 1. (iii) Gi are nonstochastic constants such that supi ‖Gi‖ < K.

Under Assumption 4, E (Gift) is time invariant, and together with Assumption 1,

E (wit) continues to be time invariant. Subtracting sub-sample time averages from

the full sample time average, w̄i`−w̄i◦, will therefore continue to remove unit-specific

means. More specifically, under (48) Qw̄iw̄i given by (11) has the following expension

Qw̄iw̄i = CiQs̄is̄iC
′
i+CiQs̄iv̄i+CiQs̄if̄i+Q′v̄is̄iC

′
i+Q′f̄is̄iCi+Qf̄if̄i+Qf̄iv̄i+Qv̄if̄i+Qv̄iv̄i ,

(49)

24



where Qf̄is̄i = (Tq)−1∑q
`=1 Gi

(
f̄` − f̄◦

)
(̄si` − s̄i◦)

′ = Q′
s̄if̄i
,

Qf̄iv̄i = (Tq)−1
q∑
`=1

Gi

(
f̄` − f̄◦

)
(v̄i` − v̄i◦)

′ = Q′v̄if̄i

Qf̄if̄i = (Tq)−1∑q
`=1 Gi

(
f̄` − f̄◦

) (
f̄` − f̄◦

)′
G′i, and the terms not involving the latent

factor are as before. By Lemma 3 in the supplement we have

sup
i
E
∥∥Qf̄if̄i

∥∥ = O
(
T−2

)
, sup

i
E
∥∥Qf̄iv̄i

∥∥ = O
(
T−2

)
, and sup

i
E
∥∥Qf̄is̄i

∥∥ = O
(
T−1

)
.

(50)

Pooling over i, Qw̄w̄ = n−1
∑n

i=1 Qw̄iw̄i , and using the above results together with

those already established in (16) and (18) now yields

Qw̄w̄ =
(q − 1)

6q
Ψn +Op

(
n−1/2

)
+Op

(
T−1

)
, and Qw̄w̄βj0 = Op

(
n−1/2

)
+Op

(
T−1

)
,

(51)

which is identical to results (19)-(20) in Proposition 1 for models without interac-

tive time effects. Similarly, inclusion of interactive time effects does not alter the

convergence rate of the exactly identified PME estimator ̂̊B0, given by (23), and its

asymptotic distribution will remain correctly centered at zero. To see this consider

the following expression for Qw̄w̄

√
nT
(̂̊
B0 − B̊0

)
, which extends (24) to panel data

models with interactive time effects,

Qw̄w̄

√
nT
(̂̊
B0 − B̊0

)
= −

(
n−1/2

n∑
i=1

TCiQs̄iv̄i

)
B̊0 −

(
n−1/2

n∑
i=1

TCiQs̄if̄i

)
B̊0

−
√
n

T

(
n−1

n∑
i=1

T 2Qf̄if̄i

)
B̊0 −

√
n

T

[
n−1

n∑
i=1

T 2
(
Qf̄iv̄i + Qv̄if̄i

)]
B̊0

−
√
n

T

(
n−1

n∑
i=1

T 2Qv̄iv̄i

)
B̊0 +Op

(
T−1

)
.

The new terms involve matrices Qs̄if̄i , Qf̄if̄i and Qf̄iv̄i = Q′
v̄if̄i
. Using the bounds

in (50), we obtain E
∥∥n−1

∑n
i=1 T

2Qf̄if̄i

∥∥ ≤ n−1
∑n

i=1 T
2E
∥∥Qf̄if̄i

∥∥ = O (T−2), and

similarly

E
∥∥n−1

∑n
i=1 T

2
(
Qf̄iv̄i + Qv̄if̄ii

)∥∥ < K. In addition, by Lemma 5 recall that n−1
∑n

i=1 T
2Qv̄iv̄i =
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Op

(
n−1/2

)
. Using these results and noting that

∥∥∥B̊0

∥∥∥ < K, we have

Qw̄w̄

√
nT
(̂̊
B0 − B̊0

)
= −

(
n−1/2

n∑
i=1

TCiQs̄iv̄i

)
B̊0−

(
n−1/2

n∑
i=1

TCiQs̄if̄i

)
B̊0+Op

(√
n

T

)
.

(52)

To simplify the notations we set ωit = fit + vit, and note that

Qs̄iω̄i = Qs̄iv̄i + Qs̄if̄i = T−1q−1

q∑
`=1

(̄si` − s̄i◦) (ω̄i` − ω̄i◦)′ .

Then (52) can be written as

Qw̄w̄

√
nT
(̂̊
B0 − B̊0

)
= −

(
n−1/2

n∑
i=1

TCiQs̄iω̄i

)
B̊0 +Op

(√
n

T

)
.

Let Z∗i = Ci [TQs̄iω̄i − E (TQs̄iω̄i)] B̊0. Since sit is independent of ft and E (sit) = 0,

we have E
(
Qs̄if̄i

)
= 0, and using (26) we obtain ‖n−1

∑n
i=1 CiE (T 2Qs̄iω̄i)β0‖ < K.

It now follows that

Qw̄w̄

√
nT
(̂̊
B0 − B̊0

)
= −n−1/2

n∑
i=1

Z∗i +Op

(√
n

T

)
, (53)

where Z∗i = Ci [TQs̄iω̄i − E (TQs̄iω̄i)]β0. Writing (53) in vec form

(Ir⊗Qw̄w̄)
√
nT vec

(̂̊
B0 − B̊0

)
= n−1/2

n∑
i=1

(
B̊′0⊗Ci

) [
ξ∗iq − E

(
ξ∗iq
)]

+Op

(√
n

T

)
,

where ξ∗iq is the m
2 × 1 vector given by ξ∗iq = q−1

∑q
s=1 (ω̄is − ω̄i)⊗ (̄sis − s̄i). Al-

though ξ∗iq is not independent over i, it is a martingale difference sequence, and

n−1/2
∑n

i=1

(
B̊′0⊗Ci

) [
ξ∗iq − E

(
ξ∗iq
)]
converges to a normal distribution as n, T →∞,

jointly. Therefore, ̂̊B will continue to be asymptotically normally distributed, with

its asymptotic distribution correctly centered at zero. Even though the variance of

the asymptotic distribution of PME estimator in general depends on the interactive

time effects, the estimator of the asymptotic variance given by (36) will continue to

be consistent under Assumption 4, and inference can be carried out in the same way

as in panel data models without interactive time effects.
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Overall, we find that the PME estimator is robust to interactive time effects

so long as Assumption 4 holds. Theorems and 3 and 4 in the supplement provide

formal statements regarding consistency and the asymptotic normality of the PME

estimators in presence of interactive time effects.

8 How to choose q and CT

To implement the estimation of r0 and the associated long-run relations we need to

decide on q, and CT = CT−δ that enter the thresholding estimation of r0.

8.1 Choice of q

To ensure that Qw̄w̄ = n−1T−1q−1
∑n

i=1

∑q
`=1 (w̄i` − w̄i◦) (w̄i` − w̄i◦)

′ does not de-

pend on the fixed effects, given by E(wit) = ai, we need at least two sub-samples,

namely q ≥ 2. To reduce the variance of time series dependence of w̄i`− w̄i◦ over the

sub-samples we need T/q to be reasonably large. An optimum choice of q most likely

depends on T , and not so much on n. To ensure that the mathematical derivations

are manageable and transparent, so far we have assumed that q is fixed as T → ∞.
But to select q we must allow q to depend on T , denoted as qT , and consider values

of qT that rise with T , but at a slower rate such that qT/T → 0. Analogous to the

problem of selecting the lag order in time series literature, we conjecture setting qT
to rise at the rate of T 1/3, and set qT to the lower integer part of max(2, T 1/3). This

would suggest that values of qT equal to 2, 3 and 4 for values of T = 20, 50 and 100,

respectively, considered in our Monte Carlo simulations reported in Section 9 below,

where we consider the values of 2 and 4, to save space. For estimation of r0, the choice

of q = 2 works perfectly well for all values of T considered. But the higher value of

q = 4 does seem to perform slightly better than q = 2 for estimation of long-run

coeffi cients when T = 100.

8.2 Choices of C and δ for estimation of r0

It is clear that eigenvalues of Qw̄w̄ depend on the scale of the observations, wit, and

some form of scaling of data is required to reduce the sensitivity of the eigenvalues to

scale. One could resort to cross validation procedures to set C and δ, but based on
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extensive Monte Carlo experiments, we have found that setting C = 1 works well if

we base our selection procedure on the eigenvalues of the following correlation matrix

Rw̄w̄ = [diag (Qw̄w̄)]−1/2 Qw̄w̄ [diag (Qw̄w̄)]−1/2 . (54)

Accordingly, our proposed estimator of r0 is given by

r̃ =
m∑
j=1

I
(
λ̃j < T−δ

)
, (55)

where λ̃j, for j = 1, 2, ...,m are the eigenvalues of Rw̄w̄ .
2

Also, based on our theoretical derivations any value of δ close to zero should

work. In the Monte Carlo experiments we consider the values of δ = 1/4 and 1/2 and

conclude that δ = 1/4 is a good overall choice and cross-validation is not necessary

for the implementation of our estimation strategy.

9 Monte Carlo Evidence

We investigate small sample properties of the proposed PME estimator with Monte

Carlo experiments using both VARMA(1,1) and VAR(1) designs, with and without

interactive time effects. The designs we consider are all special cases of the gen-

eral linear model (1). We set m = 3, and generate the 3 × 1 vector wit as I(1)

variables under three scenarios: non-cointegration, r0 = 0, and r0 = 1 and r0 = 2

cointegrating relations. We consider sample size combinations, T = (20, 50, 100) and

n = (50, 500, 1000, 3000), and report results for q = 2 and q = 4 (sub-samples), which

are in line with our conjecture of setting q in line with the max(2, T 1/3) rule. See

Section 8.1.

When r0 = 1, there are a range of alternative estimators of the cointegrating

relation in the literature that we can use for comparison, most of which assume

the direction of long-run causality is known. To accommodate existing estimators,

2Using the correlation matrix, Rw̄w̄ , has the advantage that it is unaffected by scaling, so long
as the same scaling is used across all cross section units. It is not invariant if the scaling varies
across units as well as across the variables. This issues is addressed in Section S5 of the supplement
where we investigate the small sample sensitivity of r̃ to differential scaling of the variables across
the units. We find that the small sample performance of r̃ as an estimator of r0, is hardly affected
by such differential scaling.
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we distinguish between experiments based on long-run causal ordering. The PME

estimator does not require the direction of long-run causality to be known. When

r0 > 1, to the best of our knowledge, there are no obvious alternative estimators of r0

and the associated cointegrating relations in the panel cointegration literature that we

can use. Accordingly, for the purpose of comparison, we report results using a mean

group version of Johansen’s maximum likelihood procedure, whereby we estimate r0

and associated cointegrating vectors (if any), for all individual units in the panel

separately, and report the frequency with which r0 is selected by Johansen procedure

across the n units, and the mean group estimates of the cointegrating coeffi cients and

their standard errors.

Subsection 9.1 outlines the data generating processes (DGPs). Subsection 9.2

gives the results for estimates of r0. Our results show near perfect performance for

our proposed estimator of r0, even for samples as small as T = 20 and n = 50. This

is in line with the theory developed in Section 6. Subsection 9.3 reports the results

for the coeffi cients of the long-run relations assuming r0 is known, which is justified

considering the near perfect performance of our estimator of r0. The MC results

provide simulation evidence that the PME estimator performs well in panels with n

as large as 1, 000 and T as small as 20.

9.1 Data generating processes

We consider experiments with and without long-run relations. In the experiments

with long-run relations, wit is generated as

∆wit = di −Πiwi,t−1 + uit −Θiui,t−1, (56)

for i = 1, 2, ..., n, t = 1, 2, ..., T , where Πi = AiB
′
0, Ai is m × r0, B0 is m × r0. We

set di = Πiµiw to ensure no linear trends in data. See, for example, Section 5.7 in

Johansen (1995). The elements of µiw are generated as IIDN(0, 1). We consider both

VAR(1) and VARMA(1,1) designs. For VAR(1) we set Θi = 0, and for VARMA(1,1)

with set Θi = diag(θij, j = 1, 2, ...,m), and generate θij as IIDU [−0.5, 0.5]. The

errors uit, are generated following both Gaussian and chi-squared distributions.

We initially consider m = 3 variables in wit = (wit,1, wit,2, wit,3)′, with both one

and two long-run relations. For r0 = 1, we set B0 = β1,0 = (1, 0,−1)′ and Ai =
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(ai,11, ai,21, ..., ai,31)′. In this case, the long-run relation is given by

β′1,0wit = wit,1 − wit,3 = β11,0wit,1 + β12,0wit,2 + β13,0wit,3, (57)

with β11,0 = 1, β12,0 = 0 and β13,0 = −1. We identify the long-run relation by

imposing β11,0 = 1 and estimate β12,0 and β13,0. When r0 = 2, we set

B0 =
(
β1,0,β2,0

)
=

 1 0

0 1

−1 −1

 , and Ai =

 ai,11 ai,12

ai,21 ai22

ai,31 ai,32

 .
In this case, the two long-run relations are given by

β′1,0wit = wit,1 − wit,3 = β11,0wit,1 + β12,0wit,2 + β13,0wit,3, (58)

β′2,0wit = wit,2 − wit,3 = β21,0wit,1 + β22,0wit,2 + β23,0wit,3, (59)

where β11,0 = β22,0 = 1, β12,0 = β21,0 = 0, and β13,0 = β23,0 = −1. We identify

these long-run relations by imposing β11,0 = β22,0 = 1 and β12,0 = β21,0 = 0, and we

estimate β13,0 and β23,0.

We set the values of Ai to control the average speed of convergence towards

the long-run relations. For example, in the case where r0 = 1 then B′0Ai = ρi =

ai,11− ai,31 and ρi, for i = 1, 2, ..., n are generated as IIDU [0.1, 0.2] representing slow

convergence, and as IIDU [0.1, 0.3] representing moderate convergence. We then set

ai,21 = 0, which leaves us with one free parameter in Ai which we use to set the

system measures of the fit, PR2
nT = 0.2 and 0.3, defined as a pooled R2, given by

equation (S.15) in the supplement. Since ai,11 and ai,31 are both nonzero, the long-run

causality runs from (wit,2, wit,3) to wit,1 as well as from wit,1 to wit,3. For r0 = 2 the

rate of convergence will depend on the eigenvalues of I2 − B′0Ai and the details of

how we generate the elements of Ai are given in the supplement.

We also consider experiments with interactive time effects, which are obtained by

augmenting the solution of (56) with Gift, where ft is and mf × 1 vector of latent

factors. Each of these factors are generated as AR(1) process with a break in the

AR coeffi cient, and the individual elements of the m ×mf matrix of factor loadings

Gi are generated as IIDU [0.0.4]. We set mf = 4. Specifically, we augment the

general linear process versions of the above VARMA(1,1) and VAR(1) specifications
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with Gift , namely

wit = wi0 + Gift + Cisit + C∗i (L)uit,

where Ci and C∗i (L) are obtained from

(I3 −ΨiL) [Ci + C∗i (L)(1− L)] = (I3 −ΘiL)(1− L),

and Ψi = I3 −AiB
′
0. See the supplement for further details.

For the experiments with no long-run relations (r0 = 0) we generate ∆wit using

the VAR(1) model in first-differences:

∆wit = Φi∆wi,t−1 + uit, (60)

for i = 1, 2, ..., n, t = 1, 2, ..., T , where uit ∼ IIDN(0,Σui). The elements of the

covariance matrix Σui = (σi,``′) are generated as σi,`` = 1 for i = 1, 2, ..., n and

` = 1, 2, 3, and σi,``′ ∼ IIDU(0, 0.5), for ` 6= `′ , and i = 1, 2, ..., n. We use a diagonal

matrix for Φi = (φi,``′), with φi,`` elements on its diagonal, for r = 1, 2, ...,m. We

consider three options for φi,``: (i) low values φi,`` ∼ U [0, 0.8], (ii) moderate values

φi,`` ∼ U [0.7, 0.9], and (iii) high values φi,`` ∼ U [0.80, 0.95]. wit is then obtained by

cumulating ∆wit from the initial value wi,0 = 0. Similarly to the experiment with

long-run relations given by (56), the model (60) is a special case of (1). Specifically,

(60) leads to wit = wi0 + Gift + Cisit + C∗i (L)uit, where Ci = (Im −Φi)
−1, and

C∗i (L) = −Φi (Im −Φi)
−1 (Im −ΦiL)−1. For experiments without interactive time

effects we set Gi = 0, for all i.

In addition to the designs described above, we also consider a data generating

process taken from Section 3.1 of Chudik, Pesaran, and Smith (2023a). For this

m = 2, and wit = (w1,it, w2,it)
′ is generated as

∆w1,it = ci − ai,11 (w1,i,t−1 − w2,i,t−1) + u1,it,

∆w2,it = u2,it,

where ai,11 ∼ IIDU [0.2, 0.3], uit = (u1,it, u2,it)
′ is heteroskedastic and cross-sectionally
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independent, and u1,it is correlated with u2,it.3 We use this design to see how PME

compares to single-equation estimators that correctly assume long-run causality runs

from w2,it to w1,it. We would expect such estimators to perform reasonably well, par-

ticularly when T is large relative to n, and provide a good baseline to evaluate the

performance of PME in settings favorable to the single equation techniques advanced

in the literature.

In short, we have 71 experiments. 6 experiments with m = 3 variables and no

long-run relations (r0 = 0), given by 3 choices for the distribution of φij, and inter-

active time effects are included or not. 64 = 25 experiments feature m = 3 variables

with long-run relations, given by combinations of the choice of model (VAR(1) or

VARMA(1,1)), r0 = 1 or 2, Gaussian or chi-square error distributions, moderate or

slow speed of convergence, system measure of fit PR2
nT = 0.2 or 0.3, and interactive

time effects are included or not. In addition, we have one experiment with m = 2

variables, r0 = 1 long-run relation and one one-way long-run causality taken directly

from Chudik, Pesaran, and Smith (2023a).

To save space, we report only summary results that are averages across a number

of selected experiments, with the results for the individual experiments available from

the authors upon request. Section S4 of the supplement also provides further details

of the Monte Carlo designs, how the processes are initialized, and the rationale behind

the parameterization adopted. Additionally, Section S6 of the supplement shows that

the results for estimation of r0 the associated long-run relations are robust to GARCH

and threshold autoregressive effects.

9.2 Small sample evidence on estimation of r0

We summarize the Monte Carlo findings for the estimation of r0 by the eigenvalue

thresholding estimator r̃ given by (55), using δ = 1/4 and 1/2 in Tables 1-2. Table

1 reports selection frequencies of r̃ = 0, 1, 2, 3 using VAR(1) based DGPs without

interactive time effects, for the three cases of r0 = 0, 1 or 2.4 The theory indicated very

3u1,it = σ1ie1,it, u2,it = σ2ie2,it, σ21,i, σ
2
2,i ∼ IIDU [0.8, 1.2],(

e1,it
e2,it

)
∼ IIDN (02,Σe) , Σe ∼

(
1 ρei
ρei 1

)
, and ρei ∼ IIDU [0.3, 0.7] .

See Section 3.1 of Chudik, Pesaran, and Smith (2023a) for details.
4These results are averaged over 3 VAR(1) experiments in first differences (r0 = 0), differeing in

terms of autoregressive coeffi cients (low, medium and high values), and over 8 VAR(1) experiments
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fast convergence of r̃ to r0, and this is confirmed by the Monte Carlo simulations.

The eigenvalue thresholding estimator r̃ correctly identifies r0 in 100 per cent of

cases, except for the very small sample sizes considered. For n = 50 and T = 20, we

see 5% probability of r̃ overestimating the true number of long-run relations when

the smaller exponent δ = 1/4 is used in experiments with r0 = 0 in Table1. For

comparison, we also report selection frequency for the Johansen procedure using the

trace statistic and the conventional nominal level of 5 percent.5 Whereas there is a

single estimate for the whole panel per replication using r̃, there are n such estimates

per replication using the Johansen procedure (r̂i, i = 1, 2, ..., n). We simply use them

all in calculating the selection frequency.6 Hence n will not influence these results,

but increasing T does improve the frequency with which the correct value is selected

using the trace statistic. For T = 100, frequency of correctly estimating the number

of long-run relations using the Johansen trace statistics is 69 percent for r0 = 0, 82

percent for r0 = 1, and only 31 percent for r0 = 2 in Table 1.

Simulation results for the performance of r̃ as an estimator of r0 in the case of ex-

periments with interactive time effects are presented in Section S5 of the supplement,

to save space. These results continue to show near perfect performance of r̃ similarly

to the experiments summarized above for the case of panels without interactive time

effects.

Overall, our findings are in line with the theoretical insights of a very fast conver-

gence of r̃ to r0. For this reason, we report next on the small sample performance of

the identified PME estimator assuming r0 is known.

in levels featuring r0 = 1 and 2 long-run relationships, differing in terms of the error distributions
(Gaussian or chi-squared), fit (high or low), and speed of convergence towards long run (moderate
or low).

5We assume the true lag order of the VAR design is known.
6There are a number of ways that one might choose r for the panel from these n tests, based on

the modal selection or the average value of the test statistic for instance. We do not explore these
avenues here.
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TABLE 1: Selection frequencies, averaged across experiments, for the estimation of
r0 = 0, 1, 2, 3 by eigenvalue thresholding estimator, r̃, given by (55) with δ = 1/4
and 1/2 and by Johansen’s trace statistics using V AR(1) as the DGP with

r0 = 0, 1, 2, and without interactive time effects.
Frequency r̃ = 0 Frequency r̃ = 1 Frequency r̃ = 2 Frequency r̃ = 3

n \ T 20 50 100 20 50 100 20 50 100 20 50 100
A. Experiments with r0 = 0

Correlation matrix eigenvalue thresholding estimator r̃, with δ = 1/4
50 0.95 1.00 1.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
500 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3,000 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Correlation matrix eigenvalue thresholding estimator r̃, with δ = 1/2
50 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
500 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3,000 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Selection of r based on Johansen Trace statistics (p = 0.05)
50 0.28 0.55 0.69 0.41 0.29 0.22 0.14 0.06 0.03 0.17 0.10 0.06
500 0.28 0.54 0.69 0.41 0.29 0.22 0.14 0.06 0.03 0.17 0.10 0.06

1,000 0.28 0.54 0.69 0.41 0.29 0.22 0.14 0.06 0.03 0.17 0.10 0.06
3,000 0.28 0.54 0.69 0.41 0.29 0.22 0.14 0.06 0.03 0.17 0.10 0.06
B. Experiments with r0 = 1

Correlation matrix eigenvalue thresholding estimator r̃, with δ = 1/4
50 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
500 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
3,000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Correlation matrix eigenvalue thresholding estimator r̃, with δ = 1/2
50 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
500 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
3,000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Selection of r based on Johansen Trace statistics (p = 0.05)
50 0.46 0.26 0.01 0.36 0.57 0.82 0.07 0.08 0.08 0.11 0.09 0.08
500 0.46 0.26 0.02 0.36 0.57 0.82 0.07 0.08 0.08 0.11 0.09 0.08

1,000 0.46 0.26 0.01 0.36 0.57 0.82 0.07 0.08 0.08 0.11 0.09 0.08
3,000 0.46 0.26 0.01 0.36 0.57 0.82 0.07 0.08 0.08 0.11 0.09 0.08
C. Experiments with r0 = 2

Correlation matrix eigenvalue thresholding estimator r̃, with δ = 1/4
50 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
500 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

1,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
3,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

Correlation matrix eigenvalue thresholding estimator r̃, with δ = 1/2
50 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
500 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

1,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
3,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

Selection of r based on Johansen Trace statistics (p = 0.05)
50 0.36 0.06 0.00 0.39 0.61 0.43 0.09 0.15 0.31 0.16 0.18 0.25
500 0.36 0.06 0.00 0.39 0.61 0.43 0.09 0.15 0.31 0.16 0.18 0.25

1,000 0.36 0.06 0.00 0.39 0.61 0.43 0.09 0.15 0.31 0.16 0.18 0.25
3,000 0.36 0.06 0.00 0.39 0.61 0.43 0.09 0.15 0.31 0.16 0.18 0.25

Notes: For r0 = 0, (panel A) there are 3 experiments: with low, medium and high serial correlation in first-difference
VAR(1) model. For r0 = 1, (panel B) and r0 = 2 (panel C) there are 8 VAR(1) experiments differing in terms of the
error distributions (Gaussian or chi-square), fit (high or low), and speed of convergence towards long run (moderate
or low). Lag order for the computation of Johansen’s trace statistics is set equal to the true lag order for the VAR.
All experiments based on R = 2, 000 MC replications. Results for individual Monte Carlo experiments are available
from the authors upon request. A summary of the different MC designs is given in Subsection 9.1, with a detailed
account of the data generating processes provided in Section S4 of the supplement.
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TABLE 2: Selection frequencies, averaged across experiments, for the estimation of
r0 = 0, 1, 2, 3 by eigenvalue thresholding estimator with δ = 1/4 and 1/2 and by
Johansen’s trace statistics using VARMA(1,1) as the DGP with r0 = 1, 2, and

without interactive time effects.
Frequency r̃ = 0 Frequency r̃ = 1 Frequency r̃ = 2 Frequency r̃ = 3

n \ T 20 50 100 20 50 100 20 50 100 20 50 100
A. Experiments with r0 = 1

Correlation matrix eigenvalue thresholding estimator r̃, with δ = 1/4
50 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
500 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
3,000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Correlation matrix eigenvalue thresholding estimator r̃, with δ = 1/2
50 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
500 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
3,000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Selection of r based on Johansen Trace statistics (p = 0.05)
50 0.40 0.33 0.14 0.38 0.48 0.69 0.09 0.09 0.09 0.13 0.11 0.09
500 0.40 0.33 0.14 0.38 0.48 0.69 0.09 0.09 0.09 0.13 0.11 0.09

1,000 0.40 0.33 0.14 0.38 0.48 0.69 0.09 0.09 0.09 0.13 0.11 0.09
3,000 0.40 0.33 0.14 0.38 0.48 0.69 0.09 0.09 0.09 0.13 0.11 0.09
B. Experiments with r0 = 2

Correlation matrix eigenvalue thresholding estimator r̃, with δ = 1/4
50 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
500 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

1,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
3,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

Correlation matrix eigenvalue thresholding estimator r̃, with δ = 1/2
50 0.00 0.00 0.00 0.02 0.00 0.00 0.98 1.00 1.00 0.00 0.00 0.00
500 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

1,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
3,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

Selection of r based on Johansen Trace statistics (p = 0.05)
50 0.42 0.34 0.10 0.37 0.42 0.47 0.08 0.09 0.21 0.13 0.15 0.21
500 0.42 0.34 0.10 0.37 0.42 0.47 0.08 0.10 0.21 0.13 0.15 0.22

1,000 0.42 0.34 0.10 0.37 0.42 0.47 0.08 0.09 0.21 0.13 0.15 0.22
3,000 0.42 0.34 0.10 0.37 0.42 0.47 0.08 0.09 0.21 0.13 0.15 0.22

Notes: For r0 = 1, (panel A) and r0 = 2 (panel B) there are 8 VARMA(1,1) experiments differing in terms of the
error distributions (Gaussian or chi-squared), fit (high or low), and speed of convergence towards long run (moderate
or low). Lag order for the computation of Johansen’s trace statistics is set equal to the integer part of T−1/3. All
experiments are based on R = 2, 000 MC replications. Results for individual Monte Carlo experiments are available
from the authors upon request. A summary of the different MC designs is given in Subsection 9.1, with a detailed
account of the data generating processes provided in Section S4 of the supplement.
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TABLE 3: Simulated bias, RMSE, size and power, averaged across 8 experiments,
for PME and MG-Johansen estimators of long-run relations, using a three variable

VAR(1) with r0 = 2 and without interactive time effects
Bias (×100) RMSE (×100) Size(×100) Power (×100)

n\T 20 50 100 20 50 100 20 50 100 20 50 100
A. Results for β13,0

PME estimator with q = 2 sub-samples
50 -0.15 -0.13 -0.07 4.06 1.96 1.10 7.66 7.10 7.39 15.21 42.18 81.30
500 -0.02 -0.15 -0.06 1.34 0.64 0.35 7.13 5.83 5.17 67.73 99.63 100.00

1,000 0.01 -0.15 -0.07 0.97 0.46 0.25 7.64 6.73 6.48 90.24 100.00 100.00
3,000 -0.05 -0.14 -0.06 0.66 0.29 0.15 12.84 8.16 7.76 99.96 100.00 100.00

PME estimator with q = 4 sub-samples
50 -0.62 -0.39 -0.12 3.29 1.59 0.79 7.48 8.33 7.63 23.13 64.41 96.21
500 -0.49 -0.39 -0.11 1.22 0.62 0.27 10.58 13.04 7.58 91.19 100.00 100.00

1,000 -0.47 -0.38 -0.12 0.95 0.51 0.21 14.99 20.15 11.16 99.31 100.00 100.00
3,000 -0.53 -0.38 -0.12 0.76 0.43 0.15 35.96 47.89 20.91 100.00 100.00 100.00

MG-Johansen estimator
50 15.78 -3.14 -0.39 >100 >100 65.53 2.66 2.96 3.26 2.67 10.45 56.48
500 -12.34 1.92 -0.86 >100 >100 85.82 1.98 1.89 2.66 2.27 10.77 65.62

1,000 -4.83 -1.07 0.18 >100 >100 36.39 2.16 2.24 2.31 2.38 11.44 65.38
3,000 -46.82 -40.69 -0.17 >100 >100 65.14 2.21 2.01 2.09 2.34 12.24 65.83
B. Results for β23,0

PME estimator with q = 2 sub-samples
50 0.02 -0.15 -0.07 4.11 1.96 1.09 8.26 7.43 7.31 15.78 41.90 81.03
500 -0.21 -0.16 -0.07 1.34 0.65 0.35 6.99 5.88 5.63 67.41 99.65 100.00

1,000 -0.07 -0.14 -0.07 0.98 0.46 0.25 7.53 6.32 6.61 90.25 100.00 100.00
3,000 -0.08 -0.14 -0.07 0.66 0.29 0.16 13.13 8.56 7.98 99.97 100.00 100.00

PME estimator with q = 4 sub-samples
50 -0.42 -0.38 -0.12 3.30 1.57 0.77 7.89 8.05 6.72 23.71 64.31 96.66
500 -0.71 -0.40 -0.12 1.31 0.63 0.28 13.23 13.69 8.26 91.11 100.00 100.00

1,000 -0.56 -0.38 -0.12 0.99 0.51 0.21 16.85 19.71 10.71 99.25 100.00 100.00
3,000 -0.57 -0.38 -0.12 0.78 0.43 0.16 37.17 48.16 21.74 100.00 100.00 100.00

MG-Johansen estimator
50 -21.74 3.58 0.52 >100 >100 65.06 2.56 2.74 3.43 14.82 15.76 56.87
500 -6.62 -1.29 0.65 >100 >100 79.29 2.23 1.94 2.58 15.19 15.74 65.54

1,000 13.31 0.70 -0.18 >100 >100 40.82 2.34 2.14 2.56 15.74 15.99 65.71
3,000 13.99 55.84 0.04 >100 >100 56.04 2.09 2.17 2.23 15.49 17.06 65.86

Notes: The long-run relations are given by β′1,0wit = wit,1 − wit,3 and β′2,0wit = wit,2 − wit,3, and identified using
β11,0 = β22,0 = 1, and β12,0 = β21,0 = 0. The 8 experiments differ with respect to distribution (Gaussian or
chi-squared), fit (high or low), and speed of convergence toward long run (moderate or low). Size and power are
computed at the five percent nominal level. Reported results are based on R = 2, 000 Monte Carlo replications.
Simulated power are computed under H1 : β13 = −0.97, β23 = −0.97, as alternatives to −1 for both coeffi cients
under the null. Results for individual Monte Carlo experiments are available from the authors upon request. A
summary of the different MC designs is given in Subsection 9.1, with a detailed account of the data generating
processes provided in Section S4 of the supplement.

9.3 Estimation of coeffi cients of long-run relations

9.3.1 Comparison of PME with MG-Johansen in VAR(1) designs with
multiple long-run relations

We first investigate how PME estimators of multiple long-run relations compare with

the Mean Group estimator based on Johansen’s estimator of individual cointegrating

vectors (MG-Johansen). To this end, we focus on the VAR(1) design with multi-
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ple long-run relations (r0 = 2 long-run relations among m = 3 variables) and no

interactive time effects. We assume the true lag order is known in the case of MG-

Johansen. This is a set up which we believe is most favorable to Johansen procedure

when applied to the individual units. But we note that the PME estimator does not

require the knowledge of the true lag order. These long-run relations are identified

according to (58)-(59) for both PME, and MG-Johansen’s estimators. While mo-

ments of Johansen’s estimator do not exist, we expect the simulated size and power

of MG-Johansen to be good for a suffi ciently large T relative to n.

Table 3 provides a summary of the results for estimation of β13,0 (= −1) in part A,

and for β23,0 (= −1) in part B. The table report bias, root mean square error (RMSE),

size of the tests at 5% nominal level, and power of the tests (H1 : β13 = −0.97,

β23,0 = −0.97). All entries in this table are multiplied by 100, and averaged across

8 experiments, defined in terms of error distributions (Gaussian or chi-squared), fit

(high or low), and speed of convergence towards the long run (moderate or low).

We first note that the PME estimator works quite well, with relatively small bias

and RMSE that decline with n and T . The choice of q = 2 works well for most n and

T combinations, and q = 4 performs better in terms of RMSE only when T = 100.

In terms of size, PME with q = 2 does better than with q = 4 for all n and T combi-

nations, and has size close to the nominal 5 per cent level, together with satisfactory

power that rapidly rises to 100 per cent as n and T are increased. However, even

when q = 2 there is some evidence of moderate size distortions, particularly when

T = 20 and n = 3, 000. The size distortion of PME when q = 4 seems to be largely

due to its bias that does not decline with T , despite the fall we observe in its RMSE.

The results for the MG-Johansen estimator, also reported in Table 3, show size

below 5 percent and a very low power in comparison to PME. The very large RMSE

and bias entries could be due to lack of moments for the unit-specific estimators ob-

tained using the Johansen procedure. Clearly, further research is needed for adapting

the use of Johansen maximum likelihood approach for use with large panels. We

are using MG-Johansen estimators here only for the purpose of comparisons when

r0 > 1. Below we do consider other panel cointegration procedures when r0 = 1, and

we will no longer report results for MG-Johansen as they are very similar to those

summarized in Table 3.

The above summary results do not depend much on which of the two coeffi cients

is considered.
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TABLE 4: Simulated bias, RMSE, size and power, averaged across 8 experiments,
for PME estimators of long-run relations in the case of a three variables

VARMA(1,1) with r0 = 2, and without interactive time effects
Bias (×100) RMSE (×100) Size(×100) Power (×100)

n\T 20 50 100 20 50 100 20 50 100 20 50 100
A. Results for β13,0

PME estimator with q = 2 sub-samples
50 -0.20 -0.27 -0.14 6.92 4.05 2.44 8.49 7.43 7.99 10.44 16.84 33.66
500 0.16 -0.22 -0.13 2.24 1.31 0.77 7.25 5.80 5.81 29.62 72.41 96.88

1,000 0.23 -0.20 -0.13 1.66 0.93 0.55 8.40 5.98 5.79 48.41 92.58 99.92
3,000 0.16 -0.21 -0.11 1.08 0.56 0.32 12.96 6.78 6.73 86.03 99.99 100.00

PME estimator with q = 4 sub-samples
50 -0.83 -0.73 -0.24 5.60 3.30 1.80 7.13 7.39 7.52 12.72 25.58 52.34
500 -0.51 -0.64 -0.20 1.94 1.20 0.60 8.33 9.94 7.17 53.05 92.56 99.86

1,000 -0.46 -0.63 -0.21 1.50 0.96 0.44 10.73 13.52 8.18 76.78 99.49 100.00
3,000 -0.53 -0.63 -0.20 1.11 0.75 0.30 24.57 32.18 14.53 98.21 100.00 100.00
B. Results for β23,0

PME estimator with q = 2 sub-samples
50 0.06 -0.23 -0.12 6.84 4.07 2.40 8.50 7.71 7.47 10.87 17.45 33.51
500 -0.06 -0.25 -0.13 2.25 1.31 0.77 6.94 5.81 6.01 29.10 72.41 96.82

1,000 0.11 -0.21 -0.13 1.64 0.93 0.55 8.03 5.81 5.99 48.22 92.34 99.93
3,000 0.12 -0.20 -0.11 1.09 0.56 0.33 12.66 6.92 7.06 86.06 99.98 100.00

PME estimator with q = 4 sub-samples
50 -0.51 -0.65 -0.22 5.48 3.28 1.74 7.36 7.20 6.68 13.36 26.04 51.75
500 -0.77 -0.67 -0.21 2.04 1.21 0.60 9.54 10.01 7.12 52.29 92.70 99.88

1,000 -0.59 -0.63 -0.21 1.53 0.96 0.44 11.66 14.24 8.08 76.76 99.49 100.00
3,000 -0.57 -0.63 -0.20 1.13 0.75 0.31 24.94 32.18 14.91 98.21 100.00 100.00

Notes: The long-run relations are given by β′1,0wit = wit,1 − wit,3 and β′2,0wit = wit,2 − wit,3, and identified using
β11,0 = β22,0 = 1, and β12,0 = β21,0 = 0. The 8 experiments differ with respect to distribution (Gaussian or
chi-squared), fit (high or low), and speed of convergence toward long run (moderate or low). Reported results are
based on R = 2, 000 Monte Carlo replications. Simulated power are computed under H1 : β13 = −0.97 and
β23 = −0.97, as alternatives to −1 for both coeffi cients under the null. Results for individual Monte Carlo
experiments are available from the authors upon request. A summary of the different MC designs is given in
Subsection 9.1, with a detailed account of the data generating processes provided in Section S4 of the supplement.
Size and Power are computed at 5 percent nominal level.

TABLE 5: Simulated bias, RMSE, size and power, averaged across 8 experiments,
for PME estimators of long-run relations in the case of three variables VARMA(1,1)

with r0 = 2, and with interactive time effects
Bias (×100) RMSE (×100) Size(×100) Power (×100)

n\T 20 50 100 20 50 100 20 50 100 20 50 100
A. Results for β13,0

PME estimator with q = 2 sub-samples
50 -0.20 -0.26 -0.14 6.89 4.05 2.44 8.56 7.46 8.00 10.59 16.85 33.76
500 0.16 -0.21 -0.13 2.23 1.31 0.77 7.15 5.83 5.79 29.86 72.38 96.91

1,000 0.24 -0.20 -0.13 1.65 0.93 0.55 8.38 5.94 5.76 48.74 92.63 99.92
3,000 0.16 -0.21 -0.11 1.08 0.56 0.32 12.91 6.78 6.71 86.23 99.99 100.00

PME estimator with q = 4 sub-samples
50 -0.81 -0.72 -0.23 5.54 3.29 1.80 7.04 7.41 7.53 12.85 25.58 52.38
500 -0.50 -0.63 -0.20 1.92 1.20 0.60 8.21 9.96 7.13 53.69 92.61 99.85

1,000 -0.44 -0.63 -0.20 1.47 0.95 0.44 10.59 13.56 8.22 77.28 99.50 100.00
3,000 -0.52 -0.63 -0.20 1.09 0.75 0.30 24.09 32.06 14.57 98.36 100.00 100.00
B. Results for β23,0

PME estimator with q = 2 sub-samples
50 0.05 -0.22 -0.12 6.81 4.06 2.40 8.41 7.76 7.54 11.00 17.61 33.53
500 -0.06 -0.24 -0.13 2.23 1.31 0.77 6.90 5.79 6.00 29.31 72.36 96.86

1,000 0.11 -0.21 -0.13 1.64 0.93 0.55 7.99 5.81 6.06 48.69 92.39 99.93
3,000 0.12 -0.20 -0.11 1.08 0.56 0.33 12.46 6.91 7.06 86.13 99.98 100.00

PME estimator with q = 4 sub-samples
50 -0.49 -0.64 -0.22 5.43 3.27 1.74 7.45 7.23 6.63 13.33 25.83 51.71
500 -0.75 -0.67 -0.21 2.01 1.21 0.60 9.43 9.98 7.16 52.87 92.71 99.88

1,000 -0.57 -0.63 -0.21 1.51 0.96 0.44 11.54 14.21 8.06 77.26 99.50 100.00
3,000 -0.55 -0.62 -0.20 1.11 0.75 0.31 24.68 32.24 14.89 98.32 100.00 100.00

Notes: See the notes to Table 4.
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Long run parameters

-β13,0 -β23,0

A. T = 20

B. T = 50

C. T = 100

FIGURE 1: Empirical power curves for the tests based on PME estimators of β13,0

and β23,0 parameters of r0 = 2 long-run relations, using VARMA(1,1) without
interactive time effects, slow speed of convergence, PR2

nT = 0.2, and Gaussian
errors. PME estimators use q = 2 sub-samples.
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Long run parameters

-β13,0 -β23,0

A. T = 20

B. T = 50

C. T = 100

FIGURE 2: Empirical power curves for the tests based on PME estimators of β13,0

and β23,0 parameters of r0 = 2 long-run relations, using VARMA(1,1) with
interactive time effects, slow speed of convergence, PR2

nT = 0.2, and Gaussian
errors. PME estimators use q = 2 sub-samples.
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TABLE 6: Simulated bias, RMSE, size and power for estimation of long-run
relation using VAR(1) with m = 2 variables, r0 = 1, and one-way long-run causality

Bias (×100) RMSE (×100) Size (×100) Power (×100)
n\T 20 50 100 20 50 100 20 50 100 20 50 100

PME estimator with q = 2 sub-samples
50 -0.98 -0.19 -0.03 4.92 2.11 1.05 7.95 6.90 6.30 15.90 37.65 82.40
500 -0.98 -0.16 -0.06 1.77 0.70 0.34 10.35 6.75 5.70 78.30 99.85 100.00

1,000 -0.93 -0.17 -0.06 1.42 0.51 0.24 15.90 7.40 4.70 96.30 100.00 100.00
3,000 -0.91 -0.18 -0.05 1.09 0.32 0.14 33.00 10.50 5.60 100.00 100.00 100.00

PME estimator with q = 4 sub-samples
50 -1.46 -0.36 -0.09 4.09 1.79 0.85 9.05 7.35 6.30 23.30 52.00 95.40
500 -1.47 -0.33 -0.10 1.89 0.64 0.28 23.65 9.65 5.45 97.50 100.00 100.00

1,000 -1.41 -0.35 -0.10 1.65 0.53 0.21 39.95 15.50 6.20 100.00 100.00 100.00
3,000 -1.40 -0.35 -0.09 1.48 0.42 0.14 82.65 36.05 12.65 100.00 100.00 100.00

System Pooled Mean Group Estimator
50 -0.33 0.05 -0.01 7.10 1.87 0.81 58.50 24.95 15.00 62.80 67.95 99.05
500 -0.05 0.03 0.00 2.21 0.58 0.25 59.45 25.10 13.20 83.15 100.00 100.00

1,000 -0.01 0.01 0.00 1.59 0.41 0.18 59.25 22.90 13.05 92.40 100.00 100.00
3,000 -0.01 0.00 0.00 0.89 0.24 0.10 57.45 24.30 13.65 99.75 100.00 100.00

Breitung’s 2-Step Estimator
50 5.25 1.28 0.36 6.45 2.03 0.84 53.95 23.30 12.30 28.55 33.05 96.15
500 5.25 1.26 0.36 5.39 1.35 0.43 99.70 84.00 41.90 70.55 97.95 100.00

1,000 5.27 1.25 0.35 5.34 1.29 0.39 99.90 97.75 63.75 91.00 100.00 100.00
3,000 5.29 1.24 0.36 5.32 1.26 0.37 100.00 100.00 98.20 99.90 100.00 100.00

Pooled Mean Group Estimator
50 1.69 0.40 0.08 5.63 1.76 0.78 44.90 19.90 10.85 43.55 59.50 98.70
500 1.91 0.36 0.08 2.52 0.64 0.25 66.25 28.45 12.80 52.45 100.00 100.00

1,000 1.92 0.33 0.08 2.25 0.50 0.19 79.65 33.55 14.35 61.00 100.00 100.00
3,000 1.90 0.32 0.08 2.02 0.39 0.13 98.30 56.95 22.00 80.95 100.00 100.00

Pooled Bewley Estimator
50 3.70 0.75 0.19 5.17 1.70 0.76 20.05 10.20 7.20 7.15 35.65 96.80
500 3.76 0.73 0.18 3.92 0.86 0.29 92.40 34.15 12.65 11.60 99.95 100.00

1,000 3.78 0.71 0.18 3.87 0.79 0.24 99.80 58.55 19.80 18.45 100.00 100.00
3,000 3.80 0.71 0.18 3.82 0.73 0.21 100.00 95.75 50.20 41.95 100.00 100.00

Panel FMOLS estimator
50 10.27 4.27 2.01 11.08 4.69 2.24 96.10 90.85 85.70 85.30 47.05 52.85
500 10.30 4.27 2.03 10.38 4.32 2.05 100.00 100.00 100.00 100.00 88.95 98.10

1,000 10.33 4.25 2.03 10.37 4.28 2.04 100.00 100.00 100.00 100.00 97.90 99.95
3,000 10.36 4.25 2.03 10.37 4.26 2.04 100.00 100.00 100.00 100.00 100.00 100.00

Panel Dynamic OLS Estimator
50 4.15 1.15 0.36 6.51 2.15 0.91 23.45 15.10 9.40 12.85 24.85 90.25
500 4.13 1.12 0.35 4.44 1.25 0.43 72.85 58.95 30.50 16.05 94.50 100.00

1,000 4.19 1.11 0.35 4.35 1.18 0.39 87.45 84.20 50.80 21.65 99.80 100.00
3,000 4.21 1.10 0.35 4.26 1.13 0.37 91.25 99.45 93.10 39.50 99.80 100.00

Notes: The long-run relation is given by β′1,0wit = wit,1 − wit,2 = β11,0wit,1 + β12,0wit,2, and identified with
β11,0 = 1. Coeffi cient β12,0 = −1 is estimated. Data generating process used for results reported in this table is
taken from Chudik, Pesaran, and Smith (2023a). Section 3.1 of Chudik, Pesaran, and Smith (2023a) provides full
account of this design. Reported results are based on R = 2, 000 Monte Carlo replications. Size and Power are
computed at 5 percent nominal level. Simulated powers are computed under H1 : β12 = −0.97, compared to null
value of −1.
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9.3.2 Performance of PME in VARMA(1,1) designs

Results when using VARMA(1,1) designs with r0 = 2 are presented in Tables 4 for

models without time effects, and in Table 5 for models with interactive time effects.

As before, these results are averages across eight VARMA(1,1) experiments featuring

r0 = 2 long-run relations that differ in terms of error distributions (Gaussian or chi-

squared), fit (high or low), and speed of convergence toward long run (moderate or

low). Figures 1-2 give empirical power curves for tests on β13,0 and β23,0 using PME

estimators computed with q = 2 sub-samples, in VARMA(1,1) designs with r0 = 2

long-run relations, and for n = 50, 500, and 1000. Separate panels show T = 20,

T = 50, T = 100. This experiment has a slow speed of convergence, PR2
nT = 0.2,

Gaussian errors and without interactive time effects (Figure 1) or with interactive

time effects (Figure 2). In both cases, the power increases with n and T as expected.

Qualitatively, the VARMA results in Table 4 are similar to the VAR results sum-

marized in Table 3, with one important exception. Allowing for an MA component

in the DGP tends to reduce power of the tests. For example, in the case where

n = 500, T = 20, and q = 2, the power of testing β13,0 = −1 against the alternative

β13 = −0.97 is 67.73 per cent when using VAR design (Table 3) as compared to

29.62 per cent when using the VARMA design (Table 4). Otherwise, the results for

bias, RMSE and size are comparable across the two designs. Similarly, allowing for

interactive time effects (Table 5) does not alter these conclusions, and PME seems to

be quite robust to the inclusion of interactive time effects, in line with the theoreti-

cal results of Section 7, so long as the time effects are not trended (deterministic or

stochastic).

9.3.3 Comparisons with available estimators in the design with single
long-run relation and one-way long-run causality

Last but not least, we investigate how PME compares with existing approaches for

the estimation of a single long-run relation, in a design that is favorable to single

equation estimators, some of which rely on the direction of long-run causality to be

one-way and known, and the lag order of the VAR to be well specified. We report

results for panel FMOLS estimator by Pedroni (1996, 2001a, 2001b), the Pooled Mean

Group (PMG) estimator by Pesaran, Shin, and Smith (1999), panel Dynamic OLS

(PDOLS) by Mark and Sul (2003), the two-step system estimator of Breitung (2005),
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the system PMG estimator of Chudik, Pesaran, and Smith (2023b), and the pooled

Bewley estimator by Chudik, Pesaran, and Smith (2023a). For large T panels with

moderate n, we would expect these single equation techniques to perform better than

the PME that allows for MA components and does not assume long-run causality.

This is confirmed by the results summarized in Table 6. When T = 100 and n = 50,

PME (q = 2) has higher RMSE than all other estimators reported in Table 6 except

for the FMOLS estimator. In contrast, PME estimator (q = 2) is much more balanced

in terms of bias, RMSE and size of the tests, when T is small (= 20), and n quite

large (= 1000). None of the alternative estimators to PME in the case of r0 = 1 (and

known one-way long-run causality) work well in samples where T is not very large

and n much larger than T .

In terms of bias and size, the PME estimator with q = 2 performs much better

than all the other single equation estimators under consideration, even if we consider

T = 100 and n = 50. Overall, Monte Carlo findings show that the PME estimator

with q = 2 can have satisfactory performance for panels where n is quite large relative

to T , in particular for panels with n and T combinations similar to the ones we

consider in our empirical application discussed below.

10 Empirical Applications

We provide two empirical applications to illustrate wide applicability of the PME

approach to both micro and macro panels.

10.1 Estimation of long-run financial relations

The fist application considers micro panels of firms where n is quite large relative to

the available time dimension. We use logarithms of six key financial variables from

CRSP/Compustat, available fromWharton Research Data Services. The six variables

(measured in logarithms) are book value (BVit), market value (MVit), short-term

debt (SDit), long-term debt (LDit), total assets (TAit) and total debt outstanding

(DOit). These are variables among which one would expect some key relations. We

consider them in three sets of two or three variables, using two unbalanced panels

both begin in 1950, the shorter one ends in 2010 and the longer one in 2021. The

maximum T is 71. We set a minimum T of 20, and the average T is around 30.
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The number of firms n varies from about 1, 000 to 2, 500 depending on the set of

variables under consideration. As well as estimating the number of long-run relations

and their parameters we test whether the coeffi cients in the linear combinations of

logarithms take the value -1, to relate our results to the ratios used in corporate

finance. In corporate finance accounting ratios, constructed from balance sheet data,

are commonly used to measure the profitability, liquidity, and solvency of a firm. The

rationales for the use of ratios include correcting for size in the cross section dimension

and eliminating common trends in the time series dimension to render the ratios

stationary. These two objectives are not always compatible. In an early contribution,

that remains relevant, Lev and Sunder (1979) comment “It appears that the extensive

use of financial ratios by both practitioners and researchers is often motivated by

tradition and convenience rather than resulting from theoretical considerations or

from a careful statistical analysis.”Geelen et al. (2024) provide a more recent study

of the use of financial ratios in empirical corporate finance literature.

Given that the theory is often not very specific, it is desirable to have a statis-

tical criteria to judge which are the appropriate long-run relations among the set

of variables considered and whether the logarithm of their ratios is stationary. The

time series stationarity of finance ratios like the aggregate dividend price ratio have

been studied, but the question has not, to our knowledge, been addressed in corpo-

rate finance, where the context is somewhat different. Corporate finance studies tend

to use unbalanced panels with large n and relatively small T and and the vector of

accounting variables, of the sort one gets from Compustat, may include multiple long-

run relations. Thus the PME estimator which is appropriate for multiple long-run

relations in a large n, moderate T panel seems well designed to determine whether

there are long-run relations in accounting data.

Using a multiplicative specification, the relation between yit, xit and zit can be

readily cast in terms of wit = (ln yit, lnxit, ln zit)
′ and the PME procedure can be

used to test (a) if β′0wit is stationary; and (b) if β11,0 = 1, β12,0 = −1, β13,0 = 0; to

validate the the use of ln (yit/xit) or yit/xit in econometric analysis. If step (a) cannot

be validated then β′0wit will not be stationary and its use in econometric analysis

could lead to spurious results. But if step (a) is validated but not (b), whilst it would

not be advisable to use ln yit− lnxit, one can still consider using β̃
′
wit, where β̃ could

be the exactly identified PME estimator of β0, in second stage panel regressions that
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allow for short term dynamics as well as other stationary variables.7 Such a two-step

procedure is justified, noting that β̃ is super consistent, converging to β0 at the rate

of T
√
n.

Data sources, full definitions of the variables, summary statistics and additional

details on construction of the samples for each of the three variable sets are provided

in Section S7 of the supplement. The following data filters are applied sequentially

to each variable set and sample period, separately. Firms are omitted if, for a given

variable set and sample: they do not have data for all variables in the set (without

gaps and covering at least 20 time periods); have nonpositive entries on any of the

variables, since we are using logarithms; and average value of key ratios fall below

the 1st or above the 99th percentiles estimated after the application of the first two

filters. This is similar to the filtering Geelen et al. (2024) use, except that we require

a longer time series dimension.8

The variables are grouped into three sets, where we have prior expectations about

possible cointegration amongst them. To illustrate the procedure we start with the

simplest case where m = 2 and wit include the logarithm of total debt outstanding

and logarithm of total assets: {DOit, TAit}. The ratio of total debt to total assets

is often used as a measure of leverage, so there is a single hypothesized long-run

relation. To showcase the performance of the PME procedure with multiple long-

run relations, we consider two other sets of variables with m = 3. They are: the

logarithms of short and long term debt and total assets, {SDit, LDit, TAit}; and

the logarithms of total debt outstanding, book value and market value, {DOit, BVit,

MVit}. We expect two hypothesized long-run relations in both of these sets. Since

these variables are often used to construct accounting ratios, whether the long-run

relation has a unit coeffi cient is also of interest. Because of missing firm observations

on some variables, the number of firms with minimum of 20 data points on all the

variables under consideration falls as we include more variables in a set. For this

reason we do not consider all six variables together.

Table 7 gives the estimates of the number of long-run relations for two and three

7To simplify the notations, we use the symbol tilde in this section to denote PME estimates of
the exactly identified long-run relations.

8Geelen et al. (2024) state: “We winsorize all variables at the 1% and 99% levels to mitigate
the impact of outliers. We drop all observations with missing values on one or more variables of
interest. We remove observations with a market-to-book ratio larger than 20, negative book equity
or negative EBITDA. Our final sample consists of 68,833 firm-year observations with 6,001 unique
firms.”This gives T̄ = 11.5, though some regressions use less.
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variable models for the 1950-2021 and 1950-2010 unbalanced samples using the eigen-

value thresholding procedure, given by (55). It also reports the eigenvalues of the

correlation matrix, Rww defined by (54), together with the associated threshold val-

ues, T−δave, where Tave = n−1
∑n

i=1 Ti. Since the panel is unbalanced we base the

thresholds on Tave and provide r̃ for δ = 1/2 and δ = 1/4, using q = 2 sub-sample

time averages.

The preferred threshold based on δ = 1/4 gives r̃ = 1 long-run relation for the

panel data models with m = 2, and r̃ = 2 long-run relations for the two cases with

m = 3. The threshold with δ = 1/2 also yields r̃ = 1 in the case with m = 2, but

when used in the case of panels with m = 3 it selects r̃ = 1 rather than r̃ = 2. Given

the theoretical discussion above and the Monte Carlo results, we proceed using the

estimates of the number of long-run relations obtained using the preferred value of

δ = 1/4, namely one long-run relation when m = 2 and two long-run relations when

m = 3.9

Tables 8-10 present PME estimates of the coeffi cients in the long-run relations,

their standard errors and t-statistics for testing the null hypothesis that the long-

run coeffi cient in question is equal to −1. The first set of estimates, in Table 8, are

for panels with wit = (DOit, TAit)
′. Recall that DOit and TAit are logarithms of

debt outstanding and total assets. There is a single hypothesized long-run relation:

β11,0DOit+β12,0TAit. Panel A of Table 8 uses the exact identifying condition β11,0 = 1

and provides PME estimates of β12,0 and t-statistics for the null value of β12,0 = −1.

The PME estimates of β12,0 at −1.142 and −1.113 for the two sample periods ending

in 2021 and 2010, respectively, are similar and close to but significantly different

from −1. To illustrate that, unlike regression based methods, the PME estimator

is invariant to normalization, part B of Table 8 uses the exact identifying condition

β12,0 = 1, and reports the PME estimate of β11,0. It is confirmed that up to rounding

error β̃11 = 1/β̃12.

9Table S10 in the supplement reports IPS panel unit root tests by Im et al. (2003) (using a
40-year balanced panel), which do not reject the null of unit root in all cases except for short-term
debt (SD). Given the 5 per cent chance that the IPS test could be in error, we proceed assuming
that all the six variables are I(1).
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TABLE 7: Estimates of the number of long-run relations (r̃) by eigenvalue
thresholding using firm-level data and q = 2 sub-sample time averages
Variables: wit = (DOit, TAit)

′ wit = (SDit, LDit, TAit)
′ wit = (DOit, BVit,MVit)

′

Sample end year: 1950-2021 1950-2010 1950-2021 1950-2010 1950-2021 1950-2010
Estimated number of long-run relations (r̃)
r̃ (δ = 1/2) 1 1 1 1 1 1
r̃ (δ = 1/4) 1 1 2 2 2 2
Eigenvalues

λ̃1 0.090 0.079 0.106 0.100 0.058 0.046
λ̃2 1.910 1.921 0.251 0.223 0.226 0.198
λ̃3 - - 2.644 2.678 2.717 2.756

Threshold T−δave
δ = 1/2 0.176 0.178 0.177 0.179 0.178 0.182
δ = 1/4 0.419 0.422 0.421 0.423 0.422 0.426

Sample dimensions
n 2,555 1,901 1,373 1,101 1,415 1,164

Tave 32.4 31.6 31.8 31.1 31.5 30.3
maxi Ti 73 61 73 61 61 49∑n
i=1 Ti 82,837 60,118 43,621 34,262 44,592 35,293

Notes: This table reports eigenvalues λ̃j for j = 1, 2...,m (in ascending order) of Rw̄w̄ given by (54) using q = 2
sub-sample time averages and the corresponding eigenvalue thresholding estimates of the number of long-run

relations given by r̃ =
∑m
j=1 I

(
λ̃j < T−δave

)
, for δ = 1/4, 1/2, where Tave = n−1

∑n
i=1 Ti, and Ti ≥ 20 for all i. The

elements of wit are logarithms of book value (BVit), market value (MVit), short-term debt (SDit), long-term debt
(LDit), total assets (TAit) and total debt outstanding (DOit). See Section S7 of the supplement for variable
definitions, data sources and availability, and filters applied.

For panels with m = 3 and r̃ = 2 we need two exactly identifying conditions on

each of the two long-run relations. In the case where wit = (SDit, LDit, TAit)
′, we use

the conditions β11,0 = 1 and β12,0 = 0 to exactly identify the first long-run relation,

and conditions β21,0 = 0 and β22,0 = 1 to identify the second long-run relation.

Hence the two identified long-run relations are SDit+β13,0TAit and LDit+β23,0TAit.

PME estimates for β13,0 in Table 9 are -1.025 and -1.024 for the two unbalanced

samples, both very close to -1 and statistically not different from -1. PME estimates

for β23,0 are -0.875 and -0.899, both statistically different from -1 at the one percent

level. Rotation of the two identified long-run relations reported in Table 9 imply the

long-run relations SDit − 1.156LDit and SDit − 1.130LDit for the samples ending

in 2021 and 2010, respectively. Both of these PME estimates, −1.156 and −1.130,

are statistically significantly different from −1 at the one per cent level. Hence, in

the case of the variable set {SDit, LDit, TAit}, the unit long-run elasticity hypothesis
could be accepted for short term debt to total assets only..
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TABLE 8: PME estimates for the set {DOit, TAit}, using q = 2 sub-sample time
averages and one long-run relation

A. Exact identifying condition β11,0 = 1

Exactly identified long-run relation
β′1,0wit = DOit + β12,0TAit

Sample ends: 1950-2021 1950-2010
β̃12 -1.142 -1.113
s.e. (0.010) (0.011)
t(β12,0 = −1) -14.6 -10.4
n 2,555 1,901∑n
i=1 Ti 82,837 60,118

B. Exact identifying condition β12,0 = 1

Exactly identified long-run relation
β′1,0wit = β11,0DOit + TAit

Sample ends: 1950-2021 1950-2010
β̃11 -0.875 -0.899
s.e. (0.010) (0.012)
t(β11,0 = −1) -12.8 -8.7
n 2,555 1,901∑n
i=1 Ti 82,837 60,118

Notes: TAit and DOit are logarithms of total assets and total debt outstanding. Left panel reports PME estimate
of β12,0 using the exact identifying condition β11,0 = 1. Right panel reports PME estimate of β11,0 using the exact
identifying condition β12,0 = 1. PME estimator, given by (23), is computed using q = 2 sub-sample time averages,
subject to Ti ≥ 20, for all i. To simplify the notations we use the tilde symbols to denote the exactly identified PME
estimates. The row labelled t(β12,0 = −1) and t(β11,0 = −1) gives the t statistic for testing H0 : β12,0 = −1 and
H0 : β11,0 = −1, respectively. See Section S7 of the supplement for variable definitions, data sources and availability,
and filters applied.

TABLE 9: PME estimates for the variable set {SDit, LDit, TAit}, using q = 2
sub-sample time averages and two long-run relations

First exactly identified Second exactly identified
long-run relation long-run relation

β′1,0wit = SDit + β13,0TAit β′2,0wit = LDit + β23,0TAit
Sample end year: 1950-2021 1950-2010 Sample end year: 1950-2021 1950-2010
β̃13 -1.025 -1.024 β̃23 -1.185 -1.158
s.e. (0.019) (0.019) s.e. (0.015) (0.016)
t(β13,0 = −1) -1.4 -1.3 t(β23,0 = −1) -12.0 -9.7
n 1,373 1,101 n 1,373 1,101∑n
i=1 Ti 43,621 34,262

∑n
i=1 Ti 43,621 34,262

Notes: Long run relations are β′j,0wit = βj1,0SDit + βj2,0LDit + βj3,0TAit, for j = 1, 2, where SDit, LDit and
TAit are logarithms of short-term and long-term debts, and total assets. The first long-run relation (j = 1) is
identified using the exact identifying conditions β11,0 = 1 and β12,0 = 0. The second long-run relation (j = 2) is
identified using the exact identifying conditions β22,0 = 1 and β21,0 = 0. This table reports estimates for β13,0 and
β23,0 using PME estimator given by (23) with q = 2 sub-sample time averages, subject to Ti ≥ 20, for all i. To
simplify the notations we use tilde symbol to denote the exactly identified PME estimates. See Section S7 of the
supplement for variable definitions, data sources and availability, and filters applied.

TABLE 10: PME estimation results for the variable set {DOit, BVit,MVit}, using
q = 2 sub-sample time averages and two long-run relations

First exactly identified Second exactly identified
long-run relation long-run relation

β′1,0wit = DO + β13,0BV β′2,0wit = BV + β23,0MV

Sample end year: 2021 2010 Sample end year: 2021 2010
β̃13 -1.055 -0.990 β̃23 -0.937 -0.927
s.e. (0.019) (0.020) s.e. (0.008) (0.009)
t(β13,0 = −1) 2.8 -0.5 t(β23,0 = −1) -7.7 -8.6
n 1,415 1,164 n 1,415 1,164∑n
i=1 Ti 44,592 35,293

∑n
i=1 Ti 44,592 35,293

Notes: Long run relations are β′j,0wit = βj1,0DOit + βj2,0BVit + βj3,0MVit, for j = 1, 2, where DOit, BVit and
MVit are logarithms of total debt outstanding, book, and market values. The first long-run relation (j = 1) is
identified using the exact identifying conditions β11,0 = 1 and β12,0 = 0. The second long-run relation (j = 2) is
identified using the exact identifying conditions β22,0 = 1 and β21,0 = 0. See also the notes to Table 9.
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Table 10 reports similar results for wit = (DOit, BVit, MVit)
′ and two exactly

identified long-run relations associated with logarithms total debt, market value, and

book value. PME estimates are close to -1, but the unit long-run elasticity between

pairs of variables in this set is rejected for all cases except the logarithms of total

debt outstanding and market value in the sample ending in 2010.10

Overall, the results support the existence of long-run relations between the log-

arithms of a number of key financial variables considered in the corporate finance

literature. But with the notable exception of the logarithm of short term debt to

total asset ratio, the use of other financial ratios as stationary variables in financial

analysis is not supported by our empirical findings. Instead our study recommends us-

ing estimated long-run relations such as DOi,t−1−1.14 TAi,t−1, LDi,t−1−1.19 TAi,t−1,

and BVi,t−1−0.927MVi,t−1, as error correction terms in dynamic panel regressors that

allow for short term dynamics and other stationary variables. This allows the analysis

of short term dynamics of financial variables to be coherently embedded in a long-run

equilibrating framework.

10.2 International macro applications using Penn World Ta-

ble

Our second empirical application considers cross country macroeconomic time series

data from the Penn World Table11 (PWT), where n (the number of countries) is

smaller and the average time dimension is larger as compared to the corporate fi-

nance data. Given the good small sample performance of the PME approach even

for smaller values of n in our Monte Carlo experiments, we have confidence in using

the PME estimation also in the case of the macro application. We focus on four key

macro variables, namely real merchandise exports per capita (exit), real merchan-

dise imports per capita (imit), real productivity per hour worked (prodit) and real

wages per hour worked (wageit). The choice of these variables was motivated by two

widely maintained hypotheses. Firstly, real wages and productivity should balance

10Rotation of the two identified long-run relationships reported in Table 10 imply the long-run
relations DOit − 0.888BVit and DOit − 0.937BVit for the samples ending in 2021 and 2010, respec-
tively, both of these PME estimates are statistically significanlty different from -1 at the 1 percent
level.
11We use version 10.01 of PWT database, available at

https://www.rug.nl/ggdc/productivity/pwt/, see Feenstra et al. (2015). See also the supple-
ment for a detailed description of data constructions.
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for steady state growth to be feasible. Secondly export and imports should balance for

international solvency, though the constraint may not be binding for reserve-currency

countries such as the US. We first consider the two pairs that we expect to cointegrate

separately, then we consider all four variables together. As with the corporate finance

application, we are interested both in whether they cointegrate and whether there is

a unit coeffi cient. In both cases, labour market balance and trade balance, there is

no clear causal ordering between the variables. Since the constraints that produce

balance may be somewhat different for advanced and emerging economies, we report

estimates for the country groupings separately as well as together.

The PME results for the analysis of a possible long-run relation between exit and

imit are summarized in Table 11. This table gives the two eigenvalues of Rw̄w̄ for

wit = (exit, imit)
′ and q = 2. (See (54)) As can be seen there is a clear separation be-

tween the first and second eigenvalues supporting the existence of a long-run relation

between exit and imit. This result holds for both choices of the threshold parameter

δ = 1/2 and 1/4, and for all three country groupings. Given this result we then

estimated the long-run relation β′wit = β11exit + β12imit, normalizing on β12 = 1,

for all three country groupings. There is a marked difference between the estimates

of β11 across the advanced and emerging economies. For the advanced economies

we have β̂11 = −0.914 (0.029), which strongly rejects the null hypothesis of −1 and

suggests systematic differences can persist between merchandise imports and exports

for advanced economies. In contrast the estimate for the emerging economies, namely

β̂11 = −0.992 ( 0.045), is not significantly different from −1. For all countries pooled,

β̂11 = −0.972 (0.034) and does not reject the null of β11 = −1.12 The difference in

the estimates obtained for advanced and emerging economies could be due to greater

ability of advanced economies in financing their goods trade imbalances by increasing

their export of services and having easier access to international capital market.

Similar results are obtained when we consider the relation between wages and

labour productivity. For all country groupings and both choices of the thresholds

we find r̃ = 1. See Table 12. The PME estimates of the long-run relation, β′wit =

β11wageit + prodit for advanced and emerging economies are β̂11 = −0.953 (0.013)

and β̂11 = −0.984 (0.043), respectively. Once again estimates of β11 are quite close

to −1, but as in the case of imports and exports the null of β11 = −1 is rejected for

12Normalizing on β11 yields the same results for β12 since PME estimate of β12 is exactly equal
to 1/β̂11 and by construction V ar(β̂12) = V ar(1/β̂11).
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advanced economies but not for emerging economies.

TABLE 11: PME estimates for wit = (exit, imit)
′, using q = 2 sub-sample time

averages.
Sample: Advanced Emerging All economies

Eigenvalues of Rw̄w̄ given by (54) (in ascending order)
λ̃1 0.026 0.102 0.084
λ̃2 1.974 1.898 1.916

Threshold T̄−δ

δ = 1/2 0.128 0.134 0.132
δ = 1/4 0.357 0.366 0.364

Estimated number of long-run relations (r̃)
r̃ (δ = 1/2) 1 1 1
r̃ (δ = 1/4) 1 1 1

Exactly identified long-run relations

β′wit =
(
β11 1

)( exit
imit

)
= β11exit + imit

β̂11 -0.914 -0.992 -0.972
(0.029) (0.045) (0.034)

Sample dimensions
n 38 139 177

T̄ = n−1
∑n
i=1 Ti 61.3 56.1 57.2

Notes: Standard errors are reported in parentheses. See Section S8 of the supplement for variable definitions, data
sources and availability, and filters applied.

TABLE 12: PME estimates for wit = (wageit, prodit)
′, using q = 2 sub-sample time

averages.
Sample: Advanced Emerging All economies

Eigenvalues of Rw̄w̄ given by (54) (in ascending order)
λ̃1 0.004 0.042 0.015
λ̃2 1.996 1.958 1.985

Threshold T̄−δ

δ = 1/2 0.135 0.146 0.139
δ = 1/4 0.367 0.382 0.373

Estimated number of long-run relations (r̃)
r̃ (δ = 1/2) 1 1 1
r̃ (δ = 1/4) 1 1 1

Exactly identified long-run relations

β′wit =
(
β11 1

)( prodit
wageit

)
= β11prodit + wageit

β̂11 -0.953 -0.984 -0.962
(0.013) (0.043) (0.016)

Sample dimensions
n 35 24 59

T̄ = n−1
∑n
i=1 Ti 55.5 47.4 52.2

Notes: See notes to Table 11.

To illustrate how our proposed methods perform in the case of multiple long-run re-

lations we now consider all the four variables together and setwit = (exit, imit, prodit, wageit)
′.

Given the above pair-wise results we would expect at least two long-run relations
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amongst these four variables. But the four eigenvalues of Rw̄w̄ reported in Table 13

clearly suggest that there are three long-run relations among the four variables, ir-

respective whether we use δ = 1/4 or 1/2 as the threshold parameter. This result

highlights the advantage of considering the possibility of multiple long-run relations

and can help with discovery of hitherto unnoticed or overlooked long relations. For

the third long-run relation we consider a possible long-run relation between exports

and productivity. There is extensive microeconomic evidence suggesting exporting

firms tend to have higher productivity. See, for example, Bernard and Jensen (2004).

However, there is controversy about whether the relation arises because high pro-

ductivity firms export more or whether the competitive pressure of exporting boosts

productivity. See for example Aghion et al. (2018). Also, while the firm level micro

relation has been examined for many countries, the country level macro relation has

been less intensively explored. Our application provides cross country evidence on the

relation between exports and productivity without making any assumption about the

direction of causality between these variables. Accordingly, we consider the following

exactly identified long-run relations assuming that r0 = 3 amongst the four variables

wit,

B′wit =

 β11 1 0 0

0 0 β23 1

β31 0 1 0




exit

imit

prodit

wageit

 . (61)

PME estimates for β11 and β23 in Table 13 are in line with the estimates in Tables 11

and 12. For the third long-run relation, we obtain β̂31 = −0.509 (0.023) for advanced

economies and β̂31 = −0.426 ( 0.032) for emerging economies. Hence, we discovered

that exports and productivity are related with the expected sign. Unlike the other

two long-run relations, we do not have any a priori reason to believe the estimates

of β31 should be close to −1.

To corroborate the evidence in Table 13 regarding the third long-run relation,

Table 14 reports PME findings for wit = (prodit, exit)
′. There is a clear separation of

eigenvalues, indicating existence of a long-run relation, in line with findings in Table

14 for the four-variable vector wit. In addition, the estimated coeffi cients in Table 14

are very similar to the corresponding coeffi cients reported in Table 13.

TABLE 13: PME estimates for the variable set {wageit, prodit, imit, exit}, using
q = 2 sub-sample time averages.
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Sample: Advanced Emerging All economies
Eigenvalues of Rw̄w̄ given by (54) (in ascending order)

λ̃1 0.003 0.012 0.014
λ̃2 0.010 0.037 0.015
λ̃3 0.064 0.111 0.088
λ̃4 3.923 3.840 3.883

Threshold T̄−δ

δ = 1/2 0.135 0.146 0.139
δ = 1/4 0.367 0.382 0.373

Estimated number of long-run relations (r̃)
r̃ (δ = 1/2) 3 3 3
r̃ (δ = 1/4) 3 3 3

Exactly identified long-run relations

B′wit =

 β11 1 0 0

0 0 β23 1

β31 0 1 0




exit
imit
prodit
wageit


β̂11 -0.882 -1.005 -0.928

(0.027) (0.031) (0.023)
β̂23 -0.952 -0.954 -0.953

(0.013) (0.041) (0.015)
β̂31 -0.509 -0.426 -0.478

(0.023) (0.032) (0.021)
Sample dimensions

n 35 24 59
T̄ = n−1

∑n
i=1 Ti 55.5 47.4 52.2

Notes: See Section S8 of the supplement for variable definitions, data sources and availability, and filters applied.

TABLE 14: PME estimates for wit = (exit, prodit)
′, using q = 2 sub-sample time

averages.
Sample: Advanced Emerging All economies

Eigenvalues of Rw̄w̄ given by (54) (in ascending order)
λ̃1 0.025 0.080 0.061
λ̃2 1.975 1.920 1.939

Threshold T̄−δ

δ = 1/2 0.135 0.146 0.139
δ = 1/4 0.367 0.382 0.373

Estimated number of long-run relations (r̃)
r̃ (δ = 1/2) 1 1 1
r̃ (δ = 1/4) 1 1 1

Exactly identified long-run relations

B′wit =
(
β11 1

)( exit
prodit

)
= β11exit + prodit

β̂11 -0.510 -0.357 -0.432
(0.023) (0.044) (0.036)

Sample dimensions
n 35 29 64

T̄ = n−1
∑n
i=1 Ti 55.5 47.0 51.7

Notes: See notes to Table 11.
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10.3 Comparison of PME and their estimates in the case of

pair-wise relations

Here we provide comparative estimates for the pair-wise long-run relations for which

a number of alternative estimators are proposed in the literature. Specifically, we

compare PME estimates reported in Tables 11, 12, and 14 with the SPMG, Breitung’s

2-step, PMG, PB, FMOLS, and PDOLS estimators discussed in Sub-Section 9.3.3.13

The results are summarized in Table 15. PME and SPMG are the only estimators

that are invariant to the normalization imposed on β′wit = β11w1,it + β12w2,it. As a

result, the equality β̂11β̂12 = 1 holds only in the case of PME and SPMG estimators.

The estimates of β11 and β12 are generally similar but there are some large differ-

ences. For instance, the PME estimate of the long-run coeffi cient in β11exit + prodit

in the case of advanced economies is −0.510 (0.023) compared with SPMG estimate

of −0.367 (0.004). Such difference could arise from the possibility that some of the

SPMG modeling assumptions regarding short-run dynamics are not met, whereas the

PME estimator is more general in that it does not require modeling of short-run

dynamics. We also observe that standard errors of the estimates proposed in the

literature are in some cases 2 to 10-fold smaller compared to PME. As we have seen

in Monte Carlo experiments all of the estimators proposed in the literature severely

over-reject the null, whilst this is not the case if we consider the MC results for size

reported in Table 6.

11 Concluding remarks

This paper provides a new, pooled minimum eigenvalue (PME), methodology for the

analysis of multiple long-run relations in panel data models where the cross section

dimension, n, is large relative to the time series dimension, T . It uses non-overlapping

sub-sample time averages as deviations from their full-sample counterpart and esti-

mates the number of long-run relations and their coeffi cients using eigenvalues and

eigenvectors of the pooled covariance matrix of these sub-sample deviations. It ap-

13The SPMG estimator is proposed by Chudik, Pesaran, and Smith (2023b), the Breitung’s two-
step system estimator is proposed by Breitung (2005), the PMG estimator is proposed by Pesaran,
Shin, and Smith (1999), the PB (Pooled Bewley) estimator is proposed by Chudik, Pesaran, and
Smith (2023a), the panel FMOLS estimator is proposed by Pedroni (1996, 2001a, 2001b), and the
panel DOLS estimator is proposed by Mark and Sul (2003).
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plies to unbalanced panels generated from general linear processes with interactive

stationary time effects and does not require knowing long-run causal linkages. The

PME estimator is consistent and asymptotically normally distributed as n and T

→ ∞ jointly, such that T ≈ nd, with d > 0 for consistency and d > 1/2 for asymp-

totic normality. Extensive Monte Carlo studies show that the number of long-run

relations can be estimated with high precision and the PME estimates of the long-

run coeffi cients show small bias and RMSE and have good size and power properties.

The utility of our approach is illustrated with both micro and macro applications.

The micro application uncovers long-run relations among key financial variables in an

unbalanced panel of US firms from merged CRSP-Compustat data set covering 2, 000

plus firms over the period 1950 − 2021. The macro application uses cross country

macroeconomic time series data covering up to 177 countries over slightly shorter

time period, 1950− 2019.

As well as application in other areas than corporate finance and macroeconomics

the procedure opens up a range of theoretical developments. One question that we are

considering investigating is whether it is possible to develop a unit root test based on

similar principles. Our method is semi-parametric, in that it does not model the short

run dynamics. Because the estimates of the long-run relations are super consistent,

then having estimated them, the PME estimates of the long-run relations could be

used as inputs into second stage models using stationary variables. For instance, they

can provide estimates of the disequilibrium terms in error correction models of the

short run dynamics, to measure speeds of adjustment. Such models could also be

used for medium-term forecasting and counterfactual analysis.
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A Appendix

This appendix provides proofs of propositions and theorems stated in the paper. This

appendix follows the same notations as in Section 4. Sub-sample time averages for

a generic vector xit are defined as x̄i` = 1
Tq

∑`Tq
t=(`−1)Tq+1 xit, for ` = 1, 2, ..., q, and

the full-sample time average by x̄i◦ = q−1
∑q

`=1 x̄i`, where q (≥ 2), m is fixed, and

Tq = T/q is an integer. Small and large finite positive constants that do not depend

on sample sizes n and T are denoted by ε andK, respectively. They can take different

values at different instances. All lemmas referenced in the proofs below are provided

in the supplement.

Proof of Proposition 1. Consider the last three terms on the right side of (13).

For its second term we have E ‖n−1
∑n

i=1 CiQs̄iv̄i‖ ≤ n−1
∑n

i=1 ‖Ci‖E ‖Qs̄iv̄i‖ ≤
supi ‖Ci‖ supiE ‖Qs̄iv̄i‖. By Assumption 2 supi ‖Ci‖ < K, and using (S.11) in

Lemma 3 of the supplement we have supiE ‖Qs̄iv̄i‖ = O (T−1). Hence, it follows

that E ‖n−1
∑n

i=1 CiQs̄iv̄i‖ = O (T−1). Similarly, E
∥∥n−1

∑n
i=1 Q′v̄is̄iC

′
i

∥∥ = O (T−1),

and, using (S.9) of Lemma 3, E ‖n−1
∑n

i=1 Qv̄iv̄i‖ = O (T−2). Using these results in

(13) now yields

E

∥∥∥∥∥Qw̄w̄ − n−1

n∑
i=1

CiQs̄is̄iC
′
i

∥∥∥∥∥ = O
(
T−1

)
. (A.1)

Consider n−1
∑n

i=1 CiQs̄is̄iC
′
i and note that it can be written as

n−1

n∑
i=1

CiQs̄is̄iC
′
i = n−1

n∑
i=1

CiE (Qs̄is̄i) C′i + n−1

n∑
i=1

Vi, (A.2)

where Vi = Ci [Qs̄is̄i − E (Qs̄is̄i)] C
′
i. Using result (S.3) of Lemma 2 and noting that

supi ‖Σi‖ < K under Assumption 1, we obtain

n−1

n∑
i=1

CiE (Qs̄is̄i) C′i =
(q − 1)

6q
Ψn +O

(
T−2

)
, (A.3)

where Ψn = n−1
∑n

i=1 CiΣiC
′
i. In addition, uniformly bounded fourth moments of

individual elements of uit ensure variances of individual elements Qs̄is̄i are bounded.

Since supi ‖Ci‖ < K by Assumption 2, it also follows that the variances of the individ-

ual elements of Vi are uniformly bounded. Noting that E(Vi) = 0 by construction,

and that Vi is independently distributed of Vj for all i 6= j (by Assumption 1), we
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have

n−1

n∑
i=1

Vi = Op

(
n−1/2

)
. (A.4)

Using (A.3) and (A.4) in (A.2) yields

n−1

n∑
i=1

CiQs̄is̄iC
′
i =

(q − 1)

6q
Ψn +Op

(
n−1/2

)
+O

(
T−2

)
, (A.5)

and using this result in (A.1), we obtain Qw̄w̄ →p
(q−1)

6q
Ψ, as n, T → ∞ (in no

particular order), where Ψ = limn→∞Ψn. This completes the proof of (19). Result

(20) follows from (19) by noting that C′iB̊0= 0 for all i by Assumption 3, which in

turn yields ΨnB̊0= ΨB̊0 = 0.

Proof of Proposition 2. Under Assumption 3 (n−1
∑n

i=1 CiΣiC
′
i) B̊0= ΨnB̊0= 0,

for any n and as n→∞. Then we have ΨB̊0 = 0 = (P′P) B̊0= 0. But by condition

rank (Ψ) = m− r0 of Assumption 3, P is an (m− r0)×m full row rank matrix. Then
PP′ is non-singular, and we must also have PB̊0 = 0. Combing this result with (22)

now yields (
R

P

)
B̊0=

(
A

0

)
. (A.6)

Under Assumptions 3 and the exact r2
0 restrictions given by (22) with rank (A) =

rank (R) = r0 < m, condition rank

(
Pn

R

)
= rank

(
P

R

)
= m holds, R′R + P′P

is a positive definite matrix, and β is uniquely determined by

B̊0 = (R′R + P′P)
−1

(
A

0

)
= (R′R + Ψ)

−1

(
A

0

)
.

Now using the normalizationsR = (Ir0 ,0)′ andA = Ir0 and conformably partitioning

Ψ we have

R′R + Ψ =

(
Ir0 + Ψ11 Ψ′21

Ψ21 Ψ22

)
.

Since R′R + Ψ is a positive definite matrix then the r0× r0 and (m− r0)× (m− r0)

matrices Ir0 + Ψ11 and Ψ22 are also positive definite. Solving the following system of
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equations now yields(
Ir0 + Ψ11 Ψ′21

Ψ21 Ψ22

)(
B̊0,1

Θ

)
=

(
Ir0

0

)
,

and we obtain (Ir + Ψ11) B̊0,1 + Ψ′21Θ = Ir0 , and Ψ21β1 + Ψ22Θ = 0. Also, since

B̊0,1 = Ir0 it follows that (Ir0 + Ψ11)+Ψ′21Θ = Ir0 , and Θ = −Ψ−1
22 Ψ21,which implies

that Ψ11 = Ψ′21Ψ
−1
22 Ψ21, and in turn ensures that Ψ is rank deficient, as required

under Assumption 3).

Proof of Theorem 1. Multiplying (A.5) by B̂′0 from the left and by B̂0 from the

right, and noting eigenvectors B̂0 are normalized so that B̂′0B̂0 = Ir yields

B̂′0Qw̄w̄B̂0 =
(q − 1)

6q
B̂′0ΨnB̂0 +Op

(
n−1/2

)
+Op

(
T−2

)
, (A.7)

where limn→∞Ψn = Ψ as n→∞. Under Assumption 3, we have rank (Ψ) = m−r0,

rank
(
B̊0

)
= r and B̊′0Ψ = 0. Hence the space space spanned by the column vectors

of m× r0 matrix B̊0 is the same as the space spanned by the first r0 eigenvectors of

Ψ associated with its r smallest eigenvalues. It now follows from (A.7) that the space

spanned by the column vectors of B̂0 converges to the space spanned by the column

vectors of B̊0, as n, T →∞ (in no particular order), and B̂0H→p B̊0, for a suitable

choice of r0 × r0 nonsingular matrix H.14

Proof of Theorem 2. Multiplying both sides of (13) by B̊0 from the right, and

noting that C′iB̊0 = 0 under Assumption 3, we have

Qw̄w̄B̊0 =

(
n−1

n∑
i=1

CiQs̄iv̄i

)
B̊0 + Qv̄v̄B̊0 (A.8)

Lemma 7 established
∥∥∥Qw̄w̄B̂0

∥∥∥ = Op

(
n−1/2T−2

)
, and given that ̂̊B0 is an Op (1)

rotation of B̂0, it follows

Qw̄w̄
̂̊
B0 = Op

(
n−1/2T−2

)
. (A.9)

14The rotation matrix is given by H =

[(
B̊′0B̊0

)−1
B̊′0B̂

]−1
, see Lemma 13.1 of Johansen (1995).
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Subtracting (A.8) from (A.9) yields

Qw̄w̄

(̂̊
B0 − B̊0

)
= −

(
n−1

n∑
i=1

CiQs̄iv̄i

)
B̊0 −Qv̄v̄B̊0 +Op

(
n−1/2T−2

)
. (A.10)

Result (S.47) of Lemma (5) implies Qv̄v̄ = Op

(
n−1/2T−2

)
, and we have

Qw̄w̄

√
nT
(̂̊
B0 − B̊0

)
= −

(
n−1/2

n∑
i=1

TCiQs̄iv̄i

)
B̊0 +Op

(
T−1

)
. (A.11)

The first term on the right side of (A.11) can be written as(
n−1/2

n∑
i=1

TCiQs̄iv̄i

)
B̊0 =

(
n−1/2

n∑
i=1

Zi

)
B̊0 +

√
n

T

[
n−1

n∑
i=1

CiE
(
T 2Qs̄iv̄i

)]
B̊0,

where Zi = Ci [TQs̄iv̄i − E (TQs̄iv̄i)] B̊0. Using result (S.12) of Lemma 3, we obtain∥∥∥∥∥n−1

n∑
i=1

CiE
(
T 2Qs̄iv̄i

)
B̊0

∥∥∥∥∥ ≤ T 2 sup
i
‖Ci‖ sup

i
‖E (Qs̄iv̄i)‖

∥∥∥B̊0

∥∥∥ < K, (A.12)

where
∥∥∥B̊0

∥∥∥ < K and supi ‖Ci‖1 < K by Assumption 2. Using the above result in

(A.11) it follows that

Qw̄w̄

√
nT
(̂̊
B0 − B̊0

)
= −n−1/2

n∑
i=1

Zi +Op

(√
n

T

)
+Op

(
T−1

)
,

Vectorizing the above equation we have

(Ir⊗Qw̄w̄)
√
nT vec

(̂̊
B0 − B̊0

)
= n−1/2

n∑
i=1

(
B̊′0⊗Ci

)
ξ̃iq +Op

(√
n

T

)
+Op

(
T−1

)
,

(A.13)

where ξ̃iq = ξ̄iq−E
(
ξ̄iq
)
, and ξ̄iq is given by (recall Zi = Ci [TQs̄iv̄i − E (TQs̄iv̄i)] B̊0
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and Qs̄iv̄i = T−1q−1
∑q

`=1 (̄si` − s̄i◦) (v̄i` − v̄i◦)
′)

ξ̄iq = q−1

q∑
`=1

vec
[
(̄si` − s̄i◦) (v̄i` − v̄i◦)

′] = q−1

q∑
`=1

(v̄i` − v̄i◦)⊗ (̄si` − s̄i◦) ,

= q−1

q∑
`=1

v̄i`⊗s̄i` −
(
q−1

q∑
`=1

v̄i`

)
⊗s̄i◦ − v̄i◦⊗

(
q−1

q∑
`=1

s̄i`

)
+ v̄i◦⊗s̄i◦.

Using q−1
∑q

`=1 v̄i` = v̄i◦ and q−1
∑q

`=1 s̄i` = s̄i◦, the expression for ξ̄iq simplifies

to ξ̄iq = q−1
∑q

`=1 (v̄i` − v̄i◦)⊗ (̄si` − s̄i◦) = q−1
∑q

`=1 (v̄i`⊗s̄i`) − v̄i◦⊗s̄i◦. Lemma

8 established convergence in distribution for n−1/2
∑n

i=1

(
B̊′⊗Ci

)
ξ̃iq. Using this

Lemma in (A.13), and noting that d > 1/2 implies
√
n/T → 0 as n, T → ∞, we

obtain (32), as required.
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This supplement is organized in seven sections. Section S1 presents lemmas and their

proofs. Section S2 describes implementation of the PME estimator for unbalanced

panels. Section S3 provides theorems and proofs for the consistency and asymptotic

distribution of the PME estimator for the model with interactive time effects. Sec-

tion S4 describes the Monte Carlo data generating processes and provides a list of

individual Monte Carlo experiments. Section S5 investigates sensitivity of the PME

estimator of r0, r̃ given by (55), to different scaling of the observations on wit. Sec-
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formation for the macro application.
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S1 Lemmas

Lemma 1 Let vit = C∗i (L)uit =
∑∞

j=0 C∗ijui,t−j and suppose Assumptions 1 and 2

hold. Then there exist finite positive constants K1, K2, and 0 < ρ < 1 such that

sup
i
‖Γi(h)‖ < K1ρ

h, (S.1)

and
∞∑
h=0

sup
i
‖Γi(h)‖ < K2, (S.2)

where Γi(h) = E
(
vitv

′
i,t−h

)
, for h = 0, 1, 2, ... is the autocovariance function of vit.

Proof. The autocovariance function of vit is

Γi(h) = E
(
vitv

′
i,t−h

)
= E

( ∞∑
j=0

C∗ijui,t−j

)( ∞∑
j′=0

u′i,t−j′−hC
∗′
ij′

)

=
∞∑
j=0

∞∑
j′=0

C∗ijE
(
ui,t−ju

′
i,t−j′−h

)
C∗′ij′ =

∞∑
j=h

C∗ijΣiC
∗′
i,j−h = Γ′i(−h).

Taking spectral norm and supremum over i yields

sup
i
‖Γi(h)‖ ≤

∞∑
j=h

sup
i

∥∥C∗ij∥∥ sup
i
‖Σi‖ sup

i

∥∥C∗i,j−h∥∥ ≤ K0

∞∑
j=h

ρjρj−h =
K0ρ

h

1− ρ2
< K1ρ

h,

where supi ‖Σi‖ < K by Assumption 1 and supi
∥∥C∗ij∥∥ < Kρj with 0 < ρ < 1 by

Assumption 2. It follows
∑∞

h=0 supi ‖Γi(h)‖ < K2.

Lemma 2 Consider the m × m matrix Qs̄is̄i = T−1q−1
∑q

`=1 (̄si` − s̄i◦) (̄si` − s̄i◦)
′,

where s̄i` and s̄i◦ are sub-sample and full sample time averages of the partial sum

process sit =
∑t

`=1 ui`. Suppose E(uitu
′
it) = Σi for i = 1, 2, ..., n and t = 1, 2, ..., T ,

and E(uitu
′
it′) = 0 for i = 1, 2, ..., n, and all t 6= t′, t, t′ = 1, 2, ..., T . Then

E (Qs̄is̄i) =
(q − 1)

6

(
1

q
+

1

T 2

)
Σi, (S.3)

for q ≥ 2 and i = 1, 2, ..., n.
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Proof. We note that

E (TQs̄is̄i) = E

[
q−1

q∑
`=1

(̄si` − s̄i◦) (̄si` − s̄i◦)
′

]
= q−1

q∑
`=1

E (̄si`s̄
′
i`)−E (̄si◦s̄

′
i◦) . (S.4)

Also

s̄i1 =
1

Tq

(
si1 + si2 + ....+ si,Tq

)
=

1

Tq

[
ui1 + (ui1 + ui2) + ....

(
ui1 + ui2 + ...+ ui,Tq

)]
,

=
1

Tq

[
Tqui1 + (Tq − 1)ui2 + (Tq − 2)ui3 + ....+ 2ui,Tq−1 + ui,Tq

]
,

which can be written more compactly as s̄i1 = T−1
q

∑Tq
t=1 (Tq − t+ 1) uit. Similarly

s̄i2 =
1

Tq

(
si,Tq+1 + si,Tq+2 + ....+ si,2Tq

)
=

1

Tq

Tq (ui1 + ui2 + ...+ ui,Tq
)

+

2Tq∑
t=Tq+1

(2Tq − t+ 1) uit

 ,
=

Tq∑
t=1

uit +
1

Tq

2Tq∑
t=Tq+1

(2Tq − t+ 1) uit,

and more generally

s̄i` =

(`−1)Tq∑
t=1

uit +
1

Tq

`Tq∑
t=(`−1)Tq+1

(`Tq + 1− t) uit, for ` = 1, 2, ..., q. (S.5)

It now readily follows that

E (̄si`s̄
′
i`) =

(`− 1)Tq +

(
1

Tq

)2 `Tq∑
t=(`−1)Tq+1

(`Tq − t+ 1)2

Σi.

But

`Tq∑
t=(`−1)Tq+1

(`Tq − t+ 1)2 = T 2
q + (Tq − 1)2 + ...+ 1 =

Tq(Tq + 1)(2Tq + 1)

6
,
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and we obtain

E (̄si`s̄
′
i`) =

[
(`− 1)Tq +

(
1

Tq

)2
Tq(Tq + 1)(2Tq + 1)

6

]
Σi =

[
(`− 1)Tq +

(Tq + 1)(2Tq + 1)

6Tq

]
Σi,

and

q−1

q∑
`=1

E (̄si`s̄
′
i`) = q−1

q∑
`=1

(
(`− 1)Tq +

(Tq + 1)(2Tq + 1)

6Tq

)
Σi.

Noting that

q−1

q∑
`=1

(`− 1)Tq = q−1 [Tq + 2Tq + ...+ (q − 1)Tq] = q−1Tq
q(q − 1)

2
=

(q − 1)Tq
2

,

we have

q−1

q∑
`=1

E (̄si`s̄
′
i`) =

[
(q − 1)Tq

2
+

(Tq + 1)(2Tq + 1)

6Tq

]
Σi.

Recalling that Tq = T/q, we can write the expression above as

q−1

q∑
`=1

E (̄si`s̄
′
i`) =

[
(q − 1)T

2q
+

(T + q)(2T + q)

6qT

]
Σi. (S.6)

Similarly, for the full sample average we have s̄i◦ = T−1
∑T

t=1 (T − t+ 1) uit, and

E (̄si◦s̄
′
i◦) =

1

T 2

[
T 2 + (T − 1)2 + ....+ 1

]
Σi =

T (T + 1)(2T + 1)

6T 2
Σi. (S.7)

Using (S.6) and (S.7) in (S.4), yields

E (TQs̄is̄i) =

[
T (q − 1)

2q
+

(T + q)(2T + q)

6Tq

]
Σi−

(T + 1)(2T + 1)

6T
Σi =

(q − 1)

6

(
T

q
+

1

T

)
Σi,

(S.8)

and result (S.3) follows.

Lemma 3 Consider m×m matrices Qv̄iv̄i = T−1q−1
∑q

`=1 (v̄i` − v̄i◦) (v̄i` − v̄i◦)
′ and

Qs̄iv̄i = T−1q−1
∑q

`=1 (̄si` − s̄i◦) (v̄i` − v̄i◦)
′, where s̄i`, s̄i◦ are the sub-sample and full

sample time averages of the partial sum process sit =
∑t

`=1 uit, where m and q (≥ 2)

are fixed. Also v̄i` and v̄i◦ are the sub-sample and full sample time averages of vit =

S.4



C∗i (L)uit =
∑∞

j=0 C∗ijui,t−j, and Assumptions 1 and 2 hold. Then

sup
i
E ‖Qv̄iv̄i‖ = O

(
T−2

)
, (S.9)

sup
i

∥∥T 2 E (Qv̄iv̄i)
∥∥ = O

(
T−1

)
+O

(
ρT/q

)
, (S.10)

sup
i
E ‖Qs̄iv̄i‖ = O

(
T−1

)
, (S.11)

and

sup
i
‖E (Qs̄iv̄i)‖ = O

(
T−2

)
. (S.12)

Proof. Consider

TQv̄iv̄i = q−1

q∑
`=1

(v̄i` − v̄i◦) (v̄i` − v̄i◦)
′ = q−1

q∑
`=1

v̄i`v̄
′
i` − v̄i◦v̄

′
i◦,

where v̄i◦ = q−1
∑q

`=1 v̄i`. Taking spectral norm and expectations yields

E ‖TQv̄iv̄i‖ ≤ q−1

q∑
`=1

E ‖v̄i`‖2 + E ‖v̄i◦‖2 ,

and it follows

sup
i
E ‖TQv̄iv̄i‖ ≤ sup

i,`
E ‖v̄i`‖2 + sup

i
E ‖v̄i◦‖2 . (S.13)

Term E ‖v̄i`‖2 can be written as

E ‖v̄i`‖2 = E (v̄′i`v̄i`) = E [tr (v̄i`v̄
′
i`)] = tr [E (v̄i`v̄

′
i`)] ,

where, under Assumptions 1-2 process vit = C∗i (L)uit is covariance-stationary with

uniformly (in i) absolutely summable autocovariances, and

E (v̄i`v̄
′
i`) =

1

Tq

{
Γi(0) +

Tq−1∑
h=1

(
1− h

Tq

)
[Γi(h) + Γ′i(h)]

}
, (S.14)

in which Γi(h) = E
(
vitv

′
i,t−h

)
. Using Lemma 1, it follows supi,`E ‖v̄i`‖

2 = O
(
T−1
q

)
,

and given that q is fixed (does not change with the sample size), then Tq ≈ T , and
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we in turn obtain

sup
i,`
E ‖v̄i`‖2 = O

(
T−1

)
. (S.15)

Similarly, E ‖v̄i◦‖2 = tr [E (v̄i◦v̄
′
i◦)], where

E (v̄i◦v̄
′
i◦) =

1

T

{
Γi(0) +

T−1∑
h=1

(
1− h

T

)
[Γi(h) + Γ′i(h)]

}
, (S.16)

and using Lemma 1, we obtain

sup
i
E ‖v̄i◦‖2 = O

(
T−1

)
. (S.17)

Using (S.15) and (S.17) in (S.13) yields result (S.9). Consider now (S.10) and note

that

T E (Qv̄iv̄i) = q−1

q∑
`=1

E (v̄i`v̄
′
i`)− E (v̄i◦v̄

′
i◦) ,

and upon using (S.14) we have (recall that Tq = T/q)

q−1

q∑
`=1

E (v̄i`v̄
′
i`) =

1

T

{
Γi(0) +

Tq−1∑
h=1

(
1− h

Tq

)
[Γi(h) + Γ′i(h)]

}
.

Also using (S.16) we now have

T E (Qv̄iv̄i) =
1

T

Tq−1∑
h=1

(
1− h

Tq

)
[Γi(h) + Γ′i(h)]− 1

T

T−1∑
h=1

(
1− h

T

)
[Γi(h) + Γ′i(h)] ,

=
1

T

T/q−1∑
h=1

[(
1− qh

T

)
−
(

1− h

T

)]
[Γi(h) + Γ′i(h)]

− 1

T

T−1∑
h=T/q+1

(
1− h

T

)
[Γi(h) + Γ′i(h)] .

Hence, as required we have

T 2 E (Qv̄iv̄i) =
(q − 1)

T

T/q−1∑
h=1

h [Γi(h) + Γ′i(h)]−
T−1∑

h=T/q+1

(
1− h

T

)
[Γi(h) + Γ′i(h)] ,

S.6



and

T 2 ‖E (Qv̄iv̄i)‖ ≤
2 (q − 1)

T

T/q−1∑
h=1

h ‖Γi(h)‖+
T−1∑

h=T/q+1

‖Γi(h)‖ .

Since supi ‖Γi(h)‖ < K1ρ
h, (see (S.1) in Lemma 1) it now follows that

T 2 supi ‖E (Qv̄iv̄i)‖ ≤
2 (q − 1)

T
K1

T/q−1∑
h=1

hρh +K1

T−1∑
h=T/q+1

ρh. (S.18)

Also

T/q−1∑
h=1

hρh = ρ

T/q−1∑
h=1

hρh−1

 = ρ
d
(∑T/q−1

h=1 ρh
)

dρ
= ρ

d

dρ

(
ρ− ρT/q

1− ρ

)
< K,

and
∑T−1

h=T/q+1 ρ
h =

(
ρT/q+1 − ρT

)
/ (1− ρ). Using these results in (S.18) we have T 2

supi ‖E (Qv̄iv̄i)‖ = O (T−1) +O
(
ρT/q

)
, as required. We establish (S.11) next.

TQs̄iv̄i = q−1

q∑
`=1

(̄si` − s̄i◦) (v̄i` − v̄i◦)
′ = q−1

q∑
`=1

s̄i`v̄
′
i` − s̄i◦v̄

′
i◦,

where v̄i◦ = q−1
∑q

`=1 v̄i` and similarly s̄i◦ = q−1
∑q

`=1 s̄i`. Taking spectral norm

yields ‖TQs̄iv̄i‖ ≤ q−1
∑q

`=1 ‖s̄i`v̄′i`‖+ ‖s̄i◦v̄′i◦‖. By Cauchy-Schwarz inequality,

E ‖TQs̄iv̄i‖ ≤ q−1

q∑
`=1

(
E ‖s̄i`‖2)1/2 (

E ‖v̄i`‖2)1/2
+
(
E ‖s̄i◦‖2)1/2 (

E ‖v̄i◦‖2)1/2
.

(S.19)

Assumption 1 stipulates supi ‖Σi‖ < K. Using this bound in (S.6) and (S.7) yields

sup
i
E ‖s̄i◦‖2 = sup

i
tr [E (̄si◦s̄

′
i◦)] = O (T ) , and similarly sup

i,`
E ‖s̄i`‖2 = O (T ) .

(S.20)

In addition, we have already established supi,`E ‖v̄i`‖
2 = O (T−1) (see (S.15)) and

supiE ‖v̄i◦‖
2 = O (T−1) (see (S.17)). Using these results in (S.19) yields supiE ‖TQs̄iv̄i‖ =

O (1), which in turn implies result (S.11).
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We establish (S.12) next. Taking expectation of Qs̄iv̄i , we have

E (Qs̄iv̄i) = T−1q−1

q∑
`=1

[E (̄si`v̄
′
i`)− E (̄si`v̄

′
i◦)− E (̄si◦v̄

′
i`) + E (̄si◦v̄

′
i◦)] , (S.21)

where s̄i` =
∑(`−1)Tq

t=1 uit+T
−1
q

∑`Tq
t=(`−1)Tq+1 (`Tq + 1− t) uit, s̄i◦ = T−1

∑T
t=1 (T − t+ 1) uit,

v̄i` = T−1
q

∑`Tq
t=(`−1)Tq+1 vit, v̄i◦ = T−1

∑T
t=1 vit, and vit = C∗i (L)uit with C∗i (L) =∑∞

j=0 C∗ijL
j. We consider each of the four terms inside the summation operator on

the right side of (S.21) in turn. For E (̄si`v̄
′
i`), we have

E (̄si`v̄
′
i`) =

1

Tq

(`−1)Tq∑
t=1

`Tq∑
t′=(`−1)Tq+1

E (uitv
′
it′)+

1

T 2
q

`Tq∑
t=(`−1)Tq+1

`Tq∑
t′=(`−1)Tq+1

(`Tq + 1− t)E (uitv
′
it′) .

(S.22)

Noting that

E (uitv
′
it′) =

{
ΣiC

∗′
i,t′−t, for t ≤ t′,

0, for t > t′,
(S.23)

we obtain

1

Tq

(`−1)Tq∑
t=1

`Tq∑
t′=(`−1)Tq+1

E (uitv
′
it′) =

1

Tq

(`−1)Tq∑
t=1

`Tq∑
t′=(`−1)Tq+1

ΣiC
∗′
i,t′−t.

Recalling that under Assumptions 1 and 2, supi ‖Σi‖ < K and supi
∥∥C∗′ij∥∥ < Kρj, for

ρ < 1, then it follows that

sup
i

∥∥∥∥∥∥ 1

Tq

(`−1)Tq∑
t=1

`Tq∑
t′=(`−1)Tq+1

E (uitv
′
it′)

∥∥∥∥∥∥ ≤ 1

Tq

(`−1)Tq∑
t=1

`Tq∑
t′=(`−1)Tq+1

sup
i
‖Σi‖ sup

i

∥∥C∗′i,t′−t∥∥ ,
≤ 1

Tq

(`−1)Tq∑
t=1

`Tq∑
t′=(`−1)Tq+1

Kρt
′−t,

≤ K

Tq

(`−1)Tq∑
t=1

ρ(`−1)Tq−t+1

Tq∑
j=0

ρj.

S.8



But both sums
∑Tq

j=0 ρ
j and

∑(`−1)Tq
t=1 ρ(`−1)Tq−t+1 are bounded in T (recall Tq = T/q

where q does not change with sample size and is fixed). Hence

sup
i

∥∥∥∥∥∥ 1

Tq

(`−1)Tq∑
t=1

`Tq∑
t′=(`−1)Tq+1

E (uitv
′
it′)

∥∥∥∥∥∥ = O
(
T−1

)
. (S.24)

For the second term on the right side of (S.22), we have

1

T 2
q

`Tq∑
t=(`−1)Tq+1

`Tq∑
t′=(`−1)Tq+1

(`Tq + 1− t)E (uitv
′
it′) =

=
1

T 2
q

`Tq∑
t=(`−1)Tq+1

(`Tq + 1− t)

 t−1∑
t′=(`−1)Tq+1

E (uitv
′
it′) +

`Tq∑
t′=t

E (uitv
′
it′)

 ,
and substituting (S.23), we obtain

1

T 2
q

`Tq∑
t=(`−1)Tq+1

`Tq∑
t′=(`−1)Tq+1

(`Tq + 1− t)E (uitv
′
it′)

=
1

T 2
q

`Tq∑
t=(`−1)Tq+1

(`Tq + 1− t)
`Tq∑
t′=t

ΣiC
∗′
i,t′−t =

1

T 2
q

Tq−1∑
k=0

(
ΣiC

∗′
ik

Tq∑
j=k+1

j

)
,

=
1

T 2
q

Tq−1∑
k=0

(Tq + k + 1) (Tq − k)

2
ΣiC

∗′
ik. (S.25)

Using (S.24) and (S.25) in (S.22) yields

sup
i

∥∥∥∥∥E (̄si`v̄
′
i`)−

1

T 2
q

Tq−1∑
k=0

(Tq + k + 1) (Tq − k)

2
ΣiC

∗′
ik

∥∥∥∥∥ = O
(
T−1

)
. (S.26)

Next consider E (̄si`v̄
′
i◦), and note that

E (̄si`v̄
′
i◦) =

1

T

(`−1)Tq∑
t=1

T∑
t′=1

E (uitv
′
it′) +

1

TqT

`Tq∑
t=(`−1)Tq+1

T∑
t′=1

(`Tq + 1− t)E (uitv
′
it′) .

(S.27)
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For the first term on the right side of (S.27), we obtain

1

T

(`−1)Tq∑
t=1

T∑
t′=1

E (uitv
′
it′) =

1

T

(`−1)Tq∑
t=1

[
t−1∑
t′=1

E (uitv
′
it′) +

T∑
t′=t

E (uitv
′
it′)

]
=

1

T

(`−1)Tq∑
t=1

T∑
t′=t

ΣiC
∗′
i,t′−t,

and using k = t′ − t, we have

1

T

(`−1)Tq∑
t=1

T∑
t′=1

E (uitv
′
it′) =

1

T

(`−1)Tq∑
t=1

T−t∑
k=0

ΣiC
∗′
ik =

1

T

(`−1)Tq∑
t=1

Tq−1∑
k=0

ΣiC
∗′
ik+

1

T

(`−1)Tq∑
t=1

T−t∑
k=Tq−1

ΣiC
∗′
ik,

where (noting that T = qTq) T−1
∑(`−1)Tq

t=1

∑Tq−1
k=0 ΣiC

∗′
ik = q−1 (`− 1)

∑Tq−1
k=0 ΣiC

∗′
ik,

and (noting that
∥∥C∗′ij∥∥ < Kρj and ‖Σi‖ < K)

sup
i

∥∥∥∥∥∥ 1

T

(`−1)Tq∑
t=1

T−t∑
k=Tq−1

ΣiC
∗′
ik

∥∥∥∥∥∥ ≤ 1

T

(`−1)Tq∑
t=1

T−t∑
k=Tq

sup
i
‖Σi‖ sup

i
‖C∗′ik‖ <

K

T

(`−1)Tq∑
t=1

T−t∑
k=Tq

ρk < K
(`− 1)Tq

T
ρTq

T−t−Tq∑
j=0

ρj < K2ρ
Tq ,

where |ρ| < 1. Hence

sup
i

∥∥∥∥∥∥ 1

T

(`−1)Tq∑
t=1

T∑
t′=1

E (uitv
′
it′)−

`− 1

q

Tq−1∑
k=0

ΣiC
∗′
ik

∥∥∥∥∥∥ = O
(
ρTq
)
. (S.28)

For the second term on the right side of (S.27), we have

1

TqT

`Tq∑
t=(`−1)Tq+1

T∑
t′=1

(`Tq + 1− t)E (uitv
′
it′) =

1

TqT

`Tq∑
t=(`−1)Tq+1

[
t−1∑
t′=1

(`Tq + 1− t)E (uitv
′
it′) +

T∑
t′=t

(`Tq + 1− t)E (uitv
′
it′)

]
,

=
1

TqT

`Tq∑
t=(`−1)Tq+1

T∑
t′=t

(`Tq + 1− t) ΣiC
∗′
i,t′−t.

S.10



Using k = t′ − t and j = t− (`− 1)Tq, we obtain

1

TqT

`Tq∑
t=(`−1)Tq+1

T∑
t′=t

(`Tq + 1− t) ΣiC
∗′
i,t′−t =

1

TqT

Tq∑
j=1

T−(`−1)Tq−j∑
k=0

(Tq + 1− j) ΣiC
∗′
ik.

Consider the case ` < q and ` = q in turn. For ` < q, we can write

T−(`−1)Tq−j∑
k=0

C∗′ik =

Tq−1∑
k=0

C∗′ik +

T−(`−1)Tq−j∑
k=Tq

C∗′ik,

where

sup
i

∥∥∥∥∥∥
T−(`−1)Tq−j∑

k=Tq

C∗′ik

∥∥∥∥∥∥ ≤
T−(`−1)Tq−j∑

k=Tq

sup
i
‖C∗′ik‖ < K

T−(`−1)Tq−j∑
k=Tq

ρk < K3ρ
Tq ,

since |ρ| < 1. Hence, for ` < q, we have

1

TqT

Tq∑
j=1

T−(`−1)Tq−j∑
k=0

(Tq + 1− j) ΣiC
∗′
ik =

1

TqT
Σi

Tq∑
j=1

[
(Tq + 1− j)

(
Tq−1∑
k=0

C∗′ik +O
(
ρTq
))]

,

=
1

TqT
Σi

Tq∑
j=1

Tq−1∑
k=0

(Tq + 1− j) C∗′ik +O
(
ρTq
)
,

=
1

TqT

(Tq + 1)Tq
2

Σi

Tq−1∑
k=0

C∗′ik +O
(
ρTq
)
.

where the O
(
ρTq
)
term is uniform in i. Noting that

1

TqT

(Tq + 1)Tq
2

=
1

2q
+O

(
T−1

)
,

and using the fact that upper bound O
(
ρTq
)
is dominated by O (T−1), we obtain (for

` < q )

1

TqT

`Tq∑
t=(`−1)Tq+1

T∑
t′=t

(`Tq + 1− t) ΣiC
∗′
i,t′−t =

1

2q

Tq−1∑
k=0

ΣiC
∗′
ik +O

(
T−1

)
,
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where the O (T−1) term is uniform in i. For ` = q, we have

1

TqT

Tq∑
j=1

T−Hq−1−j∑
k=0

(Tq + 1− j) ΣiC
∗′
ik =

1

TqT

Tq∑
j=1

Tq−j∑
k=0

(Tq + 1− j) ΣiC
∗′
ik,

=
1

TqT

Tq−1∑
k=0

(Tq + k + 1) (Tq − k)

2
ΣiC

∗′
ik.

But

1

TqT

Tq−1∑
k=0

(Tq + k + 1) (Tq − k)

2
ΣiC

∗′
ik =

1

TqT

Tq−1∑
k=0

(Tq + 1)Tq
2

ΣiC
∗′
ik−

1

TqT

Tq−1∑
k=0

(k + 1) k

2
ΣiC

∗′
ik,

where the second term can be bounded by

sup
i

∥∥∥∥∥ 1

TqT

Tq−j∑
k=1

(k + 1) k

2
ΣiC

∗′
ik

∥∥∥∥∥ < K

TqT

Tq−j∑
k=1

(k + 1) k

2
ρk = O

(
T−1

)
.

Hence regardless of ` = q or ` < q, we have

sup
i

∥∥∥∥∥∥ 1

TqT

`Tq∑
t=(`−1)Tq+1

T∑
t′=t

(`Tq + 1− t) ΣiC
∗′
i,t′−t −

1

2q

Tq−1∑
k=0

ΣiC
∗′
ik

∥∥∥∥∥∥ = O
(
T−1

)
(S.29)

Using (S.29) and (S.28) in (S.27) and noting that O
(
ρTq
)
is dominated by O (T−1),

we obtain

sup
i

∥∥∥∥∥E (̄si`v̄i◦)−
`− 1

q

Tq−1∑
k=0

ΣiC
∗′
ik −

1

2q

Tq−1∑
k=0

ΣiC
∗′
ik

∥∥∥∥∥ = O
(
T−1

)
. (S.30)
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Consider the term E (̄si◦v̄
′
i`) next.

E (̄si◦v̄
′
i`) =

1

TTq

T∑
t=1

`Tq∑
t′=(`−1)Tq+1

(T − t+ 1)E (uitv
′
it′) ,

=
1

TTq

`Tq∑
t′=(`−1)Tq+1

[
t′∑
t=1

(T − t+ 1)E (uitv
′
it′) +

T∑
t=t′+1

(T − t+ 1) (uitv
′
it′)

]
,

=
1

TTq

`Tq∑
t′=(`−1)Tq+1

t′∑
t=1

(T − t+ 1) ΣiC
∗′
i,t′−t.

Using k = t′ − t and j = t′ −Hs−1 − 1, we obtain

E (̄si◦v̄
′
i`) =

1

TTq

Tq−1∑
j=0

j+(`−1)Tq∑
k=0

(T − (`− 1)Tq − j + k) ΣiC
∗′
ik (S.31)

=
1

TTq

Tq−1∑
j=0

( ∑(`−1)Tq
k=0 (T − (`− 1)Tq − j + k) ΣiC

∗′
ik

+
∑j+(`−1)Tq

k=(`−1)Tq+1 [T − (`− 1)Tq − j + k] ΣiC
∗′
ik

)
.

But

sup
i

∥∥∥∥∥∥
j+(`−1)Tq∑

k=(`−1)Tq+1

(T − (`− 1)Tq − j + k) ΣiC
∗′
ik

∥∥∥∥∥∥ (S.32)

≤
j+(`−1)Tq∑

k=(`−1)Tq+1

(T − (`− 1)Tq − j + k) sup
i
‖Σi‖ sup

i
‖C∗′ik‖ < KT

j+(`−1)Tq∑
k=(`−1)Tq+1

ρk < K1ρ
T
1 ,

where |ρ| < ρ1 < 1. In addition,∥∥∥∥∥∥ 1

TTq

Tq−1∑
j=0

(`−1)Tq∑
k=0

kΣiC
∗′
ik

∥∥∥∥∥∥ ≤ 1

TTq

Tq−1∑
j=0

(`−1)Tq∑
k=0

k ‖Σi‖ ‖C∗′ik‖ <
K

TTq

Tq−1∑
j=0

(`−1)Tq∑
k=0

kρk.

Since
∑(`−1)Tq

k=0 kρk < K, we obtain

sup
i

∥∥∥∥∥∥ 1

TTq

Tq−1∑
j=0

(`−1)Tq∑
k=0

kΣiC
∗′
ik

∥∥∥∥∥∥ = O
(
T−1

)
. (S.33)
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Using (S.32) and (S.33) in (S.31), it follows

sup
i

∥∥∥∥∥∥E (̄si◦v̄i`)−
1

TTq

Tq−1∑
j=0

(`−1)Tq∑
k=0

(T − (`− 1)Tq − j) ΣiC
∗′
ik

∥∥∥∥∥∥ = O
(
T−1

)
.

Given that

1

TTq

Tq−1∑
j=0

(T − (`− 1)Tq − j) =
(2T − 2(`− 1)Tq − Tq + 1)Tq

2TTq
= 1−`− 1

q
− 1

2q
+O

(
T−1

)
,

it further follows

sup
i

∥∥∥∥∥∥E (̄si◦v̄i`)−
(

1− `− 1

q
− 1

2q

) (`−1)Tq∑
k=0

ΣiC
∗′
ik

∥∥∥∥∥∥ = O
(
T−1

)
. (S.34)

For the purpose of this proof, it is convenient to decompose

(`−1)Tq∑
k=0

ΣiC
∗′
ik =

Tq−1∑
k=0

ΣiC
∗′
ik +

(`−1)Tq∑
k=Tq

ΣiC
∗′
ik,

where, as before,

sup
i

∥∥∥∥∥∥
(`−1)Tq∑
k=Tq

ΣiC
∗′
ik

∥∥∥∥∥∥ ≤
(`−1)Tq∑
k=Tq

sup
i
‖Σi‖ sup

i
‖C∗′ik‖ < K

(`−1)Tq∑
k=Tq

ρk < K1ρ
Tq .

Using this result in (S.34) yields

sup
i

∥∥∥∥∥E (̄si◦v̄
′
i`)−

(
1− `− 1

q
− 1

2q

) Tq−1∑
k=0

ΣiC
∗′
ik

∥∥∥∥∥ = O
(
T−1

)
. (S.35)
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Finally for the last term, E (̄si◦v̄
′
i◦), we have

E (̄si◦v̄
′
i◦) =

1

T 2

T∑
t=1

T∑
t′=1

(T − t+ 1)E (uitv
′
it′) ,

=
1

T 2

T∑
t=1

(T − t+ 1)

[
t−1∑
t′=1

E (uitv
′
it′) +

T∑
t′=t

E (uitv
′
it′)

]

=
1

T 2

T∑
t=1

(T − t+ 1)
T∑
t′=t

ΣiC
∗′
i,t′−t,

=
1

T 2

T−1∑
k=0

(
ΣiC

∗′
ik

T∑
j=k+1

j

)
,

=
1

T 2

T−1∑
k=0

(T + k + 1) (T − k)

2
ΣiC

∗′
ik. (S.36)

It is further useful to split the sum above into first Tq terms and the remainder, which

can be appropriately bounded, namely

1

T 2

T−1∑
k=0

(T + k + 1) (T − k)

2
ΣiC

∗′
ik

=
1

T 2

Tq−1∑
k=0

(T + k + 1) (T − k)

2
ΣiC

∗′
ik +

1

T 2

T−1∑
k=Tq

(T + k + 1) (T − k)

2
ΣiC

∗′
ik,

where (noting that (T + k + 1) (T − k) /2T 2 = O(1))

sup
i

∥∥∥∥∥∥ 1

T 2

T−1∑
k=Tq

(T + k + 1) (T − k)

2
ΣiC

∗′
ik

∥∥∥∥∥∥ ≤
T−1∑
k=Tq

(T + k + 1) (T − k)

2T 2
sup
i
‖Σi‖ sup

i
‖C∗′ik‖ ,

< K

T−1∑
k=Tq

ρk < K1ρ
Tq .

Hence, we obtain for the last term E (̄si◦v̄
′
i◦),

sup
i

∥∥∥∥∥E (̄si◦v̄i◦)−
1

T 2

Tq−1∑
k=0

(T + k + 1) (T − k)

2
ΣiC

∗′
ik

∥∥∥∥∥ = O
(
ρTq
)
. (S.37)
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Consider now E (̄si`v̄
′
i`)−E (̄si`v̄

′
i◦)−E (̄si◦v̄

′
i`) +E (̄si◦v̄

′
i◦). Using (S.26), (S.30),

(S.35), and (S.37), we obtain

sup
i
‖E (̄si`v̄

′
i`)− E (̄si`v̄

′
i◦)− E (̄si◦v̄

′
i`) + E (̄si◦v̄

′
i◦)‖1 < sup

i

∥∥∥∥∥
Tq−1∑
k=0

akΣiC
∗′
ik

∥∥∥∥∥+
K

T
,

where ak, for k = 0, 1, ..., Tq − 1, are given by

ak =
(Tq + k + 1) (Tq − k)

2T 2
q

−
(
`− 1

q
+

1

2q

)
−
(

1− `− 1

q
− 1

2q

)
+

(T + k + 1) (T − k)

2T 2
,

=
Tq − k − k2

2T 2
q

+
T − k − k2

2T 2
= k

(
1

2kTq
− 1

2T 2
q

− k

2T 2
q

+
1

2Tk
− 1

2T 2
− k

2T 2

)
,

=
k

T

(
q

2k
− q

2Tq
− kq

2Tq
+

1

2k
− 1

2T
− k

2T

)
.

It is easily seen that |ak| <
(
k
T

)
K, and

sup
i

∥∥∥∥∥
Tq−1∑
k=0

akΣiC
∗′
ik

∥∥∥∥∥ <
Tq−1∑
k=0

|ak| sup
i
‖Σi‖ sup

i
‖C∗′ik‖ <

K

T

Tq−1∑
k=0

kρk = O
(
T−1

)
.

Hence

sup
i
‖E (̄si`v̄

′
i`)− E (̄si`v̄

′
i◦)− E (̄si◦v̄

′
i`) + E (̄si◦v̄

′
i◦)‖ = O

(
T−1

)
,

and using this bound in (S.21) yields supi ‖E (Qs̄iv̄i)‖1 = O (T−2), as required. This

completes the proof of (S.12).

Lemma 4 Suppose Assumptions 1 and 2 hold, m and q (≥ 2) are fixed, and con-

sider ξ̃iq = ξ̄iq − E
(
ξ̄iq
)
, where ξ̄iq = q−1

∑q
`=1 (v̄i`⊗s̄i`) − v̄i◦⊗s̄i◦, s̄i` and s̄i◦ are,

respectively, the sub-sample and full sample time averages of the partial sum process

sit =
∑t

`=1 uit, and v̄i` and v̄i◦ are, respectively, the sub-sample and full sample time

averages of vit = C∗i (L)uit =
∑∞

j=0 C∗ijui,t−j. Let κ = (4 + ε) /2 > 2, where ε > 0 is

the constant from Assumption 1. Then

sup
i,k,T

E
∣∣∣ξ̃iqk∣∣∣κ < K, (S.38)
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sup
i,`,T

E
∥∥∥√T (v̄i` − v̄i◦)

∥∥∥2κ

< K, (S.39)

and

sup
i,`,T

∥∥T−1/2s̄i`
∥∥2κ

< K, (S.40)

where ξ̃iqk is k-th element of ξ̃iq.

Proof. Denote the individual elements of v̄i` and s̄i` by v̄i`k and s̄i`k, for k =

1, 2, ...,m, respectively. These vectors depend on Tq but the subscript Tq is suppressed

to simplify notations. Given that m and q are fixed, suffi cient condition for (S.38) is

sup
i,`,`′,k,k′,T

E |v̄i`ks̄i`′k′|κ < K, (S.41)

where κ = (4 + ε) /2 > 2 since ε > 0 by Assumption 1. It is convenient to write

v̄i`ks̄i`′k′ as
(
T 1/2v̄i`k

) (
T−1/2s̄i`′k′

)
. Using Cauchy-Schwarz inequality, we obtain

E

∣∣∣∣(√T v̄i`k) s̄i`′k′√
T

∣∣∣∣κ ≤ (E ∣∣∣√T v̄i`k∣∣∣2κ)1/2
(
E

∣∣∣∣ s̄i`′k′√
T

∣∣∣∣2κ
)1/2

. (S.42)

Consider
√
T v̄i`k first, and note that it can be written as

√
T v̄i`k =

√
TT−1

q

`Tq∑
t=(`−1)Tq+1

e′kvit = qT−1/2

`Tq∑
t=(`−1)Tq+1

∞∑
h=0

e′kC
∗
ihui,t−h,

= q
∞∑
h=0

e′kC
∗
ih

T−1/2

`Tq∑
t=(`−1)Tq+1

ui,t−h

 = q
∞∑
h=0

e′kC
∗
ih

(
T−1/2ϑi`h,T

)
,(S.43)

where ek is m× 1 selection vector for k-th element, and ϑi`h,T =
∑`T/q

t=(`−1)T/q+1 ui,t−h

is sum of Tq = T/q independent random vectors distributed with zero means. Under

Assumption 1, supitE ‖uit‖
2κ = supitE ‖uit‖

4+ε < K. Hence, using the result on

moments of the sums of independent random variables given by equation (2) of Petrov
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(1992),16 we have (for a fixed q) supi`hT E ‖ϑi`h,T‖
2κ = O (T κ), and it follows

sup
i`hT

E
∥∥T−1/2ϑi`h,T

∥∥2κ
< K, (S.44)

Consider E
∥∥∥√T v̄i`k∥∥∥2κ

next. Using (S.43) and the Minkowski inequality, we obtain

the following upper bound

(
E
∥∥∥√T v̄i`k∥∥∥2κ

) 1
2κ

≤ q

∞∑
h=0

[
E
∥∥e′kC∗ih (T−1/2ϑi`h,T

)∥∥2κ
] 1

2κ
,

≤ q

∞∑
h=0

‖C∗ih‖
(
E
∥∥T−1/2ϑi`h,T

∥∥2κ
) 1

2κ
.

Using (S.44) and noting that under Assumption 2 supih
∑∞

h=0 ‖C∗ih‖ < K, we obtain

sup
i`kT

E
∥∥∥√T v̄i`k∥∥∥2κ

< K. (S.45)

Existence of a uniform bound for E
∣∣T−1/2s̄i`k

∣∣2κ is established next in a similar way.
Using (S.5), si`k is given by

si`k =

(`−1)Tq∑
t=1

uikt +
1

Tq

`Tq∑
t=(`−1)Tq+1

(`Tq + 1− t)uikt =

`Tq∑
t=1

ζ i`kt,T ,

where ζ i`kt,T = at`,Tuikt

at`,T =

{
1 for t = 1, 2, ..., (`− 1)Tq

T−1
q (`Tq + 1− t) for t = (`− 1)Tq + 1, ..., `Tq

,

and we have |at`,T | ≤ 1. Hence si`k is sum of independent random variables distributed

with zero means. In addition, Assumption 1 and |at`,T | ≤ 1 imply supi`ktT E
∣∣ζ i`kt,T ∣∣2κ.

Using equation (2) of Petrov (1992) we obtain supi`kT E |s̄i`k|
2κ = O (T κ), and it

follows

sup
i`kT

E

∣∣∣∣ s̄i`k√T
∣∣∣∣2κ < K. (S.46)

16Let X1, X2, ..., Xn be independent random variables and let Sn =
∑n

`=1X`. If E (X`) = 0 for
` = 1, 2, ..., n, and p ≥ 2 then E |Sn|p ≤ c (p)np/2−1

∑n
`=1E |X`|p, where c (p) > 0 depends only on

p. See Petrov (1992).
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Using (S.45) and (S.46) in (S.42) establishes (S.41). This completes the proof of

(S.38). Consider (S.39) next. Given that m and q are fixed, suffi cient condition for

(S.39) to hold is (S.45), which was already established. Similarly, the last result of

this lemma, (S.40), follows from (S.46). This completes the proof.

Lemma 5 ConsiderQv̄v̄ = T−1n−1q−1
∑n

i=1

∑q
`=1 (v̄i` − v̄i◦) (v̄i` − v̄i◦)

′ and suppose

Assumptions 1 and 2 hold, q (≥ 2) is fixed and m is fixed. Let κ = (4 + ε) /2 > 2,

where ε > 0 is the constant from Assumption 1. Then for any m× 1 vector b of unit

length, ‖b‖ = 1, we have

E
(
|b′Qv̄v̄b|κ

)
= O

(
n−κ/2T−2κ

)
. (S.47)

Proof. Denote (k, `)-th element of the scaledm×m matrix
√
nT 2Qv̄v̄ as q̃vv,k`, which

can be written as

q̃vv,k` = n−1/2

n∑
i=1

νikνi`,

where νik is k-th element of q−1
∑q

`=1

√
T (v̄i` − v̄i◦). Consider νikνi`. Using Cauchy-

Schwarz inequality,

E |νikνi`|κ ≤
(
E |νik|2κ

)1/2 (
E |νi`|2κ

)1/2
,

and by result (S.39) of Lemma 4, we obtain E |νikνi`|κ is uniformly bounded, namely

sup
k,`

E |νikνi`|κ < K.

Since νikνi` is independently distributed over i, we can use the result on moments

of the sums of independent random variables given by equation (2) of Petrov (1992),

and obtain E |q̃vv,k`|κ = O (1). This implies E
(
|b′ (
√
nT 2Qv̄v̄) b|κ

)
= O (1) for any

m× 1 vector b of unit length. Result (S.47) now readily follows.

Lemma 6 Consider Qw̄w̄ = T−1n−1q−1
∑n

i=1

∑q
`=1 (w̄i` − w̄i◦) (w̄i` − w̄i◦)

′ and sup-

pose the m × 1 vector wit is given by (1) without interactive time effects (Gi = 0),

Assumptions 1 to 3 hold, q (≥ 2) is fixed and m is fixed. Then

E
∣∣β′j0Qw̄w̄βj0

∣∣ = O
(
n−1/2T−2

)
, for j = 1, 2, ..., r0, (S.48)
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where βj0 are eigenvectors of (6q)−1 (q − 1) Ψn defined in Assumption 3.

Proof. Premultiplying (13) by B′0, postmultiplying by B0, and noting B′0Ci = 0 for

i = 1, 2, ..., n under Assumption 3, we obtain

B′0Qw̄w̄B0 = B′0Qv̄v̄B0,

where by the orthonormality requirement B′0B0 = Ir0 . Using Lemma 5, there exists

a positive constant K such that for any j = 1, 2, ..., r,

E
(
βj0Qv̄v̄βj0

)2
< Kn−1T−4.

Result (S.48) directly follows.

Lemma 7 Consider Qw̄w̄ = T−1n−1q−1
∑n

i=1

∑q
`=1 (w̄i` − w̄i◦) (w̄i` − w̄i◦)

′ and the

associated m × r matrix B̂0 given by orthonormal eigenvectors of Qw̄w̄ correspond-

ing to its r0 smallest eigenvalues collected in the r0 × r0 diagonal matrix Λ̂0 =

diag
(
λ̂1, λ̂2, ..., λ̂r0

)
. Suppose the m× 1 vector wit is given by (1) without interactive

time effects (Gi = 0), Assumptions 1 to 3 hold, m and q (≥ 2) are fixed integers.

Then

E
∥∥∥Λ̂0

∥∥∥ = O
(
n−1/2T−2

)
. (S.49)

Qw̄w̄B̂0 = Op

(
n−1/2T−2

)
. (S.50)

Proof. We have Qw̄w̄B̂0 = B̂0Λ̂0, where Λ̂0 = diag
(
λ̂1, λ̂2, ..., λ̂r0

)
is consisting of

r0 smallest eigenvalues of Qw̄w̄, denoted as 0 ≤ λ̂1 ≤ λ̂2 ≤ ... ≤ λ̂r0 , and B̂′0B̂0 = Ir.

Noting B′0B0 = Ir then

0 ≤ tr
(
Λ̂0

)
= tr

(
B̂′0Qw̄w̄B̂0

)
≤ tr (B′0Qw̄w̄B0) .

But result (S.48) of Lemma 6 implies E [tr (B′0Qw̄w̄B0)] = O
(
n−1/2T−2

)
and it follows

that E
∥∥∥Λ̂0

∥∥∥ = O
(
n−1/2T−2

)
, as required. Taking norm of Qw̄w̄B̂0 = B̂0Λ̂0, and

noting that
∥∥∥B̂0

∥∥∥ = 1, we obtain
∥∥∥Qw̄w̄B̂0

∥∥∥ ≤ ∥∥∥Λ̂0

∥∥∥. Taking expectations and using
(S.49) yields E

∥∥∥Qw̄w̄B̂0

∥∥∥ = O
(
n−1/2T−2

)
, and result (S.50) follows.

Lemma 8 Suppose Assumptions 1 to 3 hold, q (≥ 2) is fixed and m is fixed. Consider

ξ̄iq = q−1
∑q

`=1 (v̄i`⊗s̄i`) − v̄i◦⊗s̄i◦, where s̄i`, s̄i◦ are the sub-sample and full sample
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time averages of the partial sum process sit =
∑t

`=1 uit, and v̄i`,v̄i◦ are the sub-

sample and full sample time averages of vit = C∗i (L)uit =
∑∞

j=0 C∗ijui,t−j. Let Ωξqi =

V ar
(
ξ̄iq
)
and suppose Ωq = limn,T→∞

(
B̊′0⊗Ci

)
Ωξqi

(
B̊0⊗C′i

)
is positive definite.

Then

n−1/2

n∑
i=1

(
B̊′0⊗Ci

)
ξ̃iq →d N

(
0,Ωq

)
, (S.51)

for n, T →∞ jointly (in no particular order), where ξ̃iq = ξ̄iq − E
(
ξ̄iq
)
.

Proof. Let nT = n (T ) be any non-decreasing integer-valued function of T such that

limT→∞ nT = ∞, and let ω be any m2 × 1 vector of unit length, namely ‖ω‖ = 1.

Define the following triangular array

anT ,i =
1
√
nT
ω′Ω−1/2

q

(
B̊′0⊗Ci

) [
ξ̄iq − E

(
ξ̄iq
)]
,

where m2× 1 vector ξ̄iq depends on T , but this subscript is suppressed for notational

simplicity. By construction array {anT ,i} is zero mean. By assumption 1, uit is

independently distributed over i and t, and therefore anT ,i is independent of anT ,j for

i 6= j. In addition,
nT∑
i=1

V ar (anT ,i) = 1.

We establish next the Liapunov’s condition, given by

lim
n→∞

nT∑
i=1

E |anT ,i|
2+ε = 0 for some ε > 0, (S.52)

is met. Since Ωξq is positive definite then
∥∥∥ω′Ω−1/2

ξq

(
B̊′0⊗Ci

)∥∥∥ < K, and (S.52) will

hold if

sup
i,k,T

E
∣∣∣ξ̃iqk∣∣∣2+ε

< K for some ε > 0, (S.53)

where ξ̃iqk is k-th element of ξ̃iq. Lemma 4 establish (S.53) holds, and therefore

(S.52) is met, as required. Then, by Liapunov’s theorem (Theorem 23.11 in Davidson

(1994)), the Lindeberg condition is also met, and (S.51) follows by Theorem 23.6 in

Davidson (1994).

Lemma 9 Consider m × m matrices Qs̄iv̄i = T−1q−1
∑q

`=1 (̄si` − s̄i◦) (v̄i` − v̄i◦)
′,

where s̄i`, s̄i◦ are the sub-sample and full sample time averages of the partial sum
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process sit =
∑t

`=1 uit, and v̄i`,v̄i◦ are the sub-sample and full sample time averages

of vit = C∗i (L)uit =
∑∞

j=0 C∗ijui,t−j. Suppose Assumptions 1 and 2 hold, q(≥ 2) is

fixed and m is fixed. Then

n−1

n∑
i=1

CiQs̄iv̄i = Op

(
n−1/2T−1

)
+O

(
T−2

)
(S.54)

Proof. For the purpose of this proof, define m2 × 1 vector bnT obtained by vector-

ization of n−1
∑n

i=1 CiQs̄iv̄i ,

bnT = vec

(
n−1

n∑
i=1

CiQs̄iv̄i

)
= T−1n−1

n∑
i=1

(Im ⊗Ci) ξ̄iq,

where ξ̄iq = q−1
∑q

`=1 (v̄i`⊗s̄i`)− v̄i◦⊗s̄i◦. Denote the k-th element of bnT as bk,nT =

e′kbnT , where ek ism2×1 selection vector for the k-th element, k = 1, 2, ...,m2. Define

b̃k,nT = bk,nT − E (bk,nT ). Using result (S.12) of Lemma 3 and noting supi ‖Ci‖ < K

by Assumption 2, we obtain

sup
k
E (bk,nT ) = O

(
T−2

)
. (S.55)

Consider E
(
b̃k,nT

)2

next. We have

E
(
b̃k,nT

)2

= E


[
T−1n−1

n∑
i=1

e′k (Im ⊗Ci) ξ̃iq

]2
 ,

where ξ̃iq = ξ̄iq − E
(
ξ̄iq
)
. By construction E

(
ξ̃iq

)
= 0. In addition, ξ̃iq is indepen-

dent of ξ̃jq for any i 6= j. It follows

E
(
b̃k,nT

)2

= n−2

n∑
i=1

E
(
e′k (Im ⊗Ci) ξ̃iq

)2

,

≤ T−2n−2

n∑
i=1

‖e′k (Im ⊗Ci)‖2
E

(∥∥∥ξ̃iq∥∥∥2
)
.
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Using result (S.38) of Lemma 4 and supi ‖Ci‖ < K (by Assumption 2), then

sup
k
E
(
b̃k,nT

)2

= O
(
n−1T−2

)
. (S.56)

Using (S.55) and (S.56) in bk,nT = b̃k,nT + E (bk,nT ), we obtain (S.54).

Lemma 10 Consider m×m matrices Qf̄if̄i = T−1q−1
∑q

`=1 Gi

(
f̄` − f̄◦

) (
f̄` − f̄◦

)′
G′i,

Qf̄iv̄i = T−1q−1
∑q

`=1 Gi

(
f̄` − f̄◦

)
(v̄i` − v̄i◦)

′ andQf̄is̄i = T−1q−1
∑q

`=1 Gi

(
f̄` − f̄◦

)
(̄si` − s̄i◦)

′,

where f̄` and f̄◦ are the sub-sample and full sample time averages of ft =
∑∞

j=0 Φf`L
`εf,t−`,

s̄i` and s̄i◦ are the sub-sample and full sample time averages of the partial sum process

sit =
∑t

`=1 uit, and v̄i` and v̄i◦ are the sub-sample and full sample time averages of

vit = C∗i (L)uit =
∑∞

j=0 C∗ijui,t−j. Suppose Assumptions 1, 2 and 4 hold, and q(≥ 2),

m and mf are fixed. Then,

sup
i
E
∥∥Qf̄if̄i

∥∥ = O
(
T−2

)
, (S.57)

sup
i
E
∥∥Qf̄iv̄i

∥∥ = O
(
T−2

)
, (S.58)

and

sup
i
E
∥∥Qf̄is̄i

∥∥ = O
(
T−1

)
. (S.59)

Proof. Consider (S.57) first. We can write Qf̄if̄i as

Qf̄if̄i = GiQf̄ f̄G
′
i,

where

Qf̄ f̄ = T−1q−1

q∑
`=1

(
f̄` − f̄◦

) (
f̄` − f̄◦

)′
.

Taking norm, expectation and sup over i, we have

sup
i
E
∥∥TQf̄if̄i

∥∥ ≤ (sup
i
‖Gi‖

)2

E
∥∥Qf̄ f̄

∥∥ ≤ K · E
∥∥TQf̄ f̄

∥∥ , (S.60)

where supi ‖Gi‖ < K by Assumption 4. In addition, ft is a covariance stationary

process that satisfies essentially the same assumptions as the covariance stationary

process vit. Hence, using the same arguments as in the proof of result (S.9) in Lemma
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3 in Appendix, we obtain

E
∥∥TQf̄ f̄

∥∥ ≤ sup
`
E
∥∥f̄`∥∥2

+ sup
i
E
∥∥f̄◦∥∥2

= O
(
T−1

)
, (S.61)

where

sup
`
E
∥∥f̄`∥∥2

= O
(
T−1

)
and sup

i
E
∥∥f̄◦∥∥2

= O
(
T−1

)
. (S.62)

Using (S.61) in (S.60), we obtain (S.57).

Consider (S.58) next. We can write TQf̄iv̄i as

TQf̄iv̄i = q−1

q∑
`=1

Gi

(
f̄` − f̄◦

)
(v̄i` − v̄i◦)

′ = q−1

q∑
`=1

Gif̄`v̄
′
i` −Gif̄◦v̄

′
i◦.

Hence

E
∥∥TQf̄iv̄i

∥∥ ≤ q−1

q∑
`=1

‖Gi‖
(
E
∥∥f̄`∥∥2

)1/2 (
E ‖v̄i`‖2)1/2

+‖Gi‖
(
E
∥∥f̄◦∥∥2

)1/2 (
E ‖v̄i◦‖2)1/2

.

(S.63)

Using (S.15), (S.17), (S.62) and supi ‖Gi‖ < K (by Assumption 4) in (S.63), result

(S.58) follows.

Consider the last result, (S.59). Similarly to (S.63), we have

E
∥∥TQf̄is̄i

∥∥ ≤ q−1

q∑
`=1

‖Gi‖
(
E
∥∥f̄`∥∥2

)1/2 (
E ‖s̄i`‖2)1/2

+‖Gi‖
(
E
∥∥f̄◦∥∥2

)1/2 (
E ‖s̄i◦‖2)1/2

.

(S.64)

Using (S.20), (S.62) and supi ‖Gi‖ < K (by Assumption 4) in (S.64), result (S.59)

follows.

Lemma 11 ConsiderQw̄w̄ = T−1n−1q−1
∑n

i=1

∑q
`=1 (w̄i` − w̄i◦) (w̄i` − w̄i◦)

′ and sup-

pose the m× 1 vector wit is given by (48) featuring interactive time effects, Assump-

tions 1 to 4 hold, and q (≥ 2), m and mf are fixed. Then

E
∣∣β′j0Qw̄w̄β

′
j0

∣∣ = O
(
T−2

)
, for j = 1, 2, ..., r0, (S.65)

where βj0 (for j = 1, 2, ..., r0) are defined in Assumption 3.
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Proof. Premultiplying (13) by B′0, postmultiplying by B0, and noting B′0Ci = 0 for

i = 1, 2, ..., n under Assumption 3, we obtain

B′0Qw̄w̄B0 = B′0Qf̄ f̄B0 + B′0
(
Qf̄ v̄ + Qv̄f̄

)
B0 + B′0Qv̄v̄B0,

where by the orthonormality requirement B′0B0 = Ir0 . By Lemma 5, E ‖B′0Qv̄v̄B0‖ =

O
(
n−1/2T−2

)
. Using results (S.57) and (S.58) of Lemma 10, we obtainE

∥∥B′0Qf̄ f̄B0

∥∥ =

O (T−2) and

E
∥∥B′0 (Qf̄ v̄ + Qv̄f̄

)
B0

∥∥=O (T−2). Hence, the dominant term is O (T−2) and result

(S.65) follows.

Lemma 12 Consider Qw̄w̄ = T−1n−1q−1
∑n

i=1

∑q
`=1 (w̄i` − w̄i◦) (w̄i` − w̄i◦)

′ and the

associated m× r matrix B̂0 given by orthonormal eigenvectors of Qw̄w̄ corresponding

to its r0 smallest eigenvalues. Suppose the m× 1 vector wit is given by (48) featuring

interactive time effects, Assumptions 1 to 4 hold, and q (≥ 2), m and mf are fixed.

Then

Qw̄w̄B̂0 = Op

(
T−2

)
. (S.66)

Proof. Similarly to proof of result (S.50) in Lemma 7 in Appendix, when wit is

given by (48), we continue to have 0 ≤ tr
(
Λ̂
)

= tr
(
B̂′0Qw̄w̄B̂0

)
≤ tr (B′0Qw̄w̄B0).

But result (S.65) of Lemma 11 implies E [tr (B′0Qw̄w̄B0)] = O (T−2) and it follows

E
∥∥∥Λ̂∥∥∥ = O (T−2). Taking norm of Qw̄w̄B̂0 = B̂0Λ and noting

∥∥∥B̂0

∥∥∥ = 1, we ob-

tain
∥∥∥Qw̄w̄B̂0

∥∥∥ ≤ ∥∥∥Λ̂∥∥∥. Taking expectations and using E
∥∥∥Λ̂∥∥∥ = O (T−2) yields

E
∥∥∥Qw̄w̄B̂0

∥∥∥ = O (T−2), which is suffi cient for (S.66). This completes the proof.

Lemma 13 Suppose Assumptions 1 to 4 hold, and q (≥ 2), m and mf are fixed. Con-

sider ξ∗iq = q−1
∑q

`=1 (ω̄i` − ω̄i)⊗ (̄si` − s̄i), where s̄i`, s̄i◦ are the sub-sample and full

sample time averages of the partial sum process sit =
∑t

`=1 uit, and ω̄i`,ω̄i are the sub-

sample and full sample time averages of ωit = fit + vit, fit =
∑∞

j=0 Φfi`L
`εf,t−`, vit =∑∞

j=0 C∗ijui,t−j. LetΩξ∗qi = V ar
(
ξ̄
∗
iq

)
and supposeΩ∗q = limn,T→∞

(
B̊′0⊗Ci

)
Ωξ∗qi

(
B̊0⊗C′i

)
is positive definite. Then

n−1/2

n∑
i=1

(
B̊′0⊗Ci

)
ξ̃
∗
iq →d N

(
0,Ω∗q

)
, (S.67)

for n, T →∞ jointly (in no particular order), where ξ̃∗iq = ξ̄
∗
iq − E

(
ξ̄
∗
iq

)
.
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Proof. (S.67) can be established in a similar way as the proof of (S.51), but we
rely on a central limit theorems for martingales (Theorem 24.3 in Davidson (1994)),

since ξ̃
∗
iq is no longer independently distributed over i in the presence of unobserved

common factors.

S2 PME estimator for unbalanced panels

We assume there are n cross section units, i = 1, 2, ..., n, with each cross section unit

having Ti consecutive observations. We do not allow for gaps. Let Tm = maxTi.

We also assume all Ti’s expand at the same rate with n. Specifically, there exists

a positive constant κu > 0, which does not depend on the sample size, such that

Ti > κu · Tm, for i = 1, 2...., n.

In practice, these assumption may require excluding some observations to avoid

gaps, and excluding individual cross section units where Ti is very small compared

with the rest of the panel (see Subsection S2.1). In the exposition below, we assume

that the unbalanced panel satisfies the assumptions above.

To accommodate unbalanced panels, we consider the following generalization of

sub-sample time averages defined in Section 4 (see (6)),

w̄i` =
1

Ti`

Hi∑̀
t=Hi,`−1+1

wit, for ` = 1, 2, ..., qi, (S.1)

where Ti` = Hi` −Hi,`−1 is the sample size for computing sub-sample time average `

for unit i. We continue to assume Hi` > Hi,`−1, Ti =
∑qi

`=1 Ti`, with Ti` being of the

same order as Ti, namely there exists positive constants K > 0 that do not depend

on the sample size such that Ti`/max`=1,2,...,qi {Ti`} > K0 for all i and all `. The

number of sub-sample time averages, qi, in (S.1) are allowed to vary across units with

2 ≤ qi ≤ qm, where qm does not depend on the sample size. The time average w̄i◦ is

now defined by

w̄i◦ = q−1
i

qi∑
`=1

w̄i`,

and

Qw̄iw̄i = T−1
i q−1

i

qi∑
`=1

(w̄i` − w̄i◦) (w̄i` − w̄i◦)
′ .
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with the associated pooled version given by

Qw̄w̄ = n−1

n∑
i=1

Qw̄iw̄i = T−1
aven

−1

n∑
i=1

(
φiq
−1
i

qi∑
`=1

(w̄i` − w̄i◦) (w̄i` − w̄i◦)
′

)
,

where

φi =

(
Ti
Tave

)−1

and Tave =

(
n−1

n∑
i=1

T−1
i

)−1

.

Following the same arguments as in the case of balanced panels, it can be es-

tablished that E ‖Qv̄iv̄i‖1 < K/T 2
i , E ‖Qs̄iv̄i‖1 < K/Ti, and E ‖Qs̄is̄i‖ < K. These

results imply Qw̄w̄β = Op (T−1
ave) and we can use the eigenvectors corresponding to

the r0 smallest eigenvalues of Qw̄w̄ to estimate long-run relations subject to the exact

identifying assumptions.

To derive asymptotic distribution, let

Zi = Ci

[
φiq
−1
i

qi∑
`=1

(̄si` − s̄i◦) (v̄i` − v̄i◦)
′

]
B̊0−Ci

[
φiq
−1
i

qi∑
`=1

E (̄si` − s̄i◦) (v̄i` − v̄i◦)
′

]
B̊0,

(S.2)

and following the same arguments as in Section 4, we obtain

Qw̄w̄

√
nTave

(̂̊
B0 − B̊0

)
= −n−1/2

n∑
i=1

Zi +Op

(√
n

Tave

)
, (S.3)

Consider the exact identifying restrictions B̊0 =
(
Ir0 , B̊

′
0,2

)′
, where Ir0 is an identity

matrix of order r0. Let Θ̂ and Θ0 be the lower (m− r0) × r0 block of
̂̊
B0 and B̊0,

respectively. Then,
√
nTavevec

(
Θ̂−Θ0

)
converges to a normal distribution and the

variance of Θ̂ can be estimated as

V̂ ar
(
Θ̂
)

=
1

nT 2
ave

Q−1
22,w̄w̄Ω̂z,22Q

−1
22,w̄w̄, (S.4)

where

Ω̂z = n−1

n∑
i=1

φ2
i q
−2
i

qi∑
`=1

qi∑
`′=1

(
Ēi`⊗Im

)
(w̄i` − w̄i◦) (w̄i`′ − w̄i◦)

′ (Ē′i`′⊗Im
)
. (S.5)

and, as before, Q22,w̄w̄ and Ω̂z,22 are the (m− r0)× (m− r0) lower blocks of matrices
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Qw̄w̄ and Ω̂z, respectively.

S2.1 Implementation of unbalanced PME estimator in em-

pirical application

Let Tm = maxTi. In empirical application in Section 10 we exclude cross section

units with gaps in data and we exclude units with Ti < 20 years. The remaining

units are used for estimation, and we denote the number of these units as n.

Definition of sub-sample sample time averages in (S.1) is quite general, and allows

for a variety of asymptotically justified options to implement the PME estimator for

unbalanced panels. In view of inference in small samples being adversely affected by a

larger choices of q, we set qi = 2 for all i, and we divide the Ti consecutive observations

into two halves when Ti is even. If Ti is odd, we compute the first sub-sample time

average based on (Ti + 1) /2 observations, and the second sub-sample time average

based on the remaining (Ti − 1) /2 observations. This version of unbalanced PME

estimator is considered in the empirical application.

S3 Consistency and asymptotic distribution of PME

estimator in the model with interactive time

effects

Theorems 3-4 extends Theorems 1-2 to model with interactive time effects.

Theorem 3 Consider the panel data model for the m × 1 vector wit given by (48)

and suppose that Assumptions 1 to 4 hold, and the number of long-run relations, r0,

is known. Let B̂0 be formed from the first r0 orthonormalized eigenvectors of Qw̄w̄

given by (9), associated with its r0 smallest eigenvalues. Then for a fixed m, mf and

q (≥ 2), B̂0H→pB̊0 as n, T → ∞ jointly such that Tn ≈ nd and d > 0, for some

r0 × r0 non-singular matrix H.

Proof of Theorem 3. Using (18) in (51), we have

Qw̄w̄ = Ψn +Op

(
n−1/2

)
+Op

(
T−1

)
.
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Multiplying this expression by B̂′0 from the left and by B̂0 from the right, and noting

eigenvectors B̂0 are normalized so that B̂′0B̂0 = Ir yields

B̂′0Qw̄w̄B̂0 =
(q − 1)

6q
B̂′0ΨnB̂0 +Op

(
n−1/2

)
+Op

(
T−1

)
, (S.1)

where limn→∞Ψn = Ψ as n → ∞. (S.1) is the same as (A.7) with the exception of
the Op (T−1) term (as opposed to Op (T−2)). Consistency of B̂0 now follows using the

same arguments as in the proof of Theorem 1.

Theorem 4 Consider the panel data model for them×1 vector wit given by (48), and

suppose that Assumptions 1 to 4 hold, m, mf and q(≥ 2) are fixed, and the number

of long-run relations, r0 (m > r0 > 0) is known. Suppose further that the long-run

relations, B̊0, of interest are subject to the exact identifying restrictions, RB̊0= A,

given by (22), and consider the PME estimator of B̊0 given by
̂̊
B0= B̂0

(
RB̂0

)−1

A,

where B̂0 =
(
β̂10, β̂20, ..., β̂r0,0

)
are the first r0 orthonormalized eigenvectors of Qw̄w̄

defined by (9). Then

√
nT (Ir⊗Qw̄w̄) vec

(̂̊
B0 − B̊0

)
→d N

(
0,Ω∗q

)
, (S.2)

as n, T →∞, jointly such that T ≈ nd for d > 1/2, where

Ω∗q = limn,T→∞

[
n−1

n∑
i=1

(
B̊′0⊗Ci

)
Ωξ∗qi

(
B̊0⊗C′i

)]
, (S.3)

and Ωξ∗qi = V ar
(
ξ∗iq
)
, and Qw̄w̄ →p

(q−1)
6q

Ψ.

Proof of Theorem 4. Averaging (49) over i, we have

Qw̄w̄ = n−1

n∑
i=1

CiQs̄is̄iC
′
i + n−1

n∑
i=1

CiQs̄iv̄i + n−1

n∑
i=1

CiQs̄if̄i +

+n−1

n∑
i=1

Q′v̄is̄iC
′
i + n−1

n∑
i=1

Q′f̄is̄iCi + Qf̄ f̄ + Qf̄ v̄ + Qv̄f̄ + Qv̄v̄. (S.4)
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Multiplying both sides of (S.4) by B̊0 from the right, and noting that C′iB̊0 = 0 under

Assumption 3, we have

Qw̄w̄B̊0 =

(
n−1

n∑
i=1

CiQs̄iv̄i

)
B̊0+

(
n−1

n∑
i=1

CiQs̄if̄i

)
B̊0+Qf̄ f̄B̊0+Qf̄ v̄B̊0+Qv̄f̄B̊0+Qv̄v̄B̊0,

(S.5)

where by results (S.57)-(S.58) of Lemma 3, Qf̄ f̄ = Op (T−2), Qf̄ v̄ = Q′
v̄f̄

= Op (T−2),

and by result (S.47) of Lemma (5) Qv̄v̄ = Op

(
n−1/2T−2

)
. Using result (S.66) of

Lemma 12, we have
∥∥∥Qw̄w̄B̂0

∥∥∥ = Op (T−2), and given that ̂̊B0 is an Op (1) rotation

of B̂0, it follows

Qw̄w̄
̂̊
B0 = Op

(
T−2

)
. (S.6)

Subtracting (S.5) from (S.6) yields (noting Op (T−2) dominates Op

(
n−1/2T−2

)
)

Qw̄w̄

(̂̊
B− B̊0

)
= −

(
n−1

n∑
i=1

CiQs̄iv̄i

)
B̊0 +

(
n−1

n∑
i=1

CiQs̄if̄i

)
B̊0 +Op

(
T−2

)
.

Defining Qs̄iω̄i= Qs̄iv̄i
+ Qs̄if̄i and multiplying above equation by

√
nT we obtain,

Qw̄w̄

√
nT

(̂̊
B0 − B̊0

)
= −

(
n−1/2

n∑
i=1

TCiQs̄iω̄i

)
B̊0 +Op

(√
n

T

)
. (S.7)

Noting sit is independently distributed of fit′ for all t, t′, the first term on the right

side of (S.7) can be written as(
n−1/2

n∑
i=1

TCiQs̄iω̄i

)
B̊0 =

(
n−1/2

n∑
i=1

Z∗i

)
B̊0 +

√
n

T

[
n−1

n∑
i=1

CiE
(
T 2Qs̄iv̄i

)]
B̊0,

where Z∗i = Ci [TQs̄iω̄i − E (TQs̄iω̄i)] B̊0, and E (T 2Qs̄iω̄i) = E (T 2Qs̄iv̄i). Using

(A.12), it follows that

Qw̄w̄

√
nT
(̂̊
B0 − B̊0

)
= −n−1/2

n∑
i=1

Z∗i +Op

(√
n

T

)
,
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Vectorizing the above equation we have

(Ir⊗Qw̄w̄)
√
nT vec

(̂̊
B0 − B̊0

)
= n−1/2

n∑
i=1

(
B̊′0⊗Ci

)
ξ̃
∗
iq +Op

(√
n

T

)
, (S.8)

where ξ̃
∗
iq = ξ̄

∗
iq−E

(
ξ̄
∗
iq

)
, and ξ̄

∗
iq is given by (recall Z

∗
i = Ci [TQs̄iω̄i − E (TQs̄iω̄i)] B̊0

and Qs̄iω̄i = T−1q−1
∑q

`=1 (̄si` − s̄i◦) (ω̄i` − ω̄i◦)′)

ξ̄
∗
iq = q−1

q∑
`=1

vec
[
(̄si` − s̄i◦) (ω̄i` − ω̄i◦)′

]
= q−1

q∑
`=1

(ω̄i`⊗s̄i`)− ω̄i◦⊗s̄i◦.

Lemma 13 established convergence in distribution for n−1/2
∑n

i=1

(
B̊′0⊗Ci

)
ξ̃
∗
iq. Using

this Lemma in (S.8), and noting that d > 1/2 implies
√
n/T → 0 as n, T → ∞, we

obtain (S.2), as required.

S4 Description of Data Generating Processes

We have experiments with r0 = 0, 1, 2 long-run relations, and with and without inter-

active time effects. Overview of all experiments is provided in the paper. Subsection

S4.1 below provides full details of the DGPs with long-run relations and without in-

teractive time effects. Subsection S4.2 provides details of the DGPs without long-run

relations and without interactive time effects. Subsection S4.3 provides details on

augmentation of each of these DGPs with interactive time effects.

S4.1 Experiments with r0 = 1 and 2 long-run relations and

m = 3 variables

We consider the following data generating process for wit,

∆wit = di −Πiwi,t−1 + uit −Θiui,t−1, (S.1)

where

Πi = AiB
′
0,
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∆wit is m×1, Ai is m×r0, B0 is m×r0. To ensure that wit is not trended we impose

the restriction

di = Πiµiw = AiB
′
0µiw. (S.2)

We set m = 3 and consider two cases, one and two long-run relations, r0 = 1 and

r0 = 2.

For r0 = 1, B0= β0 = (1, 0,−1)′, and for r0 = 2

B0 =
(
β10 β20

)
=

 1 0

0 1

−1 −1

 .

The VARMA representation of (S.1) is given by

wit = di + (Im −AiB
′
0) wi,t−1 + uit −Θiui,t−1 (S.3)

which can be written more compactly as

Ψi(L)wit = di + (Im −ΘiL)uit, (S.4)

where Ψi(L) = Im −ΨiL, and Ψi = Im −AiB
′
0.

S4.1.1 Relation to Granger Representation

∆wit can be written as

∆wit = [Ci + (1− L)C∗i (L)] uit (S.5)

where C∗i (L) =
∑∞

`=0 C∗i`L
`. First differencing (S.4),

Ψi(L)∆wit = (Im −ΘiL)∆uit,

and using (S.5), we obtain

Ψi(L) [Ci + (1− L)C∗i (L)] = (Im −ΘiL)(1− L). (S.6)
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Using the above we obtain Ci and C∗i , ` = 1, 2, ... in terms of Ψi and Θi. Hence we

can relate the parameters of (S.1) to the general linear representation

wit = ai + Cisit + C∗i (L)uit. (S.7)

where sit = ui1 + ui2 + ....+ uit. Pre-multiplying by B′0, we obtain

B′0wit = B′0ai + B′0C
∗
i (L)uit.

S4.1.2 Parameterization

We would expect B0 to be more diffi cult to estimate the more persistent is B′0wit. In

the extreme case where Ai = 0, B0 is not identified. Pre-multiplying both sides of

(S.1) by B′0 yields

B′0∆wit = B′0di −B′0AiB
′
0wi,t−1 + B′0uit −B′0Θiui,t−1. (S.8)

Let ξit = B′0wit then

ξit = B′0di + (Ir −B′0Ai)ξi,t−1 + B′0uit −B′0Θiui,t−1. (S.9)

In the VAR(1) case where Θi = 0, the persistence of ξit = B′0wit is fully determined

by the largest eigenvalue of (Ir−B′0Ai). Allowing for the MA component complicates

the analysis of persistence of ξit, but it will still depend on the size of the eigenvalues

of (Ir − B′0Ai). As an approximation it is reasonable to control the eigenvalues of

(Ir −B′0Ai).

S4.1.3 Long run relations

When r0 = 1, we set B′0 = β′0 = (1, 0,−1) and Ai = (ai,11, ai,21, ai,31)′, and hence

B′0Ai = ai,11 − ai,31 = ρi. (S.10)
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In the case of VAR(1) the persistence of ξit does not depend on ai,21, which we set to 0,

for all i. We consider two sets of values for ρi and generate them as (for i = 1, 2, ..., n)

slow ρi ∼ IIDU [0.1, 0.2] , and

moderate ρi ∼ IIDU [0.1, 0.3] .

Slow speed of convergence corresponds to a median half-life of 4.3 periods (years)

and moderate speed of convergence corresponds to a median half-life of 3.1 periods

(years). Since both ai,11 and ai,31 are nonzero, long-run causality runs from wit,1 to

(wit,2, wit,3) as well as from wit,3 to wit,1. (S.10) leaves us with one free parameter to

determine Ai which we choose to control a system measure of fit, as described below.

When r0 = 2, we set the long-run relations as

B0 = (β10,β20) =

 1 0

0 1

−1 −1

 .
Let

Ai=

 ai,11 ai,12

ai,21 ai,22

ai,31 ai,32

 ,
then

I2 −B′0Ai = I2 −
(

1 0 −1

0 1 −1

) ai,11 ai,12

ai,21 ai,22

ai,31 ai,32

 ,
=

(
1− (ai,11 − ai,31) − (ai,12 − ai,32)

− (ai,21 − ai,31) 1− (ai,22 − ai,32)

)
.

Hence

I2 −B′0Ai =

(
1− ρi,11 −ρi,12

−ρi,21 1− ρi,22

)
. (S.11)
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The eigenvalues of this matrix are given by

λ1 = 1− 1

2
ρi,11 −

1

2
ρi,22 −

1

2

√
ρ2
i,11 − 2ρi,11ρi,22 + ρ2

i,22 + 4ρi,12ρi,21,

λ2 = 1− 1

2
ρi,11 −

1

2
ρi,22 +

1

2

√
ρ2
i,11 − 2ρi,11ρi,22 + ρ2

i,22 + 4ρi,12ρi,21.

To simplify the design we set ρi,12 = (ai,12 − ai,32) = 0 = ρi,21 = (ai,21 − ai,31) = 0.

then

ρi,11 = (ai,11 − ai,31) and ρi,22 = (ai,22 − ai,32) ,

and the eigenvalues are λ1 = 1 − ρi,11, and λ2 = 1 − ρi,22. A stable solution arises

so long as supi,j
∣∣1− ρi,jj∣∣ < 1. We consider two sets of values for ρi,11 and ρi,22 and

generate them as (for i = 1, 2, ..., n)

Slow ρi,11 ∼ IIDU [0.1, 0.2] ; Moderate ρi,11 ∼ IIDU [0.1, 0.3] ,

Slow ρi,22 ∼ IIDU [0.1, 0.2] ; Moderate ρi,22 ∼ IIDU [0.1, 0.3] .

We set ai,j` values below, to achieve a balance between the speed of convergence to

equilibrium, ρij, and the fit of the error correction equations.

S4.1.4 Deterministic terms, errors and initial values

We generate µiw = (µij,w) as µij,w ∼ IIDN(0, 1), for j = 1, 2, 3; and i = 1, 2, ..., n.

These parameters do not enter the distribution of the estimators of B0.

Errors: uit are generated as

uit = Puiεit, (S.12)

for i = 1, 2, ..., n, and t = 1, 2, ..., T , where two cases for considered for the distribution

of εit: Gaussian case with elements of εit generated as IIDN (0, 1), and non-Gaussian

case with individual elements of εit generated as IID from a chi-squared distribu-

tion with 4 degrees of freedom normalized to mean zero and unit variance, namely

[χ2 (4)− 4] /
√

8. Matrix Pui is a lower-triangular matrix computed as Choleski fac-

torization of Σi = PuiP
′
ui, where individual elements of Σi, denoted as σi,pq, for

p, q = 1, 2, 3 are generated as follows. We set the diagonal elements to one, namely

σi,pp = 1 for p = 1, 2, 3, and i = 1, 2, ..., n. We generate the off-diagonal elements as
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σi,pq = σi,qp ∼ IIDU (0, 0.5) for (p, q) ∈ {(1, 2) , (1, 3) , (2, 3)}, and i = 1, 2, ..., n. This

ensures Σi is symmetric and positive definite with a probability one.

For the MA part we consider two casesΘi = 0 (VAR design), andΘi = diag(θij, j =

1, 2, 3), with θij, j = 1, 2, 3 ∼ U(0, 0.50).

Initial values: We first generate ∆wit, for t = 1, 2, ..., T , using the represen-

tation, (S.1), and then cumulate these differences to obtain wit. To this end we

require the initial values B′wi0 and ∆wi0. Using the Granger representation let

Υi (L) = [Ci + (1− L)C∗i (L)] =
∑∞

`=0 Υi`L
`, and

∆wi0 =

∞∑
`=0

Υi,−`ui,−`, (S.13)

and B′0wi0 = B′0ai +
∑∞

`=0 B′0C
∗
i,−`ui,−`. Hence, E (B′0wi0 |ai ) = E (ξi0 |ai ) = B′0ai.

Also using (S.9), and noting that E (∆wi,t−1) = 0, we have

E (ξit |di,αi ) = B′di + (Ir −B′0Ai)E
(
ξi,t−1 |αi

)
,

and assuming |λmin(Ir −B′0Ai)| < 1 we obtain E (ξi0) = (B′0Ai)
−1B′0di. Therefore,

recalling that di = Πiµiw (see (S.2))

B′0wi0 = B′0µiw +
∞∑
`=0

B′0C
∗
i,−`ui,−`.

Using (S.7) we also have

V ar (B′0wit) = V ar (B′0wi0) = B′0

( ∞∑
s=0

C∗′isViC
∗
is

)
B0. (S.14)

We generate ∆wi0 and B′0wi0 according to

∆wi0 =
M∑
`=0

Υi,−`ui,−`, and B′0wi0 = B′0µiw +
M∑
`=0

B′0C
∗
i,−`ui,−`,

where we set M = 50.
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S4.1.5 Fit of error correction equations and setting the error correction
coeffi cients

An average measure of fit for them×1 system of equations for∆wit = (∆ẘit,1,∆ẘit,2, ...,∆ẘit,m)′

is given by

PR2
nT = 1−

∑m
j=1

∑T
t=1

∑n
i=1 u

2
it,j∑m

j=1

∑T
t=1

∑n
i=1(∆wit,j −∆w̄iT,j)2

, (S.15)

where ∆w̄iT,j = T−1
∑T

t=1 ∆wit,j. This system measure places equal weights on the

fit of the m different error-correcting (EC) equations. We can control for PR2
nT by

generating remaining free parameters in Ai.

S4.1.6 Case of r0 = 1 long-run relation in VAR(1) design

Using (S.15), and for Θi = 0, under stationarity and for large n, (T does not need to

be large given the cross-sectional independence of uit) we have

PR2
n = 1−

∑m
j=1

∑n
i=1 E

(
u2
it,j

)∑m
j=1

∑n
i=1E(∆wit,j −∆w̄iT,j)2

=

∑n
i=1 tr (AiΩiA

′
i)∑n

i=1 tr (AiΩiA′i) +
∑n

i=1 tr(Vi)
, (S.16)

where Ωi = V ar (B′0wi,t−1). Using (S.9) (when Θi = 0)we note that

ξit = B′0wi,t−1 = B′0di + (Ir −B′0Ai)ξi,t−1 + B′0uit,

and Ωi is given by

Ωi = (Ir −B′0Ai)Ωi(Ir −B′0Ai)
′ + B′0ViB0. (S.17)

In the case where r0 = 1, Ωi is a scalar, B0 = β1,0, and we have

Ωi =
β′1,0Viβ1,0.

1− (1− ρi)2
,

Hence

PR2
n =

∑n
i=1

(A′iAi)β′1,0Viβ1,0

1−(1−ρi)2∑n
i=1

(A′iAi)β′1,0Viβ1,0

1−(1−ρi)2 +
∑n

i=1 tr(Vi)
.
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For a given value of ρi, it is now possible to use A′iAi = a2
i,11 +α2

i,21 +α2
i,31 as a scaling

factor to achieve a desired value of PR2
n. But we need to take account of the fact

that ρi = ai,11 − ai,31 and both ai,11 and ai,31 can not be scaled up. Given ρi we set

A′iAi = (ρi + ai,31)2 + a2
i,21 + a2

i,31 = κ2,

and then derive ai,21 and ai,31 that satisfy the above equation. Then κ2 can be set in

terms of PR2
n :

κ2 =

(
1− PR2

n

PR2
n

) ∑n
i=1 tr(Vi)∑n

i=1

β′1,0Viβ1,0

1−(1−ρi)2

 . (S.18)

We can allow variations across ai,31 and ai,21, so long as (ρi + ai,31)2 + a2
i,21 + a2

i,31 =

κ2. To check the feasibility of the above procedure (results in real-valued ai,j`) we

set ai,21 = 0, and note that ai,31 must now satisfy the quadratic equation a2
i,31 +

ρiai,31 + 1
2

(ρ2
i − κ2) = 0. For this equation to have real solutions we must have

ρ2
i − 2(ρ2

i − κ2) > 0, or κ2 > supi ρ
2
i /2. We consider two values of PR

2
n = 0.20 and

0.30.

S4.1.7 Case of r0 = 2 long-run relations in VAR(1) design

Setting Qi = (Ir0 −B′0Ai), and using (S.17), we have17

vec (Ωi) = (Qi ⊗Qi) vec (Ωi) + vec (B′0ViB0)

Then

vec (Ωi) =
[
Ir2

0
− (Qi ⊗Qi)

]−1

vec (B′0ViB0) .

Also since

tr (AiΩiA
′
i) = tr (ΩiA

′
iAi) = vec (A′iAi)

′
vec (Ωi) ,

then

tr (AiΩiA
′
i) = vec (A′iAi)

′
[
Ir2

0
− (Qi ⊗Qi)

]−1

vec (B′0ViB0) ,

Ir2
0
− (Qi ⊗Qi) = diag(1− ρ2

i,11, 1− ρi,11ρi,22, 1− ρi,11ρi,22, 1− ρ2
i,22).

17Note that vec (ABC) = (C′ ⊗A) vec (B).
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As before A′iAi can be scaled up/down fixing the value of Qi. Recall from (S.11)

that (since ρi,12 = (ai,12 − ai,32) = 0, and ρi,21 = (ai,21 − ai,31) = 0),

Υi =

(
ρi,11 0

0 ρi,22

)

where ρi,11 = (ai,11 − ai,31) and ρi,22 = (ai,32 − ai,22). Noting that

PR2
n =

∑n
i=1 tr (AiΩiA

′
i)∑n

i=1 tr (AiΩiA′i) +
∑n

i=1 tr(Vi)
,

then
1− PR2

n

PR2
n

=

∑n
i=1 tr(Vi)∑n

i=1 vec (A′iAi)
′ [Ir2 − (Qi ⊗Qi)]

−1 vec (B′0ViB0)
,

where

A′iAi =

(
ai,11 ai,21 ai,31

ai,12 ai,22 ai,32

) ai,11 ai,12

ai,21 ai,22

ai,31 ai,32


=

( ∑3
s=1 a

2
i,s1

∑3
s=1 ai,s1ai,s2∑3

s=1 ai,s1ai,s2
∑3

s=1 a
2
i,s2

)
.

As before ρi,11 and ρi,22 are pre-set:

Slow ρi,11 ∼ IIDU [0.1, 0.2] ; Moderate ρi,11 ∼ IIDU [0.1, 0.3] ,

Slow ρi,22 ∼ IIDU [0.1, 0.2] ; Moderate ρi,22 ∼ IIDU [0.1, 0.3] .

and ρi,12 = (ai,12 − ai,32) = 0 = ρi,21 = (ai,21 − ai,31) = 0. Overall, we have the

following restrictions

ai,11 = ai,31 + ρi,11, and ai,22 = ai,32 + ρi,22

ai,12 = ai,32 and ai,21 = ai,31
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We are left with two free parameters to control the fit of the model. To this end note

that

A′iAi =(
(ai,31+ρi,11)2+2a2

i,31

(
ai,31 + ρi,11

)
ai,32+ai,31

(
ai,32 + ρi,22

)
+ai,31ai,32(

ai,31 + ρi,11

)
ai,32+ai,31

(
ai,32 + ρi,22

)
+ai,31ai,32 (ai,32+ρi,22)2+2a2

i,32

)
,

and A′iAi can scaled up by scaling on ai,31 and ai,32. We set ai,31 = ai,32 = κ which
yields

A′iAi =

(
ρ2
i,11+2κρi,11+3κ2

(
ρi,11 + ρi,22

)
κ + 3κ2(

ρi,11 + ρi,22

)
κ + 3κ2 ρ2

i,22+2κρi,22+3κ2

)
.

Then we solve the following equation for κ that yields a desired value of PR2
n

1− PR2
n

PR2
n

=

∑n
i=1 tr(Vi)∑n

i=1 vec (A′iAi) [Ir2 − (Qi ⊗Qi)]
−1 vec (B′0ViB0)

,

where

[Ir2 − (Qi ⊗Qi)]
−1 = diag(

1

1− ρ2
i,11

,
1

1− ρi,11ρi,22

,
1

1− ρi,11ρi,22

,
1

1− ρ2
i,22

).

We consider the same two values of PR2
n = 0.20 and 0.30.

S4.1.8 Case of VARMA(1,1) design

When Θi 6= 0, it is cumbersome to solve for PR2
n analytically. We proceed by

computing κ using stochastic simulations to ensure desired value of PR2
RnT (κ), where

PR2
RnT (κ) =

1

R

R∑
rep=1

PR2
nT (rep,κ) ,

and

PR2
nT (rep,κ) = 1−

∑m
j=1

∑T
t=1

∑n
i=1

(
u

(rep)
it,j

)2

∑m
j=1

∑T
t=1

∑n
i=1(∆w

(rep)
it,j −∆w̄

(rep)
iT,j )2

,

in which we use rep = 1, 2, ..., R to denote individual MC replications (R = 2000).

We solve PR2
RnT (κ) = 0.2 or 0.3 using grid search method.
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S4.2 Experiments with no long-run relations

Experiment with I (1) variables and r0 = 0 are based on the DGP given by

∆wit = Φi∆wi,t−1 + uit,

for i = 1, 2, ..., n, t = 1, 2, ..., T , where uit = Piεit, εit ∼ IIDN(0, Im), the error

covariance matrix PiP
′
i ≡ Σui = [σi,`q] , is generated using σi,`` = 1 for i = 1, 2, ..., n

and ` = 1, 2, 3, and σi,`q ∼ IIDU(0, 0.5), for ` 6= q , and i = 1, 2, ..., n. Matrix Φi

is diagonal with φij elements on the diagonal, for j = 1, 2, ...,m. We consider three

options for φij: (i) low values φij ∼ U [0, 0.8], (ii) moderate values φij ∼ U [0.7, 0.9],

and (iii) high values φij ∼ U [0.80, 0.95]. Initial values are generated as ∆wi0,j ∼
IIDN

[
0,
(
1− φ2

ij

)−1
]
for j = 1, 2, ...,m, and i = 1, 2, ..., n, andwi,−1 is set to 0. This

DGP is also a special case of (1). Specifically, it leads to wit = wi0 + Gift + Cisit +

C∗i (L)uit, where Ci = (Im −Φi)
−1, and C∗i (L) = −Φi (Im −Φi)

−1 (Im −ΦiL)−1.

S4.3 Experiments with interactive time effects

We augment the general linear process versions of the above VARMA and VAR

specifications with Gift , namely

wit = wi0 + Gift + Cisit + C∗i (L)uit, (S.19)

where Ci and C∗i (L) are obtained from the VARMA and VAR models above. ft is

an mf × 1 vector of unobserved common factors, Gi is an m ×mf matrix of factor

loadings. We set mf = 4 and generate latent factors, ft, to be serially correlated with

a break,

ft = ρf1
ft−1 +

√
1− ρ2

f1vft, for t = 1, 2, ..., [T/2]− 1,

ft = ρf2ft−1 +
√

1− ρ2
f2vt, for t = [T/2], [T/2] + 1, ..., T − 1,

where ρf1 = 0.6, ρf2 = 0.4, and vt ∼ IIDN
(
0, Imf

)
. Individual elements of Gi are

generated as IIDU [0.0.4].

S.41



S4.4 Design from Chudik, Pesaran and Smith (2021)

This design features m = 2 variables in wit = (w1,it, w2,it)
′, generated according to

the cross-sectionally independent DGP described in Section 3.1 of Chudik, Pesaran,

and Smith (2023a). In this design, wit is generated as

∆w1,it = ci − ai (w1,i,t−1 − w2,i,t−1) + u1,it, (S.20)

∆w2,it = u2,it, (S.21)

where ai ∼ IIDU [0.2, 0.3], u1,it = σ1ie1,it, u2,it = σ2ie2,it, σ2
1,i, σ

2
2,i ∼ IIDU [0.8, 1.2],(

e1,it

e2,it

)
∼ IIDN (02,Σe) , Σe ∼

(
1 ρei

ρei 1

)
, and ρei ∼ IIDU [0.3, 0.7] .

Full details of this design are provided in Section 3.1 of Chudik, Pesaran, and Smith

(2023a).

S4.5 List of individual experiments

Overall, we conducted 71 experiments for the estimation of r0 and 65 experiments for

the estimation of B0. Table provide a summary of these experiments. Monte Carlo

findings for individual experiments are available from authors upon request.
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TABLE S1: List of Monte Carlo experiments

A. Experiments with no long-run relations used for estimation of r0 only

Number of Interactive

experiments effects φi,``

6 yes, no low, moderate, high

B. Experiments with long-run relations and two-way long-run causality

Number of Interactive Error

experiments r0 effects Model distribution PR2 Speed of convergence

64 1,2 yes, no VAR(1), VARMA(1,1) Gaussian, chi-squared 0.2, 0.3 moderate, slow

C. Experiments with single long-run relation and one-way long-run causality

Number of

experiments

1 Design from Chudik, Pesaran and Smith (2021)

Notes: This table lists 71 Monte Carlo experiments.

S5 Sensitivity of r̃ to scaling

It is clear that eigenvalues of Qw̄w̄ depend on the scale of the observations, wit =

(wit,1, wit,2, ..., wit,m)′, and some form of scaling of data is required to reduce or elim-

inate the sensitivity of the estimator of r0 to scaling. In Section 8 in the body of the

paper, we proposed using eigenvalues of the correlation matrix Rw̄w̄ given by (54),

which, for convenience, we reproduce here:

Rw̄w̄ = [diag (Qw̄w̄)]−1/2 Qw̄w̄ [diag (Qw̄w̄)]−1/2 .

Accordingly, we defined in equation (55) the following estimator of r0,

r̃ =
m∑
j=1

I
(
λ̃j < T−δ

)
,

where λ̃j, for j = 1, 2, ...,m are the eigenvalues of Rw̄w̄ .

Consider the scaled vector ẇit = Dwit, where D = diag (d11, d22, ..., dmm) is a

diagonal m×m scaling matrix with dkk > 0 for all k = 1, 2, ...,m. Then matrix Ṙw̄w̄

computed based on scaled variables ẇit remains unaffected by the scaling matrix D,

namely Rw̄w̄ = Ṙw̄w̄ . However, this no longer true when differential scaling is consid-

ered, given by ẅit = Diwit, where Di = diag (di,11, di,22, ..., di,mm), for i = 1, 2, ..., n,
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are unit-specific diagonal scaling matrices with di,kk > 0 for all k = 1, 2, ...,m and

i = 1, 2, ..., n. In this case, matrix R̈w̄w̄ , computed based on ẅit, is affected by scaling,

namely R̈w̄w̄ 6= Rw̄w̄ in the general case where Di differs over i.

To investigate impact of differential scaling given by ẅit = Diwit on the small

sample performance of r̃, we consider additional Monte Carlo experiments below.

We generate Di = κiI3, for i = 1, 2, ..., n, where κi ∼ IIDU [1, 2]. We compare

the small sample performance of r̃ based on the original data wit and the scaled data

ẅit = Diwit = κiwit, for three experiments. Table S2 reports selection frequencies for

the estimation of r0 using r̃ based on original and scaled data as well as two choices of

q = 2 and 4 and two choices of exponent δ = 1/4 and 1/2, in experiments with r0 = 0

(no long-run relations), given by the first-differenced VAR(1) design (60) with high

persistence φi,`` ∼ U [0.80, 0.95]. Table S3 reports the same set of results in the case

of VAR(1) experiments with r0 = 1 long-run relation, interactive effects, low speed

of convergence, low value of PR2 = 0.2 and chi-squared distributed errors. Table

S4 below reports findings for VAR(1) experiments with r0 = 2 long-run relations,

interactive effects, low speed of convergence, low value of PR2 = 0.2 and chi-squared

distributed errors. Overall, these Monte Carlo findings show a very small dependence

of r̃ on the adopted differential scaling. In addition, these findings also show that

performance of r̃ is almost identical for the two choices of q = 2 and 4.
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TABLE S2: Selection frequencies for the estimation of r0 by eigenvalue thresholding

estimator r̃ with δ = 1/4 and 1/2, q = 2 and 4, and using original and scaled data,

in experiments with no long-run relation (r0 = 0), φij ∼ U [0.8, 0.95], and with

interactive time effects

Frequency r̃ = 0 Frequency r̃ = 1 Frequency r̃ = 2 Frequency r̃ = 3

n \ T 20 50 100 20 50 100 20 50 100 20 50 100
A. r̃ is computed using original data wit

Estimator r̃ with δ = 1/4 and q = 2

50 0.95 1.00 1.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
500 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3,000 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Estimator r̃ with δ = 1/4 and q = 4

50 0.97 1.00 1.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
500 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3,000 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Estimator r̃ with δ = 1/2 and q = 2

50 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
500 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3,000 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Estimator r̃ with δ = 1/2 and q = 4

50 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
500 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3,000 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
B. r̃ is computed using scaled data κiwit, κi ∼ IIDU [1, 2]

Estimator r̃ with δ = 1/4 and q = 2

50 0.92 1.00 1.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
500 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3,000 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Estimator r̃ with δ = 1/4 and q = 4

50 0.95 1.00 1.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
500 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3,000 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Estimator r̃ with δ = 1/2 and q = 2

50 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
500 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3,000 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Estimator r̃ with δ = 1/2 and q = 4

50 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
500 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3,000 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Notes: This table reports selection frequencies for the number of estimated long-run relations. r0 denotes the true

number of long-run relations. r̃ is given by (55), namely r̃ =
∑m
j=1 I

(
λ̃j < T−δ

)
, with λ̃j , j = 1, 2, ...,m, being the

eigenvalues of Rw̄w̄ defined by (54). See Subsection 9.1 in the paper for a summary of the design and Section S4 in
the supplement for the full description. Reported results are based on R = 2000 MC replications.
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TABLE S3: Selection frequencies for the estimation of r0 by eigenvalue thresholding

estimator r̃ with δ = 1/4 and 1/2, q = 2 and 4, and using original and scaled data,

in VAR(1) experiments with r0 = 1 long-run relation, slow speed of convergence

toward long run, chi-squared distributed errors, PR2
nT = 0.2, and with interactive

time effects

Frequency r̃ = 0 Frequency r̃ = 1 Frequency r̃ = 2 Frequency r̃ = 3

n \ T 20 50 100 20 50 100 20 50 100 20 50 100
A. r̃ is computed using original data wit

Estimator r̃ with δ = 1/4 and q = 2

50 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
500 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
3,000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Estimator r̃ with δ = 1/4 and q = 4

50 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
500 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
3,000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Estimator r̃ with δ = 1/2 and q = 2

50 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
500 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
3,000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Estimator r̃ with δ = 1/2 and q = 4

50 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
500 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
3,000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
B. r̃ is computed using scaled data κiwit, κi ∼ IIDU [1, 2]

Estimator r̃ with δ = 1/4 and q = 2

50 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
500 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
3,000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Estimator r̃ with δ = 1/4 and q = 4

50 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
500 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
3,000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Estimator r̃ with δ = 1/2 and q = 2

50 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
500 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
3,000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Estimator r̃ with δ = 1/2 and q = 4

50 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
500 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
3,000 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Notes: See notes to Table S2.

S.46



TABLE S4: Selection frequencies for the estimation of r0 by eigenvalue thresholding

estimator r̃ with δ = 1/4 and 1/2, q = 2 and 4, and using original and scaled data,

in VAR(1) experiments with r0 = 2 long-run relations, slow speed of convergence

toward long run, chi-squared distributed errors, PR2
nT = 0.2, and with interactive

time effects

Frequency r̃ = 0 Frequency r̃ = 1 Frequency r̃ = 2 Frequency r̃ = 3

n \ T 20 50 100 20 50 100 20 50 100 20 50 100
A. r̃ is computed using original data wit

Estimator r̃ with δ = 1/4 and q = 2

50 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
500 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

1,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
3,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

Estimator r̃ with δ = 1/4 and q = 4

50 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
500 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

1,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
3,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

Estimator r̃ with δ = 1/2 and q = 2

50 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
500 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

1,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
3,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

Estimator r̃ with δ = 1/2 and q = 4

50 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
500 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

1,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
3,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
B. r̃ is computed using scaled data κiwit, κi ∼ IIDU [1, 2]

Estimator r̃ with δ = 1/4 and q = 2

50 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
500 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

1,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
3,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

Estimator r̃ with δ = 1/4 and q = 4

50 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
500 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

1,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
3,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

Estimator r̃ with δ = 1/2 and q = 2

50 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
500 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

1,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
3,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

Estimator r̃ with δ = 1/2 and q = 4

50 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
500 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

1,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
3,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

Notes: See notes to Table S2.
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S6 Robustness of PME estimators to GARCH and

threshold autoregressive effects

We also conduct Monte Carlo experiments to investigate robustness of PME estima-

tors to GARCH and threshold autoregressive (TAR) effects. To this end, we replace

uit with

ξit = Φ+I
(
ξi,t−1 > 0

)
ξi,t−1 + Φ−I

(
ξi,t−1 ≤ 0

)
ξi,t−1 + vit,

for t = −50,−49, ..., 0, 1, 2, ..., T , with initial values ξi,−51 = 0,

I
(
ξi,t−1 > 0

)
=

 I
(
ξit,1 > 0

)
0 0

0 I
(
ξit,2 > 0

)
0

0 0 I
(
ξit,3 > 0

)
 ,

I (.) is an indicator function,

Φ− = φ−I3, and Φ+ = φ+I3.

vit = (vit,1, vit,2, vit,3)′ is generated according to vit = DitPiεit, where εit is generated

as before, namely individual elements are either IIDN (0, 1), or generated as IID

from a chi-squared distribution with 4 degrees of freedom normalized to mean zero

and unit variance, namely [χ2 (4)− 4] /
√

8. Pi is Choleski factor of Ri = PiP
′
i, and

Ri ∼

 1 ρεi,12 ρεi,13

ρεi,12 1 ρεi,23

ρεi,13 ρεi,23 1

 , ρεi,pq ∼ IIDU [0, 0.5] ,

for (p, q) ∈ {(1, 2) , (1, 3) , (2, 3)}, and i = 1, 2, ..., n. We generate Dit, for i =

1, 2, ..., n, and t = −50,−49, ..., 0, 1, 2, ..., T , as

Dit =

 σit,1 0 0

0 σit,2 0

0 0 σit,3

 ,
where

σ2
it,q =

(
1− ψi1,q − ψi2,q

)
+ ψi1,qε

2
i,t−1,q + ψi1,qσ

2
i,t−1,q,
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for q = 1, 2, 3, and t = −50,−49, ..., 0, 1, 2, ..., T , with initial values σ2
i,−51,q = 1.

Experiments with GARCH effects are given by

ψi1,q ∼ IIDU (0.2, 0.3) , ψi2,q ∼ IIDU (0.3, 0.6) ,

for q = 1, 2, 3 and i = 1, 2, ..., n. Experiments with TAR effects are given by φ− = 0.2

and φ+ = 0.6.

Overall, we consider baseline experiments without GARCH and TAR effects (ψi1,q =

ψi2,q = φ− = φ+ = 0), experiments with GARCH effects, experiments with TAR ef-

fects, and experiments featuring both GARCH and TAR effects. Tables S5 and S6

report Monte Carlo findings for three-variable VARMA(1,1) as the DGP with r0 = 2

long-run rlations, chi-squared distributed errors, PR2
nT = 0.2, moderate speed of

convergence toward long run, and with interactive time effects.
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TABLE S5: Selection frequencies for the estimation of r0 = 2 by eigenvalue

thresholding estimator, r̃ with δ = 1/4 and 1/2 using three-varaible V ARMA(1, 1)

as the DGP with r0 = 2 long-run relations, chi-squared distributed errors,

PR2
nT = 0.2, moderate speed of convergence toward long run, and with interactive

time effects.

Frequency r̃ = 0 Frequency r̃ = 1 Frequency r̃ = 2

n \ T 20 50 100 20 50 100 20 50 100
A. Baseline experiments without GARCH and without TAR effects

Correlation matrix eigenvalue thresholding estimator r̃, with δ = 1/4

50 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
500 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00

1,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
3,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00

Correlation matrix eigenvalue thresholding estimator r̃, with δ = 1/2

50 0.00 0.00 0.00 0.05 0.00 0.00 0.95 1.00 1.00
500 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00

1,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
3,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
B. Experiments with GARCH effects

Correlation matrix eigenvalue thresholding estimator r̃, with δ = 1/4

50 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
500 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00

1,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
3,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00

Correlation matrix eigenvalue thresholding estimator r̃, with δ = 1/2

50 0.00 0.00 0.00 0.07 0.00 0.00 0.93 1.00 1.00
500 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00

1,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
3,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
C. Experiments with TAR effects

Correlation matrix eigenvalue thresholding estimator r̃, with δ = 1/4

50 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
500 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00

1,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
3,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00

Correlation matrix eigenvalue thresholding estimator r̃, with δ = 1/2

50 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
500 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00

1,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
3,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
D. Experiments with GARCH and TAR effects

Correlation matrix eigenvalue thresholding estimator r̃, with δ = 1/4

50 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
500 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00

1,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
3,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00

Correlation matrix eigenvalue thresholding estimator r̃, with δ = 1/2

50 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
500 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00

1,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
3,000 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00

Notes: This table reports selection frequencies for the number of estimated long-run relations. r0 denotes the true

number of long-run relations. r̃ is given by (55), namely r̃ =
∑m
j=1 I

(
λ̃j < T−δ

)
, with λ̃j , j = 1, 2, ...,m, being the

eigenvalues of Rw̄w̄ defined by (54). See Sections S4 and S6 in the supplement for the full description of the design.
Reported results are based on R = 2000 MC replications.
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TABLE S6: Simulated bias, RMSE, size and power for the PME estimation of β13,0

in three variable VARMA(1,1) experiments with r0 = 2 long run relations,

chi-squared distributed errors, PR2
nT = 0.2, moderate speed of convergence toward

long run, and with interactive time effects

Bias (×100) RMSE (×100) Size (×100) Power (×100)
n\T 20 50 100 20 50 100 20 50 100 20 50 100

A. Baseline experiments without GARCH and without TAR effects
PME estimator with q = 2 sub-samples

50 -1.12 -0.38 -0.20 8.60 4.85 2.91 7.95 7.20 7.65 10.50 13.40 25.95
500 -0.59 -0.34 -0.15 2.76 1.58 0.90 6.85 5.65 5.70 28.10 59.50 94.20

1,000 -0.44 -0.28 -0.14 1.95 1.13 0.66 6.35 6.05 6.00 46.60 85.55 99.70
3,000 -0.59 -0.29 -0.11 1.22 0.70 0.38 9.05 7.15 5.35 92.10 99.95 100.00

PME estimator with q = 4 sub-samples
50 -1.86 -0.90 -0.30 7.00 3.97 2.18 6.50 6.50 7.00 12.55 19.30 38.25
500 -1.48 -0.81 -0.23 2.62 1.47 0.70 10.50 9.55 5.90 52.95 86.95 99.60

1,000 -1.39 -0.75 -0.22 2.07 1.14 0.53 14.70 12.20 7.55 81.00 98.90 100.00
3,000 -1.51 -0.76 -0.21 1.74 0.91 0.34 38.25 29.70 11.60 99.95 100.00 100.00
B. Experiments with GARCH effects

PME estimator with q = 2 sub-samples
50 -1.55 -0.45 -0.25 9.95 5.29 3.07 9.05 8.80 8.15 11.70 14.45 26.90
500 -0.54 -0.32 -0.15 3.28 1.76 0.94 6.70 6.35 4.65 22.85 51.05 90.55

1,000 -0.43 -0.32 -0.13 2.33 1.27 0.71 6.90 6.45 6.65 34.50 77.15 99.50
3,000 -0.58 -0.31 -0.11 1.46 0.79 0.41 7.60 7.50 5.90 76.10 99.00 100.00

PME estimator with q = 4 sub-samples
50 -2.23 -0.97 -0.34 8.22 4.37 2.30 7.80 7.65 7.85 14.10 19.30 36.95
500 -1.45 -0.82 -0.25 2.97 1.61 0.75 8.95 9.70 6.90 41.60 77.35 98.90

1,000 -1.35 -0.78 -0.22 2.30 1.25 0.56 11.20 12.20 6.85 63.25 96.00 100.00
3,000 -1.50 -0.77 -0.21 1.83 0.96 0.36 27.50 26.40 10.20 97.50 100.00 100.00
C. Experiments with TAR effects

PME estimator with q = 2 sub-samples
50 1.56 -0.12 -0.08 6.54 3.50 1.71 9.60 7.90 8.55 7.90 17.70 50.25
500 2.78 0.30 0.05 3.44 1.11 0.53 30.40 5.90 4.80 6.30 71.10 100.00

1,000 2.84 0.33 0.08 3.18 0.82 0.39 52.15 6.90 5.70 5.95 94.25 100.00
3,000 2.74 0.31 0.07 2.86 0.55 0.23 92.00 12.10 6.15 6.65 100.00 100.00

PME estimator with q = 4 sub-samples
50 1.48 -0.36 -0.12 5.38 3.02 1.43 9.50 7.40 8.45 7.10 22.95 64.40
500 2.64 -0.03 0.06 3.12 0.91 0.43 36.70 3.95 4.80 6.00 90.80 100.00

1,000 2.68 0.01 0.07 2.93 0.65 0.32 63.40 4.95 5.60 6.15 99.35 100.00
3,000 2.58 0.01 0.07 2.67 0.38 0.19 96.75 5.25 6.10 9.50 100.00 100.00
D. Experiments with GARCH and TAR effects

PME estimator with q = 2 sub-samples
50 1.32 -0.09 -0.06 6.80 3.45 1.66 8.35 8.20 6.85 7.80 18.55 51.60
500 2.64 0.34 0.07 3.41 1.12 0.52 23.95 6.25 4.70 6.55 70.65 100.00

1,000 2.66 0.34 0.09 3.04 0.82 0.39 42.45 7.30 6.70 5.55 94.05 100.00
3,000 2.54 0.31 0.07 2.69 0.55 0.22 82.10 10.85 5.90 8.35 100.00 100.00

PME estimator with q = 4 sub-samples
50 1.23 -0.32 -0.12 5.52 2.97 1.37 7.25 7.00 7.20 7.00 22.90 66.10
500 2.46 0.01 0.07 3.02 0.92 0.43 28.00 4.90 5.40 5.50 89.20 100.00

1,000 2.48 0.04 0.08 2.76 0.65 0.32 50.15 4.90 7.05 5.70 99.40 100.00
3,000 2.36 0.02 0.07 2.47 0.38 0.19 91.05 5.05 6.40 13.00 100.00 100.00

Notes: The long-run relations are given by β′1,0wit = wit,1 − wit,3 and β′2,0wit = wit,2 − wit,3, and identified using
β11,0 = β22,0 = 1, and β12,0 = β21,0 = 0. Reported results are based on R = 2, 000 Monte Carlo replications.
Simulated power are computed under H1 : β13 = −0.97, as alternatives to −1 under the null. A detailed account of
the data generating processes provided in Section S4 and S6 of this supplement. Size and Power are computed at 5
percent nominal level.
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S7 Supplementary information for micro applica-

tion

S7.1 Data sources

All data is fromWharton Research Data Services, WRDS, available at wrds.wharton.upenn.edu,

accessed on 2023-04-20. Specifically, our variables come from annual “CRSP/Compustat

Merged”database available throughWRDS.We follow literature (Geelen et al. (2024))

in constructing the variables listed in Table S5.

TABLE S5: Variable description*

Variable Definition Compustat item

MV Market value CSHO × PRCC_F
BV Book value See Note 1

DO Total debt outstanding, DO=SD+LT DLC+DLTT

SD Short-term debt DLC

LD Long-term debt DLTT

TA Total assets AT

Notes: (*) The source for all variables is Wharton Research Data Services, wrds.wharton.upenn.edu, accessed on
2023-04-20. Variables come from annual “CRSP/Compustat Merged”database available through WRDS.
(1) Book value = the book equity of shareholders + compustat item TXDITC - book value of preferred stocks. The
book equity of shareholders is given by (in sequential order, depending on availability): (i) compustat item SEQ, or
(ii), common equity (compustat item CEQ) + par value of preferred stock (compustat item PSTK), or (iii) total
assets (compustat item AT) - total liabilities (compustat item LT). The book value of preferred stocks is computed
as (in sequential order, based on availability): (i) the redemption value (compustat item PSTKRV), or (ii) the
liquidation value (compustat item PSTKL), or (iii) the par value (compustat item PSTK).

S7.2 Data availability, variable construction and summary

statistics

Data availability is summarized in Table S6, for the three variable sets we consid-

ered: {DO, TA}, {SD, LD, TA},{DO, BV, MV}. We apply following data filters (in

sequential order) to each of the variable set and data sample separately.

Filter 1. We omit firms with gaps in the data for the given variable set and sample, and

firms with Ti < 20 (unbalanced samples).

Filter 2. We omit firms with nonpositive entries on any of the variable in the given set

and sample.
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Filter 3. We omit firms where, for a given sample and variable set, average value of key

ratios fall below 1 or above 99 percentiles estimated after the application of the

first two filters.

Filter 1 ensures that suffi cient data exists, Filter 2 excludes firms with negative or

zero values, and Filter 3 is the outlier filter based on percentiles of key ratios. Tables

S3-S5 report summary statistics for each variable set after all filters were applied.

TABLE S6: Number of firms with available data

1950-2021 1950-2010

Variable set DO, TA

Filter 1 4193 3010

Filter 1, 2 2546 1909

Filter 1, 2, 3 2531 1901

Variable set SD, LD, TA

Filter 1 4193 3010

Filter 1, 2 1379 1110

Filter 1, 2, 3 1365 1101

Variable set DO, BV, MV

Filter 1 2907 2196

Filter 1, 2 1419 1172

Filter 1, 2, 3 1403 1164

Notes: Variable definitions are provided in Table S5. Filter 1 omits firms with gaps in the data for

the given variable set and sample, and firms with fewer than 20 years. Filter 2 omits firms with

nonpositive entries. Filter 3, omits firms where average value of key ratios fall below 1 or above 99

percentiles after the application of the first two filters
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TABLE S7: Summary Statistics (min, mean, median, max) for individual variables

and ratios in the variable set {DO, TA} after the application of all filters.

1950-2021 1950-2010

Variable DO

min 0.001 0.001

median 160.4 94.77

mean 3,405 1,837

max 889,300 889,300

Variable TA

min 0.283 0.126

median 689.8 371.7

mean 13,809 6,621

max 3,743,567 3,001,251

Ratio DO/TA

min 0.000 0.000

median 0.270 0.276

mean 0.290 0.294

max 4.434 6.789

Notes: Unit for the top part of this table reporting the summary statistics for individual variables

is million U.S. dollars.
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TABLE S8: Summary Statistics (min, mean, median, max) for individual variables

and ratios in the variable set {SD, LD, TA} after the application of all filters.

1950-2021 1950-2010

Variable SD

min 0.001 0.001

median 21.77 12.98

mean 2,081 1,071

max 614,237 562,857

Variable LD

min 0.001 0.001

median 133.4 78.77

mean 2,882 1,453

max 486,876 486,876

Variable TA

min 0.652 0.652

median 795.7 419.2

mean 19,510 8,482

max 3,743,567 2,264,909

Ratio SD/TA

min 0.000 0.000

median 0.039 0.041

mean 0.066 0.067

max 1.585 1.585

Ratio LD/TA

min 0.000 0.000

median 0.215 0.217

mean 0.233 0.233

max 1.752 1.752

Notes: Unit for the top part of this table reporting the summary statistics for individual variables

is million U.S. dollars.
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TABLE S9: Summary Statistics (min, mean, median, max) for individual variables

and ratios in the variable set {DO, BV, MV} after the application of all filters.

1950-2021 1950-2010

Variable DO

min 0.002 0.002

median 138.9 91.61

mean 2,178 1,212

max 889,300 889,300

Variable BV

min 0.079 0.079

median 269.2 178.7

mean 2,752 1,594

max 595,878 212,294

Variable MV

min 0.177 0.177

median 377.0 227.4

mean 5,007 2,908

max 662,627 504,240

Ratio DO/MV

min 0.000 0.000

median 0.455 0.486

mean 0.832 0.869

max 63.26 63.26

Ratio BV/MV

min 0.002 0.003

median 0.773 0.833

mean 0.997 1.066

max 27.85 31.89

Notes: Unit for the top part of this table reporting the summary statistics for individual variables

is million U.S. dollars.
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TABLE S10: IPS unit root test results for 40-year balanced sample ending 2021

Panel unit root test results

Lag order: p = 1 p = 2 p = 1 p = 2 p = 1 p = 2

A. Panel unit root test results for the variable set DO, TA (n = 336)
DO TA

IPS stat.: -1.534 -1.504 -1.45 -1.457

B. Panel unit root test results for the variable set SD, LD, TA (n = 176)
SD LD TA

IPS stat.: -2.344** -2.067** -1.492 -1.419 -1.561 -1.585

C. Panel unit root test results for the variable set DO, BV, MV (n = 175)
DO BV MV

IPS stat.: -1.328 -1.215 -1.153 -1.165 -1.328 -1.351

Notes: This table reports IPS panel unit root test statistics by Im, Pesaran, and Shin (2003) for balanced sample
using 40 years ending 2021. Rejections at 5 and 1 percent nominal level are highlighted by * and **, respectively.

S8 Supplementary information for macro applica-

tions

We use Penn World Table database, version 10.01, available at

https://www.rug.nl/ggdc/productivity/pwt/. This dataset contains unbalanced an-

nual macroeconomic data covering the period 1950−2019. The following variables are

constructed (variable names correspond to the variable identifiers in PWT database)

1. (Exports per-capita and imports per-capita), exppc=csh_x×rgdpna/pop and
imppc=-csh_m×rgdpna/pop

2. (Real wages and productivity per hour worked) ewageph=labsh×rgdpna/(emp×avh)
and prodph=rgdpna/(emp×avh)

3. (Output and Capital in effi ciency units) connapc=(csh_c×rgdpna)/pop, in-
vnapc=(csh_i×rgdpna)/pop, rgdpnapc=rgdpna/pop,

where: rgdpna is Real GDP at constant 2017 national prices (in mil. 2017US$),

pop is population (in millions), csh_x is share of merchandise exports at current

PPPs, csh_m is share of merchandise imports at current PPPs, labsh is share of
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labour compensation in GDP at current national prices, emp is number of persons

engaged (in millions), avh is average annual hours worked by persons engaged, csh_c

is share of household consumption at current PPPs, and csh_i is Share of gross

capital formation at current PPPs.

We use the following variables in our analysis: exit = ln (exppcit), imit = ln (imppcit),

wageit = ln (ewageph it), prodit = ln (prodph it), invit = ln (invnapcit), consit =

ln (connapc), and gdpit = ln (rgdpnapcit).

For for each variable-pair, we apply the following filters : (A) Incldue countries

with Ti ≥ 20. (B) Drop countries with annual per capita observations that are below

ε = 0.01.
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