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1 Introduction

Consider a financial economist who wants to estimate the causal effect of x on y, but worries that

x is endogenous. To overcome this endogeneity, researchers will look for another variable v that

correlates with x, but doesn’t directly impact y. A common strategy is to use different values of

x that share a data dimension, such as the same firm or industry-year, that more plausibly satisfy

the exclusion restriction. The economist will use this value (or an average if there are multiple)

to “construct” a proxy or instrument for x. Perhaps the most common version of this constructed

variable strategy is to exploit temporal order and use lagged values instead of the contemporane-

ous value. More recently, researchers have developed “leave-out” constructions, which average

other observations along a relevant data dimension to construct an instrument for x. This leave-

out strategy originated with the “Hausman” instrument, which averages a firm’s prices in other

markets in the same year to instrument for prices in the focal market (e.g., Hausman, 1996) but

has found many applications in finance and economics, with the most common being the “Judge

Fixed Effect” instrument strategy (e.g., Aizer and Doyle, 2015; Dobbie et al., 2018).

Finance researchers often combine these constructed regressors with fixed effects. Most cor-

porate finance papers include both Firm and Year fixed effects, because it is impossible to collect

data on all firm (or time) -invariant characteristics relevant to the outcome. With Hausman in-

struments, it is important to include (at least) Firm effects to ensure that characteristics such as

general firm quality do not bleed into the instrument (Nevo, 2001). Judge designs also require

fixed effects, since judges are typically only randomly assigned within a court, county or, in the

case of patents, art units (Chyn et al., 2024; Farre-Mensa et al., 2020).

We explore a potential pitfall of this common combination of estimation strategies: when con-

structed variables are combined with fixed effects that “overlap”—where the set of observations

used to construct a fixed effect also includes observations that the constructed regressor is meant

to avoid—they become mechanically correlated with the exact value they are trying to avoid, lead-

ing to estimation bias. This bias even appears if the constructed regressor is not the hypothesis

variable but merely included as a control. To show the prevalence of this estimation strategy we

examined all papers in issues 75, 76, and 77 (2020 - 2022) of the Journal of Finance and found 33

(out of 211) papers that likely contain some bias from the combination of a constructed regressor

and an overlapping fixed effect. Table 1 shows the break-down by field, with over a quarter of

empirical, non-asset pricing papers—and over 15% of all papers—likely having some bias .1

1We focused on papers that made causal claims, which excluded most asset pricing papers, and only included
papers that had the potential for a non-trivial bias based on the level of overlap. Further details and a complete list of
identified papers is given in Online Appendix E.
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Table 1: Journal of Finance Papers with Constructed Regressors and Overlapping Fixed Effects

Type Total Possible Bias Percent

Empirical (Non Asset Pricing) 101 28 27.72%
Empirical (Asset Pricing) 45 3 6.66%
Structural 14 2 14.29%
Theoretical 42 - -
Other 9 - -
—
Total 211 33 15.64%

Note: Table provides an overview over the categorization of all 211 papers surveyed in the structured literature review.
The “other” category is comprised of replications/ corrigenda, methods papers, and similar types of research. Further
details on the procedure and the full list of identified papers is given in Online Appendix E.

To clarify the intuition in a simple example, consider a firm-year panel with many firms, in-

dexed by f = 1, 2, 3, ..., F , but only four years, indexed by t = 1, 2, 3, 4. xft is known to be

endogenous to yft, so the researchers use the lagged value of x instead and estimates

yft = βxf,t−1 + ηf + εft, (1)

for t = 2, 3, 4, where ηf is a firm fixed effect. This is equivalent to estimating ỹf,t = βx̃f,t−1 + ε̃f,t,

with tildes used to denote fixed effects de-meaned variables, namely ỹf,t = yf,t − 1
3

∑4
τ=2 yf,τ and

similarly x̃f,t−1 = xf,t−1 − 1
3

∑4
τ=2 xf,τ−1. Take t = 3 as an example. Here, the fixed effects de-

meaned regressor becomes x̃f,2 = 2
3x2,f − 1

3x1,f − 1
3x3,f . Thus, the de-meaned lagged variable,

x̃f,t−1, is mechanically correlated with the contemporaneous value xf,t and the researchers have

reintroduced the same endogeneity that they were trying to avoid in the first place. And it has to

be this way. Firm-level fixed effects make all variation relative to other values of the same firm.

Because some of these other values are known to be endogenous, the fixed effects estimator of β

will be biased and inconsistent as F → ∞.2 The extent of this bias will be determined by several

factors, including the panel dimensions, the number of fixed effects, and degree of overlap.3

After showing generally that the bias exists when the observations in the fixed effects overlap

with those used for constructing the regressor, and does not exist when they don’t, we discuss

possible solutions. We first show that interacting the fixed effects’ desired dimension with a sep-

2In other words, condition E(xf,t−1εf,t) = 0 is not the sufficient for consistency of the Fixed Effects estimator.
3Importantly, it is not necessarily determined by the number of observations used for constructing the regressor or

fixed effect. In the extreme case of a Hausman IV with Firm-Year fixed effects all of the non-focal observations fully
cancel out, regardless of how many markets there are, and the estimator is numerically equivalent to instrumenting the
focal observation with itself. This one-to-one correlation is noted by Gormley and Matsa (2014).
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arate fixed effect that is orthogonal to how the regressor is constructed removes the bias. For

example, in the Hausman IV, the researcher could include Market × Firm fixed effects instead of

simply Firm . We also discuss other potential methods for removing the overlap of fixed effects

and constructed regressors that leads to the bias as well as detail case-specific solutions for the

most popular construction strategies (lags and leave-outs) that do not seem to have made their

way to finance research.4

We then examine, through extensive Monte Carlo simulations, the size of the bias, the conse-

quences for inference, and the cost of solutions. Finally, we provide an empirical example with

commonly used patent examiner data. We find that the inclusion of “overlapping fixed effects”

biases the coefficient by over 20% relative to the bias of OLS. Even when scrambling the patent ex-

aminers, thus removing any identifying variation, the bias induces a first-stage F-statistic of over

1,000.

Our primary contribution is to further financial economists’ understanding of the potential

bias in this extremely common empirical design. In our structured literature review, we find that

over 20% of empirical, non-asset pricing, papers used constructed regressors either as instruments

or hypothesis variables and combined them with overlapping fixed effects. A further 12% used

them as controls, which we show can also introduce bias. While several of these papers feature

data dimensions that could make the bias relatively small, essentially none of them consider the

bias’s existence or attempt any solutions. We thus join the literature aimed at addressing the

challenges empirical finance researchers face. This includes Petersen’s (2008) work on clustering

standard errors, Gormley and Matsa’s (2014) work on fixed effects vs. de-meaning vs. control-

ling for averages, Jiang’s (2017) work on weak instruments, Grieser and Hadlock’s (2019) work

on weak exogeneity in panel settings, and Baker et al.’s (2022) work on difference-in-differences

approaches in staggered adoption settings.

Our work is timely because of the rapidly rising popularity of leave-out constructions in causal

inference. In addition to Hausman instruments and Judge fixed effects, “Peer effects” are con-

structed in a similar manner through averaging other observations along a dimension such as

social network or school, but are often used directly instead of as an instrument (e.g., Fruehwirth

et al., 2019; Lavy and Megalokonomou, 2024). “Supply restriction” instruments also have a similar

construction but rely on a different kind of exogenous shock, are also increasingly common (e.g.,

Ma et al., 2022; Gabaix and Koijen, 2024).5 Though largely originating in other fields, leave-out

4In the case of leave-out instruments, researchers can use the IJIVE or UJIVE estimators of Ackerberg and Devereux
(2009) and Kolesár (2013). For lagged variables, researchers can use the Double-Filter IV of Hayakawa et al. (2019).

5For supply restriction instruments, the correlation relies on aggregate supply constraints such that a positive shock
to other observations in the same year will lead to a negative shock to the focal observation. These variables can also
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instruments have been increasingly exploited by financial economists across a diverse range of

topics including: innovation (Farre-Mensa et al., 2020), mortgage servicing (Aiello, 2022), bank

supervision (Eisenbach et al., 2022), broker financial crimes (Honigsberg and Jacob, 2021), and

manager promotion (Benson et al., 2019).

We also make a novel contribution to the methodological literature. Case-specific versions of

the bias we explore have been identified by other work (e.g., Nickell, 1981; Angrist et al., 1999;

Ackerberg and Devereux, 2009; Kolesár, 2013; Chudik et al., 2018). While that work proves that

the bias exists for a general set of control variables, with the bias increasing in the number of

controls, our focus on fixed effects (the most common “many controls” setting) allows us to create

a general theory that encompasses all cases. We use this general theory to show that, in contrast to

the results of existing work, it not just the number of fixed effects that determines the magnitude of

the bias, but also the degree of overlap. Indeed, there are cases where multiplying two fixed effects

together can fully remove the bias, even though the number of controls increases dramatically.

2 Theory

2.1 General Result

We consider fixed effects (FE) estimation of a linear regression model featuring a constructed re-

gressor. This estimation can either be the direct test of a hypothesis, or the first stage of a two-stage

least squares design, in which case the constructed regressor acts as the instrument. Both types of

analyses are common in the literature. We assume the following general model to derive our main

results:

yi = βzi + xxx′iδδδ + ηC(i) + εi, (2)

zi =
1

|G(i)|
∑

j∈G(i)

vj , (3)

for i = 1, 2, ..., n. Here, index i uniquely identifies one of a total of n observations. zi is the con-

structed regressor which is based on the underlying, endogenous variable v. The constructed re-

gressor for observation i is calculated using a set of observations that we call construction “group”,

denoted by G(i). The constructed regressor is calculated as the mean of variable v in G(i). Note

that by the nature of constructed regressors, i /∈ G(i). We denote the cardinality of any set A with

be used for direct inference, as is the case in Paravisini et al. (2023). We also note that Gabaix and Koijen (2024) are very
careful in properly detailing how their instrument should be constructed in the presence of fixed effects.
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the commonly used operator |A|. Note that our set-up allows for the case of vi = yi such that

our results subsume the Judge Fixed Effect instrument for case outcomes, among other applica-

tions. xxxi = (xi1, xi2, ..., xik)
′ is a k× 1 vector of further regressors and δδδ is the associated coefficient

vector. The estimation features fixed effects. For observation i, the set of all observations used

for the calculation of the fixed effect is called the “cell”, denoted by C(i) ∈ C. C is a partition of

the data such that each observation belongs to exactly one cell. In Equation (2), the fixed effect

for cell C(i) is denoted by ηC(i). While not typically used in this fashion, this notation subsumes

several common panel structures, including Firm-Year panels, Firm-Market-Year panels, and re-

peated cross-sections, while allowing for a possibility of multiplicative fixed effects (e.g. Industry

× Year Fixed Effects).6 Important special cases of the model (2)-(3) are discussed in the subsections

below. Using this notation is helpful for our purposes, because it makes transparent which fixed

effect cell is used to de-mean observations in the estimation.

For ease of notation, we use lower-case bold fonts for vectors and upper-case bold fonts for

matrices. All vectors are column vectors. We may rewrite Equation (2) in matrix notation, such

that yyy = βzzz +XδXδXδ + ηηη + εεε.7 Let the average of any variable xi over elements of set C(i) be x̄C(i) =

|C(i)|−1∑
j∈C(i) xj . Then we can define FE-de-meaned versions of any variable xi as x̃i = xi −

x̄C(i). Lastly, define cij = I [i ∈ G(j)] with I(.) being an indicator function.

We consider a simple illustrative set-up for the endogeneity of v, given by Assumption 1 below,

and two general technical requirements regarding existence of the estimator and regularity on

idiosyncratic errors and regressors given by Assumptions 4 and 5 in Appendix A.1.

Assumption 1 (Endogenous v). For all i, j = 1, 2, ..., n, we have

E(viεj) =

0 for i ̸= j

σvεi for i = j
(4)

where σvεi ̸= 0.

Our endogeneity assumption is not just for ease of exposition, but more importantly our aim

is to show that the bias we explore here can appear even if conditions for estimation are otherwise

ideal. We thus explore the case where vi is only correlated with the error term of observation i and

not with any other error term. Note that this correlation does not have to be homogeneous across

6Additive fixed effects, such as Firm + Year two-way fixed effects, would require the addition of extra η terms in
(2). Inclusion of additional fixed effects terms in (2) would not result in any new useful insights. In Online Appendix A
we consider a single extension to one of our applications that further emphasizes this point. For clarity of exposition,
we thus consider a single ηC(i) term in the derivations below.

7yyy = (y1, y2, ..., yn)
′, zzz = (z1, z2, ..., zn)

′, X =X =X = (xxx1,xxx2, ...,xxxn)
′, η =η =η =

(
ηC(1), ηC(2), ..., ηC(n)

)′, and εεε = (ε1, ε2, ..., εn)
′.
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different observations, but can take different values for different i. This assumption corresponds

to the best possible situation one could have while using constructed regressors in form of lags

or leave-out variables. If σvεi = 0 for all observations, then constructed regressors would be

unnecessary in the first place. The very idea of the constructed regressor is to take advantage of

E(viεj) = 0 for i ̸= j.

Let β̂ be the FE estimator of β in model (2),

β̂ =
(
z̃̃z̃z′MMM X̃ z̃̃z̃z

)
z̃̃z̃z′MMM X̃ ỹ̃ỹy, (5)

where MMM X̃ = IIIn − X̃̃X̃X
(
X̃̃X̃X ′X̃̃X̃X

)−1
X̃̃X̃X ′.8 We begin by stating the general result for the consistency of

the FE estimator when the sets C(i) and G(i) overlap in an arbitrary way. The result allows for

cases in which each set has observations that are not in the other but also for cases in which one is

a subset of the other.

Proposition 1. Let yi, zi be given by (2)-(3), and suppose Assumptions 1, 4 and 5 hold. Consider the FE

estimator β̂ given by (5). Then, as n → ∞,

β̂ →p β −Q−1
zx∆β , (6)

where

∆β = lim
n→∞

∆β,n = lim
n→∞

1

n

n∑
i=1

∑
j∈C(i) cjiσvεj

|G(i)| |C(i)|
,

cji = I [j ∈ G(i)], I(.) is an indicator function, and Qzx = plimn→∞n−1z̃̃z̃z′MMM X̃ z̃̃z̃z is given by Assumption

5 in Appendix A.1.

All proofs are provided in Appendix A.2.

This proposition shows that the overlap between the sets C(i) and G(i), given by
∑

j∈C(i) cji =

|G(i) ∩ C(i)|, can lead to inconsistency of β̂.9 For illustrative purposes, assume σvεi = σvε for all i.

Then ∆β,n reduces to

∆β,n = σvε
1

n

n∑
i=1

∑
j∈C(i) cji

|G(i)| |C(i)|
= σvε

1

n

n∑
i=1

θi = σvεθ̄,

8Similarly to yyy, zzz, and XXX , we define ỹ =ỹ =ỹ = (ỹ1, ỹ2, ..., ỹn)
′, z̃ =z̃ =z̃ = (z̃1, z̃2, ..., z̃n)

′, and X̃ =X̃ =X̃ = (x̃̃x̃x1, x̃̃x̃x2, ..., x̃̃x̃xn)
′.

9Note that if Assumption 1 is relaxed to allow for E(viεj) ̸= 0 for some i ̸= j, the expression for the bias will be
different and likely more complex.
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where

θ̄ = n−1
n∑

i=1

θi, and θi =
|G(i) ∩ C(i)|
|G(i)| |C(i)|

, 0 ≤ θi ≤ 1. (7)

Clearly, θ̄ depends on n and it can tend to zero or a positive nonzero value (≤ 1), as n → ∞,

depending on given empirical setting. For instance, as long as |C(i)| and |G(i)| do not change

with n then the bias of β̂ will not dimish in n and β̂ will be inconsistent so long as |G(i) ∩ C(i)| ̸=
0. A specific example of this case is when the constructed regressor is calculated from lagged

past observations of the same firm and there are Firm level fixed effects, then adding new firms

changes nothing about the size of the construction group or the fixed effect cell. Only adding

more years, and thus increasing |C(i)|, will decrease the bias. This example is discussed further in

Subsection 2.2 below.

In general, θ̄ can be of order n−α, for some value of the exponent α in the range 0 ≤ α ≤ 1,

denoted as θ̄ ≈ n−α. Then β̂ is consistent if α > 0. However, even if β̂ is consistent, this does not

mean inference would be valid. Under the usual regularity assumptions for
√
n convergence rate

of β̂, we would need α > 1/2 for the asymptotic distribution to be correctly centered at zero. This

is a much stronger requirement than simply α > 0. In the Monte Carlo section we illustrate that

inference could be wrong even if the bias of β̂ is asymptotically negligible (namely when β̂ →p β).

When thinking of Equation (2) as the first stage in an instrumental variable estimation, then

an important implication of Proposition 1 is that the first stage F-Statistic can be spuriously large

even when β = 0. If the data sample is increased along the C(i) dimension, holding |C(i)| and

|G(i)| constant, then the bias does not diminish in n while the standard error of the estimated

coefficient will approach zero, leading the first-stage F-Statistic to approach infinity. A common

case where the data increase but |C(i)| and |G(i)| are constant is in the Judge Fixed Effects case,

where C(i) is constructed at the Court-Year Level. G(i) is constructed Judge-Year level. Adding

more Court-Years while keeping the number of cases per Judge-Year and Judges per Court-Year

constant will not change the bias, but it will lower the standard error.10 Leave-out construction

examples are further discussed in Subsection 2.3 below.

Lastly it needs to be mentioned that while we show the bias and inference problems in a model

with a simple constructed regressor, such variables are often transformed in applied empirical

finance. Transformations such as a change in units for normalization or the application of loga-

rithms will, however, not change the underlying problem. While the exact result from Proposi-

tion 1 might change (e.g., in the case of a nonlinear transformation of the constructed regressor),

the underlying mechanism will still lead to a biased estimator and problematic inference.
10A similar argument is made by Kolesár (2013).
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2.2 Lagged Construction Example

One way in which regressors can be constructed is the use of lags. We consider a very simple

panel data model that uses a single lag, this time indexing observations as (f, t) to indicate both

the cross section unit f and the time period t. One can think of the data structure as a panel of F

firms (indexed by f = 1, 2, ..., F ) observed for T years (indexed by t = 1, 2, ..., T ), but the data can

also be any other type of panel. For illustrative purposes, we focus on the case without additional

control variables. The equation to be estimated is

yft = βvf,t−1 + ηf + εft, (8)

which is a special case of (2)-(3) with the datapoint i given by the pair (f, t), xxxi = xxxf,t = 0 (no

additional regressors), zft = vf,t−1, and G (f, t) = {(f, t− 1)}.

The constructed regressor is thus given by zf,t = vf,t−1, so in terms of Equation (3), we are

taking the average over a single observation (formally: |G(f, t)| = 1). This is the most common

way of including lags in the empirical literature, though there are some applications in which

the average is taken over multiple lags (see, e.g., Gao et al., 2023) and the result extends to such

estimations.

We focus on a balanced panel, which is again for illustrative purposes. Assuming vf,0 is not

observed, then T − 1 periods are available for estimation (t = 2, 3, ..., T ), and we have C (f, t) =

{(f, 2) , (f, 3) , ..., (f, T )}. Hence |C (f, t)| = T − 1. The following corollary shows that the FE

estimator is not consistent when T is fixed, and the bias is of order T−1.

Corollary 1. Consider the special case of model (2)-(3) given by (8), and suppose conditions of

Proposition 1 hold, with E (vftεft) = σvε,f for all t. Let β̂ be the FE estimator of β in (8), using a

balanced sample on T time periods and F firms. Then, as F → ∞ and T is fixed,

β̂ →p β −Q−1
v,T∆β,T , (9)

where

∆β,T =
T − 2

(T − 1)2
σ̄vε,

σ̄vε = limF→∞ F−1
∑F

f=1 σvε,f and Qv,T = plimF→∞F−1 (T − 1)−1∑F
f=1

∑T
t=2 ṽ

2
f,t−1.

We can thus see that the bias described in Section 2.1 leads to a very tangible result in the

commonly used regression specification where lagged regressors are combined with unit-level

fixed effects. The overlap between the fixed effect cell (all observations for a unit f ) and the
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construction group (lagged value of v for unit f ) is given by (T−2)(T−1)−2. This is approximately

equal to 1/T and only slightly smaller for very small values of T .11 As can be seen in Figure 1, the

bias can be quite sizeable and is particularly strong for panels with short T .

Figure 1: Extent of bias in the FE estimation of an illustrative panel regression with a single lag

Note: The graph shows the size of the factor (T − 2)(T − 1)−2 from the result in Corollary 1 for a given number of time
periods in the estimation. The blue dashed line shows the approximation 1/T . The graph starts at T = 3. When T = 2,
only one period is used in the estimation, thus not allowing for Firm-level fixed effects.

Corollary 1 is not qualitatively new. It is reminiscent of Nickell bias (Nickell, 1981) and it

is a special case of the weak exogeneity bias derived in Chudik et al. (2018). This shows how

our general result in Proposition 1 generalizes several known results from the literature. The

intuition is the same as for the general result. Including the unit-level fixed effects is equivalent to

demeaning the lagged regressor. Because about 1/T of this mean is the focal observation’s value of

the regressor, this share of the covariance between vf,t and εf,t biases the estimate of the coefficient

β.

Under the usual regularity conditions, the FE estimator of β in Equation (8) will converge at

the rate of
√
FT . As long as both dimensions F, T → ∞, β̂ is consistent. However, the asymptotic

distribution of β̂ will be correctly centered at zero only if
√
FTQ−1

v,T∆β,T → 0. Since ∆β,T in

Corollary 1 is of order 1/T , this condition is met only when F/T → 0 as F, T → ∞. Hence, the

11It is not exactly 1/T because the vf,T does not appear in any constructed regressors and vf,1 never appears in a
fixed effect cell so there is no overlap for these observations.

9



inference will be valid only if F is sufficiently small relative to T . This rules out many applications

in finance where F (e.g., the number of firms) is typically quite large in comparison with T (e.g.,

the number of years).

2.3 Jackknife IVs: The Leave-Out Construction Example

One of the other main applications of constructed regressors are leave-out means. These underlay

the common “judge fixed effects” estimation strategy that is popular in both finance and eco-

nomics (e.g., Dobbie et al., 2018; Farre-Mensa et al., 2020). Angrist et al. (1999) show that they are

equivalent to Jackknife IV estimators (or JIVEs) which is why they are also sometimes referred

to as such. The difference to the general result of Proposition 1 is that the construction groups

are now set in a less flexible structure. Specifically, the estimation uses a leave-out setting if the

following assumption is fulfilled

Assumption 2 (Leave-out setting). For each i it holds that G(i) = J(i) \ i with J(i) ∈ J and J being

a partition of the data.

We call J(i) the jackknife set. In the leave-out setting the construction group of observation i is

comprised of all observations in J(i) except i itself. Thus, within a jackknife set, the construction

groups of two observations differ only regarding a single observation: their own.

The idea is best exemplified by a concrete data application. For this, we borrow the setting of

our empirical application described in Section 5. Here, examiners grant or refuse patent applica-

tions. Examiners differ in their strictness and the allocation of patent applications to examiners

is random within the so-called art units. For causal inference, researchers estimate the average

strictness of an application’s examiner leaving out only the focal application. The applications

handled by one examiner thus forms the jackknife set.12

Because the leave-out setting is a special case of the general model, Proposition 1 carries over.

The extent of the bias is now determined by the overlap of the jackknife set with the fixed effect

cell. In the above example, if the estimation was combined with Art Unit fixed effects, then the

bias is determined by the share of applications an examiner handles within their own art unit.

This special case does, however, allow for interesting further results. Specifically, if the data is

balanced in the sense that each jackknife set is of equal cardinality, then we can derive a number of

12A counterexample can make clear how the leave-out setting differs from the general case: When corporate finance
researchers are interested in peer effects, they might define a company’s peers as the competitors for the company’s
main product. Because company A being a competitor for company B’s main product does not have to mean that said
product is also company A’s main product, this definition would violate Assumption 2.
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illustrative analytical results. In particular, we can derive equivalent estimators that show how the

fixed effects allow for the focal observation to bleed over into the constructed regressor. The small

sample results cover six possible cases in which the data can be arranged. The cases are depicted

in Figure 2 and cover different arrangements of how C(i) and J(i) can overlap. If the relationship

between these sets is the same for all observations, the six shown cases are exhaustive.

Figure 2: Venn diagrams of possible cases for J(i) (Jackknife set) and C(i) (fixed effect cell)

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

(e) Case 5 (f) Case 6

Note: The diagrams show the schematic possibilities for the sets J(i) (in blue) and C(i) (in black). The tangency of the
two sets in Case 5 indicates a single observation shared between both sets. The jackknife set J(i) is used to calculate
the constructed regressor in a leave-out mean, while the estimator is demeaned over the fixed effect cell C(i). For
all cases we only consider non-trivial structures such that |J(i)| ≥ 2 and |C(i)| ≥ 2 and in Case 4 that |J(i)| ≥ 3
and |C(i)| ≥ 3. The six cases can be described as J(i) = C(i) (Case 1), C(i) ⊂ J(i) (Case 2), J(i) ⊂ C(i) (Case 3),
|J(i) ∩C(i)| ≥ 2 ∧ J(i) \C(i) ̸= ∅ ∧C(i) \ J(i) ̸= ∅ (Case 4), |J(i) ∩C(i)| = 1 (Case 5), and J(i) ∩C(i) = ∅ (Case 6).

The cases are sorted by the severity of the problem. In Cases 1 and 2, de-meaning due to fixed

effects leads to an instrument solely consisting of the focal value, vi.13 In Cases 3 and 4, the focal

value is still contained in the equivalent instrument, but to a lesser degree. Here, Case 4 has a

less severe bias than Case 3. Cases 5 and 6 show no bias. Case 5 allows combining a leave-out

instrument with fixed effects, but requires additional dimensions in the panel. Case 6, which does

not occur naturally, structures the instrument in a way such that the overlap is removed.

We now state these results formally. For notational convenience, we split J(i) into two subsets.

That which has shared elements with C(i), denoted as Ĵ(i), and that which does not, which we

denote J̌(i). Formally, Ĵ(i) = J(i)∩C(i) and J̌(i) = J(i)\Ĵ(i). Because observation i always needs

13This was already noted by Gormley and Matsa (2014) and is shown formally here.
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to be in C(i), it is clear that i ∈ Ĵ(i) and i /∈ J̌(i). The small sample properties of the first stage

of the JIVE estimator with fixed effects can be derived under a balanced data structure. Letting k1

and k2 denote a generic constants that do not depend on the data structure, this is summarized in

the next assumption.

Assumption 3 (Balanced leave-out data). For each observation i it holds that |J(i)| = k1 and |Ĵ(i)| =
k2. We exclude trivial cases by assuming that k1 ≥ 2.

We can then state the results.

Proposition 2. Under Assumptions 1 to 4, estimating Equation (2) with the FE estimator is equivalent to

1. estimating Equation (2) with the FE estimator and using

zi = − 1

|J(i)|
vi

if J(i) = C(i) (Case 1) or C(i) ⊂ J(i) (Case 2).

2. estimating Equation (2) with the FE estimator and using

zi = − 1

|J(i)|

vi +
∑

j∈C(i)\J(i)

vj


if J(i) ⊂ C(i) (Case 3).

3. estimating Equation (2) with the FE estimator and using

zi = − 1

|J(i)|

vi +
∑

j∈C(i)\J(i)

vj −
∑

j∈J̌(i)

vj


if |J(i) ∩ C(i)| ≥ 2, J(i) \ C(i) ̸= ∅, and C(i) \ J(i) ̸= ∅ (Case 4).

Further, the estimation is unbiased if |J(i) ∩ C(i)| = 1 (Case 5) or J(i) ∩ C(i) = ∅ (Case 6).

There are several takeaways from this proposition. Item 1 shows that the leave-out instrument

with fixed effects on the same or smaller level as the jackknife set is not an instrument at all.

Instead, using it is equivalent to a multiplicative transformation on the focal value. Intuitively, the

mean of the leave-out instrument contains all observations in J(i) equally often. The leave-out

instrument itself also includes all of these observations except the focal one. By subtracting one
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from the other, what is left is the focal observation and its mean across the set J(i). If vi = yi ∀ i,

then the first stage is perfectly collinear.14

The intuition from Cases 1 and 2 carries over to Cases 3 and 4 in items 2 and 3 of Proposition 2,

but the problem is not as severe as it is with more granular fixed effects. Because the de-meaning

is now on a broader scale – there is less shared information between construction group and fixed

effect cell – the instrument does not fully reduce to information about the focal observation.

Case 3 is particularly likely to appear. The patent examiner application introduced above is

one example for this. Another one is a set of Hausman instruments for firms operating in multiple

markets where the estimation features Firm or Year fixed effects, or both.15 The commonplace

appearance of Case 3 highlights the importance of our result. Even though the bias can disappear

if the data becomes larger, this is only the case if the instrument itself is informative. The problem

is, however, that if the instrument is not informative, the other element of the weighted sum

will simply add noise orthogonal to the value that is to be instrumented. In this case, the focal

market component will be the main determinant of the instrument’s coefficient, leading to a bias.

Increasing the sample along the relevant dimension will only increase the standard error. Thus,

adding more data potentially only makes the fit of the first stage worse. A researcher unaware of

our result might remove (or re-weight, as recommended by Coussens and Spiess, 2021) portions

of their data to seemingly achieve a better fit in the first stage, while in actuality, all explanatory

variation could be coming from the bias introduced by the focal market component.

Case 4 (and thus item 3 of Proposition 2) appears when there are observations in the Jackknife

set which are not contained in the fixed effect cell. This makes the equivalent instrument include a

part which is not biased by the de-meaning process, improving the performance of the estimator.

In the example of the patent examiners Case 4 would appear if individual examiners handled

patents in multiple art units.

The last part of the proposition shows a way towards potential solutions for the bias. If there is

only a single observation shared by the Jackknife set and the fixed effect cell (Case 5), then that ob-

servation has to be the focal one. Since that implies that there are no shared observations between

J(i) and C(i), there will be no bias in the estimation as can be seen in Equation (6). The intuition

for this is straightforward. If i is the only observation shared between the two sets, then it never

enters the mean of the other observations within the same fixed effect cell. Stated differently, none

14It should be noted that most statistical programs will not treat this estimation as perfectly collinear. Rather, it will
return a highly significant first stage and proceed with the estimation. For vi = xi and |Ji| = k1 ∀ i, an easy way to see
whether the instrument reduces to the focal value is to check whether the coefficient on the instrument in the first stage
is equal to − 1

k1−1
.

15We provide a technical treatment of the two-way fixed effects case in Online Appendix A.
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of the observations in C(i) use observation i in the calculation of their leave-out instrument. Ob-

servation i is only used in the leave-out instrument for observations that are both not observation

i and in J(i) at the same time. By the definition of the case, these observations are not part of C(i).

Similarly, no bias appears in Case 6 when there are no shared observations between J(i) and C(i).

An interesting aspect of both Case 5 and 6 is that these solutions to the biased estimation are not

tied to the number of fixed effect cells, i.e., they are not associated with fewer control variables.

This is a new result in comparison to the extant literature on JIVE estimators, which generally

considers the bias to be increasing in the number of control variables (Ackerberg and Devereux,

2009; Kolesár, 2013).

3 Solutions

Proposition 1 and the discussion of Cases 5 and 6 in Section 2.3 provide an obvious path to a

solution for the bias. Any estimation with a data structure such that G(i) and C(i) do not overlap

will be unbiased. There are several generic ways in which this solution can be implemented and

we introduce them with the help of examples in Subsection 3.1 below. However, these solutions

are not always possible. In addition, specific situations may have specific solutions, which we

discuss in Subsection 3.2.

3.1 Avoiding overlap between the sets G(i) and C(i)

If the data is sufficiently rich, one way to ensure that there is no overlap between construction

group G(i) and fixed effect cell C(i) is to interact the existing fixed effect with another fixed ef-

fect that is orthogonal to the construction group. Orthogonal in this context means that for each

construction group, each observation is in a different cell of the new fixed effect. Consider the

Hausman instruments case as an example. Let the regressor be constructed from observations of

the same firm in the same year but in different markets and let the estimation feature Firm fixed

effects. If, instead of only including the Firm fixed effects, we interact them with fixed effects for

the market dimension (so Firm × Market fixed effects), then the G(i) and C(i) will not overlap

for any observation i.16 Thus, the estimation will be unbiased as long as the other assumptions

necessary for leave-out instruments are met.17 This is a good example of how adding more fixed

effects as control variables can actually reduce (or, in this case, eliminate) the bias.

16We illustrate this solution in Section 4. Note that using Firm +Market fixed effects will not reduce the bias.
17See, among others, Angrist (2014), Betz et al. (2018), and Borusyak and Hull (2023) for the discussion of the neces-

sary assumptions.
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If the data are not rich enough to introduce a fixed effect orthogonal to the construction group,

one can attempt to separate the construction group and fixed effect cell altogether. In the leave-out

setting, this would be Case 6. However, this data structure does not occur naturally, and must be

induced by the econometrician through alternate construction of the instrument or fixed effects.

We detail two potential ways to do this.

The easiest way to separate construction group and fixed effects cell can be used when there

exists “outside-sample” data that is irrelevant to the direct research question, but helpful in es-

timating the identifying shock. In this case, the researcher can define the construction group on

this outside-sample, which is data that is not used for the later estimation of Equation (2). This

reduces the overlap of G(i) and C(i) to zero by constructions. A concrete example of this is given

by Sampat and Williams (2019) who study the effect of patent protection on follow-on innovation

in the human genome. They compare follow-on innovation across successful and unsuccessful

patent applications, instrumenting for the success of applications using the strictness of the as-

signed patent examiner for patents that do not relate to the human genome. Because there is no

overlap between the instrument construction and the fixed effects, there is no bias. This solution

is a type of two-sample, two-stage least squares estimation (Angrist and Krueger, 1992; Inoue and

Solon, 2010). Another example of such a procedure is given in Section 5.

When there is no outside-sample instrument available and the identifying variation is a sub-

set of the necessary fixed effect, a split-sample approach might be possible. The basic idea is to

separate the data into a regressor construction sample and an estimation sample. Data used for

the construction of the regressor is then simply not used for the estimation of the equation and

there can be no overlap between G(i) and C(i). As an example, consider the lagged regressor of

Section 2.2. If the constructed regressor is the simple one-period lag, and it is known that there is

no feedback from the error term εft to vft beyond the contemporaneous value then the econome-

trician can limit the estimation to every second period. This way, the fixed effects de-meaning will

not introduce correlation between the de-meaned error term and de-meaned regressor. However,

such a strategy is no longer satisfactory if there is a feedback from the error term εf,t to future

values of vft (to be discussed in the next subsection below). In this case, the bias will not be fully

eliminated.

3.2 Case-Specific Solutions

Specific models have idiosyncratic solutions available to them. One important example is a Firm-

Year panel where future values of regressors are not independent from the regression error term,
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such as model (8). An easy-to-implement solution to mitigate the bias of the FE estimator of βββ

in Firm-Year panel data model is the split-panel jackknife approach by Dhaene and Jochmans

(2015) and Chudik et al. (2018). This approach involves FE estimation of the full panel and its

sub-samples, most commonly two half-panels. The half-panel jackknife FE estimator is given by

β̃ββ = β̂ββ − b̂ias = 2β̂ββ −
(
β̂ββa + β̂ββb

)
/2, (10)

where β̂ββ is the FE estimator using the full sample, β̂ββa is the FE estimator using only the first half of

the time periods, and β̂ββb is the FE estimator using the second half of the time periods. Since the bias

that we discussed in Section 2.2, is of order 1/T , then estimates using only one half of available

time periods will feature a bias of order 1/ (T/2), namely the bias of β̂ββa and β̂ββb is approximately

twice larger than the bias of β̂ββ. This allows for b̂ias =
(
β̂ββa + β̂ββb

)
/2 − β̂ββ to be a good estimate of

the FE estimator bias, up to the first order of approximation. The jackknife FE estimator β̃ββ is still

not guaranteed to be unbiased, but its bias is significantly reduced to order T−2.

While straightforward to implement, there are few disadvantages to this jackknife bias correc-

tion. First, it is implicitly assumed that the correlation between the errors and future regressors

does not meaningfully change over time. The second disadvantage is that while the bias is re-

duced by an order of magnitude, it is not fully eliminated. In settings where T is quite small, β̃

will still be inconsistent as F → ∞. Nevertheless, β̃ could still be helpful as a first pass in checking

the potential size of the bias.

There are also readily available solutions in the literature to achieve consistent estimation when

T is quite small, and F is large. Our suggested approach in Firm-Year panel data models is the

double-filtered IV (DFIV) estimator proposed by Hayakawa et al. (2019).18 The main idea of this

approach is to avoid the bias from overlapping fixed effects by using deviations of regressors from

their past means as instruments, and to transform the model by taking deviations from future

means. These transformations fully remove Firm fixed effects, and the resulting estimator will be

consistent even as T is fixed and F → ∞, which is the prevalent setting in finance and economic

applications. We provide details on the DFIV estimator in Appendix A.3, and we illustrate benefits

and drawbacks of DFIV as a solution to the bias problem in our Monte Carlo simulations below.
18This is an extremely developed literature. For panel autoregressive (AR) models, which is a special case of Firm-

Year panels with lagged variables, there have been many solutions considered in the literature, including the IV/GMM
methods (Anderson and Hsiao, 1981 and 1982, Arellano and Bond, 1991, Arellano and Bover, 1995, Blundell and Bond,
1998, Ahn and Schmidt, 1995 and 1997, Chudik and Pesaran, 2022), X-differencing method by Han et al. (2014), the
first difference least square estimator by Han and Phillips (2010), the likelihood based methods (Hsiao et al., 2002,
Lancaster, 2002, Moral-Benito, 2013, Hayakawa and Pesaran, 2015, Dhaene and Jochmans, 2016), or numerous bias
correction methods. These methods differ in their assumptions on the initial values, Firm fixed effects, and assumptions
for relative panel dimensions, F/T . Many of these approaches extend to panel AR models augmented with additional
regressors/covariates.
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The main downside of the DFIV estimator is a loss of precision compared to the FE estimator,

which we document in Section 4. Since there is a cost in terms of efficiency, it is advisable to rely

on DFIV only when the FE estimator bias is non-negligible. Thus, the researcher might want to

conduct a test for the FE bias, in empirical applications where it is a priory unknown if there is any

correlation between the error term and future values of the regressors. A straightforward test to

consider in this case is a Hausman (1978) specification test, constructed based on the difference

between the FE and the DFIV estimators,

HF = (β̂ββDFIV − β̂ββ)′
[
V̂ar(β̂DFIV)− V̂ar(β̂)

]−1
(β̂ββDFIV − β̂ββ), (11)

assuming V̂ar(β̂DFIV) − V̂ar(β̂) > 0, where β̂ββDFIV is DFIV estimator, β̂ββ is the FE estimator, and

V̂ar(β̂DFIV) and V̂ar(β̂) are, respectively, consistent estimators of their asymptotic variances. Un-

der the null hypothesis of no correlation between the error term and future values of regressors,

both DFIV and FE estimators are consistent, but only DFIV is consistent when such correlation is

present. Under the null, HF is asymptotically distributed as χ2(k) for a fixed T and as F → ∞,

where k is the dimension of βββ.

In the case of leave-out settings considered in Proposition 2, we know a priori that bias exists.

Broad solutions to avoid bias in leave-out settings by avoiding the overlap between the fixed

effects cell and the construction group are outlined in Subsection 3.1. If such solutions are not

feasible due to data constraints, than three alternative estimation methods have been developed

for the leave-out case in the literature: (1) the IJIVE (Ackerberg and Devereux, 2009), (2) the UJIVE

(Kolesár, 2013), and (3) the CJIVE Frandsen et al. (2025b).19 The IJIVE works by projecting out

the fixed effects before performing the JIVE. The UJIVE and CJIVE instead directly remove the

influence of the focal observation after the JIVE step has occurred, with the CJIVE also removing

a researcher-specified “cluster.”

4 Monte Carlo Evidence

To illustrate the magnitude of the potential bias outlined in Section 2 and its consequences for

inference, we employ a series of Monte Carlo simulations in simple settings comparable to our

examples above. We consider three sets of experiments in Subsections 4.1 to 4.3 below. The first

set of experiments investigates the bias from including both a lagged regressor and fixed effects

19A STATA module for the CJIVE is available at Frandsen et al. (2025a). An (in-progress) R package is available at
Butts (2025).
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in a standard Firm-Year panel, such as (8). The second set of experiments showcases that bias also

appears when the lagged variable is only used as a control. The last set of experiments adopts

a Firm-Market-Year panel and demonstrates the bias of leave-out instruments under the various

options for fixed effects discussed in Section 2.3.20 In addition to illustrating the theoretical ar-

guments made earlier, we also showcase the small sample performance of possible solutions. We

intentionally choose a transparent and simple data generating processes to illustrate our main

points as clearly as possible.

4.1 Experiments with a lagged regressor

We label the dependent variable as yft for firm f = 1, 2, ..., F , and year t = 1, 2, ..., T . In all

experiments, we consider a large number of firms, F = 4, 000 or 20, 000 and a small number of

years, T = 5 or 10. We simulate data according to21

(DGP1) yft = βxf,t−1 + κεyft, (12)

xft = ρxxf,t−1 + εxft, and εxft = κxε
y
ft + exft, (13)

where εyft, e
x
ft ∼ IIDN (0, 1) and the initial values are xf,−1 = 0. We assume xf,0 is observed, so

that (F, T ) is the effective sample size used for estimation. We set ρx = 0.8, and κ = 4.22 Note that

here and in all DGPs below, we generate x to be serially correlated, which we find appropriate for

applied finance settings. Results are qualitatively comparable when setting ρx = 0.

We are interested in recovering β. The value of β, however, does not actually affect the small

sample performance of the individual estimators reported below. The parameters of (12)-(13) are

chosen such that the regression would provide a reasonable fit for β = 1. Nevertheless, we chose

β = 0 for generating our data. This allows us to report a particularly intuitive measure for the

accuracy of the inference in addition to other metrics. Specifically, we report the frequency of

(falsely) statistically significant β̂ across replications. Using any other value of β leads to numer-

ically identical small sample results for bias. This is in line with Proposition 1, where the bias

expression does not depend on β.

20In Online Appendix B, we also consider the bias when instrumenting an endogenous regressor with lags.
21DGP1 can be seen as a special case of the general model (2)-(3) by setting i = (f, t), G (f, t) = {(f, t− 1)}, vft = xft

and the set defining Firm fixed effects is C (f, t) = {(f, 1) , (f, 2) , ..., (f, T )}. There is an overlap |G (f, t)∩C (f, t) | = 1
and, which implies θ̄ given by (7) is of order 1/T , and we can expect the bias to be of the same order when κx ̸= 0,
according to Proposition 1.

22Value ρx = 0.8 delivers a moderate serial correlation of the regressor. We set κ = 4 so that the fit of the regression
would not be unreasonably large if β was equal to one.
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We vary κx between 0, 0.2 and 1. This key parameter determines the relationship between εy

and εx. For κx = 0, εxft is independently distributed of εxf ′t′ for all f, f ′, t, t′, and the regressor

x is strictly exogenous. In this case the FE estimator is unbiased and inference based on the FE

estimator is valid. When κx ̸= 0, (which is presumably the reason why the regressor x is lagged

in the first place), then the FE estimator is subject to bias even though the regressor itself is not

endogenous. This bias is stronger for κx = 1 than for κx = 0.2. For each value of κx, we adopt two

estimators of β: the regular FE estimator with Firm fixed effects and the double-filtered IV (DFIV)

estimator proposed by Hayakawa et al. (2019) as a possible solution. As with the FE estimator, the

DFIV also allows for Firm fixed effects.

Table 2 reports our findings. For each simulation, we report four metrics. The simulated bias

is the average deviation of β̂ from its true value. The root mean square error (RMSE) is an inverse

measure of estimation precision and can be seen as a relative cost of implementing an estimator.

The 95% confidence interval coverage rates (CR) reports how often the estimated 95% confidence

interval of β̂ covers the true value of β and is a measure for the accuracy of inference of the in-

dividual estimators. Lastly, we report the aforementioned frequency of statistically significant

estimates at the 1 percent level.23

The FE estimator works well only in the case of strict regressor exogeneity. Looking at the

experiments with κx = 0 in the upper part of Table 2, we observe no discernible bias. The con-

fidence interval coverage rates are all very close to 95 percent. Similarly, the share of statistically

significant FE estimates at the 1% level is close to 0.01, indicating inference is accurate. In con-

trast, the FE estimator is severely biased in the remaining experiments, even for a relatively small

value of κx = 0.2, which corresponds to only 4 percent variance share of εxft explained by εyft. As

predicted by theory, the bias of the FE estimator in experiments with κx ̸= 0 does not depend

much on F , and it declines with T . Even though the magnitude of the bias is relatively small for

larger T and smaller κx, the inference is highly inaccurate for all sample sizes considered. The

95% CRs all equal zero and the FE estimates of β̂ are statistically significant at the 1% level in all

Monte Carlo replications in experiments with nonzero κx. Thus, even when β = 0, the identified

effect would have led researchers to the wrongful conclusion that the regressor is relevant. This

is in line with the theoretical results from Section 2.2 where the requirement for valid inference

(
√
FT θ̄ ≈

√
F/T → 0) is much stricter than that for consistency (θ̄ ≈ T−1 → 0). Since T is not

23Formally, let β̂(r) be the estimate of β in the Monte Carlo replication r = 1, 2, ..., R, and CI
(r)

β̂,95%
be its respective

95 percent confidence interval estimate. Then, the bias of β̂ is computed as biasβ̂ = 1
R

∑R
r=1

(
β̂(r) − β

)
, the root mean

square error of β̂ is computed as RMSEβ̂ =

√
1
R

∑R
r=1

(
β̂(r) − β

)2

, and the 95 percent confidence interval coverage

rate is computed as CRβ̂,95% = 1
R

∑R
r=1 I

(
β ∈ CI

(r)

β̂,95%

)
.
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large relative to F in our samples, we essentially find a zero probability that the true parameter

value will fall in the estimated 95 percent confidence intervals for the FE estimator when κx ̸= 0.

Table 2: Simulated bias, root mean square errors (RMSE), 95% confidence interval coverage rates
(CR), and share of statistically significant estimates at 1% level of FE and DFIV estimators of β = 0
in experiments with lagged regressor

Significant β̂
Bias RMSE (×100) 95% CR (×100) at 1% level

F \ T 5 10 5 10 5 10 5 10
A. Experiments with κx = 0 (regressor is strictly exogenous)

FE estimator
4,000 0.00 0.00 3.35 1.89 95.05 93.70 0.011 0.013
20,000 0.00 0.00 1.49 0.82 95.50 95.25 0.010 0.012

DFIV estimator
4,000 0.00 0.00 20.44 6.40 95.05 95.00 0.011 0.010
20,000 0.00 0.00 9.03 2.87 94.80 95.05 0.010 0.010
B. Experiments with κx = 0.2 (weak correlation between εyft and εxft)

FE estimator
4,000 -0.35 -0.18 35.29 18.09 0.00 0.00 1.000 1.000
20,000 -0.35 -0.18 35.23 17.98 0.00 0.00 1.000 1.000

DFIV estimator
4,000 0.00 0.00 19.61 6.18 95.75 95.05 0.008 0.010
20,000 0.00 0.00 8.80 2.76 94.45 95.30 0.012 0.012
C. Experiments with κx = 1 (moderate correlation between εyft and εxft)

FE estimator
4,000 -0.92 -0.47 91.57 46.82 0.00 0.00 1.000 1.000
20,000 -0.92 -0.47 91.58 46.77 0.00 0.00 1.000 1.000

DFIV estimator
4,000 0.00 0.00 14.71 4.51 94.60 94.90 0.014 0.013
20,000 0.00 0.00 6.41 2.01 95.75 95.25 0.009 0.011

Note: The data generating process is given by yft = βxf,t−1+κεyft, xft = 0.8xf,t−1+εxft, and εxft = κxε
y
ft+exft, for t =

1, 2, ..., T , and f = 1, 2, ..., F , where εyft, e
x
ft ∼ IIDN (0, 1) and κ = 4. Estimating equation is yft = ηf + βxf,t−1 + εyft.

DFIV is the double filter IV estimator by Hayakawa et al. (2019) using the regressor xf,t−1 itself as an instrument.
Simulation results are based on R = 2, 000 Monte Carlo replications.

In contrast to the FE estimator, the DFIV estimator is consistent for all sample sizes considered,

regardless of the value of κx. We see no notable bias of the DFIV estimator in Table 2 in any

experiment. Confidence interval coverage rates are also close to 95 percent in all cases. These

result confirm that the double filtered IV approach by Hayakawa et al. (2019) can be a useful

case-specific solution for the lagged regressor construction. Unfortunately, there is also a cost to
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using the DFIV estimator – a loss in estimation precision. In experiments with a strictly exogenous

regressor the RMSE of the DFIV estimator is at least three-fold higher than that of the FE estimator.

Given the poor performance of the FE estimator on inference, we next ask the question how

large the time dimension needs to be for accuracy of inference to sufficiently improve in this de-

Figure 3: Bias, 95 percent confidence interval coverage rates and the share of statistically signifi-
cant estimates at 1 percent level of FE estimator of β = 0 in experiments with lagged regressor and
T = 20, 40, ..., 500.

(a) Experiments with F = 4, 000 firms

(b) Experiments with F = 200 firms

Note: Values of T = 20, 40, ..., 500 are on X-axis. The data generating process is given by yft = βxf,t−1 + κεyft,
xft = 0.8xf,t−1 + εxft, and εxft = κxε

y
ft + exft, for t = 1, 2, ..., T , and f = 1, 2, ..., F , where εyft, e

x
ft ∼ IIDN (0, 1) and

κ = 4. We set κx = 0.2 and β = 0. Estimating equation is yft = ηf + βxf,t−1 + εyft. Simulation results are based on
R = 2, 000 Monte Carlo replications.
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sign. Panel (a) of Figure 3 shows the simulated bias, 95% CR and the share of statistically sig-

nificant estimates in a sample of F = 4, 000 firms for increasing values of T = 20, 40, ..., 500. As

predicted by Corollary 1, the bias diminishes at the rate of 1/T . The accuracy of inference also im-

proves with an increase in T , but is still quite distorted even for T = 500 where in about 17 percent

of cases the FE estimates are statistically significant at the 1 percent level. Results improve with a

smaller sample size of F = 200 firms, as it is reported in panel (b). Here, T = 100 is sufficiently

large for reasonably accurate inference, despite the fact that the magnitude of the bias is more-or-

less unaffected by the cross-section dimension. For F = 200 and T = 100 in panel B, we see 95

confidence interval coverage rate of 87.75 percent and 3.25 percent probability of FE estimates be-

ing statistically significant at 1 percent level. Taken together, these results are not encouraging for

the idea that the accuracy of inference can be improved by increasing the time dimension. For the

vast majority of firm panels in finance research, F is going to be significantly larger than T . While

considering some additional years (or months) might make the bias of β̂ less pronounced, even

small panels of firms require long time series for each firm for inference to be acceptably accurate.

Implementing the DFIV estimator, at least as a robustness analysis, seems to be a more promising

way to deal with the issues discussed in this paper.

Since the cost of using the DFIV estimator can be large, we also consider the small sample

performance of the Hausman test given in (11). Table 3 shows that the empirical size (the rejection

rate of the null hypothesis when the null is true) of the Hausman test is close to the chosen nominal

level of 5 percent. The simulated power (the rejection rate of the null hypothesis when the null is

false) increases both with sample size and κx. For κx = 0.2, it appears to be sufficient (close to 100)

only for larger F and/or T . For κx = 1, good power is achieved for all our choices of the sample

size. These results suggest that the Hausman test can provide useful guidance, but may lack the

power to detect lower correlations between εxft and εyft in smaller samples.
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Table 3: Empirical size and power of the Hausman test for the weak exogeneity bias in experiments
with lagged regressor and β = 0

Size (×100) Power (×100)
κx = 0 κx = 0.2 κx = 1

F \ T 5 10 5 10 5 10
4,000 4.80 4.50 44.10 84.50 100 100

20,000 4.95 4.75 98.10 100 100 100

Note: The Hausman test is given by (11) and it is based on the difference between the FE and DFIV estimators of β.
DFIV is the double filter IV estimator by Hayakawa et al. (2019) using the regressor itself as an instrument. The data
generating process is given by yft = βxf,t−1 + κεyft, xft = 0.8xf,t−1 + εxft, and εxft = κxεft + exft, for t = 1, 2, ..., T ,
and f = 1, 2, ..., F , where εyft, e

x
ft ∼ IIDN (0, 1) and κ = 4. The estimating equation is yft = ηf + βxf,t−1 + εyft.

The reported empirical size is the rejection rate in experiments with κx = 0. Empirical power is the rejection rate in
experiments with κx = 0.2 and 1. All experiments are based on R = 2, 000 Monte Carlo replications.

4.2 Experiments with a lagged control variable

In the second set of experiments, we focus on estimation of β in regression specifications that

augment the regressor (x) with a lagged control variable, denoted as wf,t−1. Consequently the

estimating equation for the FE and DFIV estimators is given by a regression of y on x, a lagged

value of w and the firm fixed effects (denoted by ηf ):

yft = βxft + δwf,t−1 + ηf + ϵft.

We choose to generate data according to the design outlined below. In it, the equation for y

features only the strictly exogenous regressor xft and not the control variable wf,t−1. We make

this choice to demonstrate that the inclusion of wf,t−1 in the estimation can lead to a serious bias

in the focal parameter β even in the case when the control variable is not necessary. Formally:

(DGP2) yft = βxft + κεyft, (14)

xft = ρxxf,t−1 + εxft, (15)

wft = ρwwf,t−1 + εwft, and εwft = κw(ε
y
ft − εxft) + ewft, (16)

for f = 1, 2, ..., F and t = 1, 2, ..., T , where εyft, ε
x
ft, e

w
ft ∼ IIDN (0, 1) and the initial values are

wf,−1 = 0. We set ρx = ρw = 0.8, and κ = 4.

As before we consider β = 0 below. We vary the key parameter κw between 0, 0.2 and 1. For

κw = 0, the control variable w is strictly exogenous, whereas for κw ̸= 0, there is a feedback from

εyft and εxft to wft. In this case, the contemporaneous values of the control variable are endogenous.
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Regardless of the value of κw, the lagged control, wf,t−1, is uncorrelated with εyft, which is the

typical justification used for lagging control variables.

Table 4 reports the small sample findings for the FE and DFIV estimators. As in the previous

experiments, we expect the FE estimator to work well only when κw = 0. This is confirmed in

Panel A of Table 4, where we see no discernible bias, coverage rates close to 95 percent and the

share of statistically significant estimates at the 1 percent level is in fact close to 1 percent. In Panel

B, which features a small value of κw = 0.2, the bias of the FE estimator is non-zero, but small at

-0.02 for all sample sizes. However, even a small bias causes inference problems. For F = 20, 000

and T = 10, 41.1 percent of replications feature statistically significant β̂ at the 1 percent level.

As in Table 2, the bias and inference problems of the FE estimator in Table 4 are more serious for

κw = 1. In this case, the bias is substantial. It is comparable in size to the bias in the previous

experiments with lagged regressor and κx = 0.2.

In contrast to the FE estimator, the DFIV estimator works well for all experiments, regardless

of the value of κw. However, similarly to findings in Table 2, the reported RMSE values in Table 4

show a significant cost of using the DFIV estimator when it is not strictly needed.

In Table 5 we see that the Hausman test is correctly sized, but that the power is good only if

the magnitude of the bias and the sample size are sufficiently large. Specifically, we see a power of

only 10.60 percent when κw = 0.2 and the sample size is F = 20, 000 and T = 10. This shows that

it is possible to have a serious problem with the accuracy of inference when using the FE estimator

even when the Hausman test does not indicate that there is a problem.

4.3 Experiments with endogenous regressor in a Market-Firm-Year panel

Finally, we consider a Monte Carlo design with multiple markets. Let xfmt be the explanatory

variable for firm f = 1, 2, ..., F , market m = 1, 2, ....M , and year t = 1, 2, ..., T . We set M = 3 and

consider the same values for F and T as before. Data is generated according to:

(DGP3) yfmt = βxfmt + κεyfmt, εyfmt = νexfmt + eyfmt, (17)

xfmt = ρxxf,m,t−1 + εxf,m,t, and εxfmt = γcft + exfmt (18)

where exfmt, e
y
fmt, cft ∼ IIDN (0, 1) and the initial values are xf,m,−1 = 0. We set ρx = 0.8, ν = 1,

κ = 4, and unless stated otherwise, γ = 1. As before, we set β = 0.

We identify β through the leave-out strategy outlined in Assumption 2. Thus, we use the

average of x’s for the same firm in the same year, but in other markets. This provides an estimate
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Table 4: Simulated bias, root mean square errors (RMSE), 95% confidence interval coverage rates
(CR), and share of statistically significant estimates at 1% level of FE and DFIV estimators for
estimation of β = 0 experiments with lagged control variable

Significant β̂
Bias RMSE (×100) 95% CR (×100) at 1% level

F \ T 5 10 5 10 5 10 5 10
A. Experiments with κw = 0 (control wf,t−1 is strictly exogenous)

FE estimator
4,000 0.00 0.00 3.37 1.78 93.80 95.05 0.011 0.010
20,000 0.00 0.00 1.44 0.84 95.55 94.25 0.009 0.013

DFIV estimator
4,000 0.00 0.00 21.63 6.81 95.85 94.95 0.006 0.008
20,000 0.00 0.00 10.08 3.04 94.75 95.05 0.012 0.006
B. Experiments with κw = 0.2 (weak correlation between εwft and εx,yft )

FE estimator
4,000 -0.02 -0.02 4.03 2.69 88.40 80.95 0.030 0.068
20,000 -0.02 -0.02 2.73 2.11 65.40 34.70 0.153 0.411

DFIV estimator
4,000 0.00 0.00 25.33 7.00 95.50 94.75 0.009 0.011
20,000 0.00 0.00 11.14 3.08 95.70 95.05 0.011 0.008
C. Experiments with κw = 1 (moderate correlation between εwft and εx,yft )

FE estimator
4,000 -0.21 -0.19 21.53 19.46 0.00 0.00 1.000 1.000
20,000 -0.21 -0.19 21.28 19.20 0.00 0.00 1.000 1.000

DFIV estimator
4,000 0.00 0.00 26.20 7.07 95.55 94.70 0.009 0.010
20,000 0.00 0.00 11.90 3.19 94.80 94.80 0.010 0.010

Note: The data generating process is given by yft = βxft + κεyft, xft = 0.8xf,t−1 + εxft, w
x
ft = 0.8wf,t−1 + εwft,

and εwft = κw(ε
y
ft − εxft) + ewft, for t = 1, 2, ..., T , and f = 1, 2, ..., F , where εyft, ε

x
ft, e

w
ft ∼ IIDN (0, 1) and κ = 4.

Estimating equation is yft = ηf +βxft+ δwf,t−1+ εyft. DFIV is the double filter IV estimator by Hayakawa et al. (2019)
using the regressors themselves, (xf,t, wf,t−1)

′, as instruments. All experiments are based on R = 2, 000 Monte Carlo
replications.

of cft that we then use as an instrument for xfmt when estimating β via 2SLS. We refer to these

IV estimators as leave-out (LO) estimators. For comparison, we also report on the FE estimator,

which will be biased, due to the correlation between the regressor xfmt and the error term εyfmt.

We explore five forms of fixed effects to illustrate the findings of Proposition 1 and its special cases

discussed in Proposition 2. The latter predicts that the bias of LO estimators (if any) depends on

the choice of fixed effects.24

24DGP3 is a special case of the general model (2)-(3) with i = (f,m, t), vf,m,t = xf,m,t, and the construction group for
the instrument is given by G(f,m, t) = J(f,m, t) \ {f,m, t} with J(f,m, t) = {(f, 1, t), (f, 2, t), ..., (f,M, t)}. Hence
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Table 5: Empirical size and power of the Hausman test for the weak exogeneity bias in experiments
with lagged control variable and β = 0

Size (×100) Power (×100)
κw = 0 κw = 0.2 κw = 1

F \ T 5 10 5 10 5 10
4,000 4.05 5.45 5.15 6.80 11.95 80.65

20,000 5.40 4.60 4.80 10.60 43.05 100

Note: The Hausman test is based on the difference between the FE and DFIV estimators of β. DFIV is the double filter
IV estimator by Hayakawa et al. (2019) using the regressors themselves as instruments. The data generating process is
given by yft = βxft+κεyft, xft = 0.8xf,t−1+εxft, w

x
ft = 0.8wf,t−1+εwft, and εwft = κw(ε

y
ft−εxft)+ewft, for t = 1, 2, ..., T ,

and f = 1, 2, ..., F , where εyft, ε
x
ft, e

w
ft ∼ IIDN (0, 1) and κ = 4. Estimating equation is yft = ηf +βxft+δwf,t−1+εyft.

Reported empirical size is the rejection rate in experiments with κw = 0. Empirical power is the rejection rate in
experiments with κw = 0.2, and 1. All experiments are based on R = 2, 000 Monte Carlo replications.

We begin by examining fixed effect structures consistent with Case 3 of Proposition 2. First we

consider Firm fixed effects, which results in |C(f,m, t)| = MT and |G(f,m, t) ∩ C(f,m, t)| = M −
1. Hence, θ̄, as given by (7), is of order 1/(MT ), and since both M and T are small in our experi-

ments, we can expect a sizable bias, that diminishes with M and T but does not change with F . We

next look at Year fixed effects. In this case, we have |C(f,m, t)| = MF , |G(f,m, t) ∩ C(f,m, t)| =
M − 1, and therefore θ̄ given by (7) is of order 1/(MF ). Since F is large in our design, we do

not expect any sizable bias for this LO estimator. Third, we analyze Firm + Year fixed effects,

which, given the discussion above and the results of Online Appendix A, is expected to lead to a

similar bias as with Firm fixed effects alone. The fourth type of fixed effects is Firm × Year and

corresponds to Case 1 of Proposition 2. This is the case where the LO estimator will be identical

to the FE estimator. Last, we consider Firm × Market fixed effects, which corresponds to Case 5 of

Proposition 2. This case is not expected to have any notable bias.

All of these theoretical predictions are borne out in findings reported in Table 6. All FE esti-

mators are severely biased, regardless of the choice of fixed effects. LO estimators using Firm and

Firm + Year fixed effects share similar and sizable bias which in some cases is worse than the bias

observed when not instrumenting at all. In contrast, the bias of the LO estimator with Year fixed

effects is not discernible. The LO estimator with Firm × Year fixed effects (Case 1) is numerically

identical to the FE estimator with the same fixed effects. Our preferred solution (Case 5) using

Firm × Market fixed effects does not have any discernible bias.

An additional implication of Proposition 2 is that, due to the bias of the first stage regressions,

F-statistics can spuriously indicate instrument relevance. Figure 4 reports histograms for first-

|G(f,m, t)| = M − 1. The overlap between the set G(f,m, t) and the fixed effects set C(f,m, t) will determine the
extent of the bias of LO estimators.
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stage F-statistics of the LO estimators using Firm fixed effects only and Firm × Market fixed effects

in experiments with γ = 0. This means that there is no correlation between the instrument and

the regressor and thus the instrument is irrelevant.25 Despite this irrelevance, the F-statistics for

the first stage regressions with Firm fixed effects (Panel (a) of Figure 4) show values of around

17,000, spuriously indicating instrument strength. In contrast, Panel (b) shows that the spurious

relevance disappears when the bias is removed.

25These experiments feature F = 4, 000 firms, M = 3 markets, and T = 5 periods.
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Table 6: Simulated bias, root mean square error (RMSE), 95% confidence interval coverage rates
(CR), and share of statistically significant estimates at 1% level of FE and leave-out IV estimators
of β = 0 in Firm-Market-Year panel experiments with regressor endogeneity

Significant β̂
Bias RMSE (×100) 95% CR (×100) at 1% level

F \ T 5 10 5 10 5 10 5 10
A. Fixed Effect Estimators

Firm Fixed Effects
4,000 1.39 1.11 139.26 110.85 0.00 0.00 1.000 1.000

20,000 1.39 1.11 139.24 110.85 0.00 0.00 1.000 1.000
Year Fixed Effects

4,000 0.90 0.81 90.37 81.12 0.00 0.00 1.000 1.000
20,000 0.90 0.81 90.36 81.13 0.00 0.00 1.000 1.000

Firm + Year Fixed Effects
4,000 1.39 1.11 139.26 110.86 0.00 0.00 1.000 1.000

20,000 1.39 1.11 139.24 110.86 0.00 0.00 1.000 1.000
Firm × Year Fixed Effects

4,000 1.81 1.62 180.76 162.24 0.00 0.00 1.000 1.000
20,000 1.81 1.62 180.71 162.25 0.00 0.00 1.000 1.000

Firm × Market Fixed Effects
4,000 1.50 1.15 150.26 114.66 0.00 0.00 1.000 1.000

20,000 1.50 1.15 150.26 114.65 0.00 0.00 1.000 1.000
A. Leave-Out Instrumental Variable Estimators

Firm Fixed Effects (Case 3)
4,000 -2.87 -0.57 288.02 56.78 0.00 0.00 1.000 1.000

20,000 -2.84 -0.57 284.72 56.66 0.00 0.00 1.000 1.000
Year Fixed Effects (Case 3)

4,000 0.00 0.00 1.98 1.32 94.60 93.75 0.011 0.014
20,000 0.00 0.00 0.87 0.58 94.60 94.80 0.012 0.011

Firm + Year Fixed Effects (Case 3)
4,000 -2.87 -0.57 288.43 56.84 0.00 0.00 1.000 1.000

20,000 -2.85 -0.57 284.80 56.68 0.00 0.00 1.000 1.000
Firm × Year Fixed Effects (Case 1)

4,000 1.81 1.62 180.76 162.24 0.00 0.00 1.000 1.000
20,000 1.81 1.62 180.71 162.25 0.00 0.00 1.000 1.000

Firm × Market Fixed Effects (Case 5)
4,000 0.00 0.00 3.31 1.85 95.00 94.90 0.012 0.012

20,000 0.00 0.00 1.52 0.84 94.25 94.80 0.017 0.012

Note: The DGP is given by yfmt = βxfmt + κεyfmt, ε
y
fmt = exfmt + eyfmt, and xfmt = 0.8xf,m,t−1 + cf,t + exfmt,

for f = 1, 2, ..., F , t = 1, 2, ..., T , and m = 1, 2, 3, where exfmt,e
y
fmt,cft ∼ IIDN (0, 1), and κ = 4. Leave-Out IV

estimators are 2SLS estimators that use firm-specific averages of xfmt in other markets as an instrument, given by
zfmt =

∑
m′ ̸=m xf,m′,t. All experiments are based on R = 2, 000 Monte Carlo replications.
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Figure 4: Histograms of F-statistics for Leave-Out (LO) instrument relevance in Firm-Market-Year
experiments with irrelevant instrument (γ = 0), F = 4, 000, M = 3 and T = 5.

(a) LO-IV using Firm Fixed Effects (b) LO-IV using Firm × Market Fixed Effects

Note: The DGP is given by yfmt = βxfmt + κεyfmt, ε
y
fmt = exfmt + eyfmt, and xfmt = 0.8xf,m,t−1 + γcf,t + exfmt, for

f = 1, 2, ..., F , t = 1, 2, ..., T , and m = 1, 2, 3, where exfmt, e
y
fmt, cft ∼ IIDN (0, 1), and κ = 4. Leave-out instrument is

given by zfmt =
∑

m′ ̸=m xf,m′,t. This instrument is not relevant when γ = 0. All experiments are based on R = 2, 000
Monte Carlo replications.

5 Empirical Application: Judge Fixed Effects in USPTO Data

There is an active and important research agenda trying to understand the effects of decisions by

judges and other officials in questions such as the incarceration of a defendant, the acceptance into

a social program, the granting of patents, and other areas. The empirical challenge for such studies

is that these decisions are not made at random, and thus, exogenous variation in the independent

variable is difficult to find. Beginning with Kling (2006), a common empirical approach has been to

use the leniency of randomly assigned decision-makers as an instrument, an approach popularly

dubbed as “Judge Fixed Effects” (Frandsen et al., 2023, who also provide a literature overview of

applications).

We provide an empirical demonstration of our bias in this application of the leave-out instru-

ment using publicly available data from the U.S. Patent Office (USPTO). The data covers patent

applications and unique patent examiner identifiers for 9.23 million patent applications from 1910

until 2014. This data, or data like it, have been used in combination with leave-out instruments

to answer a variety of questions in finance, innovation research, and other areas (see, e.g., Farre-

Mensa et al., 2020; Feng and Jaravel, 2020; Melero et al., 2020). To illustrate the effects of the bias,

we consider a research question that can be answered using only the USPTO data and does not
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require additional, potentially proprietary or subscription-based, data. We thus focus on the ques-

tion of whether a successful patent application makes inventors more likely to apply for another

patent in the future. Data availability for unsuccessful patent applications requires us to focus on

applications starting 2001 (see, e.g., Sampat and Williams, 2019, for detail). We focus on first-time

applicants between 2001 and 2009, as identified by their full name on the patent application. They

are categorized as a repeating inventor if the same name appears on a later patent application.

This definition raises some measurement error concerns. However, we are focused on identifying

the estimation bias rather than finding a credible answer to the research question. Discussions of

the identification and other details of the analysis can be found in Online Appendix C.

After data restrictions, we consider 1.15 million inventors on 790,000 patent applications. The

descriptive statistics of the sample can be seen in Table 7 below. Repeated applications are com-

mon, with 53.4% of inventors applying for one or more patents after the first one. We can see

that about 64% of first applicants are successful, such that there are sufficiently many treated and

untreated inventors. The leave-out instrument to measure examiner generosity is calculated from

all examiner decisions in the year of the patent application. Notably, this also includes patent ap-

plications by inventors who are not applying for a patent for the first time. In total, we use 2.9

million patent applications for calculating the IV. Unsurprisingly, it has a mean close to 64%.26 Im-

portant for the extent of our bias, we can see that the instrument is based on a median of 77 patent

applications. This gives an indication of the magnitude of |G(i)|. We combine the analysis with

Art Unit × Year fixed effects. With a median value of 19 examiners per art unit, we can further

see that |G(i)|/|C(i)| is about 0.05 in our analysis. This provides an idea of the size of the overlap

between construction group and fixed effect cell.

To analyze the research question, we first simply regress the success of the application on the

measure for an inventor with a repeated application, using Art Unit×Year fixed effects. Column

(1) in Table 8 shows that this least squares (LS) analysis renders a positive and highly significant

effect of past success on the likelihood of further applications. This estimation, however, suffers

from obvious endogeneity problems. In column (2), we use the canonical combination of leave-out

instruments and fixed effects to address this. The results show that instrumenting makes the coef-

ficient smaller, but still economically meaningful and highly statistically significant. Furthermore,

a five-digit F-statistic promises a strong instrument and valid identification strategy.

However, the estimate in column (2) suffers from bias due to a reintroduction of the focal value

by the fixed effects as summarized by Proposition 1 in general and item 2 of Proposition 2 for this

case in particular. Not all solutions mentioned in Section 3.1 are feasible here. Since there is no

26See also Figure C1 in Online Appendix C for the residualized distribution.
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Table 7: Descriptive Statistics for Analysis Sample

Mean St. Dev. Median 5% Pctl 95% Pctl

Repeated Application 0.533 0.4989 - - -
Successful Application 0.6394 0.4802 - - -
Examiner Generosity 0.6515 0.2293 0.6927 0.22 0.9667
Examiner Generosity (Outside) 0.6579 0.2349 0.7041 0.2121 0.9762
Patents/ Examiner×Year 971.8 4,609 77 19 340
Patents/ Examiner×Year (Outside) 378.7 1,969 49 13 186
Examiners/ Art unit×Year 25.85 22.08 19 11 82

Note: The table shows the descriptive statistics for the main analysis of the USPTO data. The first four rows and the
last row are based on the 1.15 million inventors or 790 thousand applications in the estimation sample. Inventors have
a repeated application if their name appears on at least one more patent application filed after the first one. An appli-
cation is denoted successful if it has an issue date. Examiner generosity is the leave-out instrument. Outside stands for
outside sample and denotes instruments calculated only from applications without any first time applicant on them.
Patents/ Examiner×Year values are calculated directly from the 2.9 or 2 million patent applications which are used to
calculate the leave-out instrument or outside sample instrument, respectively.

Table 8: Estimation Results USPTO Data

Real Examiners Scrambled Examiners

(1) (2) (3) (4) (5)
LS 2SLS 2SLS 2SLS 2SLS

Success 0.085∗∗∗ 0.054∗∗∗ 0.045∗∗∗ 0.086∗∗∗ −5.060
(0.002) (0.006) (0.008) (0.020) (41.345)

1st Stage F-Stat. - 48,046 5,712 1,309 0.01637

Fixed effects
Art unit ×

Year
Art unit ×

Year
Art unit ×

Year
Art unit ×

Year
Art unit ×

Year

Instrument Group -
All

Applications
Non-first

Applications
All

Applications
Non-first

Applications
Examiner - Real Real Scrambled Scrambled
Clustered st. err. Art unit Art unit Art unit Art unit Art unit
Observations 1,146,706 1,146,706 1,146,706 1,146,706 1,146,706

Note: The table displays the results of the different estimations analyzing the effect of a successful patent application
on the probability of the inventor applying for at least one additional patent in the data. We consider all inventors who
filed for their first patent application in the years 2001 through 2009. 2SLS estimations use a leave-out instrument based
on examiner generosity in all patents of that examiner in the year the focal patent is filed (columns (2) and (4)) or all
applications without any first-time applicant on them in the same time frame (columns (3) and (5)). The analyses in
columns (4) and (5) use examiner IDs scrambled within the fixed effect cell such that the instrument is uninformative.
Standard errors are clustered on the level of the Art unit in each estimation. Stars *, **, and *** denote statistical signifi-
cance at the 0.10, 0.05, and 0.01 levels, respectively.

obvious orthogonal dimension to the examiner using a fixed effect on such a dimension in an

interaction is not possible here. Further, since most examiners are only working on applications

in a single art unit, calculating the instrument outside of the fixed effect cell is also unfeasible.
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This leaves us with the “outside-sample” approach following Sampat and Williams (2019). Here,

we calculate the instrument using only patent applications in which none of the inventors are

applying for the first time (n = 2 million). Results for this instrument are shown in column (3).

The estimated coefficient is 16.1% smaller than that in the canonical estimation and has a 29.6%

higher standard error. The standard leave-out IV thus has a bias of 21.6% relative to that of LS.

To illustrate that the bias highlighted in this paper can lead to spuriously large first-stage F-

statistics, we randomly scramble the examiner IDs between patents within an Art unit×Year cell.

The leave-out instrument calculated on the basis of these scrambled examiner IDs is uninforma-

tive and should not lead to a viable identification, given that the applications are now allocated

randomly to construction groups. Nevertheless, as can be seen in column (4) of Table 8, a regres-

sion with the canonical IV strategy leads to a coefficient that is a) highly statistically significant, b)

has a first stage F-statistic above 1000, and c) is about as large as the LS coefficient. At face value,

the instrument thus seems reliable and the endogeneity minimal. However, all statistical evidence

is generated by the bias. Column (5) shows that using the correct outside-sample instrument from

scrambled examiner IDs leads to a statistically insignificant result and a first-stage F-statistic of

essentially 0.27

The empirical application thus shows that even in data structures that give the ex-ante impres-

sion that the bias could be small, it can still impact results in a meaningful way. Moreover, if the

instrument is completely uninformative, the bias can make it appear informative and valid, in-

stead. In this setting, the bias can also lead to seemingly statistically significant and economically

meaningful results when there really are none.28 On a positive note, the general identification

strategy using leave-out instruments based on examiner generosity still seems valid. While first-

stage F-statistics decline by over one order of magnitude when the corrected instrument is used,

they are still very high.

6 Conclusions

In this paper, we have identified a bias that can arise when constructed regressors are combined

with fixed effects. Fixed effects de-meaning can reintroduce the focal observation into the con-

27We also note that this shows that the bias cannot be generated from the potential covariance structure at the
Art unit × Year level (as detailed in Frandsen et al., 2025b), since the outside sample scrambled IV is constructed
from the same Art unit ×Year .

28The implications of the results are unaffected by using different definitions of the dependent variable, even if the
results themselves are somewhat different. In all analyses, the use of scrambled examiner IDs leads to an informative
canonical instrument and an uninformative corrected one. See Online Appendix C for details.
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structed regressor, leading to mechanical correlation and biased estimates. We show this result

generally and then apply it to two often used econometric specifications: lagged and leave-out

regressors. For the latter, we categorize the potential specifications into six cases based on the

relationship between the set used for fixed effects (fixed effects cell) and the set used to create the

regressor (construction group). Irrespective of the application, bias is most severe when the fixed

effect cell overlaps strongly with the construction group.

The bias described in this study may come as a surprise because an exhaustive fixed effect

structure is typically seen as a sign of particularly robust identification. This might particularly

be the case if the constructed regressors are used as instrumental variables, as is often the case.

Here, the typical requirement is that the instrument needs to fulfill the exclusion restriction. In

the notation of Equation (2), it is obvious under Assumption 1 that zi and εi are uncorrelated.

Despite this, zi−z̄C(i) and εi−ε̄C(i) are mechanically correlated. Thus when examining the validity

of an instrument, it is important to consider the entire estimation strategy, instead of defending

assumptions piecemeal.29

Our findings have important implications for researchers using constructed regressors in fi-

nance and economics applications. Careful consideration must be given to the interaction between

the fixed effects structure and construction of the regressor to avoid biased estimation and, in the

case of instruments, inflated first-stage F-statistics. We illustrate the practical relevance of our

results using Monte Carlo simulations and in an empirical application of the judge fixed effects

estimation strategy. Combining constructed regressors with fixed effects can generate substantial

bias. Guided by our theoretical results, we provide solutions to obtain consistent estimates, and

we also point to existing methods in the literature for solutions.

As the use of constructed regressors continues to proliferate, our paper serves as a cautionary

note and practical guide. We hope our analysis enables applied researchers to reap the benefits

of constructed regressors while avoiding the pitfalls that arise from their interaction with fixed

effects.

29Implications of the bias identified in this paper for the commonly used specification tests, with a specific focus on
using constructed regressors as instruments, is covered in Online Appendix D.
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Appendix

This appendix is organized in three sections. Section A.1 presents additional regularity assump-
tions and remarks. Section A.2 presents proofs. Section A.3 outlines DFIV estimator of Hayakawa
et al. (2019).

A.1 Additional Assumptions

Assumption 4. (Existence of FE estimator) X̃̃X̃X ′X̃̃X̃X is invertible, and z̃̃z̃z′MMM X̃z̃ > 0z̃ > 0z̃ > 0.

Remark 1. Assumption 4 stipulates the requirements for the existence of the FE estimator. In
essence, the assumption rules out perfect collinearity of the constructed and additional regressors.

Assumption 5. (Idiosyncratic errors and regressors) Let λi = ziε̃i − E (ziε̃i), PPP X̃ = X̃̃X̃X
(
X̃̃X̃X ′X̃̃X̃X

)−1
X̃̃X̃X ′,

and MMM X̃ = IIIn −PPP X̃ , where IIIn is n× n identity matrix and X̃ =X̃ =X̃ = (x̃̃x̃x1, x̃̃x̃x2, ..., x̃̃x̃xn)
′. As n → ∞,

(i) n−1
∑n

i=1 λi →p 0,

(ii) n−1z̃̃z̃z′MMM X̃ z̃ →z̃ →z̃ → pQzx > 0, and

(iii) n−1z̃̃z̃z′Pz̃̃z̃z′Pz̃̃z̃z′P X̃ ε̃ →ε̃ →ε̃ → p0.

Remark 2. Assumption 5 stipulates general high-level requirements on the idiosyncratic errors
and regressors required for the consistency of the FE estimator. Condition (i) allows for het-
eroskedastic and correlated idiosyncratic errors, but rules out strong correlations among errors.
Condition (ii) essentially ensures sufficient variation among zi once the fixed effects and regres-
sors in XXX were filtered out. Condition (iii) is an exogeneity requirement ensuring that the corre-
lation between the regressors in XXX and idiosyncratic errors is sufficiently weak for it to not affect
the consistency of the FE estimator.

A.2 Proofs

Proof of Proposition 1. Using yyy = βzzz +XδXδXδ + ηηη + εεε, the vector of demeaned variables ỹ̃ỹy is given by
ỹ̃ỹy = βz̃̃z̃z + X̃δX̃δX̃δ + ε̃̃ε̃ε. Substituting this expression for ỹ̃ỹy in (5), and noting that MMM X̃X̃ = 0X̃ = 0X̃ = 0, we obtain

β̂ − β =

(
z̃̃z̃z′MMM X̃ z̃̃z̃z

n

)−1 z̃̃z̃z′MMM X̃ ε̃̃ε̃ε

n
.

Under Assumption 5.(ii), n−1z̃̃z̃z′MMM X̃ z̃ →z̃ →z̃ → pQzx, where Qzx > 0. Consider n−1z̃̃z̃z′MMM X̃ ε̃̃ε̃ε next. We have

z̃̃z̃z′MMM X̃ ε̃̃ε̃ε

n
=

z̃̃z̃z′ε̃̃ε̃ε

n
−

z̃̃z̃z′Pz̃̃z̃z′Pz̃̃z̃z′P X̃ ε̃̃ε̃ε

n
,
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where n−1z̃̃z̃z′Pz̃̃z̃z′Pz̃̃z̃z′P X̃ ε̃ →ε̃ →ε̃ → p0, as n → ∞ under Assumption 5.(iii). Last but not least, consider n−1z̃̃z̃z′ε̃̃ε̃ε.
LetMMMC be the orthogonal projection matrix that filters out the fixed effects, namely z̃ = Mz̃ = Mz̃ = MCzzz, and
ε̃̃ε̃ε =MMMCεεε. Since MMMC is symmetric and idempotent, we have

z̃̃z̃z′ε̃̃ε̃ε

n
=

zzz′ε̃̃ε̃ε

n
=

1

n

n∑
i=1

ziε̃i =
1

n

n∑
i=1

λi +∆β,n,

where λi = ziε̃i − E (ziε̃i), and

∆β,n =
1

n

n∑
i=1

E (ziε̃i) .

E (λi) = 0 by construction. In addition, under Assumption 5.(i), 1
n

∑n
i=1 λi →p 0 as n → ∞.

Noting ε̃i = εi − ε̄C(i), where ε̄C(i) = |C (i)|−1∑
j∈C(i) εj , and using (3) for zi, we can write ∆β,n as

∆β,n =
1

n

n∑
i=1

 1

|G(i)|
∑

j∈G(i)

E (vjεi)


− 1

n

n∑
i=1

 1

|G(i)| |C(i)|
∑

h∈G(i)

∑
j∈C(i)

E (vhεj)

 (19)

But E (vjεi) = 0 for i ̸= j under Assumption 1. Noting i /∈ G(i), it follows
∑

j∈G(i)E (vjεi) = 0.
For the second term on the right side of (19), we obtain

1

n

n∑
i=1

 1

|G(i)| |C(i)|
∑

h∈G(i)

∑
j∈C(i)

E (vhεj)

 =
1

n

n∑
i=1

∑
j∈C(i) cjiσvεj

|G(i)| |C(i)|
,

where cji = I [j ∈ G(i)], and I (.) is indicator function. These results establish

β̂ − β +Q−1
z ∆β,n →p 0,

as n → ∞, where

∆β,n =
1

n

n∑
i=1

∑
j∈C(i) cjiσvεj

|G(i)| |C(i)|
.

Result (6) follows.

Proof of Corollary 1. Form Proposition 1, we have

∆β,n =

n∑
i=1

∑
j∈C(i) cjiσvεj

|G(i)| |C(i)|
.
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But in the special case given by (8), |G(i)| = 1, |C(i)| = T − 1, the summation
∑n

i=1 becomes
F−1 (T − 1)−1∑F

f=1

∑T
t=2, σvεj becomes σvε,f , and we obtain

∆β,(F,T ) = F−1 (T − 1)−1
F∑

f=1

T∑
t=2

I(t < T )σvε,f
T − 1

,

=
T − 2

(T − 1)2
1

F

F∑
f=1

σvε,f .

Using σ̄vε = limF→∞ F−1
∑F

f=1 σvε,f , we have

∆β,T = lim
F→∞

∆β,(F,T ) =
T − 2

(T − 1)2
σ̄vε

In addition, n−1z̃̃z̃z′MMM X̃ z̃̃z̃z reduces to F−1 (T − 1)−1∑F
f=1

∑T
t=2 ṽ

2
f,t−1. Let

Qv,T = plimF→∞F−1 (T − 1)−1
F∑

f=1

T∑
t=2

ṽ2f,t−1,

then result (9) follows.

Proof of Proposition 2. We begin by showing item 3 (Case 4). The other items follow immediately
from that. From the Frisch-Waugh-Lovell Theorem, estimating Equation (2) is equivalent to esti-
mating

yRi = βzRi +XXXR
i γ + εRi . (20)

We consider zRi = zi − 1
|C(i)|

∑
j ∈ C(i)zj . From Equation (3) and Assumption 2, we know that

zi =
1

|G(i)|
∑

j∈G(i) vj =
1

|J(i)|−1

∑
j∈J(i)\i vj . Substituting, we obtain

zRi =
1

|J(i)| − 1

∑
j∈J(i)\i

vj −
1

|C(i)|
∑

j∈C(i)

1

|J(j)| − 1

∑
h∈J(j)\j

vh, (21)

=
1

|J(i)| − 1

 ∑
j∈Ĵ(i)

vj − vi

+
1

|J(i)| − 1

∑
j∈J̌(i)

vj

− 1

|C(i)|
∑

j∈C(i)

1

|J(j)| − 1

 ∑
h∈Ĵ(j)\j

vh +
∑

h∈J̌(j)

vh

 . (22)
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By Assumption 3 it holds that |J(i)| = k1 ∀ i. It follows that

żi =
1

|J(i)| − 1

 ∑
j∈Ĵ(i)

vj − vi −
∑

j∈C(i)\Ĵ(i)

vj +
∑

j∈C(i)\Ĵ(i)

vj −
1

|C(i)|
∑

j∈C(i)

∑
h∈Ĵ(j)\j

vh


+

1

|J(i)| − 1

 ∑
j∈J̌(i)

vj −
1

|C(i)|
∑

j∈C(i)

∑
h∈J̌(j)

vh

 . (23)

By Assumptions 2 and 3, J is a partition of the data and |Ĵ(i)| = k2 ∀ i. It thus holds that∑
j∈C(j)

∑
h∈Ĵ(j)\j vh = (|Ĵ(j)| − 1)

∑
j∈C(j) vj . Rearranging the terms we obtain

żi =
1

|J(i)| − 1

−vi −
∑

j∈C(i)\Ĵ(i)

vj +
|C(i)| − |Ĵ(i)|+ 1

|C(i)|
∑

j∈C(i)

vj


+

1

|J(i)| − 1

 ∑
j∈J̌(i)

vj −
1

|C(i)|
∑

j∈C(i)

∑
h∈J̌(j)

vh

 . (24)

We reverse the within transformation and obtain item 3 of the proposition. Item 2 follows by
observing that in this case J̌(i) = ∅. Item 1 follows from observing that in these cases both
J̌(i) = ∅ and C(i) \ Ĵ(i) = ∅. The observations for Cases 5 and 6 follow from the original
statement in Proposition 1 and observing that for both cases G(i) ∩ C(i) = ∅.

A.3 Double-Filtered IV estimator

This section provides details on the double-filtered IV (DFIV) estimator of Hayakawa et al. (2019).
Consider Firm-Year panel data model with individual observations indexed by f = 1, 2, ..., F and
t = 1, 2, ..., T . Suppose the dependent variable, denoted as yft, is given by

yft = ηf + βββ′zzzft + εft, (25)

where zzzft is a k×1 vector of regressors, we allow for k ≥ 1, βββ is a k×1 vector of the corresponding
slope coefficients, ηf is the Firm fixed effect, and εft is the idiosyncratic error term. It is assumed
zzzft is uncorrelated with εft, but it can be correlated with future values of εft. zzzft could contain
regressors in form of lags, including the possibility of lags of the dependent variable. It could also
include contemporaneous variables, so long as zzzft is uncorrelated with εft. For future reference,
it is convenient to stack (25), for t = 1, 2, ..., T, to obtain the model in a matrix form,

yyyf = τττT ηf +ZZZfβ + εβ + εβ + εf , (26)
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where yyyf = (yf1, yf2, ..., yfT )
′, τττT is T × 1 vector of ones, ZZZf = (zzzf1, zzzf2, ..., zzzfT )

′ and similarly
εεεf = (εf1, εf2, ..., εfT )

′.

DFIV estimation of βββ is based on the idea of instrumenting zzzft with itself, and applying for-
ward filtering to the model and backward filtering to the instruments to eliminate Firm fixed
effects. Specifically, define the forward filtering matrix

FFF T
(T−1)×T

= diag (c1, c2, ..., cT−1)



1 −1
T−1

−1
T−1

−1
T−1 · · · −1

T−1
−1
T−1

0 1 −1
T−2

−1
T−2 · · · −1

T−2
−1
T−2

0 0 1 −1
T−3 · · · −1

T−3
−1
T−3

...
...

. . . . . . . . .
...

...
...

...
. . . 1 −1

2
−1
2

0 0 · · · · · · 0 1 −1


,

where ct =
√

(T − t) / (T − t+ 1), for t = 1, 2, ..., T − 1. Multiplying (26) by FFF T , and noting
FFF TτττT = 0, the model becomes

ẏ̇ẏyf = Ż̇ŻZfβ + ε̇β + ε̇β + ε̇f ,

where ẏ̇ẏyf ≡ FFF Tyyyf = (ẏf1, ẏf2, ..., ẏf,T−1)
′, Ż̇ŻZf ≡ FFF TZZZf = (ż̇żzf1, ż̇żzf2, ..., ż̇żzf,T−1)

′, and ε̇̇ε̇εf = FFF Tεεεf .
Define next the backward filtering matrix,

BBBT
(T−1)×T

= diag (cT−1, cT−2, ..., c1)



−1 1 0 0 · · · · · · 0
−1
2

−1
2 1 0 · · · · · · 0

...
...

. . . . . .
...

−1
T−3

−1
T−3 · · · −1

T−3 1 0 0
−1
T−2

−1
T−2 · · · −1

T−2
−1
T−2 1 0

−1
T−1

−1
T−1 · · · −1

T−1
−1
T−1

−1
T−1 −1


,

and the backward filtered variables Z̈̈Z̈Zf ≡ BBBTZZZf = (z̈̈z̈zf2, z̈̈z̈zf3, ..., z̈̈z̈zf,T )
′, which are used as instru-

ments. DFIV estimator of βββ is then given by

β̂̂β̂βDFIV =

 F∑
f=1

T−1∑
t=2

z̈̈z̈zftż̇żz
′
ft

−1 F∑
f=1

T−1∑
t=2

z̈̈z̈zftẏft

 . (27)

Note, due to application of both forward and backward filters, the smallest time dimension for
β̂̂β̂βDFIV to be defined is T = 3, in contrast to the FE estimator, which is defined for T ≥ 2.
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Online Appendix A Leave-out Case 3 for Two-way Fixed Effects Esti-
mators

We mention in Section 2.3 that two-way fixed effects estimators do not improve the situation for
leave-out constructed regressors in Case 3 when compared to one-way fixed effects estimators.
This appendix gives a formal result akin to item 2 in Proposition 2 for two-way fixed effects es-
timators under Assumptions 1 and 4. We consider a specific balanced panel structure in which
for every i the intersection of its two fixed effect cells is equal to the jackknife group J(i). Note
that the assumptions on the data structure outlined in the proposition replace assumptions 2 and
3 from Proposition 2. The data structure considered in the Monte Carlo simulations of Section 4.3
is a possible illustration of the case covered here. For the proof, we denote the two fixed effects
cells for observation i as C(1, i) and C(2, i) and the set of all observations as Ω.

Proposition 3. Let the data be structured that for all observations i ∈ Ω it holds that J(i) ⊂ C(1, i),
J(i) ⊂ C(2, i) and C(1, i) ∩ C(2, i) = J(i). Further assume |C(1, i)| = c1 ∧ |C(2, i)| = c2 ∧ |J(i)| =
k ∀ i. Then, under Assumptions 1 and 4, estimating

xi = βzi + ηC(1,i) + ηC(2,i) + εi with (A1)

zi =
1

|J(i)| − 1

∑
j∈J(i)\i

vj (A2)

with the FE estimator is equivalent to estimating Equation (A1) with

zi =− 1

|J(i)| − 1

vi + α
∑

j∈C(1,i)\J(i)

vj + (1− α)
∑

j∈C(2,i)\J(i)

vj

 (A3)

for any α ∈ R.

Proof. From the Frisch-Waugh-Lovell Theorem, estimating Equation (A1) is equivalent to estimat-
ing

xi − x̄C(1,i) − x̄C(2,i) + x̄Ω =β(zi − z̄C(1,i) − z̄C(2,i) + z̄Ω) + εi − ε̄C(1,i) − ε̄C(2,i) + ε̄Ω. (A4)
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We denote zRi = zi − z̄C(1,i) − z̄C(2,i) + z̄Ω and substitute equation (A2)

zRi =
1

k − 1

∑
j∈J(i)\i

vj −
1

c1

∑
j∈C(1,i)

1

k − 1

∑
h∈Gj\j

vh −
1

c2

∑
j∈C(2,i)

1

k − 1

∑
h∈Gj\j

vh

+
1

c1c2

∑
j∈C(1,i)

∑
h∈C2j

1

k − 1

∑
l∈Gh\h

vl (A5)

=
1

k − 1

 ∑
j∈J(i)

vj − vi −
k − 1

c1

∑
j∈C(1,i)

vj −
k − 1

c1

∑
j∈C(2,i)

vj +
k − 1

c1c2

∑
j∈C(1,i)

∑
h∈C2j

vh

 (A6)

=
1

k − 1

−vi +
1

c1

∑
j∈C(1,i)

vj +
1

c1

∑
j∈C(2,i)

vj −
1

c1c2

∑
j∈C(1,i)

∑
h∈C2j

vh


+

1

k − 1

 ∑
j∈J(i)

vj + α

 ∑
j∈C(1,i)\J(i)

vj −
∑

j∈C(1,i)\J(i)

vj

+ (1− α)

 ∑
j∈C(2,i)\J(i)

vj −
∑

j∈C(2,i)\J(i)

vj


− k

c1

∑
j∈C(1,i)

vj −
k

c1

∑
j∈C(2,i)

vj +
k

c1c2

∑
j∈C(1,i)

∑
h∈C2j

vh

 (A7)

=
1

k − 1

−vi +
1

c1

∑
j∈C(1,i)

vj +
1

c1

∑
j∈C(2,i)

vj −
1

c1c2

∑
j∈C(1,i)

∑
h∈C2j

vh


+

1

k − 1

−α
∑

j∈C(1,i)\J(i)

vj − (1− α)
∑

j∈C(1,i)\J(i)

vj +
αc1 − k

c1

∑
j∈C(1,i)

vj

+
(1− α)c2 − k

c2

∑
j∈C(2,i)

vj +
k

c1c2

∑
j∈C(1,i)

∑
h∈C2j

vh

 (A8)

=
1

k − 1

−vi +
1

c1

∑
j∈C(1,i)

vj +
1

c1

∑
j∈C(2,i)

vj −
1

c1c2

∑
j∈C(1,i)

∑
h∈C2j

vh


+

1

k − 1

−α
∑

j∈C(1,i)\J(i)

vj − (1− α)
∑

j∈C(1,i)\J(i)

vj + α
c1 − k

c1

∑
j∈C(1,i)

vj

+(1− α)
c2 − k

c2

∑
j∈C(2,i)

vj −
k(αc1 + (1− α)c2 − 1)

c1c2

∑
j∈C(1,i)

∑
h∈C2j

vh

 (A9)

Reversing the within transformation across both clusters C(1, i) and C(2, i) renders the proposi-
tion.

The proposition can be interpreted in different ways. However, the simplest intuition for the
applied researcher is that with two-way fixed effects estimators, item 2 of Proposition 2 is true
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for both fixed effects at the same time. With a standard panel of firm data, when including both
a Firm and a Y ear fixed effect, both |T | and |F | need to become large in order for the bias to
disappear.
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Online Appendix B Additional Monte Carlo Findings

This appendix reports an additional Monte Carlo DGP featuring an endogenous regressor that
can be instrumented with its lag in a standard Firm-Year panel. Data is generated according to:

(DGPA1) yft = βxft + κεyft, εyft = νεxft + eyft, and (B1)

xft = ρxxf,t−1 + εxft, (B2)

for f = 1, 2, ..., F and t = 1, 2, ..., T , where εxft, e
y
ft ∼ IIDN (0, 1) and the initial values are

xf,−1 = 0. As before, we set β = 0, ρx = 0.8, and κ = 4.30 The parameter ν defines the de-
gree of the endogeneity of the regressor. We consider three experiments based on νx = 0, 0.2 and
1. To estimate β we use a 2SLS IV estimator featuring firm fixed effects and use xf,t−1 as the in-
strument for xft. We denote this estimator as IV-Lag below. In our DGPA1, this instrument is
uncorrelated with εyft and it is strong for all values of νx and all sample sizes considered. What is
often overlooked in empirical research is that these two conditions are not sufficient for the IV-Lag
estimator to be consistent. As discussed in Section 2.1, we expect bias of order O(1/T ), and conse-
quently the IV-Lag estimator will be inconsistent as F → ∞ and T is fixed. In DGPA1, consistency
of the IV-Lag estimator under large-F asymptotics is achieved only if νx = 0, which is when xft is
strictly exogenous, and instrumenting is not needed to begin with. As a possible solution, we also
compute a double filtered IV estimator of Hayakawa et al. (2019) featuring Firm fixed effects and
using the lagged regressor as the instrument. We denote this estimator as DFIV-Lag below.

Table B1 confirms our theoretical predictions. The reported biases of the IV-Lag estimator
are all very large and the confidence interval coverage rates are all close to zero when ν ̸= 0.
Unfortunately, it appears to be a common practice in the literature to use the IV-Lag estimator,
even if it is clearly expected that the instrument is correlated with past and/or future values of
εyft, in panel settings with Firm Fixed effects and a relatively small time dimension. In contrast to
the IV-Lag estimator, the DFIV-Lag estimator is consistent in this design, regardless of the value of
ν. We see no discernible bias of the DFIV-lag estimator in Table B1. Confidence interval coverage
rates are also close to 95 percent in all cases. Hence, the DFIV-Lag estimator is a viable solution.
Implementing it is again costly in terms of an increased root mean squared error. However, this
cost can only be seen in Panel A of Table B1 and in the case shown there, instrumenting would not
be necessary in the first place.

30The value of β does not affect the small sample performance of the individual estimators considered.
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Table B1: Simulated bias, root mean square errors (RMSE), 95% confidence interval coverage rates
(CR), and share of statistically significant estimates at 1% level of FE, IV-lag and DFIV-lag estima-
tors of β = 0 in Firm-Year panel experiments with regressor endogeneity

Significant β̂
Bias RMSE (×100) 95% CR (×100) at 1% level

F \ T 5 10 5 10 5 10 5 10
A. Experiments with ν = 0 (regressor is strictly exogenous)

FE estimator
4,000 0.00 0.00 3.38 1.89 94.95 94.35 0.011 0.012
20,000 0.00 0.00 1.53 0.84 94.30 94.90 0.010 0.014

IV-lag estimator (using lagged regressor as instrument)
4,000 0.00 0.00 10.58 3.37 94.90 94.90 0.011 0.013
20,000 0.00 0.00 4.64 1.51 95.30 94.95 0.009 0.012

DFIV-lag estimator (using lagged regressor as instrument)
1,000 -0.01 0.00 22.45 7.42 94.95 94.45 0.009 0.009
4,000 0.00 0.00 9.87 3.36 95.25 94.35 0.012 0.010
B. Experiments with ν = 0.2 (small degree of endogeneity)

FE estimator
4,000 0.60 0.46 60.20 45.89 0.00 0.00 1.000 1.000
20,000 0.60 0.46 60.17 45.86 0.00 0.00 1.000 1.000

IV-lag estimator (using lagged regressor as instrument)
4,000 -1.18 -0.35 118.34 35.30 0.00 0.00 1.000 1.000
20,000 -1.18 -0.35 117.78 35.09 0.00 0.00 1.000 1.000

DFIV estimator
1,000 0.00 0.00 23.06 7.37 94.70 95.20 0.011 0.009
4,000 0.00 0.00 10.31 3.30 94.65 94.50 0.009 0.011
C. Experiments with ν = 1 (moderate degree of endogeneity)

FE estimator
1,000 3.01 2.29 300.57 229.34 0.00 0.00 1.000 1.000
4,000 3.01 2.29 300.53 229.25 0.00 0.00 1.000 1.000

IV-lag estimator (using lagged regressor as instrument)
4,000 -5.89 -1.75 589.49 175.60 0.00 0.00 1.000 1.000
20,000 -5.89 -1.75 589.15 175.31 0.00 0.00 1.000 1.000

DFIV-lag estimator (using lagged regressor as instrument)
1,000 -0.01 0.00 32.22 10.64 94.25 94.70 0.012 0.010
4,000 -0.01 0.00 14.24 4.74 94.95 94.90 0.011 0.011

Note: The DGP is given by yft = βxft + κεyft, ε
y
ft = νεxft + eyft, and xft = 0.8xf,t−1 + εxft, for t = 0, 1, 2, ..., T , f =

1, 2, ..., F , where εxft, e
y
ft,∼ IIDN (0, 1) and κ = 4. Estimating equation is yft = αf + βxft + εyft. IV-Lag is two-stage

least squares (2SLS) instrumental variable estimator using lagged regressor, xf,t−1, as an instrument. DFIV-Lag is the
double filter IV estimator by Hayakawa et al. (2019) using lagged regressor, xf,t−1, as an instrument. All experiments
are based on R = 2, 000 Monte Carlo replications.
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Online Appendix C Details on USPTO Data Analysis

We source data from the 2014 wave of the USPTO Patent Examination Research Dataset (PatEx).
We chose this wave because, in contrast to later waves, it provides a unique examiner ID for
each patent application, which reduces measurement error in the identification of the instrument
group. We combine the data on applications with that on inventors. A unique inventor is iden-
tified by their first, middle, and last name. With this procedure, it is likely that in certain cases,
multiple inventors are combined into a single person. We cannot address this measurement prob-
lem here, because we do not want to make arbitrary further data restrictions (such as focusing on a
specific type of invention) or use additional data for our empirical demonstration. As a result, the
research question is probably not identified to a satisfactory degree. However, we are interested
in identifying the bias and not the particular research question. We further remove all entries in
the data without an examiner ID and inventors with an undefined application date. This process
mostly removes older entries in the data which are not of relevance to our analysis.

In the regression analyses, we focus on the success of the first application by an inventor. Be-
cause failed applications are only reliably documented in the data for applications filed on or after
November 29th 2000 (Sampat and Williams, 2019), we focus on applications from 2001 onwards.
An application is categorized as the first application if the inventor’s name has not appeared on
any previous application in the data. If inventors have multiple first applications on the same day,
they are deleted from the data. An application is deemed successful if the patent has an issue date
in the data. The dependent variable indicates whether the inventors are repeat applicants. They
are classified as such if they file for at least one more patent after having filed for the first. We
provide a robustness check for this definition below. Because we only observe data up to the year
2014 inclusively, we limit our analysis to the years 2001 through 2009, such that later applicants
have sufficient time for a second application.

To calculate the leave-out instrument, we consider all decisions on applications by an examiner
in a given year. This includes decisions on applications that are not by first-time applicants. Let
xi,e,t be the ith decision by examiner e in year t and n(e, t) the number of decisions by examiner e
in year t, then the canonical leave out instrument is given by

zi,e,t =
1

n(e, t)− 1

n(e,t)∑
j=1

xj,e,t − xi,e,t

 . (C1)

The outside sample instrument instead considers all decisions on patents which do not have at
least one first-time applicant on them. Denoting these decisions as xi,e,t,¬1 and their total number
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Figure C1: Histograms of Leave-out Instruments (Real and Scrambled Examiner IDs)

(a) All Applications (b) Only Non-First Applications

(c) All Applications - Scrambled (d) Only Non-First Applications - Scrambled

Note: The graphs show the histograms of the residualized leave-out instruments over the 1.15 million observations used
in the analysis of the USPTO data. The instrument for all applications is defined over all decisions of the examiner in the
year of the patent application (Equation (C1)) The non-first application instrument only considers examiner decisions
on applications by inventors who do not apply for a patent for the first time (Equation (C2)). Scrambled instruments
result from randomly assigned examiners within a and Art unit ×Year cell.

for examiner e in year t as n(e, t,¬1), the outside sample instrument is given by

ze,t =
1

n(e, t,¬1)

n(e,t,¬1)∑
i=1

xi,e,t,¬1

 . (C2)
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Note that in this case, all first-time applicants to examiner e in year t have the same value for
the instrument. Distributions for both instruments are given in Figure C1. The figure also shows
distributions for the scrambled examiner IDs. Note that we delete all observations from the data
in which the denominator in Equation (C1) is 0. We do this for both the real examiner IDs and the
scrambled ones such that all estimations in Table 8 are made on the same dataset.

One possible concern for the identification of the dependent variable could be that in the defi-
nition of the main analysis, we do not consider the timing of the decision. Rather, we say that any
second application by an inventor after the first one constitutes a repeated application, irrespective
of whether a decision on the first application has been rendered or not. To provide a robustness
check for this identification, we repeat the analysis from the paper with a different definition of the
dependent variable. Table C1 describes results when inventors are only categorized as repeated
applicants if they apply after the decision on the first patent has been made (that is, after the issue
date or the abandonment date).

Table C1: Estimation Results with Alternative Definition of Repeated Application

(1) (2) (3) (4) (5)
LS 2SLS 2SLS 2SLS 2SLS

Success 0.041∗∗∗ 0.091∗∗∗ 0.106∗∗∗ 0.048∗∗∗ 0.898
(0.001) (0.004) (0.005) (0.015) (8.074)

1st Stage F-Stat. - 36,191 4,901 1,260 0.02183

Fixed effects
Art unit ×

Year
Art unit ×

Year
Art unit ×

Year
Art unit ×

Year
Art unit ×

Year

Instrument Group -
All

Applications
Non-first

Applications
All

Applications
Non-first

Applications
Examiner - Real Real Scrambled Scrambled
Clustered st. err. Art unit Art unit Art unit Art unit Art unit
Observations 1,112,915 1,112,915 1,112,915 1,112,915 1,112,915

Note: The table displays the results of the different estimations analyzing the effect of a successful patent application
on the probability of the inventor applying for at least one additional patent in the data after the decision on the initial
application has been rendered. We consider all inventors who filed for their first patent application in the years 2001
through 2009. 2SLS estimations use a leave-out instrument based on examiner generosity in all patents of that examiner
in the year the focal patent is filed (columns (2) and (4)) or all applications without any first-time applicant on them in
the same time frame (columns (3) and (5)). The analyses in columns (4) and (5) use examiner IDs scrambled within the
fixed effect cell such that the instrument is uninformative. Standard errors are clustered on the level of the Art unit in
each estimation. Stars *, **, and *** denote statistical significance at the 0.10, 0.05, and 0.01 levels, respectively.

Results are comparable to the main analysis with one important difference. While the main
analysis shows the 2SLS coefficient to be smaller than the LS one, the results of the robustness
analysis show the opposite pattern. This shows that on the one hand, the identification of the
dependent variable is difficult given the present data, on the other hand, there could be two com-
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peting endogenous effects. The main analysis shows a quality effect in the sense that inventors
with higher-quality patents are both more likely to have a successful application and more likely
to have multiple applications. The current analysis implies that higher-quality patents are more
likely to succeed in their application and, at the same time, might require fewer follow-up patents
because they are already comprehensive. Which of these effects dominates then depends on the
exact measurement of the dependent variable. Aside from the difference between LS and 2SLS
estimates, the results are remarkably similar. The canonical instrument has a 23% relative bias
compared to that of LS. More importantly, the scrambled analysis returns a coefficient about equal
to that of the LS estimation with the canonical instrument and an uninformative instrument oth-
erwise. As before, the canonical instrument seems highly valid in the scrambled analysis, with an
F-statistic above 1000.

One way to make sure that fewer different inventors are combined in a single person for the
sake of the estimation is to instead look for unique inventor-name-by-art-unit combinations. Such
a process leads to a significantly increased sample size with roughly 3.86 million such combina-
tions.

Table C2: Estimation Results with Alternative Identification of Individual Inventors

(1) (2) (3) (4) (5)
LS 2SLS 2SLS 2SLS 2SLS

Success 0.072∗∗∗ 0.063∗∗∗ 0.053∗∗∗ 0.079∗∗∗ −2.097
(0.002) (0.006) (0.009) (0.011) (2.461)

1st Stage F-Stat. - 75,512 1,525 2,214 0.999

Fixed effects
Art unit ×

Year
Art unit ×

Year
Art unit ×

Year
Art unit ×

Year
Art unit ×

Year

Instrument Group -
All

Applications
Non-first

Applications
All

Applications
Non-first

Applications
Examiner - Real Real Scrambled Scrambled
Clustered st. err. Art unit Art unit Art unit Art unit Art unit
Observations 3,861,718 3,861,718 3,861,718 3,861,718 3,861,718

Note: The table displays the results of the different estimations analyzing the effect of a successful patent application
in a given Art unit on the probability of the inventor applying for at least one additional patent in the same Art unit.
We consider all inventors who filed for their first patent application in the years 2001 through 2009. 2SLS estimations
use a leave-out instrument based on examiner generosity in all patents of that examiner in the year the focal patent is
filed (columns (2) and (4)) or all applications without any first-time applicant on them in the same time frame (columns
(3) and (5)). The analyses in columns (4) and (5) use examiner IDs scrambled within the fixed effect cell such that the
instrument is uninformative. Standard errors are clustered on the level of the Art unit in each estimation. Stars *, **,
and *** denote statistical significance at the 0.10, 0.05, and 0.01 levels, respectively.

Results are given in Table C2 and show the same pattern as in the main analysis. The bias
is now more pronounced, it is 54% relative to LS. The analysis with scrambled examiner IDs is
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remarkably consistent between all three analyses. The coefficient when using the canonical leave-
out instrument is close to that of LS, and the instrument has a first-stage F-statistic above 1000.
However, when the outside-sample instrument is used, the F-statistic is essentially 0 and the weak
instrument leads to a statistically insignificant coefficient.
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Online Appendix D Discussion and Relationship to Judge FE Tests

In this appendix, we will briefly discuss how our argument regarding leave-out means and their
use as instrumental variables from Section 2.3 relates to other critiques and tests of leave-out in-
struments from the recent literature.

Some applications of instrumental variable estimation employ a test in which control variables
are added step-wise to the first stage estimation and the econometrician observes whether the
coefficient on the instrument changes in the process. This could, in theory, detect the problems
identified in this paper, but in practice, it likely is not a reliable test. When considering a wholly
uninformative constructed regressor as an instrument that contains mechanical correlation, the
instrumented variables (call it x) is essentially instrumented with itself and noise. Introducing an
independent control variable that is correlated with x can change the coefficient on the instrument,
because the control variable is correlated with both x and the mechanical correlation part in the
instrument. However, as can be seen in the numerical results of Section 4 the bias can affect the
estimated coefficient both positively and negatively and it is unclear which of these effects will be
affected the newly included independent variable. Thus, the problem might exist but, at the same
time, might not be detected by the test. The test has an even higher chance to become unreliable
if the instrument is informative, because if the included control variable is also correlated with
the shock that the instrument is measuring, the net effect might again not be noticeable. Further,
if v ̸= x, then such a test would be equivalent to including control variables in order to detect
endogeneity of an independent variable, which is not a valid exercise.

There has been extensive work on leave-out constructions as instruments, already. Focusing on
the use of spatial instruments and spillovers, Betz et al. (2018) and Huber (2023) consider various
necessary conditions for the identification strategy through leave-out instruments to hold. These
important conditions are complimentary to our analysis. That is, even if their conditions are met,
the instruments can be biased mechanically through the presence of fixed effects and, vice versa,
even if the fixed effects are specified correctly, the conditions recounted in these studies still need
to be met. As such, these two studies also act as a stand-in for a larger set of conditions which
may apply in a given research application (see, e.g, Angrist, 2014, for analyses of peer effects).
Because most conditions focus on the instrument itself and not on the broader estimation strategy
(including the choice of fixed effects), the results derived here are typically complementary to
other necessary conditions.

Given the extension of our results to judge fixed effects, it is natural to ask how the critique im-
pacts the test designed by Frandsen et al. (2023) for such situations. The two aspects are, however,
also completely complementary to each other. The test in Frandsen et al. (2023) tests the general
admissibility of using judges as identifying variation with regards to the exclusion restriction and
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monotonicity of the instrument. The test does not consider the typical leave-out construction in
the identification strategy but uses means of each judge’s propensity for a specific decision directly.
As such, an empirical strategy can pass the test of Frandsen et al. (2023) and still use a problematic
combination of leave-out instrument and fixed effects as detailed in this paper. Vice versa, a cor-
rect construction of the data structure in our sense has no impact on whether the Frandsen et al.
(2023) test gets rejected or not.
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Online Appendix E Structured Literature Review

We conducted a structured literature review of the issues 75, 76, and 77 (years 2020 through 2022)
of the Journal of Finance. We differentiated papers into four possible categories: empirical, theoreti-
cal, structural, and other. The last category being comprised of replications/ corrigenda, methods
papers, and similar types of research.

We included all papers that had the potential for the bias. This means, the paper featured a
constructed regressor (like a lag structure or a leave-out) and a fixed effect that leads to potential
overlap of the construction set and the set used for de-meaning. We excluded cases in which the
overlap was too small. These were mostly cases with time fixed effects in which the number of
firms or comparable entities was large. For all papers listed below, we cannot say for certain, how
large the bias will be. We simply listed those papers in which the bias could potentially appear.

An overview of the results of the literature review is given in Table 1. Throughout the review,
we focused on empirical and structured papers which made causal claims based on their data
analysis. This excluded most asset pricing papers, because here the goal commonly is to predict
asset prices rather than to make causal claims. This, however, does not mean that panel data anal-
yses with fixed effects and constructed regressors in asset pricing are without problems. Lagged
regressors in particular are common in asset pricing and combining them with fixed effects can
lead the contemporaneous values to bleed through into the lagged values. This leads to the poten-
tial use of contemporaneous (and future) values in exercises to determine correlations, with the
intent for them to be used in predictive modeling.

We list all 33 identified papers in Table E1. Here we also indicate what type of construction
the paper uses, whether it is utilized in an instrumental variable estimation and whether the con-
structed regressor appears in the hypothesis variable or in control variables. We also give an ex-
ample of where in the paper the estimation results can be found, but these examples are obviously
not always limited to the places named in the table.

Some papers listed in Table E1 need additional clarification and are marked with footnotes.
These footnotes refer to the aspects listed below.

1. Also contains Nickell (1981) Bias.
2. Structural Paper.
3. Overlap smaller than in Section 5; data allows for easy solution.
4. Bias appears in model calibration.
5. Bias appears only in robustness check.
6. Does test for strict vs. weak exogeneity (using Grieser and Hadlock (2019)), but fails the test.
7. Definition of hypothesis variable unclear and seemingly similar to leave-out variable.
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Table E1: Papers with Potential Bias Identified in the 2020 to 2022 Volumes of the Journal of Finance

Paper Type IV Use Example in Paper

Cookson and Niessner (2020)1 Lags - Control Table 7
Frydman and Wang (2020) Lags - Hypothesis Table 3
Farre-Mensa et al. (2020)3 Leave-Out Yes Hypothesis Table 2
Hendershott et al. (2020) Lags - Hypothesis Table 5
Sialm and Zhang (2020) Lags - Hypothesis Table 3
Mian et al. (2020)1 Lags - Hypothesis Table 9
Akbas et al. (2020) Lags - Hypothesis Table 7
Jagolinzer et al. (2020)1 Lags - Hypothesis Table 6
Bennedsen et al. (2020) Lags - Control Table 4
Schiantarelli et al. (2020) Leave-Out Yes Hypothesis Table 5
Bräuning and Ivashina (2020) Lags Yes Hypothesis Table 2
Huang et al. (2020)1 Lags - Control Table 5
Dou et al. (2021) Lags - Hypothesis Table 2
Greenwald et al. (2021)1,2,4 Lags - Hypothesis Equation 42
Daniel et al. (2021) Lags - Hypothesis Table 4
Brown et al. (2021) Lags - Control Table 2
Shue and Townsend (2021) Lags - Hypothesis Table 2
Baghai et al. (2021) Lags - Control Table 4
Cenedese et al. (2021) Lags - Control Table 2
Falato et al. (2021) Leave-Out - Hypothesis Table 2
Lee (2021) Lags - Hypothesis Table 2
Tuzel and Zhang (2021)5 Lags - Hypothesis Table 11
Ge (2022)6 Lags Yes Hypothesis Table 3
Boguth et al. (2022) Lags - Hypothesis Table 10
Koijen and Yogo (2022) Lags Yes Hypothesis Table 4
Birru et al. (2022) Lags - Control Table 5
Eisenbach et al. (2022) Leave-Out Yes Hypothesis Table 2
Chang et al. (2022) Lags - Control Table 3
Gürkaynak et al. (2022) Lags - Hypothesis Table 5
Wang et al. (2022)1,2 Lags - Control Table 8
Bizjak et al. (2022) Lags - Control Table 5
Schoenherr and Starmans (2022)7 Lags - Control Table 3
Meeuwis et al. (2022)8 Lags - Control Table 3

Note: The table includes all papers identified in the structured literature review. The type of constructed regressor
categorizes according to the examples provided in Section 2. IV identifies whether the constructed regressor is part of
an instrumental variable estimation. Use denotes whether the constructed regressor appears in a hypothesis regressor
or a control variable. Note that papers are categorized as Hypothesis, when constructed regressors appear in both both
hypothesis and control variables. The example in paper is one place of possibly multiple where the estimation results
subject to the bias discussed in this paper can be identified. Footnotes on the papers are explained in the text.
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8. Note that the control variables in question are proxies for "alternative explanations".

Table E2 shows some additional analyses showing where the potential bias appears in the
papers identified in our structural literature review. We can see that lagged regressor constructions
are much more common in finance research than leave-outs, but the latter are nevertheless present.
We also see that only about 18% of the identified papers use the constructed regressor in an IV
estimation. Lastly, it is common for the constructed regressor to appear in the hypothesis variable.
It is limited to control variables for only about a third of the identified papers.

Table E2: Possibly Biased Papers by Category

Type Count Relative

Leave-Out 4 12,12%
Lags 29 87,88%
Use of IV 6 18,18%
Hypothesis 21 63,64%
Control 12 36,36%

Total 33

Note: Table provides descriptive statistics of the prevalence of the Type, IV utilization and Use of the constructed
regressors identified in the structured literature review.
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