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1 Introduction

A recurrent situation faced by applied researchers is that exogenous shocks are observed at daily

or weekly frequency, while the outcome variable of interest is measured at monthly or quarterly

frequency. There is a large literature on quantifying the responses of macroeconomic aggregates

at a given frequency to exogenous shocks measured at the same frequency (see, e.g., Kilian and

Lütkepohl, 2017). This literature leaves unanswered the question of how to quantify the responses

of macroeconomic aggregates measured at a low frequency to shocks observed at higher frequency.

For example, a policymaker may face an exogenous shock to the daily price of gasoline on a given

day of the current month or a sequence of such shocks extending over several days. The question of

interest to the policymaker is how this sequence of daily shocks is expected to change current and

future realizations of monthly aggregates such as inflation or industrial production growth, given

the historical relationship between gasoline prices and the economy. In general, this response will

depend on when in the month the sequence of daily gasoline price shocks occurs. Shocks earlier in

the month will have a larger impact on the current monthly inflation than shocks occurring later

in the month, while the response of future monthly inflation will be the larger, all else equal, the

later in the current month the daily shocks occur.

When working with economic time series sampled at different frequencies it has been common,

in practice, to aggregate high-frequency variables to a common low frequency and to analyze the

joint process sampled at the low frequency. This approach, however, may distort the co-movements

among the model variables and bias the estimates of the impulse responses. In this paper, we address

this concern by postulating the existence of a vector autoregressive data generating process at high

frequency. The high-frequency variables described by this process need not be observed, except

for the daily shock of interest. The high-frequency data are temporally aggregated to generate the

corresponding low-frequency data. We propose three alternative estimators of the responses of the

observed temporally aggregated variables to a sequence of high frequency shocks and derive their

asymptotic distribution. Each of these estimators may be implemented as a mean group or pooled

estimator, so there are six ways of proceeding in applied work.

Monte Carlo evidence shows that for realistic sample sizes pooled estimators tend to have lower

RMSE than mean group estimators, reflecting their greater parsimony. They also tend to be

more accurate in inference. The pooled autoregressive-distributed lag (ARDL) and pooled vector
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autoregressive-distributed lag (VARDL) estimators tend to be slightly more accurate than the

pooled distributed lag (DL) estimator.

An empirical illustration focuses on sequences of daily wholesale gasoline price shocks associated

with four exogenous events in global oil markets. These episodes illustrate how different the path

of daily gasoline prices may be over a month. We trace the effects of these shock sequences on

monthly headline inflation, core inflation and retail gasoline price inflation. Our estimates show

that the effect on headline inflation is short-lived and the response of core inflation tends to be

muted, arguing against important indirect effects on inflation.

Our work relates to several strands of the literature. One is the literature on temporal ag-

gregation (see, e.g., Lütkepohl, 1987, Rossana and Seater, 1995, Marcellino, 1999, Breitung and

Swanson, 2002, and Swanson and Granger, 2012), which in turn gave rise to the development of

mixed-frequency VAR models (see Foroni, Ghysels, and Marcellino, 2013, for a review). Much of

this literature has focused on forecasting rather than structural impulse response analysis, but there

are exceptions. For example, Ghysels (2016) introduced a class of mixed-frequency VAR models

that allows the estimation of the impact of high frequency shocks on low-frequency variables when

treating the daily shock as predetermined. In related work, Foroni and Marcellino (2014, 2016)

found that responses from common low-frequency VAR models that ignore temporal aggregation

can be substantially biased and that this bias can be alleviated by the use of mixed-frequency VAR

models.

Compared to mixed-frequency VAR models, our approach does not require the user to fully

specify the VAR model generating the data, which is an important advantage. Estimation as

well as inference using approaches that rely on the full specification of the underlying model is

conditional on the model being correctly specified. However, what variables belong in the data

generating process and what are the true lag orders is unknown in practice. Unless this uncertainty

is recognized and explicitly incorporated into the analysis, statistical inference will be invalid. In

practice, it is diffi cult to take model uncertainty into account in a systematic manner and, as a

result, this is rarely done in empirical research. Our approach is not subject to this drawback.

Moreover, our approach is more parsimonious, it tends to perform reasonably well even in small

samples, it lends itself to establishing the asymptotic properties of the estimator of the impulse

responses, and it easily allows for the consideration of sequences of high-frequency shocks.
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The work methodologically most closely related to ours is Chudik and Georgiadis (2022), which

also does not require full specification of the model. There are four key differences. First, our paper

is about the impact of high-frequency shocks on observed low-frequency variable(s), whereas Chudik

and Georgiadis (2022) focused on the impact of high-frequency shocks on the underlying latent

high-frequency variable(s). Consequently, our paper does not assume that the temporal aggregation

weights for the construction of low-frequency variables are known to the researcher, whereas Chudik

and Georgiadis (2022) do. Second, we generalize the mixed-frequency DL estimating equations

proposed by Chudik and Georgiadis (2022) to mixed-frequency ARDL and VARDL estimating

equations. We show that estimators based on ARDL and parsimonious VARDL specifications are

prefered because they tend to achieve lower root mean square error. Third, our paper develops

pooled estimators that remain applicable in settings where the approach of Chudik and Georgiadis

(2022) is not feasible due to a larger frequency mismatch. Our Monte Carlo evidence shows that

pooled estimators for realistic sample sizes tend to achieve smaller root mean square error despite

these estimators not being asymptotically effi cient. Finally, unlike earlier work we focus on the

impact of sequences of shocks.

Our empirical analysis is relevant for a recent literature examining the impact of gasoline price

shocks on headline and core inflation, especially since the pandemic era, based on low-frequency

VAR models. Examples include Kilian and Zhou (2022a, 2022b, 2023), Diab and Karaki (2023),

Vatsa and Pino (2024), Gründler and Scharler (2025), and Karaki and Chaar (2026). For a review

of this literature see Kilian and Zhou (2025). Our analysis confirms the findings in this literature

that the response of headline inflation is short-lived and that the pass-through to core inflation

tends to be muted, even after allowing for temporal aggregation. It adds to this literature a more

precise estimate of the effects of daily shocks on monthly inflation.

The remainder of the paper is organized as follows. Section 2 introduces the model, notation,

and defines the impulse response functions (IRFs) of interest. Section 3 introduces mean group and

pooled mixed-frequency DL, ARDL and VARDL estimators, and derives their asymptotic proper-

ties. Section 4 provides Monte Carlo evidence. Section 5 presents the empirical application and

Section 6 concludes. Appendix provides proofs and additional details for the empirical application.

Throughout the paper, matrices are denoted by upper case bold letters. Vectors are denoted by

lower case bold letters. All vectors are column vectors.
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2 Model

We assume an n× 1 dimensional vector of stationary high-frequency variables zt generated by

zt = Φzt−1 + ut, (1)

where Φ is an n × n matrix of coeffi cients and ut is an n × 1 vector of serially uncorrelated

reduced-form errors. We postulate one lag without loss of generality, since any VAR(p) model

can be expressed as a VAR(1) model in companion form.1 Without loss of generality, zt may be

partitioned as zt = (xt,y
′
t)
′, where xt is the outcome variable of interest and yt is the (n− 1)× 1

vector of the remaining variables. It is not assumed that the variables in yt or the dimension n are

necessarily observed.

The shock of interest, denoted as et, is assumed to be observed and

E (ut| et) = aet, (2)

where a is an n× 1 vector of constants. Then the reduced-form shock ut can be partitioned as

ut = aet + ηt, (3)

where ηt ≡ ut − E (ut| et). The shock et may be a “structural”shock, but it does not have to be.

It also could be a shock without any structural economic interpretation, such as a reduced-form

shock, or some rotation of reduced-form shocks, so long as the assumption E (ut| et) = aet is met

(see Chudik and Georgiadis, 2022, for further discussion).

We assume that the outcome variable, xt, is observed only at a lower frequency than the shock

et. In particular, let m > 1 be the number of high-frequency time periods contained in one low-

frequency period. We refer to the last high-frequency period within the low-frequency period s by

ts, defined as

ts = ms, for s = 1, 2, ..., Tm, (4)

with Tm = [T/m], where [T/m] is the integer part of T/m. Thus, T is the number of high-frequency

1To simplify the exposition, we omit deterministic terms in (1). Introducing deterministic terms come at the
expense of added notation without any helpful insights.
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time periods for which et is observed, and Tm is the number of low-frequency time periods.

We use the following notation to define sequentially sampled variables,

xis := xts−i, for i = 0, 1, 2, ...,m− 1, and s = 1, 2, ..., Tm, (5)

and similarly eis := ets−i. Temporal averages are defined as

x̄ws =
m−1∑
i=0

wixis, for s = 1, 2, ..., Tm, (6)

where wi are possibly unknown temporal aggregation weights. x̄ws is the temporally aggregated

version of the outcome variable, which is observed only at the low frequency. For example, simple

averaging of the high-frequency observations contained in one low-frequency time period is repre-

sented by equal temporal aggregation weights wi = 1/m, for i = 0, 1, ...,m − 1. The definition in

equation (6) allows for the temporal aggregation of both stock and flow variables.2

The following assumption summarizes which objects in our setup are observed and which are

unobserved.

ASSUMPTION 1 The researcher observes the high-frequency scalar shock et in (1), for t =

1, 2, ..., T , and the low-frequency temporally aggregated variable x̄ws, for s = 1, 2, ..., Tm, defined

by (6). The aggregation weights {wi}, the dimension of zt = (xt,y
′
t)
′, the underlying lag order of

VAR model (1), the variables entering yt and their realizations are all potentially unobserved by

the researcher.

Remark 1 The reason that we do not require the full specification of the high-frequency VAR

process in Assumption 1 is that et is observed.

The following standard assumptions are imposed on the high-frequency VAR model (1). We use

K to denote a generic, finite positive constant that does not depend on the sample size T . This

constant can take on different values in different instances.

ASSUMPTION 2 |λ1 (Φ)| < 1, where λ1 (Φ) is the largest eigenvalue of Φ.

2Our analysis can be extended to allow for temporal aggregation scheme in (6) to span multiple low-frequency
periods. For expository purposes and to simplify the notation, we restrict attention to the aggregation scheme in (6).
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ASSUMPTION 3 Innovations ut are given by (3), where E (ut| et) = aet , ηt = ut −E (ut| et),

et ∼ IID
(
0, σ2

e

)
, σ2

e > 0, E
(
e4
t

)
= κ4, ‖a‖ < K, and ηt ∼ IID (0,Ση). et is independently

distributed of ηt′ for all t, t
′. There exists ε > 0 such that E |et|4+ε < K and E ‖ηt‖4+ε < K.

Remark 2 Assumption 2 rules out variables integrated of order 1. We assume that such variables

are appropriately transformed to stationarity prior to the analysis.

Remark 3 Assumption 3 does not take a stand on the economic interpretation of et. Causal

interpretation of the effects of this shock require xt to be pre-determined with respect to yt.

Remark 4 To simplify the derivations of asymptotic distributions, Assumption 3 assumes innova-

tions are i.i.d. This rules out heteroskedastic shocks. We propose estimators of standard errors that

are robust to heteroskedasticity, and we allow for heteroskedastic shocks in Monte Carlo simulations.

2.1 Definitions of impulse response functions of interest and additional nota-

tions

Under Assumptions 2-3, we have

xt =

∞∑
`=0

b`et−` + εt, (7)

where

b` = s′n1Φ
`a, for ` = 0, 1, 2, ..., (8)

and

εt =

∞∑
`=0

s′n1Φ
`ηt−`. (9)

in which sn1 = (1, 0, ..., 0)′ is an n× 1 selection vector that selects the first element. Consider the

high-frequency IRF of a unit disturbance to the high-frequency shock et on the outcome variable

of interest, xt,

IRF (x, `) = b` = E (xt+`| et = 1, It−1)− E (xt+`| It−1) , for ` = 0, 1, ..., (10)

where It−1 = {zt−1, zt−2, ...} is the information set including all variables up to the time period

t− 1. When aggregation weights {wi} are unknown, it is not possible to estimate b`.

6



The main objective in this paper is the estimation of the response of the low-frequency variable

to a high-frequency shock sequence

Ies (ω) = {eis = ωi, for i = 0, 1, ...,m− 1} ,

where ω = (ω0, ω1, ..., ωm−1)′, and, for convenience, we will normalize
∑m−1

i=0 ωi = 1. The low-

frequency IRF corresponding to the sequence of shocks Ies (ω) is given by

IRF (x̄w, ω, r) = d̄ωr = E
(
x̄w,s+r| Ies (ω) , Its−1

)
− E

(
x̄w,s+r| Its−1

)
, for r = 0, 1, ... . (11)

Let h be the maximum horizon of interest, and collect the low-frequency impulse-response coeffi -

cients d̄ωr, for r = 0, 1, 2, ..., h, in an (h+ 1) × 1 vector d̄ω =
(
d̄ω0, d̄ω1, ..., d̄ωh

)′. Our objective is
the estimation of d̄ω. These impulse-response coeffi cients can be estimated for any choice of ω.

We do not assume that the aggregation weights {wi} are known, and no a priori restrictions are

imposed on the specification of the shock sequence {ωi}.

For future reference, we also define the IRF of a unit disturbance to a single high-frequency

shock to et on the observed aggregated outcome variable of interest, x̄ws,

IRF (x̄w, i, r) = dir = E
(
x̄w,s+r| eis = 1, Its−1

)
− E

(
x̄w,s+r| Its−1

)
, (12)

for r = 0, 1, ..., and i = 0, 1, ...,m− 1, where, given (1) and Assumptions 2-3, we have

di0 =

i∑
q=0

wqbi−q, for i = 0, 1, ...,m− 1, (13)

dir =
m−1∑
q=0

wqbmr+i−q, for r = 1, 2, ..., h, and i = 0, 1, ...,m− 1. (14)

The IRF coeffi cient d̄ωr given by (11) can, in the context of the model in this paper, be written

as a weighted average of dir, namely

d̄ωr =

m−1∑
i=0

ωidir, for r = 0, 1, 2, .... (15)

For future reference, the temporally aggregated version of the moving average representation
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(7) is given by

x̄ws =
m−1∑
i=0

∞∑
r=0

direi,s−r + ε̄ws, (16)

where ε̄ws =
∑m−1

i=0 wiεis (see also Lemma 1 of Chudik and Georgiadis, 2022). Using vector notation,

collect the coeffi cients {dir, r = 0, 1, ..., h, i = 0, 1, ...,m− 1} in an (h+ 1)m × 1 coeffi cient vector

d = (d′0,d
′
1, ...,d

′
h)′, where dr = (d0r, d1r, ..., dm−1,r)

′ for r = 0, 1, ..., h. Then

d̄ω =
(
Ih+1 ⊗ ω′

)
d, (17)

where Ih+1 is (h+ 1)× (h+ 1) identity matrix.

3 Mean Group and Pooled Mixed-Frequency Estimators

We propose estimators of d̄ω based on distributed lag (DL), autoregressive distributed lag (ARDL),

and vector autoregressive distributed lag (VARDL) estimating equations below. For each of the

these estimating equations, we consider mean group and pooled estimators.

3.1 Estimators based on DL estimating equations

3.1.1 Mean Group DL estimator

Chudik and Georgiadis (2022) introduced a mixed-frequency distributed lag (DL) estimator of dir

based on the Least Squares (LS) estimate of the auxiliary regression

x̄ws =
m−1∑
i=0

h∑
r=0

direi,s−r + ϑhs, (18)

which is obtained by truncating (16), where

ϑhs = ε̄ws +

m−1∑
i=0

∞∑
r=h+1

direi,s−r. (19)

Define the (h+ 1)m × 1 dimensional vector of sequentially sampled errors and their lags ehs =(
e′s, e

′
s−1, ..., e

′
s−h
)′ with es = (e0s, e1s, ..., em−1,s)

′. Using vector notations, (18) can be compactly
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written as

x̄ws = d′ehs + ϑhs. (20)

The DL estimator of d, denoted by d̂ =
(
d̂′0, d̂

′
1, ..., d̂

′
h

)′
where d̂r =

(
d̂0r, d̂1r, ..., d̂m−1,r

)′
for

r = 0, 1, 2, ...h, is given by

d̂ =
(
E′E

)−1
E′x̄w. (21)

x̄w = (x̄w,h+1, x̄w,h+2, ..., x̄w,Tm)′ is the (Tm − h)×1 vector of observations on the dependent variable

x̄ws in (20), and E is the (Tm − h) × (h+ 1)m matrix of observations on regressors ēhs in (20),

namely E = (E0,E1,E2, ...,Eh), where Er = (eh−r+1, eh−r+2, ..., eTm−r)
′, for r = 0, 1, ..., h.

Estimation of d̄ωr involves plugging the DL estimates d̂ir into (15), yielding

̂̄dMG

ωr =
m−1∑
i=0

ωid̂ir, for r = 0, 1, 2, ...h, (22)

or ̂̄dMG

ω = (Ih+1 ⊗ ω′) d̂. We refer to this approach as the mean group DL estimator. The following

theorem establishes the asymptotic distribution of ̂̄dMG

ω as T →∞.

Proposition 1 Suppose zt = (xt,y
′
t)
′ is given by (1), and Assumptions 2-3 hold. Consider the

mean group DL estimator ̂̄dMG

ω =

(̂̄dMG

ω0 , ̂̄dMG

ω1 , ..., ̂̄dMG

ωh

)′
given by (22) and let Tmh = T/m − h.

Then, for fixed m and h, as T →∞,

√
Tmh

(̂̄dMG

ω − d̄ω

)
→d N (0,ΩMG) , (23)

where

ΩMG = σ−2
e

(
Ih+1 ⊗ ω′

)
Ξ (Ih+1 ⊗ ω) , (24)

σ2
e = E

(
e2
t

)
is the variance of et, Ih+1 is (h+ 1)× (h+ 1) identity matrix,

Ξ =

h∑
`=−h

γh`Hh`, (25)

γh` = E (ϑhsϑh,s−`) is the autocovariance function of ϑhs defined in (19), Hh` = Gh` ⊗ Im, Gh` is
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(h+ 1)× (h+ 1) dimensional shift matrix with its (i, j)-th element given by δi+`,j, and

δij =

 1 for i = j

0 for i 6= j
, (26)

is the Kronecker delta.

All proofs are presented in Appendix.

Under homoskedasticity, ΩMG can be consistently estimated as

Ω̂MG = σ̂−2
e

(
Ih+1 ⊗ ω′

)
Ξ̂ (Ih+1 ⊗ ω) , (27)

where σ̂2
e = T−1

∑T
t=1 e

2
t , Ξ̂ =

∑h
`=−h γ̂h`Hh`, and γ̂h` are the sample autocovariances of ϑ̂hs =

x̄ws − d̂′ehs, in which d̂ is given by (21). In the case of heteroskedastic errors, the following

heteroskedasticity-consistent estimator can be used

Ω̂MG,HC =
(
Ih+1 ⊗ ω′

)
V̂ (Ih+1 ⊗ ω) , (28)

where V̂ = Tmh (E′E)−1 E′diag
(
ϑ̂h,h+1, ϑ̂h,h+2, ..., ϑ̂h,Tm

)
E (E′E)−1.

3.1.2 Pooled DL estimator

The downside of the mean group DL estimator is that the number of coeffi cients to be estimated

in (20) is (h+ 1)m (abstracting from the deterministic terms, such as the intercept). As a result,

the mean group DL estimator is not feasible when the number of regressors exceeds the regression

sample size, namely when (h+ 1)m > Tm− h. When ̂̄dMG

ω is feasible but the product (h+ 1)m is

relatively large, this estimator is unlikely to perform well. In our empirical application in Section 5,

m = 21 (working days in a month), which is quite large. We therefore propose a pooled alternative

to the mean group DL estimator next, which is more parsimonious, feasible for Tm > 2h + 1, and

tends to be more accurate for practically relevant sample sizes.

Consider pooling the coeffi cients dir, for i = 0, 1, ...,m− 1. Since we are interested in weighted

averages of dir, namely coeffi cients d̄ωr given by (15), we shall employ appropriately weighted
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pooling to ensure consistent estimation of d̄ωr. To this end, let

ω̃i =
ωi∑m−1
j=0 ω2

j

, (29)

and define the corresponding weighted aggregate of sequentially sampled shocks

ẽs := ēω̃s =

m−1∑
i=0

ω̃ieis. (30)

For notational brevity, below we use ẽs as opposed to the more cumbersome ēω̃s. The pooled

estimation is based on the auxiliary DL regression

x̄ws =

h∑
r=0

d̄ωrẽs−r + ϑ∗hs, (31)

where

ϑ∗hs =
m−1∑
i=0

h∑
r=0

∆irei,s−r + ϑhs, (32)

ϑhs is given by (19), and

∆ir = dir − ω̃id̄ωr. (33)

It is helpful to re-write (31), in matrix notation, as

x̄ws = d̄′ωẽs + ϑ∗hs, (34)

where, ẽs = (ẽs, ẽs−1, ..., ẽs−h)′. The corresponding LS estimator, which we denote as pooled DL,

is given by

d̂Pω =
(
Ẽ′Ẽ

)−1
Ẽ′x̄w, (35)

where Ẽ is the (Tm − h)×(h+ 1)matrix of observations on ẽs in (34), namely Ẽ = (ẽh+1, ẽh+2, ..., ẽTm)′,

and as before x̄w = (x̄w,h+1, x̄w,h+2, ..., x̄w,Tm)′ is the vector of observations on the dependent

variable x̄ws. The following proposition establishes the asymptotic normality of the pooled DL

estimator.

Proposition 2 Suppose zt = (xt,y
′
t)
′ is given by (1), and Assumptions 2-3 hold. Consider the
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pooled DL estimator ̂̄dPω given by (35) and let Tmh = T/m−h. Then, for fixed m and h, as T →∞,

√
Tmh

(̂̄dPω − d̄ω

)
→d N (0,ΩP ) , (36)

where

ΩP = σ−4
e ‖ω‖

4
(
σ2
eΞ̃ + Σ∆

)
, (37)

σ2
e = E

(
e2
t

)
is the variance of et, ‖ω‖ =

√
ω′ω is the Euclidean norm of ω,

Ξ̃ =
(
Ih+1 ⊗ ω̃′

)
Ξ (Ih+1 ⊗ ω̃) , (38)

Ξ is given by (25),

Σ∆ =
[
∆′ ⊗

(
Ih+1 ⊗ ω̃′

)]
ΣE [∆⊗ (Ih+1 ⊗ ω̃)] , (39)

ω̃ = ‖ω‖−2ω, ΣE is the asymptotic variance of T
−1/2
mh V ec

(
E′E−σ2

eI(h+1)m

)
, ∆ = (∆′0,∆

′
1, ...,∆

′
h)′,

∆r = (∆0r,∆1r, ...,∆m−1,r)
′ for r = 0, 1, ..., h, and ∆ir is given by (33).

Under homoskedasticity, ΩP can by consistently estimated as

Ω̂P = σ̂−2
ẽ

h∑
`=−h

γ̂∗h`Hh,`, (40)

where σ̂2
ẽ = T−1

mh

∑Tmh
s=1 ẽs, and γ̂

∗
h` are the sample autocovariances of ϑ̂

∗
hs = x̄w,s − ̂̄dP ′ω ẽs, in whicĥ̄dPω is given by (35). A heteroskedasticity-consistent variance-covariance matrix estimator is given

by

Ω̂P,HC = Tmh

(
Ẽ′Ẽ

)−1
Ẽ′diag

(
ϑ̂
∗
h,h+1, ϑ̂

∗
h,h+2, ..., ϑ̂

∗
h,Tm

)
Ẽ
(
Ẽ′Ẽ

)−1
.

Remark 5 The asymptotic variance ΩP cannot be smaller than ΩMG. ΩP is adversely affected

by ‘heterogeneity’of dir, as captured by ∆ir = dir − ω̃id̄ωr defined in (33). When ∆ir = 0 for all i

and r, then Σ∆ = 0 and ΩP reduces to

ΩP = σ−2
e ‖ω‖

4 (Ih+1 ⊗ ω̃′
)
Ξ (Ih+1 ⊗ ω̃) ,
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which, using ω̃ = ‖ω‖−2ω, ΩP (for ∆ir = 0) further simplifies to

ΩP = σ−2
e

(
Ih+1 ⊗ ω′

)
Ξ (Ih+1 ⊗ ω) = ΩMG,

and coincides with ΩMG in (24). The advantage of using the pooled DL estimator is not its

asymptotic effi ciency but rather its higher small-sample accuracy. As our Monte Carlo results

demonstrate, the pooled DL estimator tends to have lower root mean square error compared with the

mean group DL estimator in sample sizes of practical interest. Moreover, the pooled DL estimator

may be feasible in small samples even when the mean group DL estimator is not.

Remark 6 Our result that ̂̄dPω is not asymptotically more effi cient than ̂̄dMG

ω might appear counter-

intuitive. It arises from the orthogonality of the regressors in E in conjunction with the need to

use a consistent pooling scheme given by ω̃ = ‖ω‖−2ω, see (29). To clarify why this is the case,

consider a simple illustrative example where a variable yt is generated by

yt = x1tβ1 + x2tβ2 + ut, for t = 1, 2, ..., T ,

with ut ∼ IID
(
0, σ2

u

)
. Then, under the usual regularity requirements, the LS estimator of β =

(β1, β2)′, is asymptotically distributed as

√
T
(
β̂ − β

)
→d N

(
0,

(
X′X

T

)−1

σ2
u

)
,

where X is T × 2 matrix of observations on xt = (x1t, x2t)
′. Let β̄ω = ω′β, and consider the ‘mean

group’estimator of β̄ω, given by
̂̄βMG

ω = ω′β̂. Then

√
T

(̂̄βMG

ω − β̄ω
)
→d N

(
0,ω′

(
X′X

T

)−1

ωσ2
u

)
.

The ‘pooled’ estimator of β̄ω is given by regression of yt on x̃t = ω̃′xt. In the ideal case when

the slope coeffi cients are homogenous (β1 = β2 = β) and ω = (1, 1)′, the pooled estimator is

asymptotically distributed as

√
T

(̂̄βPω − β̄ω)→d N

(
0,

(
x̃′x̃

T

)−1

σ2
u

)
,

13



where x̃ is T × 1 vector of observations on x̃t. Under these assumptions, we expect

Avar

(̂̄βPω) ≡ ( x̃′x̃

T

)−1

σ2
u ≤ Avar

(
β̂
MG
)
≡ ω′

(
X′X

T

)−1

ωσ2
u. (41)

When T−1X′X→pI2, then
(
T−1x̃′x̃

)−1 →p

(
ω̃′ω̃

)−1
= ‖ω‖2 and ω′

(
T−1X′X

)−1
ω = ‖ω‖2. Hence,

Avar
(
β̂
P
)

= Avar
(
β̂
MG
)
, and the pooled estimator has the same asymptotic variance as the mean

group estimator when β1 = β2 = β and ω = (1, 1)′. This would not longer be true if T−1X′X→p I2

did not hold.

3.2 Estimators based on ARDL estimating equations

3.2.1 Mean Group ARDL estimator

Next, we propose augmenting the DL estimating equations (18) with p lags of the dependent

variable. Using (16), the lagged dependent variables, x̄w,s−r for r = 1, 2, ..., p, can be written as

x̄w,s−r =

m−1∑
i=0

∞∑
`=r

di,s−`ei,s−` + ε̄w,s−r. (42)

Augmenting (18) with {x̄w,s−r}pr=1, and using (42), we obtain

x̄ws =

p∑
r=1

ψprx̄w,s−r +
m−1∑
i=0

h∑
r=0

βpirei,s−r + vphs, (43)

where under Assumption 3 the error term, vphs, is distributed independently of

{ei,s−r, i = 0, 1, ...,m− 1, r = 0, 1, ..., h}, and can be written as

vphs =
m−1∑
i=0

∞∑
r=h+1

βpirei,s−r + ε̄w,s −
p∑
r=1

ψprε̄w,s−r. (44)

Given that the error term of the original, not-augmented DL representation (18) does not contain

{ei,s−r, i = 0, 1, ...,m− 1, r = 0, 1, ..., h}, the population coeffi cients on the sequentially sampled
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shocks in the augmented representation (43) must satisfy

βpi0 = di0, (45)

βpi1 = di1 − ψp1di0, (46)

βpi2 = di2 − ψp1di1 − ψp2di0, (47)

...

βpi` = di` −
p∑
r=1

ψprdi,`−r, (48)

for ` = p, p + 1, ..., h, and for i = 0, 1, ...,m − 1, regardless of the choice of the lag order p and

regardless of the population values of the autoregressive coeffi cients
{
ψpr, r = 1, 2, ..., p

}
. We use

the subscript p to highlight the dependence of the coeffi cients of (43) on the choice of the lag order

p. It is useful to define polynomials

ψ (p, L) = 1−
p∑
r=1

ψprL
r, βi (p, L) =

∞∑
r=0

βpirL
r, and di (L) =

∞∑
r=0

dirL
r,

for i = 0, 1, ...,m− 1, where L is the low-frequency lag operator (Lx̄ws = x̄w,s−1 and Leis = ei,s−1).

Equations (45)-(48) imply that

βi (p, L) = ψ (p, L) di (L) . (49)

Hence, regardless of the choice of the lag order, p, and regardless of the population values of{
ψpr
}p
r=1
, the impulse-response coeffi cients {dir, i = 0, 1, ...,m− 1, r = 0, 1, ..., h} can be recovered

from the coeffi cients of the ARDL model (43). These coeffi cients are recovered recursively as

di0 = βpi0, (50)

di1 = βpi1 + ψp1di0, (51)

di2 = βpi2 + ψp1di1 + ψp2di0, (52)

...

di` = βpi` +

p∑
r=1

ψprdi,`−r, (53)

for ` = p, p+1, ...h, and for i = 0, 1, ...,m−1. For future reference, let ψp =
(
ψp1, ψp2, ..., ψpp

)′ and
βpi =

(
βpi0, βpi1, ..., βpih

)′, for i = 1, 2, ...,m− 1. Collect the ARDL coeffi cients of (43) in a vector
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θp =
(
ψ′p,β

′
p0,β

′
p1, ...,β

′
p,m−1

)′, and denote the mapping defined by (50)-(53) as F (θp) = d.

Under Assumptions 2-3, x̄ws and eis are covariance stationary, the LS estimator of the ARDL

coeffi cients in (43), denoted as θ̂p, is asymptotically normally distributed (see Lemma 4), and

√
Tm

(
θ̂p − θp

)
→d N (0,Σθp) , (54)

as T →∞, where Tm = T/m. The mean group estimator based on the auxiliary ARDL represen-

tation (43), is then given by

̂̄dMGA

ωpr =
m−1∑
i=0

ωid̂
A
pir, for r = 0, 1, 2, ...h, (55)

where d̂Apir are the ARDL based estimates of dir given by the elements of d̂Ap = F
(
θ̂p

)
. The

following proposition establishes the asymptotic normality of the mean group ARDL estimator.

Proposition 3 Suppose zt = (xt,y
′
t)
′ is given by (1), and Assumptions 2-3 hold. Consider the

mean group ARDL estimator ̂̄dMGA

ωp =

(̂̄dMGA

ωp0 , ̂̄dMGA

ωp1 , ..., ̂̄dMGA

ωph

)′
, where ̂̄dMGA

ωpr for r = 0, 1, ..., h

are given by (55), and let Tmh = T/m− h. Then, for fixed m, p, and h, as T →∞,

√
Tmh

(̂̄dMGA

ωp − d̄ω

)
→d N (0,ΩMGA,p) , (56)

where

ΩMGA,p =
(
Ih+1 ⊗ ω′

)
JF (θp) ΣθpJ

′
F (θp) (Ih+1 ⊗ ω) ,

JF (θp) is the Jacobian of the mapping F (θp) = d defined by (50)-(53), and Σθp is the asymptotic

variance of θ̂p.

ΩMGA,p can be consistently estimated as

Ω̂MGA,p =
(
Ih+1 ⊗ ω′

)
JF

(
θ̂p

)
Σ̂θpJ

′
F

(
θ̂p

)
(Ih+1 ⊗ ω) , (57)

where Σ̂θp is a consistent estimator of Σθp. The Newey-West estimator of Σθp can be used in the

presence of heteroskedastic and serially correlated ARDL residuals.

We have established that so long as h lags of sequentially sampled shocks are included in (43),
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̂̄dMGA

ωr for r = 0, 1, ..., h will be consistent, regardless of p, even if p is not chosen to be a suffi ciently

large lag order for residuals to be serially uncorrelated.

The choice of the lag orders warrants further discussion. Consider the moving average repre-

sentation (16) for x̄ws, where ε̄ws is the temporal aggregate of εt =
∑∞

`=0 s′n,1Φ
`ηt−`. Assumptions

2-3 imply that the coeffi cients of di (L) =
∑∞

r=0 dirL
r are exponentially decaying in r, and the

autocovariances of ε̄ws are also exponentially decaying. To illustrate this, consider coeffi cients {b`}

defined by (8). Using submultiplicative properties of matrix norms, we can bound b` as

|b`| =
∥∥s′n,1∥∥∥∥∥Φ`

∥∥∥ ‖a‖ , for ` = 0, 1, 2, ...,

for any choice of matrix norm ‖.‖. We have
∥∥s′n,1∥∥ = 1. Assumptions 2-3 ensure the existence of

constants K > 0 and 0 ≤ ρ < 1 such that
∥∥Φ`

∥∥ ‖a‖ < Kρ`, 0 ≤ ρ < 1. Hence |b`| < Kρ`, and using

(13)-(14) we obtain that dir is exponentially decaying in r, namely there exist constants K > 0 and

0 ≤ ρ < 1 such that |dir| < Kρmr. Consider next

E (εtεt−`) =

∞∑
j=0

s′n1Φ
j+`ΣηΦ

jsn1.

Taking any norm, such as the Euclidean norm, and using Assumptions 2-3, the autocovariances of

εt decay exponentially, namely |E (εtεt−`)| < Kρ`, for some 0 ≤ ρ < 1. Noting ε̄ws =
∑m−1

i=0 wiεis,

we have

E (ε̄wsε̄w,s−r) =

m−1∑
i=0

m−1∑
i′=0

wiwi′E
(
εisεi′,s−r

)
.

Since |E (εtεt−`)| < Kρ`, 0 ≤ ρ < 1, {wi} are bounded, and m is finite, there must exist a

finite positive constant K such that |E (ε̄wsε̄w,s−r)| < Kρmr. Hence, we have established that the

autocovariances of ε̄ws are exponentially decaying, and the coeffi cients of di (L) are exponentially

decaying as well. It now follows from (16), that x̄ws has exponentially decaying autocovariances.

Since the process ε̄ws is covariance stationary with exponentially decaying autocovariances, by

Wold’s decomposition theorem (Wold, 1938), it has MA(∞) representation,

ε̄ws = α (L) vs, (58)
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where vs = ε̄ws − Ê ( ε̄ws| ε̄w,s−1, ε̄w,s−2, ...), and Ê denotes the linear prediction operator. Poly-

nomial α (L) and the innovations vs depend on w but to simplify the notation, we suppress this

subscript. If α (L) is invertible, then multiplying (16) by ψ (L) = α−1 (L), we obtain the ARDL

representation

ψ (L) x̄w,s =

m−1∑
i=0

βi (L) eis + vs, (59)

where βi (L) is given by

βi (L) = ψ (L) di (L) .

This differs from (49) because βi (L) and ψ (L) are of infinite orders in general, becasue we have

assumed invertibility of α (L), and becasue the error term vs in (59) is serially uncorrelated. In a

special case of model (1) when the polynomials ψ (L) and βi (L) happen to be finite-order poly-

nomials, of orders p and q, respectively, these lag orders will suffi ce for recovering the first h + 1

coeffi cients of di (L), even if h >> q. However, in general these lag orders are not finite. If the

coeffi cients of α−1 (L) decay exponentially, then it is possible to deal with infinite lag orders by

allowing p = p (T ) (for lagged dependent variable) and q = q (T ) (for sequentially sampled shocks)

to both increase with the sample size, at an appropriate rate that is not too fast and not too slow,

such as the rate T 1/3, as in e.g. Said and Dickey (1984) or Gonçalves and Kilian (2007) in the con-

text of approximating ARMA(p, q) or AR(∞) models by autoregressions. None of these additional

assumptions are required for Proposition 3.

3.2.2 Pooled ARDL estimator

An alternative is to augment the pooled DL estimating equation (31) by p lags of the dependent

variable. Using the identity

m−1∑
i=0

direi,s−r = d̄ωrẽs−r +

m−1∑
i=0

∆irei,s−r,

18



in the moving average representation (16), we can write the lags of x̄ws as

x̄w,s−r =

m−1∑
i=0

∞∑
`=r

di,`−rei,s−` + ε̄w,s−r

=
∞∑
`=r

d̄ω,`−rẽs−r +
m−1∑
i=0

∞∑
`=r

∆i,`−rei,s−` + ε̄w,s−r. (60)

Augmenting (31) by p lags of x̄ws, and using (60), we obtain the pooled version of the ARDL

estimating equation,

x̄ws =

p∑
r=1

ψωprx̄w,s−r +
h∑
r=0

βωprẽs−r + vωphs, (61)

where the error term vωphs is given by

vωphs =
m−1∑
i=1

∞∑
r=0

∆ωpirei,s−r +
∞∑

r=h+1

βωprẽs−r + ε̄ws −
p∑
r=1

ψωprε̄w,s−r,

the coeffi cients βωpr are given by

βωp0 = d̄ω0, (62)

βωp1 = d̄ω1 − ψωp1d̄ω0, (63)

βωp2 = d̄ω2 − ψωp1d̄ω1 − ψωp2d̄ω0, (64)

...

βωp` = d̄ω` −
p∑
r=1

ψωprd̄ω,`−r, for ` = p, p+ 1, ..., (65)

and the coeffi cients ∆ωpir are similarly given by

∆ωpi0 = ∆i0, (66)

∆ωpi1 = ∆i1 − ψωp1∆i0, (67)

∆ωpi2 = ∆i2 − ψωp1∆i1 − ψωp2∆i0, (68)

...

∆ωpi` = ∆i` −
p∑
r=1

ψωpr∆i,`−r, for ` = p, p+ 1, .... (69)

Following the same arguments as before, the IRF coeffi cients d̄ω =
(
d̄ω0, d̄ω1, ..., d̄ωh

)′ can be
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recovered from (61). Let θωp =
(
ψ′ωp,β

′
ωp

)′, where ψωp= (ψωp1, ψωp2, ..., ψωpp)′, and βωp =(
βωp0, βωp1, ..., βωph

)′, and denote the mapping from θωp to dω, implicitly defined by equations

(62)-(65) as Fω (θωp) = d̄ω. Let θ̂ωp =
(
ψ̂
′
ωp, β̂

′
ωp

)′
be the LS estimator of θωp =

(
ψ′ωp,β

′
ωp

)′ using
(61). The asymptotic distribution of ̂̄dPAωp = Fω

(
θ̂ωp

)
is given by the following proposition.

Proposition 4 Suppose zt = (xt,y
′
t)
′ is given by (1), and Assumptions 2-3 hold. Consider the

pooled ARDL estimator ̂̄dPAωp = Fω

(
θ̂ωp

)
, where θ̂ωp =

(
ψ̂
′
ωp, β̂

′
ωp

)′
is the LS estimator of θωp =(

ψ′ωp,β
′
ωp

)′ in (61), and the mapping Fω (θωp) = dω is implicitly defined by (62)-(65). Let Tm =

T/m− h. Then, for fixed m, p, and h, as T →∞,

√
Tmh

(̂̄dPAωp − d̄ω

)
→d N (0,ΩPA,p) , (70)

where

ΩPA,p = JFω (θωp) ΣωθpJ
′
Fω (θωp) , (71)

JFω (.) is the Jacobian of Fω and Σθωp is the asymptotic variance of θ̂ωp.

ΩPA,p can be consistently estimated as

ΩPA,p = JFω

(
θ̂ωp

)
Σ̂θωpJ

′
Fω

(
θ̂ωp

)
, (72)

where Σ̂θωp is a consistent estimator of Σθωp, such as the Newey-West estimator.

Remark 7 Estimators of impulse-response coeffi cients d̄ω based on the ARDL representations will

be asymptotically more effi cient compared with the DL estimating equations, so long as at least one

of the AR terms, ψpr/ ψωpr , is nonzero. As in the case of the DL mean group and pooled estimators,

the mean group ARDL estimator will be at least as effi cient asymptotically as the pooled version.

However, in the finite samples of practical interest, the pooled ARDL estimator could outperform

the mean group version because of its greater parsimony.

3.3 Mean Group and Pooled Estimators based on Vector Autoregressive Dis-

tributed Lag (VARDL) estimating equations

It is also possible to augment ARDL estimating equations with additional variables in zt. However,

there can be a significant cost in finite samples from estimating higher-dimensional models. Unlike
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in standard VAR models, in our case omitting a possibly relevant variable does not result in the loss

of consistency of the resulting impulse response estimator. It only involves the loss of asymptotic

effi ciency. The benefit of working with more parsimonious models is the estimator may be more

accurate for sample sizes of practical relevance, as we will illustrate in Section 4.

Consider replacing x̄ws in (61) with a k × 1 vector z̄wks = (x̄w,s, ȳw1,s, ȳw2,s..., ȳw,k−1,s)
′, con-

taining a subset of variables in z̄ws, for some k > 1. Using the high-frequency VAR model given by

(1), we obtain a moving average representation for zkt = S′kzt = (xt, y1t, y2t, ..., yk−1,t)
′, where S′k

is an n× k selection matrix for the first k variables in zt, and

zkt = S′kzt = S′k

∞∑
`=0

Φ`aet−` + S′k

∞∑
`=0

Φ`ηt−` =
∞∑
h=0

bk`et−` + εkt,

where bk` = S′k
∑∞

`=0 Φ`a, and εkt = S′k
∑∞

`=0 Φ`ηt−`. Temporally aggregating zt to the low

frequency, we obtain the corresponding representation for the observed variables,

z̄wks =
m−1∑
i=0

∞∑
r=0

dkirei,s−r + ε̄wks =
m−1∑
i=0

dkir (L) eis + ε̄wks, (73)

which is an extension of (16) to the multivariate case. Thus, the extension of the ARDL estimating

equations to the multivariate case is straightforward. It follows the same steps as in the case of

ARDL approach.

We continue to focus on estimating the low-frequency IRF coeffi cients d̄ω =
(
d̄ω0, d̄ω1, ..., d̄ωr

)′
for the target variable of interest, x. In terms of coeffi cients of (74), d̄ωr is given by

d̄ωr =
m−1∑
i=0

ωis
′
k,1dkir, for r = 0, 1, 2, ...h, (74)

where sk,1 is a k × 1 selection vector for the first element. (74) can be equivalently written as

d̄ω =
(
Ih+1 ⊗ ω′

) (
Ih+1 ⊗ s′k,1

)
d(k), (75)

where d(k) = (d′k◦0,d
′
k◦1, ...,d

′
k◦h)′ and dk◦r =

(
d′k,0,r,d

′
k,1,r...,d

′
k,m−1,r

)′
, for r = 0, 1, ..., h. The

vector d(k) can be estimated using multivariate versions of the DL or ARDL estimating equations.

We focus on the latter. Replacing x̄ws and its lags in (43) with z̄wks and its lags, we obtain the
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VARDL estimating equations

z̄wks =

p∑
r=1

Ψkprz̄w,k,s−r +
m−1∑
i=0

h∑
r=0

βkpirei,s−r + vkphs, (76)

where, regardless of the population values of the autoregressive coeffi cient matrices {Ψkp1,Ψkp2, ...,Ψkpp}

and regardless of the choice of p, we have

dki0 = βkpi0, (77)

dki1 = βkpi1 + Ψkp1dki0, (78)

dki2 = βkpi2 + Ψkp1di1 + Ψkp2dki0, (79)

...

dki` = βkpi` +

p∑
r=1

Ψkprdk,i,`−r, for ` = p, p+ 1, ...h. (80)

Collect the coeffi cients of (76) in θkp = vec
(
Ψkp1, ...,Ψkpp,βk,p,0,0, ...,βk,p,m−1,h

)
and denote the

corresponding LS estimates by hats. In addition, define mapping Fk (θkp) = d(k) given by (77)-(80).

Then the mean group VARDL estimator of d̄ωr is given by

̂̄dMGV

ωkp =
(
Ih+1 ⊗ ω′

) (
Ih+1 ⊗ s′k,1

)
d̂MGV

(k),p , (81)

where d̂MGV
(k),p = Fk

(
θ̂kp

)
. Similarly, the pooled VARDL estimator is based on a vector version of

(61),

z̄wks =

p∑
r=1

Ψωkprz̄w,k,s−r +
h∑
r=0

βωkprẽs−r + vωkphs. (82)

Let θωkp = vec
(
Ψωkp1, ...,Ψωkpp,βωkp0, ...,βωkpp

)
, and define mapping Fωk (θωkp) = d̄ωk =
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(
d̄′ωk,0, d̄

′
ωk,1, ..., d̄

′
ωk,h

)′
given by

d̄ωk0 = βωkp0, (83)

d̄ωk1 = βωp1 + Ψωkp1d̄ωk0, (84)

d̄ωk2 = βωp2 + Ψωkp1d̄ωk1 + Ψωkp2d̄ωk0, (85)

...

d̄ωk` = βωp` +

p∑
r=1

Ψωkprd̄ω,k,`−r, for ` = p, p+ 1, ..., h, (86)

Then the pooled VARDL estimator is given by

̂̄dPVωkp =
(
Ih+1 ⊗ s′k,1

) ̂̄dωkp =
(
Ih+1 ⊗ s′k,1

)
Fωk

(
θ̂ωkp

)
. (87)

The following proposition establishes the asymptotic normality of the mean group and pooled

estimators based on VARDL estimating equations.

Proposition 5 Suppose zt = (xt,y
′
t)
′ is given by (1), and Assumptions 2-3 hold. Consider the

mean group VARDL estimator ̂̄dMGV

ωkp given by (81) and the pooled VARDL estimator ̂̄dPVωkp given
by (87). Let Tmh = T/m− h. Then, for fixed k, m, p and h, as T →∞,

√
Tmh

(̂̄dMGV

ωkp − d̄ω

)
→d N (0,ΩMGV,kp) , (88)

and √
Tmh

(̂̄dPVωkp − d̄ω

)
→d N (0,ΩPV,kp) , (89)

where

ΩMGV,kp =
(
Ih+1 ⊗ ω′

) (
Ih+1 ⊗ s′k,1

)
JFk (θkp) ΣθkpJ

′
Fk (θkp) (Ih+1 ⊗ sk,1) (Ih+1 ⊗ ω) , (90)

ΩPV,kp = JFωk (θωkp) ΣωkθpJ
′
Fωk (θωkp) , (91)

JFk (θkp) is the Jacobian of the mapping Fk (θkp) = d(k)defined by (77)-(80), JFωk (θωkp) is the

Jacobian of the mapping Fωk (θωkp) = d̄ωk defined by (83)-(86), Σθkp is the asymptotic variance of

θ̂kp, and Σωkθp is the asymptotic variance of θ̂ωkp.
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Asymptotic variance-covariance matrices ΩMGV,kp and ΩPV,kp can be estimated using

Ω̂MGV,kp =
(
Ih+1 ⊗ ω′

) (
Ih+1 ⊗ s′k,1

)
JFk

(
θ̂kp

)
Σ̂θkpJ

′
Fk

(
θ̂kp

)
(Ih+1 ⊗ sk,1) (Ih+1 ⊗ ω) , (92)

and

Ω̂PV,kp = JFωk

(
θ̂ωkp

)
Σ̂ωkθpJ

′
Fωk

(
θ̂ωkp

)
, (93)

where Σ̂θkp and Σ̂ωkθp are the Newey-West estimators of Σθkp and Σωkθp, respectively.

4 Monte Carlo Experiments

Since the pooled estimators proposed in this paper are more parsimonious, they may have an

advantage for the samples of interest in practice, despite being asymptotically less effi cient compared

to the mean group estimators. This section sheds light on the small sample accuracy of the six

estimators discussed in Section 3. We first outline the data generating process (Subsection 4.1), then

describe the implementation of the estimators (Subsection 4.2), and summarize the main findings

(Subsection 4.3). The findings in this section confirm our intuition and the theoretical arguments

provided in Section 3. In particular, we find that parsimony can pay off in realistic samples sizes.

Pooled versions of estimators tend to be more accurate than their mean group versions in our

experiments. Augmenting the estimating equations by lags of the dependent variable can be quite

helpful, too.

4.1 Data Generating Process

Let n = 3, and generate zt = (xt, q1t, q2t)
′ from the VAR(1) process:

zt = (I3 −Φ)µz + Φzt−1 + Aεt, εtIIDN(0, I) (94)

for t = −B + 1,−B + 2..., 0, 1, ..., T , where µz = (1, 1, 1)′, and the starting values are ξ−B = µz.

We set B = 100 and discard the first B time periods, leaving periods 1, 2, ..., T for estimation.

Individual elements of εt = (ε1t, ε2t, ε3t)
′ are generated using GARCH(1, 1) specifications given by
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εst = σstεst for s = 1, 2, 3, where εst ∼ IIDN (0, 1), and

σ2
st = (1− ψs1 − ψs2) + ψs1ε

2
s,t−1 + ψs2σ

2
s,t−1,

for t = −B,−B+1, ..., 0, 1, 2, ..., T , with initial values σ2
s,−B−1 = 1. We set ψs1 = 0.2, and ψs2 = 0.6.

The matrix of the autoregressive coeffi cients, Φ, and the matrix A are set to

Φ =


0.8 −0.1 0

0.4 0.6 −0.2

0 0.2 0.4


1/m

, and A = κ


1 −0.5 0

0 1 −0.5

−0.5 0.5 1

 . (95)

The absolute values of the largest eigenvalue of Φ is 0.631/m. We assume that ε1t is observed

for t = 1, 2, ..., T . In addition, the variables in zt are only observed as temporal aggregates,

z̄w,s =
∑m−1

i=0 wizts−i, for s = 1, 2, ..., Tm. We set m = 21, which corresponds to a setting in

which there are monthly observations on the outcome variable of interest and daily data on the

shock of interest (assuming 21 working days in a month). Furthermore, we consider aggregation

weights w = (1, 1, ..., 1)′, representing the sums of the high-frequency periods, as one would use to

temporally aggregate industrial production or retail sales, for example.3 While our estimators do

not require the specification of the aggregation weights, these weights are required for the evaluation

of the estimators in the simulation study.

We consider Tm = {240, 300, 360, 480, 600}, corresponding to 20, 25, 30, 40 and 50 years of

monthly data. We utilize R = 2, 000 Monte Carlo draws for each sample size. Our objective is the

estimation of IRFω (x̄w, r) = dω,r. We set ω = τm/m = (1/m, 1/m, ..., 1/m)′, where τm is m × 1

vector of ones. We set κ = 10.3356 in (95) to ensure dωa,0 = 1.

4.2 Estimators

We use the six estimators of the dω,r proposed in Section 3: the mean group DL estimator given

by (22); the pooled DL estimator given by (35); the mean group ARDL estimator given by (55);

the pooled ARDL estimator based on (61); the mean group VARDL estimator given by (81) with

3Note that the relative small sample accuracy of individual estimators would be the same if we considered simple
temporal averages given by w = (1/m, 1/m, ..., 1/m)′, since temporal averaging and summation differ only with
respect to a scaling factor.
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variable vector z̄w2s = (x̄ws, q̄1,ws)
′; and the pooled VARDL estimator given by (87) using the same

variable vector. The lag orders (p, q) are set equal to the integer part of T 1/3
m . The largest impulse

response horizon is set to h = 12.

4.3 Findings

Table 1 reports results for the bias of d̂ω,r, the RMSE, the coverage rates of nominal 95 percent

confidence intervals for dω,r, and the mean length of these intervals (all ×100), averaged across

horizons r = 0, 1, 2..., 12. The left panel reports the mean group estimators and the right panel

reports their pooled versions. The mean group DL estimator reported in the first column is not

feasible for the smallest value of Tm = 240 (and the chosen horizon h = 12), due to the lack of

degrees of freedom. This estimator does not exhibit much bias for the remaining values of Tm,

and its RMSE declines in Tm, as expected according to Proposition 1. However, the coverage rates

are very low, starting at only 22 to 24 percent for Tm = 300, and only slowly improving with an

increase in Tm, reaching 66 to 83 percent coverage for Tm = 600, which is still significantly below

95 percent. Inference is therefore highly inaccurate and the 95 percent confidence intervals are

severely underestimating the true extent of the sampling uncertainty.

The other estimators do not have this problem. Confidence interval coverage rates are quite

close to 95 percent for all sample sizes. None of these estimators suffers from serious bias, and all

achieve a lower RMSE than the mean group DL estimator. All three pooled estimators have lower

RMSE than the corresponding mean group estimators. The best estimator in terms of the RMSE

is the pooled ARDL estimator. Augmenting the ARDL specification with one additional variable

(q̄1,ws) results in a slight increase of the RMSE by about 1 to 5 percent, depending on the sample

size. This result underscores that the inclusion of a relevant variable does not necessarily make

the estimator more precise. Overall, our Monte Carlo study shows that the proposed estimators,

especially the more parsimonious ones, perform well, with the exception of the mean group DL

estimator.

26



TABLE 1: Bias (×100), RMSE (×100), coverage rates (×100), and mean length of 95%

confidence intervals (×100) for ̂̄dω,r, averaged over horizons r = 0 to 12.

Mean Group MF estimators Pooled MF estimators
DL ARDL VARDL DL ARDL VARDL

Tm A. Bias (×100)
240 n.a. -0.46 -0.50 0.07 -0.33 -0.31
300 0.25 -0.18 -0.25 -0.05 -0.31 -0.30
360 -0.08 -0.14 -0.19 -0.09 -0.29 -0.32
480 -0.27 -0.33 -0.29 -0.06 -0.27 -0.25
600 -0.05 -0.26 -0.25 -0.05 -0.24 -0.22

B. RMSE (×100)
240 n.a. 17.01 18.69 13.24 10.44 10.95
300 49.70 12.66 13.33 11.58 9.16 9.62
360 21.18 11.57 12.03 10.50 8.86 9.13
480 13.08 8.97 9.22 8.99 7.58 7.73
600 10.21 7.96 8.11 7.96 6.93 6.99

C. 95% Confidence Interval Coverage Rates (×100)
240 n.a. 94.01 94.38 92.22 94.04 94.04
300 23.86 94.59 94.45 93.07 94.65 94.54
360 57.72 94.12 94.53 93.40 94.15 94.12
480 76.83 94.57 94.89 93.75 94.19 94.53
600 83.38 94.62 94.80 93.96 94.61 94.61

D. 95% Confidence Intervals Length (×100)
240 n.a. 63.91 71.14 47.19 39.23 41.60
300 28.31 48.15 51.64 42.39 34.94 36.87
360 34.15 44.43 46.71 38.72 33.49 34.61
480 31.16 34.35 35.59 33.64 28.85 29.72
600 28.26 30.72 31.35 30.05 26.71 27.06

Notes: The mean group DL estimator is not feasible for Tm = 240, m = 21, and h = 12. See Subsection 4.1 for the
description of the simulation design and Subsection 4.2 for the description of the implementation of the individual
estimators. All results are based on R = 2000 simulation draws.
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5 Empirical Application: Passthrough of Daily Gasoline Price

Shocks to Monthly Inflation

Our empirical illustration is motivated by the question of how occasional spikes or surges in the

daily New York Harbor wholesale price of gasoline driven by exogenous events in the Middle East

impact headline CPI inflation, core CPI inflation (defined as CPI inflation excluding energy and

food prices), and gasoline price inflation. This is a recurrent situation faced by policymakers. From

a policymaker’s point of view, it is important to understand in real time how a sequence of wholesale

gasoline prices triggered by a crisis in the Middle East, at some point during the current month is

expected to change inflation in the current month and in futures months. The reason for focusing

on daily gasoline as opposed to daily oil prices is that changes in the price of gasoline and the price

of crude oil are not proportionate in general, reflecting the evolution of the cost share of crude oil

in gasoline prices over time (see Kilian and Zhou, 2022a).

We focus on the daily wholesale price of gasoline because that price is a benchmark price for

U.S. retail gasoline markets, is not subject to revisions and is readily available in real time. We

focus on sequences of daily gasoline price shocks, as even temporary spikes in gasoline prices tend

to be longer lived in practice than a one-time daily shock.

Our maintained assumption is that the daily gasoline price is predetermined with respect to

daily and monthly inflation. Evidence in support of this assumption is provided in Kilian and

Vega (2011). Given that this price is well approximated by a random walk, its growth rate may be

viewed as the daily gasoline price shock. Our assessment of the causal impact of a given sequence of

wholesale gasoline price shocks on inflation can be made in real time and does not require inflation

data to be available for the current month. In practice, it may be used to adjust existing inflation

forecasts that predate the surge in gasoline prices.

5.1 Some Hypothetical Thought Experiments

We start by building intuition by considering three hypothetical gasoline price shock scenarios

that differ in the timing of the daily gasoline price shocks within the month (see Figure 1A). The

implied change in the price of gasoline is shown in Figure 1B. In Scenario 1, 10 consecutive shocks

of magnitude 1 are followed by zero shocks in the remainder of the month, resulting in a steadily
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increasing gasoline price during the first ten days of the month and a flat price of 10 for the

remainder of the month. Scenario 2 makes the opposite assumption of no increase in the gasoline

price during the first ten days, followed by a steady increase in the remainder of the month to a

value of 10. Scenario 3 postulates a steady increase over all 21 trading days, reaching the same

gasoline price of 10 at the end of the month as in the other two scenarios.

The top panel in Figure 2 illustrates the implications of each scenario for the annualized inflation

rates expressed in percent for the pooled ARDL estimator. Regardless of the choice of scenario,

the pattern of the response of headline inflation mirrors that of consumer gasoline price inflation

except that the scale is much lower, reflecting the expenditure share of gasoline in overall consumer

spending of about 4% on average. The responses of core inflation are generally an order of magnitude

smaller, indicating very limited passthrough to inflation in other consumer prices.

Not surprisingly, under Scenario 1 gasoline price shocks have the highest impact effect on all

three inflation measures, and Scenario 3 has the lowest impact effect. Scenario 2 generates the

largest peak effect on all inflation measures by a slight margin. Whereas the peak effect on headline

inflation occurs in month 1, for core inflation it occurs in month 2. Under Scenarios 1 and 2, the

timing of the peak effect is similar, except the peak effect on core inflation under Scenario 2 is

delayed until month 3.

The peak response of headline inflation is noticeably lower under Scenario 3 than under the

other scenarios and more persistent. The most striking differences across scenarios arise for the

response of core inflation. Notably, the pattern of the core inflation responses under Scenario 2 is

quite different from that under the other scenarios. The peak effect under Scenario 3 is lower than

in the other two scenarios, and the persistence of the response function is higher, reflecting the fact

that the inflationary shock occurred only late in the initial month.

The three lower panels in Figure 2 show the pooled ARDL point estimate for each scenario along

with 68% and 95% delta method confidence intervals constructed using the asymptotic variance

expression derived in Section 3. The extent of the sampling uncertainty is noticeably lower under

Scenario 3 than under Scenario 1 and somewhat higher under Scenario 2. This evidence illustrates

that the timing of the daily gasoline price shocks matters.
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5.2 Four Episodes of Daily Gasoline Price Shocks

Figure 3 shows sequence of daily gasoline price shocks associated with four episodes of stress in

U.S. gasoline markets driven by global events. It also shows the cumulative change in daily gasoline

prices associated with these shocks and the evolution of the New York Harbor wholesale price of

gasoline over this month.

We focus on the invasion of Kuwait by Iraq (August 1-31, 1990), the Iranian missile attack on

Saudi oil fields (September 16-30, 2019), the drop in demand associated with the pandemic and

increase in supply associated with the Saudi Price War (March 1-31, 2020), and the 12-Day War

between Israel and Iran and its aftermath (June 11-30, 2025).4

Three of these episodes involved a rise in U.S. gasoline prices and one a decline. As Figure 3

shows, in the case of the Iranian missile attack, the gasoline price increase was almost completely

reversed by the end of the month. After the invasion of Kuwait and the 12-Day War, we see a

partial reversal of the initial increase. In the case of the pandemic and Saudi Price War, the price

stabilized by the end of the month well below its peak level. This illustrates rich heterogeneity in

the patterns of daily gasoline price shocks in practice.

Figure 4 reports the responses of monthly U.S. consumer gasoline price inflation, core inflation

and headline inflation along with 68% and 95% confidence intervals. There are some striking

differences. For example, the Iranian missile attack on Saudi Arabia in 2019 had a much more

muted impact on gasoline and headline inflation than the invasion of Kuwait in 1990. There is no

evidence of these responses being statistically significant either at the 95% level.

The only event that generated a large and statistically significant response at the 95% level in

both headline and core inflation occurred in March 2020. The 12-Day War produced a statistically

significant increase in gasoline price and headline inflation in months 0 and 1, but only a barely

statistically significant increase in core inflation in month 0 at the 95% confidence level. It is also

noteworthy that the responses of core inflation to the invasion of Kuwait and the missile attack

on Saudi Arabia took longer to materialize than following the 2020 and 2025 episodes, once again

underscoring the importance of the timing of the daily gasoline price shocks.

These examples illustrate that the estimators proposed in Section 3 may be used to assess

the causal effect of sequences of gasoline price shocks on monthly inflation in real time based on

4The attack on Iran started on June 13 2025. We include the two days leading up to the attack since the wholesale
gasoline price started to increase on June 11 and 12 already.
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estimates of regressions on historical data, providing an additional tool for policymakers and applied

researchers.

A. Daily shock sequences

B. Cumulated values of shocks

FIGURE 1: Daily shock sequence scenarios for log-differenced NY Harbor wholesale gasoline

prices (left chart) and their cumulated values (right chart). Y-axis shows approximate percent

units (log-differences ×100). In each scenario, NY Harbor wholesale gasoline prices increase by 10

percent. X-axis shows working days of the month.
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(1) Gasoline CPI inflation response (2) Core CPI inflation response (3) Headline CPI inflation response

FIGURE 2: Pass-through from daily shocks to NY Harbor wholesale gasoline prices to monthly

gasoline, core and headline CPI inflation under scenarios 1-3. Under each scenario, wholesale

gasoline prices increase by 10 percent. Y-axis shows log-differences ×1, 200. X-axis shows monthly

horizons. Dashed and dotted lines show 68 and 95 percent asymptotic confidence intervals.
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Daily shock sequences Cumulated values of shocks NY Harbor gasoline prices

A. August 1-31, 1990 July 31 - Aug 31, 1990

B. September 16-30, 2019 Aug 30 - Sep 30, 2019

C. March 1-31, 2020 Feb 28 - Mar 31, 2020

D. June 11-30, 2025 May 30 - June 30. 2025

FIGURE 3: August 1990 (Iraqi invasion of Kuwait), September 2019 (Iranian missile attacks on

Saudi Arabia), March 2020 (Covid and Saudi price war), and June 2025 (12-Day War between

Iran and Israel) shock scenarios. Y-axis shows approximate percent units (log-differences ×100).

X-axis shows working days of the month. Daily shock sequences are given by first differences of

logs of NY Harbor gasoline prices.
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(1) Gasoline CPI inflation responses (2) Core CPI inflation responses (3) Headline CPI inflation responses

A. August 1990 (Invasion of Kuwait)

B. September 2019 (Iranian missile attack on Saudi Arabia)

C. March 2020 (Covid and Saudi price war)

D. June 2025 (12 Day War between Israel and Iran)

FIGURE 4: Pass-through from daily shocks to NY Harbor wholesale gasoline prices to monthly

gasoline, core and headline CPI inflation for selected episodes. Y-axis shows log-differences

×1, 200. X-axis shows monthly horizons. Dashed and dotted lines show 68 and 95 percent

asymptotic confidence intervals.
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6 Conclusion

We provided several novel solutions to the problem of estimating the responses of low-frequency

macroeconomic aggregates to directly observed high-frequency shocks. We also derived the as-

ymptotic distribution of these estimators. Our simulation analysis shows that pooled ARDL and

pooled VARDL estimators are most reliable in realistically small samples. While we focused on the

relationship between daily shocks and monthly outcomes, our analysis could be applied to other

frequencies.

Our analysis allows for stock as well as flow variables. One key advantage of our approach

compared to mixed-frequency VAR models is that it does not require the user to fully specify the

VAR model generating the data. Another advantage is that reliable estimation remains feasible even

for realistically small sample sizes. A third advantage is that the proposed estimators accommodate

one-time daily shocks as well as sequences of daily shocks. A limitation of our analysis is that we

assume that the high-frequency shock of interest is observable.

Going forward, extensions of our work to sparse daily shock data would be of particular interest.

There has been a surge in the use of proxy VAR models of the effect of exogenous shocks to

price expectations. In this literature, the effects of policy announcements on price expectations

are estimated using high-frequency surprises in asset prices around policy announcements as an

external instrument. Such news shocks are infrequent. They typically are observed at most once

or twice in a given month. As shown in Kilian (2024), utilizing such daily shocks in monthly proxy

VAR models involves a nontrivial temporal aggregation problem (see also Lee and Sekhposyan

(2024)). This problem has typically been ignored in the literature (see, e.g., Känzig, 2021). Very

similar problems also arise in the literature on identifying high-frequency monetary policy shocks,

typically defined as the change in the futures price of over a 30-minute window around FOMC

announcments (see, e.g. Gertler and Karadi, 2015, Bauer and Swanson, 2023). This makes it of

interest to develop generalizations of the approach in our paper that can deal with the sparseness

of the time series of such news shocks, which is not allowed for in our current analysis. We delegate

this task to future research.
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A Appendix

This appendix contains proofs and the data sources for the empirical applications. Section A.1

states and establishes Lemmas needed for the proofs of the propositions presented in Section A.2.

Section A.3 describes data sources and variable construction for the empirical application.

A.1 Lemmas: Statements and proofs

Lemma 1 Consider matrix E defined below (21). Under Assumption 3, for fixed m and h, as

T →∞, (
E′E

Tmh

)−1

→p σ
−2
e I(h+1)m. (A.1)

Proof. E′E/Tmh is anm (h+ 1)×m (h+ 1)matrix composed of elements T−1
m

∑Tm
s=h+1 as (i1, i2, r1, r2),

for i1, i2 = 0, 1, 2, ...m − 1, and r1, r2 = 0, 1, 2, ..., h, where as (i1, i2, r1, r2) = ei1,s−r1ei2,s−r2 . For

given integers i1, i2, r1, r2, the sequence {as (i1, i2, r1, r2)}s is an uncorrelated sequence under As-

sumption 3, with bounded variances, V ar [as (i1, i2, r1, r2)] < K. Hence, T−1
m

∑Tm
s=h+1 as (i1, i2, r1, r2)→L2

E (ei1,s−r1ei2,s−r2),
5 where E (ei1,s−r1ei2,s−r2) = σ2

e for the diagonal elements (i1 = i2 and r1 = r2),

and E (ei1,s−r1ei2,s−r2) = 0 for the off-diagonal elements (i1 6= i2 and/or r1 6= r2). Convergence in

L2 norm implies convergence in probability, and we obtain E′E/Tmh →pp σ
2
eI(h+1)m. Given that

σ2
e > 0 under Assumption 3, result (A.1) follows.

5See, e.g. Theorem 19.1 of Davidson (1994)
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Lemma 2 Consider matrix E defined below (21) and vector ϑh = (ϑh,h+1, ϑh,h+2, ..., ϑh,Tm)′, where

ϑhs is defined by (19). Under Assumptions 2-3, for fixed m and h, as T →∞,

E′ϑh√
Tmh

→d N
(
0, σ2

eΞ
)
, (A.2)

where matrix Ξ is defined in (25).

Proof. Result (A.2) is established in Chudik and Georgiadis (2022). See result (A.8) in Chudik

and Georgiadis (2022).

Lemma 3 Consider matrix E defined below (21). Under Assumption 3, for fixed m and h, as

T →∞,

T
−1/2
mh V ec

(
E′E− σ2

eI(h+1)m

)
→d N (0,ΣE) , (A.3)

where Tmh = T/m− h.

Proof.
(
E′E− σ2

eI(h+1)m

)
is an m (h+ 1)×m (h+ 1) matrix composed of elements

Tm∑
s=h+1

[ei1,s−r1ei2,s−r2 − E (ei1,s−r1,ei2,s−r2)] =

Tm∑
s=h+1

ξs,r1,r2,i1,i2 ,

for r1, r2 = 0, 1, ..., h and i1, i2 = 0, 1, ...,m−1, where ξs,r1,r2,i1,i2 = ei1,s−r1ei2,s−r2−E (ei1,s−r1,ei2,s−r2),

and eis are the sequentially sampled shocks, eis = ets−i, and ts = ms. Under Assumption 3,

et ∼ IID
(
0, σ2

e

)
, σ2

e > 0, E
(
e4
t

)
= κ4, and 4 + ε moments of et exist for some ε > 0. For

r1 = r2 = r ∈ {0, 1, ..., h},
{
ξs,r,r,i1,i2

}Tm
s=h+1

is a sequence of i.i.d. random variables with mean zero

and a finite variance. Hence, by the Lindeberg-Levy central limit theorem, T−1/2
mh

∑Tm
s=h+1 ξs,r,r,i1,i2

is asymptotically normally distributed, for fixed m and h, as T → ∞. For r1 6= r2, sequence{
ξs,r1,r2,i1,i2

}Tm
s=h+1

is a special case of a stationary ergodic sequence that satisfies the condi-

tions of central limit Theorem 5.15 of White (1984), and T−1/2
mh

∑Tm
s=h+1 ξs,r1,r2,i1,i2 is also asymp-

totically normally distributed, for fixed m and h, as T → ∞. Elements of ΣE are given by

T−1
mh

∑Tm
s=h+1

∑Tm
s′=h+1E

(
ξs,r1,r2,i1,i2ξs′,r1,r2,i1,i2

)
for r1, r2 = 0, 1, ..., h and i1, i2 = 0, 1, ..., m − 1.

We do not provide expression for ΣE since this expression is not essential for any of our results.

Lemma 4 Suppose zt = (xt,y
′
t)
′ is given by (1), Assumptions 2-3 hold, and let Tmh = T/m − h.

Then, for fixed k, p,m and h, as T → ∞, the LS estimators θ̂p, θ̂ωp, and θ̂kp and θ̂ωkp are
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asymptotically normally distributed and converge at the usual rate
√
Tmh.

Proof. Each of the four LS estimators can be written as θ̂ − θ = (Q′Q)−1 Q′v, for a given

choice of the regressor data matrix Q and the respective error vector v, where we use θ to denote

the population value of θ̂. For instance, in the case of the LS estimator θ̂p, the matrix Q is a

Tmh × [p+m (h+ 1)] dimensional data matrix consisting of p lags of the dependent variable x̄ws

and m (h+ 1) regressors ei,s−r for i = 0, 1, ...,m − 1 and r = 0, 1, ..., h, and the elements of v are

given by vphs, see (44). For simplicity, denote the rows of Q as qs and the elements of v as vs,

for s = p + 1, p + 2, ..., Tmh. For each of the four LS estimators, qs is stationary and ergodic in

variance under Assumption 2-3, and T−1
mhQ

′Q converges in probability to a positive definite matrix.

In addition, qsvs is stationary and ergodic with finite variance, and given the eigenvalue condition

in Assumption 2, conditions of Theorem 5.15 of White (1984) are satisfied. Hence, T−1/2
mh Q′v is

asymptotically normally distributed. This ensures asymptotic normality of θ̂p, θ̂ωp, and θ̂kp and

θ̂ωkp.

A.2 Proofs of propositions

Proof of Proposition 1. Using (22), the mean group DL estimator can be written as ̂̄dMG

ω =

(Ih+1 ⊗ ω′) d̂, where d̂ is given by (21). Using (20) in (21), we obtain

√
Tmh

(̂̄dMG

ω − d̄ω

)
=
(
Ih+1 ⊗ ω′

)(E′E

Tmh

)−1 E′ϑh√
Tmh

, (A.4)

where ϑh = (ϑh,h+1, ϑh,h+2, ..., ϑh,Tm)′. Using result (A.1) of Lemma 1 and result (A.2) of Lemma

2 in (A.4), result (23) readily follows.

Proof of Proposition 2. From (34), we can write x̄w as x̄w = Ẽd̄ω+ϑ∗h = Ẽd̄ω+ϑh+E∆, where

∆ is vector of stacked ∆ir, namely ∆ = (∆′0,∆
′
1, ...,∆

′
h)′, in which ∆r = (∆0r,∆1r, ...,∆m−1,r)

′

for r = 0, 1, ..., h. Substituting this expression for x̄w into the definition of ̂̄dPω given by (35), we
obtain √

Tmh

(̂̄dPω − d̄ω

)
=

(
Ẽ′Ẽ

Tmh

)−1
Ẽ′ (ϑh + E∆)√

Tmh
, (A.5)

where Ẽ can be written as Ẽ = E (Ih+1 ⊗ ω̃), see (30). We consider the individual terms on the
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right side of (A.5) in turn. Regarding the first term, we have

Ẽ′Ẽ

Tmh
=
(
Ih+1 ⊗ ω̃′

) E′E

Tmh
(Ih+1 ⊗ ω̃) ,

and
Ẽ′Ẽ

Tmh
→p σ

2
e

(
Ih+1 ⊗ ω̃′

)
I(h+1)m (Ih+1 ⊗ ω̃) = σ2

e ‖ω̃‖
2 Ih+1 = σ2

e ‖ω‖
−2 Ih+1, (A.6)

where T−1
mhE

′E→p σ
2
eI(h+1)m by (A.1), ‖ω̃‖ =

√
ω̃′ω̃ is the Euclidean norm of ω̃, and

‖ω̃‖2 = ω̃′ω̃ =

m−1∑
i=0

ω̃2
i =

(
m−1∑
i=0

ω2
i

)−1

= ‖ω‖−2 , (A.7)

follows from (29). Hence, (
Ẽ′Ẽ

Tmh

)−1

→p σ
−2
e ‖ω‖

2 Ih+1. (A.8)

Consider next
Ẽ′ϑh√
Tmh

=
(
Ih+1 ⊗ ω̃′

) E′ϑh√
Tmh

→d N
(

0, σ2
eΞ̃
)
, (A.9)

where we used (A.2) of Lemma 3, and Ξ̃ is given by

Ξ̃ =
(
Ih+1 ⊗ ω̃′

)
Ξ (Ih+1 ⊗ ω̃) .

Finally, consider
Ẽ′E∆√
Tmh

=
(
Ih+1 ⊗ ω̃′

) E′E∆√
Tmh

, (A.10)

where ∆ = (∆′0,∆
′
1, ...,∆

′
h)′, and ∆r, for r = 0, 1, ..., h, is given by ∆r = dr − ω̃ (ω′dr). Hence,

ω̃′∆r = ω̃′dr − ω̃′ω̃ω′dr = ω̃′dr − ‖ω̃‖2ω′dr = ω̃′dr − ‖ω‖−2ω′dr = ω̃′dr − ω̃′dr = 0,

for r = 0, 1, ..., h, where the third equality follows from (A.7), and the fourth equality follows by

noting ω̃ = ‖ω‖−2ω (see (29)). The identity ω̃′∆r = 0, for r = 0, 1, ..., h, implies
(
Ih+1 ⊗ ω̃′

)
∆ =

0, so we obtain

σ2
e

(
Ih+1 ⊗ ω̃′

)
I(h+1)m∆ = 0. (A.11)
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Subtracting (A.11) from (A.10), we obtain

Ẽ′E∆√
Tmh

=
(
Ih+1 ⊗ ω̃′

)(E′E−σ2
eI(h+1)m√
Tmh

)
∆. (A.12)

Given that V ec (ABC) = (C′ ⊗A)V ec (B) for conformable matrices A, B, and C, vectorization

of (A.12) yields

V ec

(
Ẽ′E∆√
Tmh

)
=
[
∆′ ⊗

(
Ih+1 ⊗ ω̃′

)]
V ec

(
E′E−σ2

eI(h+1)m√
Tmh

)
. (A.13)

By Lemma 3,

V ec

(
E′E−σ2

eI(h+1)m√
Tmh

)
→d N (0,ΣE) . (A.14)

Using (A.14) in (A.13), it follows
Ẽ′E∆√
Tmh

→d N (0,Σ∆) , (A.15)

where Σ∆ =
[
∆′ ⊗

(
Ih+1 ⊗ ω̃′

)]
ΣE [∆⊗ (Ih+1 ⊗ ω̃)]. Using results (A.8), (A.9) and (A.15) in

(A.5), we obtain (36).

Proof of Proposition 3. Proposition 3 is a direct application of the delta method. Under

Assumptions 2-3, Lemma 4 establishes that θ̂p is asymptotically normally distributed. In addition,

the mapping between the estimates of the ARDL model and its multipliers, F : θp→ d, defined

by (50)-(53) is continuously differentiable and its Jacobian JF (θp) is nonsingular. Invoking the

delta method, it follows that d̂Ap = F
(
θ̂p

)
is asymptotically normal and

√
Tmh

(
d̂A − d

)
→d

N (0,JF (θp) ΣθpJ
′
F (θp)), where Σθp is the asymptotic variance of θ̂p. Using this result in d̂MGA

ω =

(Ih+1 ⊗ ω′) d̂A, we obtain (56).

Proof of Proposition 4. Similarly to the proof of Proposition 3, result (70) can be established

using the delta method. Mapping Fω : θωp→ d̄ω, given by (62)-(65), is continuously differentiable

and its Jacobian JFω (θωp) is nonsingular. Under Assumption 2-3, θ̂ωp is asymptotically normal

(see Lemma 4), and
√
Tmh

(
θ̂ωp − θω

)
→d N (0,Σθωp). Using the delta method, it follows that

√
Tmh

(̂̄dPAωp − d̄ω

)
→d N (0,JFω (θωp) ΣωθpJ

′
Fω (θωp)), as required.

Proof of Proposition 5. Consider mappings Fk (θkp) = d(k) defined by (77)-(80) and Fωk (θωkp) =

d̄ωk defined by (83)-(86). Both mappings are continuously differentiable with non-singular Jaco-
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bians matrices JFk (θkp) and JFωk (θωkp), respectively. Similarly to the proofs of Propositions 3

and 4, under Assumptions 2-3, the LS estimators θ̂kp and θ̂ωkp are both asymptotically normally

distributed and converge at the rate T−1/2
mh (see Lemma 4). Using the delta method, we obtain

√
Tmh

(
d̂MGV

(k),p − d(k)

)
→d N (0,JFk (θkp) ΣθkpJ

′
Fk (θkp)) and result (88) now follows from not-

ing ̂̄dMGV

ωkp = (Ih+1 ⊗ ω′)
(
Ih+1 ⊗ s′k,1

)
d̂MGV

(k),p . Similarly, the delta method implies the asymptotic

normality of the pooled estimator,
√
Tmh

(̂̄dPVωkp − d̄ω

)
→d N (0,JFωk (θωkp) ΣωkθpJ

′
Fωk (θωkp)).

A.3 Data description for inflation pass-through application

• Gs: Daily gasoline price data from NY Harbor, regular, available from:

https://www.eia.gov/dnav/pet/hist/eer_epmru_pf4_y35ny_dpgD.htm (downloaded on Sep-

tember 24, 2025). Series name in the database: "New York Harbor Conventional Gasoline

Regular Spot Price FOB (Dollars per Gallon)". Data availability: June 02, 1986 - September

22, 2025, working days only. (TD = 9877) Units: $ per gallon.

• Pt: Seasonally adjusted headline CPI inflation from FRED, series “CPILFESL,”Consumer

Price Index for All Urban Consumers: All Items in U.S. City Average, Index 1982-1984=100,

Monthly, Seasonally Adjusted. Downloaded on September 24, 2025, from:

https://fred.stlouisfed.org/series/CPIAUCSL. Data availability: 1947M1 - 2025M8 (TM =

944). Units: Index 1982-1984=100.

• Pct: Seasonally adjusted CPI inflation ex food and energy from FRED (core CPI), series

“CPILFESL,”Consumer Price Index for All Urban Consumers: All Items Less Food and En-

ergy in U.S. City Average, Index 1982-1984=100, Monthly, Seasonally Adjusted. Downloaded

on September 24, 2025, from: https://fred.stlouisfed.org/series/CPILFESL. Data availability:

1957M1 - 2025M8 (TM = 824). Units: Index 1982-1984=100.

• Pgt: Seasonally adjusted gasoline consumer price index from FRED. Series “CUSR0000SETB01,”

Consumer Price Index for All Urban Consumers: Gasoline (All Types) in U.S. City Average.

Downloaded on September 24, 2025, from: https://fred.stlouisfed.org/series/CUUR0000SETB01.

Data availability: 1935M13- 2025M8 but only the subperiod 1966M1 - 2025M8 has no gaps

(TM = 705). Units: Index 1982-1984=100.
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The common sample for all variables is 1986M6 - 2025M8 (TM = 471).

Figure B1 below reports the histogram of the number of daily gasoline observations per month.

FIGURE B1: Histograms of the number of trading days per month. Sample: 1986M6 - 2025M8.
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