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Abstract

This paper proposes mean group and pooled estimators of impulse responses based on
mixed-frequency auxiliary distributed lag (DL), autoregressive distributed lag (ARDL), or
vector autoregressive distributed lag (VARDL) estimating equations. Our setup assumes
that the data are generated by a high-frequency VAR process. While the shock of interest
is directly observed at high frequency, the outcome variable is only observed as a
temporally aggregated variable at a lower frequency. We derive the asymptotic
distributions of the six proposed estimators. Monte Carlo experiments show that pooled
estimators generally perform better than the corresponding mean group estimators for
relevant sample sizes. An empirical illustration to the pass-through from daily wholesale
gasoline price shocks to monthly consumer price inflation illustrates the usefulness of the
proposed methods.
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1 Introduction

A recurrent situation faced by applied researchers is that exogenous shocks are observed at daily
or weekly frequency, while the outcome variable of interest is measured at monthly or quarterly
frequency. There is a large literature on quantifying the responses of macroeconomic aggregates
at a given frequency to exogenous shocks measured at the same frequency (see, e.g., Kilian and
Liitkepohl, 2017)). This literature leaves unanswered the question of how to quantify the responses
of macroeconomic aggregates measured at a low frequency to shocks observed at higher frequency.

For example, a policymaker may face an exogenous shock to the daily price of gasoline on a given
day of the current month or a sequence of such shocks extending over several days. The question of
interest to the policymaker is how this sequence of daily shocks is expected to change current and
future realizations of monthly aggregates such as inflation or industrial production growth, given
the historical relationship between gasoline prices and the economy. In general, this response will
depend on when in the month the sequence of daily gasoline price shocks occurs. Shocks earlier in
the month will have a larger impact on the current monthly inflation than shocks occurring later
in the month, while the response of future monthly inflation will be the larger, all else equal, the
later in the current month the daily shocks occur.

When working with economic time series sampled at different frequencies it has been common,
in practice, to aggregate high-frequency variables to a common low frequency and to analyze the
joint process sampled at the low frequency. This approach, however, may distort the co-movements
among the model variables and bias the estimates of the impulse responses. In this paper, we address
this concern by postulating the existence of a vector autoregressive data generating process at high
frequency. The high-frequency variables described by this process need not be observed, except
for the daily shock of interest. The high-frequency data are temporally aggregated to generate the
corresponding low-frequency data. We propose three alternative estimators of the responses of the
observed temporally aggregated variables to a sequence of high frequency shocks and derive their
asymptotic distribution. Each of these estimators may be implemented as a mean group or pooled
estimator, so there are six ways of proceeding in applied work.

Monte Carlo evidence shows that for realistic sample sizes pooled estimators tend to have lower
RMSE than mean group estimators, reflecting their greater parsimony. They also tend to be

more accurate in inference. The pooled autoregressive-distributed lag (ARDL) and pooled vector



autoregressive-distributed lag (VARDL) estimators tend to be slightly more accurate than the
pooled distributed lag (DL) estimator.

An empirical illustration focuses on sequences of daily wholesale gasoline price shocks associated
with four exogenous events in global oil markets. These episodes illustrate how different the path
of daily gasoline prices may be over a month. We trace the effects of these shock sequences on
monthly headline inflation, core inflation and retail gasoline price inflation. Our estimates show
that the effect on headline inflation is short-lived and the response of core inflation tends to be
muted, arguing against important indirect effects on inflation.

Our work relates to several strands of the literature. One is the literature on temporal ag-
gregation (see, e.g., |[Liitkepohl, |1987, Rossana and Seater, [1995| Marcellino, 1999, Breitung and
Swanson, [2002, and Swanson and Granger, |2012)), which in turn gave rise to the development of
mixed-frequency VAR models (see |[Foroni, Ghysels, and Marcellino, 2013, for a review). Much of
this literature has focused on forecasting rather than structural impulse response analysis, but there
are exceptions. For example, Ghysels (2016) introduced a class of mixed-frequency VAR models
that allows the estimation of the impact of high frequency shocks on low-frequency variables when
treating the daily shock as predetermined. In related work, Foroni and Marcellino (2014, 2016])
found that responses from common low-frequency VAR models that ignore temporal aggregation
can be substantially biased and that this bias can be alleviated by the use of mixed-frequency VAR
models.

Compared to mixed-frequency VAR models, our approach does not require the user to fully
specify the VAR model generating the data, which is an important advantage. Estimation as
well as inference using approaches that rely on the full specification of the underlying model is
conditional on the model being correctly specified. However, what variables belong in the data
generating process and what are the true lag orders is unknown in practice. Unless this uncertainty
is recognized and explicitly incorporated into the analysis, statistical inference will be invalid. In
practice, it is difficult to take model uncertainty into account in a systematic manner and, as a
result, this is rarely done in empirical research. Our approach is not subject to this drawback.
Moreover, our approach is more parsimonious, it tends to perform reasonably well even in small
samples, it lends itself to establishing the asymptotic properties of the estimator of the impulse

responses, and it easily allows for the consideration of sequences of high-frequency shocks.



The work methodologically most closely related to ours is Chudik and Georgiadis (2022), which
also does not require full specification of the model. There are four key differences. First, our paper
is about the impact of high-frequency shocks on observed low-frequency variable(s), whereas |Chudik
and Georgiadis (2022)| focused on the impact of high-frequency shocks on the underlying latent
high-frequency variable(s). Consequently, our paper does not assume that the temporal aggregation
weights for the construction of low-frequency variables are known to the researcher, whereas|Chudik
and Georgiadis (2022)| do. Second, we generalize the mixed-frequency DL estimating equations
proposed by |Chudik and Georgiadis (2022) to mixed-frequency ARDL and VARDL estimating
equations. We show that estimators based on ARDL and parsimonious VARDL specifications are
prefered because they tend to achieve lower root mean square error. Third, our paper develops
pooled estimators that remain applicable in settings where the approach of |(Chudik and Georgiadis
(2022)| is not feasible due to a larger frequency mismatch. Our Monte Carlo evidence shows that
pooled estimators for realistic sample sizes tend to achieve smaller root mean square error despite
these estimators not being asymptotically efficient. Finally, unlike earlier work we focus on the
impact of sequences of shocks.

Our empirical analysis is relevant for a recent literature examining the impact of gasoline price
shocks on headline and core inflation, especially since the pandemic era, based on low-frequency
VAR models. Examples include [Kilian and Zhou (2022ay, 2022b, 2023)), |Diab and Karaki (2023),
Vatsa and Pino (2024), |Griindler and Scharler (2025), and |Karaki and Chaar (2026). For a review
of this literature see Kilian and Zhou (2025). Our analysis confirms the findings in this literature
that the response of headline inflation is short-lived and that the pass-through to core inflation
tends to be muted, even after allowing for temporal aggregation. It adds to this literature a more
precise estimate of the effects of daily shocks on monthly inflation.

The remainder of the paper is organized as follows. Section [2] introduces the model, notation,
and defines the impulse response functions (IRFs) of interest. Section introduces mean group and
pooled mixed-frequency DL, ARDL and VARDL estimators, and derives their asymptotic proper-
ties. Section [4] provides Monte Carlo evidence. Section [5| presents the empirical application and
Section [6] concludes. Appendix provides proofs and additional details for the empirical application.
Throughout the paper, matrices are denoted by upper case bold letters. Vectors are denoted by

lower case bold letters. All vectors are column vectors.



2 Model

We assume an n X 1 dimensional vector of stationary high-frequency variables z; generated by
zp = Pz + wy, (1)

where ® is an n x n matrix of coefficients and u; is an n x 1 vector of serially uncorrelated
reduced-form errors. We postulate one lag without loss of generality, since any VAR(p) model
can be expressed as a VAR(1) model in companion formﬂ Without loss of generality, z; may be
partitioned as z; = (x4, y})’, where z; is the outcome variable of interest and y; is the (n — 1) x 1
vector of the remaining variables. It is not assumed that the variables in y; or the dimension n are
necessarily observed.

The shock of interest, denoted as e;, is assumed to be observed and
E (wer) = aey, (2)
where a is an n x 1 vector of constants. Then the reduced-form shock u; can be partitioned as
u; = aep + 1y, (3)

where 1, = u; — E (u¢| e;). The shock e; may be a “structural” shock, but it does not have to be.
It also could be a shock without any structural economic interpretation, such as a reduced-form
shock, or some rotation of reduced-form shocks, so long as the assumption F (u;|e;) = ae; is met
(see |(Chudik and Georgiadis|, 2022, for further discussion).

We assume that the outcome variable, x;, is observed only at a lower frequency than the shock
e¢. In particular, let m > 1 be the number of high-frequency time periods contained in one low-
frequency period. We refer to the last high-frequency period within the low-frequency period s by
ts, defined as

ts =ms, for s =1,2,..., T, (4)

with T, = [T'/m], where [T'/m)] is the integer part of T'/m. Thus, T is the number of high-frequency

!To simplify the exposition, we omit deterministic terms in . Introducing deterministic terms come at the
expense of added notation without any helpful insights.



time periods for which e; is observed, and T, is the number of low-frequency time periods.

We use the following notation to define sequentially sampled variables,
Tis 1= Xy, for i =10,1,2,....m —1,and s = 1,2,..., 1), (5)

and similarly e;s := e, ;. Temporal averages are defined as

m—1

Tws = Z w;Tis, for s = 1,2, ..., Ty, (6)
=0

where w; are possibly unknown temporal aggregation weights. T, is the temporally aggregated
version of the outcome variable, which is observed only at the low frequency. For example, simple
averaging of the high-frequency observations contained in one low-frequency time period is repre-
sented by equal temporal aggregation weights w; = 1/m, for ¢ = 0,1,...,m — 1. The definition in
equation @ allows for the temporal aggregation of both stock and flow variablesﬂ

The following assumption summarizes which objects in our setup are observed and which are

unobserved.

ASSUMPTION 1 The researcher observes the high-frequency scalar shock e; in , fort =
1,2,...,T, and the low-frequency temporally aggregated variable Ts, for s = 1,2,...,T,,, defined
by (@ The aggregation weights {w;}, the dimension of z; = (x4,y})’, the underlying lag order of
VAR model , the variables entering y; and their realizations are all potentially unobserved by

the researcher.

Remark 1 The reason that we do not require the full specification of the high-frequency VAR

process in Assumption [1] is that ey is observed.

The following standard assumptions are imposed on the high-frequency VAR model . We use
K to denote a generic, finite positive constant that does not depend on the sample size T'. This

constant can take on different values in different instances.

ASSUMPTION 2 |\ (®)| < 1, where A1 (®) is the largest eigenvalue of .

2Qur analysis can be extended to allow for temporal aggregation scheme in @ to span multiple low-frequency
periods. For expository purposes and to simplify the notation, we restrict attention to the aggregation scheme in @



ASSUMPTION 3 Innovations u; are given by (@, where E (ui|e;) = aep, n, = w — E (w ey),
et ~ IID (0,02), 02 > 0, E(e}) = k4, |la| < K, and n, ~ IID(0,X,). e is independently

e

distributed of m, for all t,t'. There exists € > 0 such that E |e,|*™ < K and E ||n,|*"* < K.

Remark 2 Assumption[d rules out variables integrated of order 1. We assume that such variables

are appropriately transformed to stationarity prior to the analysis.

Remark 3 Assumption [ does not take a stand on the economic interpretation of e;. Causal

interpretation of the effects of this shock require x; to be pre-determined with respect to y;.

Remark 4 To simplify the derivations of asymptotic distributions, Assumption[3 assumes innova-
tions are i.i.d. This rules out heteroskedastic shocks. We propose estimators of standard errors that

are robust to heteroskedasticity, and we allow for heteroskedastic shocks in Monte Carlo simulations.

2.1 Definitions of impulse response functions of interest and additional nota-

tions

Under Assumptions we have

o0
Ty = Z beei—¢ + &, (7)
/=0
where
by = s'nl<I>éa, for £ =0,1,2, ..., (8)
and
o0
€ = Z 5211‘1’6771:4‘ 9)
(=0

in which s,; = (1,0, ...,0)" is an n x 1 selection vector that selects the first element. Consider the
high-frequency IRF of a unit disturbance to the high-frequency shock e; on the outcome variable

of interest, x,

IRF(IL‘,E) == bg = E(l’t+g| €t = 1,It71) — E($t+g|It,1) s for ¢ = 0, 1, ceey (10)

where Z;_1 = {z;_1,2_2,...} is the information set including all variables up to the time period

t — 1. When aggregation weights {w;} are unknown, it is not possible to estimate by.



The main objective in this paper is the estimation of the response of the low-frequency variable

to a high-frequency shock sequence
Zes (w) ={es =wj, fori=0,1,...,m— 1},

/ . . . 1
where w = (wo,w1,...,wm—1), and, for convenience, we will normalize ) (" w; = 1. The low-

frequency IRF corresponding to the sequence of shocks Z.s (w) is given by
IRF (Zy,w,7) = duy = E (Zw,sqr| Zes (W), Tt, ) — E(Zwsir| Lt,_,), for r=0,1,....  (11)

Let h be the maximum horizon of interest, and collect the low-frequency impulse-response coeffi-
cients d,, for r = 0,1,2,...,h, in an (h + 1) x 1 vector d,, = (Jwg,afwl, ...,th)l. Our objective is
the estimation of d,,. These impulse-response coefficients can be estimated for any choice of w.
We do not assume that the aggregation weights {w;} are known, and no a priori restrictions are
imposed on the specification of the shock sequence {w;}.

For future reference, we also define the IRF of a unit disturbance to a single high-frequency

shock to e; on the observed aggregated outcome variable of interest, Z,s,
IRF (Zy,i,7) = di = E (Zwsir| €is = 1,Tt, 1) — B (Zwsir| Tt,_y) (12)

forr=20,1,...,and 4 = 0,1,...,m — 1, where, given and Assumptions we have

i

diO = qubi,q, fori:(),l,...,m—l, (13)
q=0
m—1

dir = Wabmr4i—g, for r=1,2,....h, and i =0,1,...,m — 1. (14)
q=0

The IRF coefficient d,,, given by can, in the context of the model in this paper, be written

as a weighted average of d;., namely
m—1
dor = > widiy, for r =0,1,2, ... (15)
i=0

For future reference, the temporally aggregated version of the moving average representation



is given by

m—1 oo

Toys = Z Z direi,s—r + Ews;) (16)

=0 r=0
where g, = Z?jol wig;s (see also Lemma 1 of|Chudik and Georgiadis|, 2022)). Using vector notation,
collect the coefficients {d;.,7 =0,1,....,h,i =0,1,...,m — 1} in an (h+ 1)m x 1 coefficient vector

d = (dj,d},...,d},)’, where d, = (doy, diy, ..., dm—1,) for r =0,1,...;h. Then

dw = (Ih+1 X w/) d, (17)

where Ij,11 is (b + 1) x (h + 1) identity matrix.

3 Mean Group and Pooled Mixed-Frequency Estimators

We propose estimators of d,, based on distributed lag (DL), autoregressive distributed lag (ARDL),
and vector autoregressive distributed lag (VARDL) estimating equations below. For each of the

these estimating equations, we consider mean group and pooled estimators.

3.1 Estimators based on DL estimating equations
3.1.1 Mean Group DL estimator

Chudik and Georgiadis (2022)| introduced a mixed-frequency distributed lag (DL) estimator of d;,

based on the Least Squares (LS) estimate of the auxiliary regression

m—1 h

Tops = Z Z direi,s—’r + ﬂhm (18)

1=0 r=0
which is obtained by truncating , where
m—1 oo
Vhs = Ews + Z Z direi,sfr- (19)
i=0 r=h+1
Define the (h+ 1)m x 1 dimensional vector of sequentially sampled errors and their lags eps =

/ . . .
(e}, €, _q,....e,_,) with e; = (eos, €1, -, em—1) . Using vector notations, 1' can be compactly



written as

Tops = dlehs + 19hs- (20)

—~ ~ ~ ~ !/ - ~ N ~ /
The DL estimator of d, denoted by d = (d{),d’17 '-de) where d, = (dgr,dlr, ...,dm_LT) for
r=0,1,2,..h, is given by
d= (E'E) ' E'Z,. (21)

X = (T ht 15 T it 25 o) i‘w,Tm)/ is the (T}, — h) x 1 vector of observations on the dependent variable
Tws IN , and E is the (T}, — h) x (h + 1) m matrix of observations on regressors €ps in ,
namely E = (Eg, E1,Eo, ..., E}), where E, = (e,_41,€h—r12,..,e1,, ), for r = 0,1, ..., h.

Estimation of d,, involves plugging the DL estimates d;r into , yielding

~MG m-! A
d, = Z widiy, for r=10,1,2,...h, (22)
i=0

~MG ~
ord, = Ipy1 ®w')d. We refer to this approach as the mean group DL estimator. The following

oM
theorem establishes the asymptotic distribution of d,, as 7" — oo.

Proposition 1 Suppose z; = (a:t,yl't)/ 18 given by , and Assumptions @-@ hold. Consider the

_ ~MG ~MG ~MG  ~MG\'
mean group DL estimator d, = (d, ,dy1 -5 dyp given by (22) and let Ty, = T/m — h.

Then, for fired m and h, as T — oo,
MG —
T <dw - dw) —q N (0; QMG) s (23)

where

Qe =07 Th1 ©W) EIh Ow), (24)

o2 = E (e?) is the variance of ey, Ini1 is (h+ 1) x (h + 1) identity matriz,

[

h
= YnHn, (25)

Ve = E (VnsUh,s—0) is the autocovariance function of 945 defined in @), Hy, =G 1L, Gueis



(h+1) x (h+ 1) dimensional shift matriz with its (i,j)-th element given by §;t¢;, and

1 fori=3
0y = I ’ , (26)

0 fori#j
1s the Kronecker delta.

All proofs are presented in Appendix.

Under homoskedasticity, ;G can be consistently estimated as
Qe =6.7 (Thi1 ®w) E (T @ w), (27)

where 62 = T—! Zthl e?, = :Zif:fh YneHne, and 4, are the sample autocovariances of Ops =
Tws — d'eps, in which d is given by 1) In the case of heteroskedastic errors, the following

heteroskedasticity-consistent estimator can be used
Qe e = I @w) V(I @w), (28)
where V = T,,., (E'E) "' E'diag (@h,hﬂ, Ds2s oo &h,Tm) E(EE) .

3.1.2 Pooled DL estimator

The downside of the mean group DL estimator is that the number of coefficients to be estimated
in is (h 4+ 1) m (abstracting from the deterministic terms, such as the intercept). As a result,
the mean group DL estimator is not feasible when the number of regressors exceeds the regression
sample size, namely when (h + 1) m > T, — h. When (:iiJG is feasible but the product (h + 1) m is
relatively large, this estimator is unlikely to perform well. In our empirical application in Section
m = 21 (working days in a month), which is quite large. We therefore propose a pooled alternative
to the mean group DL estimator next, which is more parsimonious, feasible for T, > 2h + 1, and
tends to be more accurate for practically relevant sample sizes.

Consider pooling the coefficients d;,, for : = 0,1, ..., m — 1. Since we are interested in weighted

averages of dj., namely coefficients d,, given by , we shall employ appropriately weighted

10



pooling to ensure consistent estimation of d,,.. To this end, let

Wi

@i = =13 (29)
> 70 W?
and define the corresponding weighted aggregate of sequentially sampled shocks
m—1
€s 1= Eps = Wi€is- (30)
i=0

For notational brevity, below we use €; as opposed to the more cumbersome ézs. The pooled

estimation is based on the auxiliary DL regression

h
Tws = Z d_wrés—r + 79257 (31)
r=0
where
m—1 h
Dhe= > > Aipeisr+ Ups, (32)
=0 r=0
Vs is given by , and
Air = dir - a)iJwr- (33)

It is helpful to re-write , in matrix notation, as
Tys = d,&s + V5, (34)

where, €5 = (€5, €51, ..., és,h)'. The corresponding LS estimator, which we denote as pooled DL,
is given by

N ~ ~\—1 -
ar = (E’E) E'z., (35)

!/

where E is the (T}, — k) x (h + 1) matrix of observations on & in , namely E = (&,41, 842, ....61,,),
and as before X, = (Zuy ht1,Tw h+2, ...,i‘wmi)' is the vector of observations on the dependent
variable Z,s. The following proposition establishes the asymptotic normality of the pooled DL

estimator.

Proposition 2 Suppose z; = (a:t,yg)/ s given by , and Assumptions @-@ hold. Consider the

11



~P
pooled DL estimator d,, given by and let Ty, = T/m—h. Then, for fited m and h, as T — oo,

VTon (35 - Fm) —i N (0,9p), (36)

where
Qp = o, | (s2E + 5a), (37)
o2 = E (€7) is the variance of e, ||w|| = Vw'w is the Euclidean norm of w,
E= T 0d)EMn o), (38)
= 15 given by ,
A= [AI &® (Ih+1 (= (:),)] e [A X (Ih+1 X (:J)] s (39)

=||w||"?w, T is the asymptotic variance oan;flL/QVec (E'E—02Li1ym), A = (A}, AL, ., A},

@
A, = (Ao, Avpy ey Am,l,r)l forr=20,1,...,h, and A, is given by .

Under homoskedasticity, £2p can by consistently estimated as

h
A ~A—2 ok
Qp=06.23 AhHne (40)
(=—h
~9 1T ~ e . Nk =P .

where 67 =T, > ™ €, and ¥}, are the sample autocovariances of ¥, = Z,, s — d,, €;, in which
~P
d,, is given by 1' A heteroskedasticity-consistent variance-covariance matrix estimator is given

by

~ ~ ~\—1 ~ a ~ ~ - fm o\ —1
Qpric = Ton (E’E) E'diag (19;,1 IR ﬂ27T7n) E (E’E) .

Remark 5 The asymptotic variance 2p cannot be smaller than Qyq. Qp is adversely affected
by ‘heterogeneity’ of d;y, as captured by N = diy — 0idy, defined in . When Ay = 0 for all i

and r, then XA = 0 and Qp reduces to

Qp =0, |w]|! (1 @) EMhn 0 @),

12



which, using & = ||w|| 2w, Qp (for Ay = 0) further simplifies to
Qp = 0';2 (Ih+1 & w’) E(Ip® w) = Qua,

and coincides with Qg in . The advantage of using the pooled DL estimator is not its
asymptotic efficiency but rather its higher small-sample accuracy. As our Monte Carlo results
demonstrate, the pooled DL estimator tends to have lower root mean square error compared with the
mean group DL estimator in sample sizes of practical interest. Moreover, the pooled DL estimator

may be feasible in small samples even when the mean group DL estimator is not.

=P MG
Remark 6 Our result that d,, is not asymptotically more efficient thand,, might appear counter-

intuitive. It arises from the orthogonality of the regressors in E in conjunction with the need to
use a consistent pooling scheme given by @ = ||w||_2w, see (@) To clarify why this is the case,

constder a simple illustrative example where a variable y; is generated by
Yt = xltﬁl + 1132,552 + U, fOT t= 17 27 "'7T7

with ug ~ 11D (o,aﬁ). Then, under the usual reqularity requirements, the LS estimator of B =

(B1,B5), is asymptotically distributed as

T (p-g) o (0.(%) ).

. . . / = .
where X is T' X 2 matriz of observations on x; = (x1g,x9) . Let 5, = w'B, and consider the ‘mean

_ MG -
group’ estimator of ,,, given by 5, = w'B. Then

~ / -1
VT <Bi\,ﬂ; — Bw> —q N <O,w’ <XTX> wai) )

The ‘pooled’ estimator of B, is given by regression of y; on Ty = &'X;. In the ideal case when

the slope coefficients are homogenous (B, = By = B) and w = (1,1)’, the pooled estimator is

asymptotically distributed as



where X is T x 1 vector of observations on Zy. Under these assumptions, we expect

~P %'%\ ! ~ ! -
Avar (ﬂw> = (XTX> o5 < Avar (ﬁMG> =w' (XTX> way,. (41)

-1

When T—1X'X — 1y, then (T_li’i)_l —p (&'&)_1 = ||wl|? and &’ (T7'X'X) " w= |wl||?. Hence,
AP ~MG

Avar (B ) = Avar (5 ), and the pooled estimator has the same asymptotic variance as the mean

group estimator when B = By = B and w = (1,1)". This would not longer be true if T~1X'X —p Io

did not hold.

3.2 Estimators based on ARDL estimating equations
3.2.1 Mean Group ARDL estimator

Next, we propose augmenting the DL estimating equations with p lags of the dependent

variable. Using , the lagged dependent variables, Z,, s—, for  =1,2,...,p, can be written as

m—1 oo

Tw,s—r = Z Z di,s—éei,s—é + Ew,s—r- (42)

=0 f=r

Augmenting with {Zw, s—r}2_;, and using , we obtain
m—1 h
-fws prrm'w s—r + Z Z/szrel s—r + Uphm (43)

i=0 r=0

where under Assumption |§| the error term, vy, is distributed independently of

{€is—r,i=0,1,...,m—1,r=0,1,...,h}, and can be written as

Uphs = Z Z szrels r +5ws Z¢pr5ws re (44)

=0 r=h+1

Given that the error term of the original, not-augmented DL representation ((18)) does not contain

{€is—r,i=0,1,...,m—1,r=0,1,...,h}, the population coefficients on the sequentially sampled

14



shocks in the augmented representation must satisfy

Bpio = dio, (45)

Bpin = din — pidio, (46)

Bpiz = diz — Yp1din — Ypadio, (47)
p

Bpie = die— > Ppedio_r, (48)
r=1

for ¢ = p,p+1,...,h, and for ¢ = 0,1,...,m — 1, regardless of the choice of the lag order p and
regardless of the population values of the autoregressive coefficients {%m r=1,2, ...,p}. We use
the subscript p to highlight the dependence of the coefficients of on the choice of the lag order

p. It is useful to define polynomials

¢ (p, L) =1~ Z%TU’ B, (p, L ZBWLT and d; ( ZdwU

fori=0,1,...,m—1, where L is the low-frequency lag operator (LZys = Zw,s—1 and Le;s = €; s—1).
Equations - imply that

Hence, regardless of the choice of the lag order, p, and regardless of the population values of
{zl)pr }le, the impulse-response coefficients {d;, i = 0,1,....,m — 1,7 =0,1,..., h} can be recovered

from the coefficients of the ARDL model . These coefficients are recovered recursively as

dio = Bpios (50)
din = Bpi1 +¥pdios (51)
diz = Bpiz +Updi +Ypedio, (52)
P
dlf = ﬂpzf + Z wprdl',f—'lw (53)
r=1

. /!
for £ =p,p+1,...h, and for : = 0,1, ...,m — 1. For future reference, let 1, = (¢p1, Ypas ey @ZJm,) and
Bpi = (ﬁpio,ﬁpﬂ, ...,Bpih)l, fori=1,2,...,m — 1. Collect the ARDL coefficients of in a vector
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0, = (1%, ,6;0,,3;1, ey /3;;77,1_1)17 and denote the mapping defined by - as F'(0,) =d.
Under Assumptions Tws and e;s are covariance stationary, the LS estimator of the ARDL

coeflicients in 1} denoted as 9p, is asymptotically normally distributed (see Lemma , and

VT (ép - ep) 4 N (0,%4,), (54)

as T' — oo, where T}, = T'/m. The mean group estimator based on the auxiliary ARDL represen-

tation , is then given by

~mea T
Aypr = Z widﬁir, forr =0,1,2,...h, (55)
1=0

JA
where d;,

are the ARDL based estimates of d;. given by the elements of 61;;‘ =F (ép>. The

following proposition establishes the asymptotic normality of the mean group ARDL estimator.

Proposition 3 Suppose z; = (x1,y}) is given by , and Assumptions hold. Consider the

~MGA <A_MGA ~MGA /:MGA> ! ~MG
= b

A
mean group ARDL estimator d, dipo s Dup1 5+ Ao, where d,,.  forr =0,1,...,h

are given by , and let Ty, = T/m — h. Then, for fixed m, p, and h, as T — oo,

~MGA

\/ Tmh <dwp - aw) _>d N (07 QMGA,p) ) (56)

where

Quaap = Ty @ W) Ip (0y) TopJ'5 (0,) (Thy1 @ w),

Jr (0)) is the Jacobian of the mapping F (0),) = d defined by @)—, and Xg, is the asymptotic

variance of ép.
Qargap can be consistently estimated as
Qrvcap = T @) Ip (ép> Sopd (9;7) (Th41 @ w), (57)

where flgp is a consistent estimator of Xg,. The Newey-West estimator of 3, can be used in the
presence of heteroskedastic and serially correlated ARDL residuals.

We have established that so long as h lags of sequentially sampled shocks are included in ,
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~MG

A
d for r = 0,1, ..., h will be consistent, regardless of p, even if p is not chosen to be a sufficiently

wT
large lag order for residuals to be serially uncorrelated.

The choice of the lag orders warrants further discussion. Consider the moving average repre-
sentation for T,s, where €, is the temporal aggregate of ¢, = ZZO s’ml @fnt_g. Assumptions
imply that the coefficients of d; (L) = > 72, d;;L" are exponentially decaying in 7, and the

autocovariances of £, are also exponentially decaying. To illustrate this, consider coefficients {b,}

defined by . Using submultiplicative properties of matrix norms, we can bound b, as
ool = [ls5a | | @[ Val, for e=0,1,2,...

for any choice of matrix norm ||.||. We have Hsj%l H = 1. Assumptions ensure the existence of
constants K > 0 and 0 < p < 1 such that H(IJH lal| < Kp, 0 < p < 1. Hence |by| < Kp’, and using
— we obtain that d;, is exponentially decaying in 7, namely there exist constants K > 0 and

0 < p < 1 such that |d;| < Kp™". Consider next

[e.e]
E(eigt-) = > _ 5 B8, @5,y
7=0

Taking any norm, such as the Euclidean norm, and using Assumptions the autocovariances of
m—1

&¢ decay exponentially, namely |FE (gig4_¢)| < Kp’, for some 0 < p < 1. Noting &, = Yoty Wigis,

we have
m—1m—1

E (gwsgw,sfr) = Z Z wwy B (5z‘s<€i',sfr) .

i=0 /=0
Since |E (e4e¢—¢)] < Kp*, 0 < p < 1, {w;} are bounded, and m is finite, there must exist a
finite positive constant K such that |E (EysEw,s—r)| < Kp™". Hence, we have established that the
autocovariances of €, are exponentially decaying, and the coefficients of d; (L) are exponentially
decaying as well. It now follows from , that T.,s has exponentially decaying autocovariances.
Since the process €, is covariance stationary with exponentially decaying autocovariances, by

Wold’s decomposition theorem (Wold, |1938), it has MA(co) representation,

Ews = a (L) vs, (58)
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where vy, = Zps — F (Ews| Ew,s—1+Ew,s—2, --.), and E denotes the linear prediction operator. Poly-
nomial « (L) and the innovations vy depend on w but to simplify the notation, we suppress this
subscript. If a(L) is invertible, then multiplying by ¢ (L) = o~ (L), we obtain the ARDL

representation

P (L) Tw,s = Z /31 (L) €is + Vs, (59)

where 3; (L) is given by

This differs from because (; (L) and v (L) are of infinite orders in general, becasue we have
assumed invertibility of « (L), and becasue the error term vy in is serially uncorrelated. In a
special case of model when the polynomials ¢ (L) and (3, (L) happen to be finite-order poly-
nomials, of orders p and ¢, respectively, these lag orders will suffice for recovering the first A + 1
coefficients of d; (L), even if h >> q. However, in general these lag orders are not finite. If the
coefficients of a~! (L) decay exponentially, then it is possible to deal with infinite lag orders by
allowing p = p (T') (for lagged dependent variable) and ¢ = ¢ (T') (for sequentially sampled shocks)
to both increase with the sample size, at an appropriate rate that is not too fast and not too slow,
such as the rate 71/3, as in e.g. |Said and Dickey (1984) or (Goncalves and Kilian (2007) in the con-
text of approximating ARMA(p, ¢) or AR(o0) models by autoregressions. None of these additional

assumptions are required for Proposition [3

3.2.2 Pooled ARDL estimator

An alternative is to augment the pooled DL estimating equation by p lags of the dependent

variable. Using the identity

m—1 m—1
§ direi,s—r = dwrés—r + § AiTei,S—Tv
=0 i=0
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in the moving average representation , we can write the lags of Z,,s as

3

00
5 7:,[7T‘€i,87£ + éw,s—r

l=r

LTaw,s—r

m—1 oo

w,f— r€s— r“‘ZZAzK r€is—0 + Ews—r- (60)

= =0 f=r

Iy

Augmenting by p lags of Z,s, and using , we obtain the pooled version of the ARDL

estimating equation,

P h
Toys = Z ¢(A}p7‘i"w,877“ + Z Bwpr'éS*’l" + Vwphs (61)

r=1 r=0
where the error term v,,ps is given by
m—1 oo
Vwphs = E E Awpzrez s—r T E Bwpres r+ Ews — E r‘/}wpr{‘:w s—1>

=1 r=0 r=h+1

the coeflicients f3,,,. are given by

/Bwp() = dw(); (62)

/Bwpl = d_w]. - Q;Z)wplczw07 (63)

ﬁpr = JUJQ - ¢wp1JW1 - wwp2Jw07 (64)
— p —

5wp€ = dw@ - Z Z/prrdw’g,m for £ = p,p+ 17 ey (65)

r=1

and the coefficients A are similarly given by

Awpi() = Ai07 (66)
Aupit = Ai — Yy Ao, (67)
Aupiz = Aig — P Air — Ppolio, (68)
p
Awpif = Aiﬁ - Z ’(/prrAi,Z—T’a for £ = D, p+ 1a (69)
r=1
Following the same arguments as before, the IRF coefficients d, = (CLO,JM,...,JM), can be
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recovered from 1’ Let 6., = (wiup,,ﬁfup)/, where = (wwpl,wwp2,...,¢wpp)/, and B, =

(,Bwpo, Bupts s Bwph)', and denote the mapping from 6., to d,, implicitly defined by equations

_ “ ~ ~ !/
1» 1; as F, (0,,) = do,. Let B, = (z,b;p, g;p) be the LS estimator of 8., = (4/,,, 8, using
~PA -
1} The asymptotic distribution of d,,, = F, <0wp> is given by the following proposition.

Proposition 4 Suppose z; = (x1,y}) is given by , and Assumptions |3 hold. Consider the

~PA “ “ “ . /
pooled ARDL estimator d,,, = F, <9wp>, where 6, = (1#;]3,,8;13) is the LS estimator of 0, =

(w;p,ﬁ;p)’ in , and the mapping F,, (0.p) = dy, is implicitly defined by @—@ Let T, =
T/m — h. Then, for fited m, p, and h, as T — oo,

~PA -
Tmh <dwp - dw) —d N (07 QPA,p) ’ (70)

where
Qpap =Jru (gwp) 2w9pJIFw (gwp) ’ (71)
Jrw (.) is the Jacobian of F, and Xg,,, is the asymptotic variance of éwp.

Qpa,p can be consistently estimated as
QPA,p = JFw <éwp) 2prJIFW (éwp) ) (72)

where f]gwp is a consistent estimator of Xg,,, such as the Newey-West estimator.

Remark 7 Estimators of impulse-response coefficients d,, based on the ARDL representations will
be asymptotically more efficient compared with the DL estimating equations, so long as at least one
of the AR terms, ¢pr/ Yopr 5 18 nonzero. Asin the case of the DL mean group and pooled estimators,
the mean group ARDL estimator will be at least as efficient asymptotically as the pooled version.
However, in the finite samples of practical interest, the pooled ARDL estimator could outperform

the mean group version because of its greater parsimony.
3.3 Mean Group and Pooled Estimators based on Vector Autoregressive Dis-
tributed Lag (VARDL) estimating equations

It is also possible to augment ARDL estimating equations with additional variables in z;. However,

there can be a significant cost in finite samples from estimating higher-dimensional models. Unlike
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in standard VAR models, in our case omitting a possibly relevant variable does not result in the loss
of consistency of the resulting impulse response estimator. It only involves the loss of asymptotic
efficiency. The benefit of working with more parsimonious models is the estimator may be more
accurate for sample sizes of practical relevance, as we will illustrate in Section [4

Consider replacing Z,,s in with a k& x 1 vector Z, s = (jw,&gw1,57gw2,8u~7gw,k—l,s)/7 con-
taining a subset of variables in Z,, for some k > 1. Using the high-frequency VAR model given by
1' we obtain a moving average representation for zy; = Si.z; = (¢, y1s, Yor, ...,yk,u)', where S,

is an n X k selection matrix for the first k£ variables in z;, and

oo oo oo
/ ! 0 / l
Zit = Sth = Sk E L3 aes_y + Sk E P Ni—v = § bkﬂet—ﬂ + €kt
/=0 =0 h=0

where by = S} 570, ®%a, and exy = S} > 02, P‘n,_,. Temporally aggregating z; to the low

frequency, we obtain the corresponding representation for the observed variables,

m—1 oo m—1
Zoypks = Z Z dkirei,s—r + Ewks = Z dyir (L) €is + Ewks; (73)
=0 r=0 =0

which is an extension of to the multivariate case. Thus, the extension of the ARDL estimating
equations to the multivariate case is straightforward. It follows the same steps as in the case of

ARDL approach.

We continue to focus on estimating the low-frequency IRF coefficients d,, = (on, Aty e JW)/

for the target variable of interest, x. In terms of coefficients of , d.r is given by
m—1
dor = Z wis§€71dki7n, forr=20,1,2,...h, (74)
i=0
where sy 1 is a k£ x 1 selection vector for the first element. can be equivalently written as

do = (Thy1 @ ') (Tnp1 @ sp1) Ay, (%)

km—1,r

!/
where dggy = (g, iy, s dhop) and dyop = (df g,y pesdf oy, ) s for 7 = 0,1, The
vector d(x) can be estimated using multivariate versions of the DL or ARDL estimating equations.

We focus on the latter. Replacing Z,s and its lags in (43) with Z,xs and its lags, we obtain the
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VARDL estimating equations

p m—1 h
Zoypks = E ‘I’kprzw,k,sfr + § § ﬁkpirei,s—r + Vikphs (76)
r=1 i=0 r=0

where, regardless of the population values of the autoregressive coeflicient matrices { W1, Wip2, ..., Wipp }

and regardless of the choice of p, we have

drio = Bipios (77)
deit = Bipir + Yrprdiio, (78)
driz = Bipio + Prprdin + Prpadyio, (79)
p
dk'M = /Blgpi[ + Z ‘I’kadk,’i,ng7 for ¢ = p,p+ 17 ..h. (80)
r=1

Collect the coefficients of 1} in 6y, = vec (\Ilkpl, coos Whpps Brp.0,05 ...,ﬁkypm,l’h) and denote the
corresponding LS estimates by hats. In addition, define mapping F}, (0y,) = d ) given by —.

Then the mean group VARDL estimator of d,, is given by

~MGV ~
dwkp = (Ih+1 & w') (Ih+1 & S;%l) dé\g)?pv, (81)

where ag,{)GPV = F} (ékp>' Similarly, the pooled VARDL estimator is based on a vector version of

@1,

h

p
Zowks = Z ‘Ilwkprzw,k,s—r + Z IawkaéS*T + Vokphs- (82)
r=1 r=0

Let ewkp = vec (‘Ilwkpla o0y ‘I’wkppa IBwk:pOa S ﬂwkpp)a and define mapping Fi (Bwkp) = awk =

22



— /
(d{uk,()v digpses dzluk,h) given by

aka = Bwpr? (83)

awkl = /Bwpl + lI’o.;k;ul(_iwko> (84)

awkZ = Bwp2 + \Ilwk:plawkl + ‘Ilwkaawkm (85)

— p f—

dwkf = Bwpz + Z ‘I’wk:prdw,k:,é—m for £ = p,p+ 1) ) h7 (86)
r=1

Then the pooled VARDL estimator is given by

~PV = -~
dytp = (Tt @ 8%1) duny = (Tnsr @ 41) P (B ) - (87)

The following proposition establishes the asymptotic normality of the mean group and pooled

estimators based on VARDL estimating equations.

Proposition 5 Suppose z; = (mt,yé)/ s given by , and Assumptions hold. Consider the

~MGV ~PV
mean group VARDL estimator dy, given by and the pooled VARDL estimator d, given
by . Let Ty, = T/m — h. Then, for fized k, m, p and h, as T — oo,
~MGV  _
and
~PV -
vV Tmn (dwkp - dw) —a N (0,Q2pvp) . (89)
where

Quiavip = Thi1 © W) (Tns1 @ 8p1) Ipk (Okp) Borpd i (Orp) Ty @ sp1) Tns1 @ w),  (90)

Qrvip = Jrwk Ouwip) Zwkopdpor (Owip) » (91)

Jrk (Okp) is the Jacobian of the mapping Fy (Orp) = d(i)defined by —, Jrwk (Ourp) is the
Jacobian of the mapping Fj;, (Oup) = d,i defined by -, Yokp 15 the asymptotic variance of

91@7 and Xyrep s the asymptotic variance of 9wkp.
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Asymptotic variance-covariance matrices £2p;qvkp and pyp, can be estimated using

Qvicvip = In1 @ w') (Tng1 @ spq) Irw <9kp> Sorpd s (ékp> (Th1 @ sp1) Tpp1 @ w),  (92)

and

QPV,k:p = Jka (éwkp) ZA]wk:OpJ/F(,u].c (éwkp) ’ (93)

where flgkp and f]wkgp are the Newey-West estimators of g, and X g, respectively.

4 Monte Carlo Experiments

Since the pooled estimators proposed in this paper are more parsimonious, they may have an
advantage for the samples of interest in practice, despite being asymptotically less efficient compared
to the mean group estimators. This section sheds light on the small sample accuracy of the six
estimators discussed in Section We first outline the data generating process (Subsection, then
describe the implementation of the estimators (Subsection , and summarize the main findings
(Subsection . The findings in this section confirm our intuition and the theoretical arguments
provided in Section [3| In particular, we find that parsimony can pay off in realistic samples sizes.
Pooled versions of estimators tend to be more accurate than their mean group versions in our
experiments. Augmenting the estimating equations by lags of the dependent variable can be quite

helpful, too.

4.1 Data Generating Process

Let n = 3, and generate z; = (24, q1¢, g2¢)’ from the VAR(1) process:
2; = (Is — ®) pu, + 2,1 + Aey, e,JIIDN(0, 1) (94)

fort = —B+1,-B+2...,0,1,...,T, where ., = (1,1,1)’, and the starting values are £ _p = ..
We set B = 100 and discard the first B time periods, leaving periods 1,2,...,T for estimation.

Individual elements of &; = (£14, €21, €3¢)" are generated using GARCH(1, 1) specifications given by
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est = Ost€st for s = 1,23, where €5, ~ IIDN (0, 1), and

0% =(1—1g —tgm)+ ¢515§,t71 + ¢S2U§,t717

fort =—-B,—B+1,...,0,1,2,..., T, with initial values Ui_B_l =1. Weset ¢,y = 0.2, and ¢4, = 0.6.

The matrix of the autoregressive coefficients, ®, and the matrix A are set to

1/m
0.8 —0.1 0 1 —-05 0
®=| 04 06 -—02 ,and A = 0 1 —05 |- (95)
0 02 04 -0.5 0.5 1

The absolute values of the largest eigenvalue of ® is 0.63'/7. We assume that 14 is observed
for t = 1,2,...,7. In addition, the variables in z; are only observed as temporal aggregates,
Zyw,s = Z?fol w;Zy,—;, for s = 1,2,...,T,,. We set m = 21, which corresponds to a setting in
which there are monthly observations on the outcome variable of interest and daily data on the
shock of interest (assuming 21 working days in a month). Furthermore, we consider aggregation
weights w = (1,1, ...,1)’, representing the sums of the high-frequency periods, as one would use to
temporally aggregate industrial production or retail sales, for exampleﬁ While our estimators do
not require the specification of the aggregation weights, these weights are required for the evaluation
of the estimators in the simulation study.

We consider T, = {240,300, 360,480,600}, corresponding to 20, 25, 30, 40 and 50 years of
monthly data. We utilize R = 2,000 Monte Carlo draws for each sample size. Our objective is the
estimation of IRF,, (Zy,7) = dy,r. We set w = T,/m = (1/m,1/m,...,1/m)’, where 1, is m x 1

vector of ones. We set s = 10.3356 in to ensure dy, 0 = 1.

4.2 Estimators

We use the six estimators of the d,,, proposed in Section [3; the mean group DL estimator given
by ; the pooled DL estimator given by ; the mean group ARDL estimator given by ;
the pooled ARDL estimator based on ; the mean group VARDL estimator given by with

3Note that the relative small sample accuracy of individual estimators would be the same if we considered simple
temporal averages given by w = (1/m,1/m,...,1/m)’, since temporal averaging and summation differ only with
respect to a scaling factor.
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variable vector Z,2s = (Tws, (11,103)/ ; and the pooled VARDL estimator given by using the same
variable vector. The lag orders (p, ¢) are set equal to the integer part of T#l/ ® The largest impulse

response horizon is set to h = 12.

4.3 Findings

Table 1 reports results for the bias of CZW, the RMSE, the coverage rates of nominal 95 percent
confidence intervals for d,, and the mean length of these intervals (all x100), averaged across
horizons r = 0,1,2...,12. The left panel reports the mean group estimators and the right panel
reports their pooled versions. The mean group DL estimator reported in the first column is not
feasible for the smallest value of T}, = 240 (and the chosen horizon h = 12), due to the lack of
degrees of freedom. This estimator does not exhibit much bias for the remaining values of T,
and its RMSE declines in T;,, as expected according to Proposition [I, However, the coverage rates
are very low, starting at only 22 to 24 percent for 7;, = 300, and only slowly improving with an
increase in 7T;,, reaching 66 to 83 percent coverage for T,, = 600, which is still significantly below
95 percent. Inference is therefore highly inaccurate and the 95 percent confidence intervals are
severely underestimating the true extent of the sampling uncertainty.

The other estimators do not have this problem. Confidence interval coverage rates are quite
close to 95 percent for all sample sizes. None of these estimators suffers from serious bias, and all
achieve a lower RMSE than the mean group DL estimator. All three pooled estimators have lower
RMSE than the corresponding mean group estimators. The best estimator in terms of the RMSE
is the pooled ARDL estimator. Augmenting the ARDL specification with one additional variable
(G1,ws) results in a slight increase of the RMSE by about 1 to 5 percent, depending on the sample
size. This result underscores that the inclusion of a relevant variable does not necessarily make
the estimator more precise. Overall, our Monte Carlo study shows that the proposed estimators,
especially the more parsimonious ones, perform well, with the exception of the mean group DL

estimator.
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TABLE 1: Bias (x100), RMSE (x100), coverage rates (x100), and mean length of 95%

confidence intervals (x100) for d,, ., averaged over horizons r = 0 to 12.

Mean Group MF estimators Pooled MF estimators
DL ARDL VARDL DL ARDL VARDL

Tm A. Bias (x100)
240 n.a. -0.46 -0.50 0.07 -0.33 -0.31
300 0.25 -0.18 -0.25 -0.05 -0.31 -0.30
360 -0.08 -0.14 -0.19 -0.09 -0.29 -0.32
480 -0.27 -0.33 -0.29 -0.06 -0.27 -0.25
600 -0.05 -0.26 -0.25 -0.05 -0.24 -0.22

B. RMSE (x100)
240 n.a. 17.01 18.69 13.24 10.44 10.95
300 49.70 12.66 13.33 11.58 9.16 9.62
360 21.18 11.57 12.03 10.50 8.86 9.13
480 13.08 8.97 9.22 8.99 7.58 7.73
600 10.21 7.96 8.11 7.96 6.93 6.99

C. 95% Confidence Interval Coverage Rates (x100)
240 n.a. 94.01 94.38 92.22 94.04 94.04
300 23.86 94.59 94.45 93.07 94.65 94.54
360 57.72 94.12 94.53 93.40 94.15 94.12
480 76.83 94.57 94.89 93.75 94.19 94.53
600 83.38 94.62 94.80 93.96 94.61 94.61

D. 95% Confidence Intervals Length (x100)
240 n.a. 63.91 71.14 47.19 39.23 41.60
300 28.31 48.15 51.64 42.39 34.94 36.87
360 34.15 44.43 46.71 38.72 33.49 34.61
480 31.16 34.35 35.59 33.64 28.85 29.72
600 28.26 30.72 31.35 30.05 26.71 27.06

Notes: The mean group DL estimator is not feasible for 75, = 240, m = 21, and h = 12. See Subsection for the
description of the simulation design and Subsection for the description of the implementation of the individual
estimators. All results are based on R = 2000 simulation draws.
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5 Empirical Application: Passthrough of Daily Gasoline Price

Shocks to Monthly Inflation

Our empirical illustration is motivated by the question of how occasional spikes or surges in the
daily New York Harbor wholesale price of gasoline driven by exogenous events in the Middle East
impact headline CPI inflation, core CPI inflation (defined as CPI inflation excluding energy and
food prices), and gasoline price inflation. This is a recurrent situation faced by policymakers. From
a policymaker’s point of view, it is important to understand in real time how a sequence of wholesale
gasoline prices triggered by a crisis in the Middle East, at some point during the current month is
expected to change inflation in the current month and in futures months. The reason for focusing
on daily gasoline as opposed to daily oil prices is that changes in the price of gasoline and the price
of crude oil are not proportionate in general, reflecting the evolution of the cost share of crude oil
in gasoline prices over time (see Kilian and Zhou, [2022a).

We focus on the daily wholesale price of gasoline because that price is a benchmark price for
U.S. retail gasoline markets, is not subject to revisions and is readily available in real time. We
focus on sequences of daily gasoline price shocks, as even temporary spikes in gasoline prices tend
to be longer lived in practice than a one-time daily shock.

Our maintained assumption is that the daily gasoline price is predetermined with respect to
daily and monthly inflation. Evidence in support of this assumption is provided in Kilian and
Vega (2011). Given that this price is well approximated by a random walk, its growth rate may be
viewed as the daily gasoline price shock. Our assessment of the causal impact of a given sequence of
wholesale gasoline price shocks on inflation can be made in real time and does not require inflation
data to be available for the current month. In practice, it may be used to adjust existing inflation

forecasts that predate the surge in gasoline prices.

5.1 Some Hypothetical Thought Experiments

We start by building intuition by considering three hypothetical gasoline price shock scenarios
that differ in the timing of the daily gasoline price shocks within the month (see Figure 1A). The
implied change in the price of gasoline is shown in Figure 1B. In Scenario 1, 10 consecutive shocks

of magnitude 1 are followed by zero shocks in the remainder of the month, resulting in a steadily
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increasing gasoline price during the first ten days of the month and a flat price of 10 for the
remainder of the month. Scenario 2 makes the opposite assumption of no increase in the gasoline
price during the first ten days, followed by a steady increase in the remainder of the month to a
value of 10. Scenario 3 postulates a steady increase over all 21 trading days, reaching the same
gasoline price of 10 at the end of the month as in the other two scenarios.

The top panel in Figure 2 illustrates the implications of each scenario for the annualized inflation
rates expressed in percent for the pooled ARDL estimator. Regardless of the choice of scenario,
the pattern of the response of headline inflation mirrors that of consumer gasoline price inflation
except that the scale is much lower, reflecting the expenditure share of gasoline in overall consumer
spending of about 4% on average. The responses of core inflation are generally an order of magnitude
smaller, indicating very limited passthrough to inflation in other consumer prices.

Not surprisingly, under Scenario 1 gasoline price shocks have the highest impact effect on all
three inflation measures, and Scenario 3 has the lowest impact effect. Scenario 2 generates the
largest peak effect on all inflation measures by a slight margin. Whereas the peak effect on headline
inflation occurs in month 1, for core inflation it occurs in month 2. Under Scenarios 1 and 2, the
timing of the peak effect is similar, except the peak effect on core inflation under Scenario 2 is
delayed until month 3.

The peak response of headline inflation is noticeably lower under Scenario 3 than under the
other scenarios and more persistent. The most striking differences across scenarios arise for the
response of core inflation. Notably, the pattern of the core inflation responses under Scenario 2 is
quite different from that under the other scenarios. The peak effect under Scenario 3 is lower than
in the other two scenarios, and the persistence of the response function is higher, reflecting the fact
that the inflationary shock occurred only late in the initial month.

The three lower panels in Figure 2 show the pooled ARDL point estimate for each scenario along
with 68% and 95% delta method confidence intervals constructed using the asymptotic variance
expression derived in Section 3. The extent of the sampling uncertainty is noticeably lower under
Scenario 3 than under Scenario 1 and somewhat higher under Scenario 2. This evidence illustrates

that the timing of the daily gasoline price shocks matters.
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5.2 Four Episodes of Daily Gasoline Price Shocks

Figure 3 shows sequence of daily gasoline price shocks associated with four episodes of stress in
U.S. gasoline markets driven by global events. It also shows the cumulative change in daily gasoline
prices associated with these shocks and the evolution of the New York Harbor wholesale price of
gasoline over this month.

We focus on the invasion of Kuwait by Iraq (August 1-31, 1990), the Iranian missile attack on
Saudi oil fields (September 16-30, 2019), the drop in demand associated with the pandemic and
increase in supply associated with the Saudi Price War (March 1-31, 2020), and the 12-Day War
between Israel and Iran and its aftermath (June 11-30, 2025)E]

Three of these episodes involved a rise in U.S. gasoline prices and one a decline. As Figure 3
shows, in the case of the Iranian missile attack, the gasoline price increase was almost completely
reversed by the end of the month. After the invasion of Kuwait and the 12-Day War, we see a
partial reversal of the initial increase. In the case of the pandemic and Saudi Price War, the price
stabilized by the end of the month well below its peak level. This illustrates rich heterogeneity in
the patterns of daily gasoline price shocks in practice.

Figure 4 reports the responses of monthly U.S. consumer gasoline price inflation, core inflation
and headline inflation along with 68% and 95% confidence intervals. There are some striking
differences. For example, the Iranian missile attack on Saudi Arabia in 2019 had a much more
muted impact on gasoline and headline inflation than the invasion of Kuwait in 1990. There is no
evidence of these responses being statistically significant either at the 95% level.

The only event that generated a large and statistically significant response at the 95% level in
both headline and core inflation occurred in March 2020. The 12-Day War produced a statistically
significant increase in gasoline price and headline inflation in months 0 and 1, but only a barely
statistically significant increase in core inflation in month 0 at the 95% confidence level. It is also
noteworthy that the responses of core inflation to the invasion of Kuwait and the missile attack
on Saudi Arabia took longer to materialize than following the 2020 and 2025 episodes, once again
underscoring the importance of the timing of the daily gasoline price shocks.

These examples illustrate that the estimators proposed in Section 3 may be used to assess

the causal effect of sequences of gasoline price shocks on monthly inflation in real time based on

1The attack on Iran started on June 13 2025. We include the two days leading up to the attack since the wholesale
gasoline price started to increase on June 11 and 12 already.

30



estimates of regressions on historical data, providing an additional tool for policymakers and applied

researchers.

A. Daily shock sequences
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B. Cumulated values of shocks
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FIGURE 1: Daily shock sequence scenarios for log-differenced NY Harbor wholesale gasoline
prices (left chart) and their cumulated values (right chart). Y-axis shows approximate percent
units (log-differences x100). In each scenario, NY Harbor wholesale gasoline prices increase by 10

percent. X-axis shows working days of the month.
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(1) Gasoline CPI inflation response
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FIGURE 2: Pass-through from daily shocks to NY Harbor wholesale gasoline prices to monthly

gasoline, core and headline CPI inflation under scenarios 1-3. Under each scenario, wholesale

gasoline prices increase by 10 percent. Y-axis shows log-differences x1,200. X-axis shows monthly

horizons. Dashed and dotted lines show 68 and 95 percent asymptotic confidence intervals.
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Daily shock sequences
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15 4

10

5

0

-5

-10

-15

-20

12 4

~\A

1 13 15 17 19 21

September 16-30, 2019

30
20
10

-10
-20
-30
-40

o

=
5]

AN o N & o ®
A

A A
AV

1 3 5 7 9 11 13 15 17 19 21

March 1-31, 2020

1 13 15 17 19 21

June 11-30, 2025

b &bV Oo N B o ®
.

ATN

11 13 15 17 19 21

Cumulated values of shocks

NY Harbor gasoline prices

July 31 - Aug 31, 1990

$ per gallon

20

-20

-

N N
> R S A
P R R R
Aug 30 - Sep 30, 2019
$ per gallon
19
18
1.7
1.6
15
1.4 + T T T T T T
O @ q@e ﬁe %@e
2 > "
¥ g <& <& KRR
21
Feb 28 - Mar 31, 2020
S per gallon
1.

.40 4

-60
-80

-120
-140

% o o x o 3 on
@O’L @‘0 &‘e @ﬁp @é\, &,\'\, @T{L
21
May 30 - June 30. 2025
$ per gallon
4

N

FIGURE 3: August 1990 (Iraqi invasion of Kuwait), September 2019 (Iranian missile attacks on
Saudi Arabia), March 2020 (Covid and Saudi price war), and June 2025 (12-Day War between

Iran and Israel) shock scenarios. Y-axis shows approximate percent units (log-differences x100).

X-axis shows working days of the month. Daily shock sequences are given by first differences of

logs of NY Harbor gasoline prices.
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(1) Gasoline CPI inflation responses (2) Core CPI inflation responses (3) Headline CPI inflation responses

A. August 1990 (Invasion of Kuwait)
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FIGURE 4: Pass-through from daily shocks to NY Harbor wholesale gasoline prices to monthly
gasoline, core and headline CPI inflation for selected episodes. Y-axis shows log-differences
x1,200. X-axis shows monthly horizons. Dashed and dotted lines show 68 and 95 percent

asymptotic confidence intervals.

34



6 Conclusion

We provided several novel solutions to the problem of estimating the responses of low-frequency
macroeconomic aggregates to directly observed high-frequency shocks. We also derived the as-
ymptotic distribution of these estimators. Our simulation analysis shows that pooled ARDL and
pooled VARDL estimators are most reliable in realistically small samples. While we focused on the
relationship between daily shocks and monthly outcomes, our analysis could be applied to other
frequencies.

Our analysis allows for stock as well as flow variables. One key advantage of our approach
compared to mixed-frequency VAR models is that it does not require the user to fully specify the
VAR model generating the data. Another advantage is that reliable estimation remains feasible even
for realistically small sample sizes. A third advantage is that the proposed estimators accommodate
one-time daily shocks as well as sequences of daily shocks. A limitation of our analysis is that we
assume that the high-frequency shock of interest is observable.

Going forward, extensions of our work to sparse daily shock data would be of particular interest.
There has been a surge in the use of proxy VAR models of the effect of exogenous shocks to
price expectations. In this literature, the effects of policy announcements on price expectations
are estimated using high-frequency surprises in asset prices around policy announcements as an
external instrument. Such news shocks are infrequent. They typically are observed at most once
or twice in a given month. As shown in Kilian (2024), utilizing such daily shocks in monthly proxy
VAR models involves a nontrivial temporal aggregation problem (see also |Lee and Sekhposyan
(2024)). This problem has typically been ignored in the literature (see, e.g., Kénzig, [2021). Very
similar problems also arise in the literature on identifying high-frequency monetary policy shocks,
typically defined as the change in the futures price of over a 30-minute window around FOMC
announcments (see, e.g. (Gertler and Karadi, 2015, Bauer and Swanson, 2023)). This makes it of
interest to develop generalizations of the approach in our paper that can deal with the sparseness
of the time series of such news shocks, which is not allowed for in our current analysis. We delegate

this task to future research.
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A Appendix

This appendix contains proofs and the data sources for the empirical applications. Section
states and establishes Lemmas needed for the proofs of the propositions presented in Section

Section describes data sources and variable construction for the empirical application.

A.1 Lemmas: Statements and proofs

Lemma 1 Consider matriz E defined below . Under Assumption @ for fited m and h, as

EE\ ! _
<T h) —p Oe¢ 2I(h+1)m- (Al)

T — o0,

Proof. E'E /T, isanm (h + 1)xm (h + 1) matrix composed of elements T}, ZZ’:”,ZH as (i1,12,71,72),
for i1,i2 = 0,1,2,..m — 1, and 7,72 = 0,1,2,..., h, where ag (i1,%2,71,72) = €i; 5—r €ig,s—ry. FOI

given integers i1, 12,71, 72, the sequence {as (i1,i2,71,72)}, is an uncorrelated sequence under As-

S
surnption with bounded variances, Var [as (i1, 42, 71,72)] < K. Hence, T, ZSTQ,Z_H as (i1,12,71,72) — 1,
E (eil,s,rleh,s,m) where E (i, s—r €iy.s—ry) = 0> for the diagonal elements (i1 = iy and r1 = r2),
and E (e, s—r €iy,s—ry) = 0 for the off-diagonal elements (i; # iz and/or 1 # rz). Convergence in

Ly norm implies convergence in probability, and we obtain E'E/T,,;, —pp agI(hH)m. Given that

02 > 0 under Assumption [3| result (A.1)) follows. m

5See, e.g. Theorem 19.1 of [Davidson (1994)
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Lemma 2 Consider matriz E defined below and vector O, = (Vn b1, On ht2s oo ﬁh,Tm)', where
Dps is defined by @ Under Assumptions@-@ for fited m and h, as T — oo,

E'9),
Tmh

—a4 N (0,028), (A.2)

where matriz B is defined in .

Proof. Result (A.2)) is established in |Chudik and Georgiadis (2022). See result (A.8) in |Chudik
and Georgiadis (2022). =

Lemma 3 Consider matriz E defined below . Under Assumption @ for fized m and h, as
T — o0,

Tn;ilz/zvec (E'E — 02X 11)m) —a N (0,35), (A.3)
where Ty, =T /m — h.

Proof. (E'E — 021,11),,) is an m (h 4+ 1) x m (h + 1) matrix composed of elements

T T,
E : [eil,s—m Ciy,s—ry — E (eil,S—TheiQ,S—??)] = E Es,rl,rg,il,iga
s=h+1 s=h+1

forry,rg =0,1,...,hand i1,i2 = 0,1,...,m—1, where § ., ., i, i, = €i1,s—11Cins—ro—E (€iy 511, Cin,5-12)5
and e;s; are the sequentially sampled shocks, e;s = e;,—;, and ts = ms. Under Assumption

e, ~ IID (0,02), o2 > 0, E(ef) = Ky, and 4 + € moments of e; exist for some ¢ > 0. For

T . . . .

ri=ro=7€{0,1,....h}, {&rririin sony1 is a sequence of 1.i.d. random variables with mean zero
. . . . —1/2 T,

and a finite variance. Hence, by the Lindeberg-Levy central limit theorem, T, /"> ™ 1 &0 0

is asymptotically normally distributed, for fixed m and h, as T — oo. For r1 # r9, sequence

T
{58,"’1 T2 ,il ,’ig }S:h-‘rl

tions of central limit Theorem 5.15 of [White (1984), and T2 Zz’:"hﬂ §s.r1rasinsip 18 alsO asymp-

mh

is a special case of a stationary ergodic sequence that satisfies the condi-

totically normally distributed, for fixed m and h, as T — oo. Elements of X are given by

TT;}L ETm Tm E (

smhal 2simhil for ri,7o =0, 1, ..., h and 41,40 =0, 1, ..., m — 1.

58,7"1,7"2,1'1 ,i2§8’,71 ,T2,i1,i2)

We do not provide expression for X g since this expression is not essential for any of our results. m

Lemma 4 Suppose z; = (x1,y}) is given by , Assumptions @-@ hold, and let T,,;, = T/m — h.

Then, for fized k,p,m and h, as T — oo, the LS estimators 9p, 9wp, and @kp and 9wkp are
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asymptotically normally distributed and converge at the usual rate /T,y .

Proof. Each of the four LS estimators can be written as 6 — 8 = (Q'Q)f1 Q'v, for a given
choice of the regressor data matrix Q and the respective error vector v, where we use 6 to denote
the population value of 6. For instance, in the case of the LS estimator 9p, the matrix Q is a
Tonh X [p+ m (h 4 1)] dimensional data matrix consisting of plags of the dependent variable T,
and m (h + 1) regressors e; s, for i = 0,1,...,m — 1 and r = 0,1, ..., h, and the elements of v are
given by vpps, see . For simplicity, denote the rows of Q as q, and the elements of v as v,
for s =p+1,p+2,...,T,n. For each of the four LS estimators, q, is stationary and ergodic in
variance under Assumption and ijllQ’ Q converges in probability to a positive definite matrix.
In addition, qsvs is stationary and ergodic with finite variance, and given the eigenvalue condition
in Assumption |2, conditions of Theorem 5.15 of White (1984) are satisfied. Hence, T%}L/ 2Q’ v is
asymptotically normally distributed. This ensures asymptotic normality of 9p, 9wp, and ékp and

~

Owkp' |

A.2 Proofs of propositions

MG
Proof of Proposition Using , the mean group DL estimator can be written as d, =
(Ip11 @ W) d, where d is given by . Using in , we obtain

~MG  _ / -1 @
VT <di4 - dw) = (Tht1 @ ') <EE> Al (A.4)

Tmh Tmh ’

where 9y, = (i1, Onhi2, -y In1,) . Using result (A.1) of Lemma [I| and result (A.2) of Lemma
in , result readily follows. m

Proof of Proposition From , we can write X, as X, = an—H?* = ]:]aw+19h+EA, where
A is vector of stacked A;,, namely A = (Af, Al ..., A’h)/, in which A, = (Agr, Aty oo, A1)

=P
for r = 0,1, ..., h. Substituting this expression for X,, into the definition of d,, given by , we

VT (af - aw) - (EE> RerEs) (A.5)

obtain

Tmh Tmh

where E can be written as E = E (In41 ®@ @), see . We consider the individual terms on the
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right side of (A.5)) in turn. Regarding the first term, we have

/

E'E E'E
= (I o' I 5
T (h+1®w)Tmh(h+l®w)a

and
E'E 9 ~ -~ 211 =112 2 -2
—p 0% (i1 @ &) Ly 1ym Tny1 @ ©) = 07 |0 Tnyr = o [|wl| " Ty,

Tonn
where T 'E'E —, ng(h+1)m by 1 , |&|| = V&' is the Euclidean norm of &, and

follows from (29)). Hence,
- -\ -1
E'E _
< ) —p Ue2HwH2Ih+1-

Consider next

E'9 -
h —q N (0,0’55) ,

E'9 .
i = (Ih+1 ® w/) \/m

Finally, consider
E'EA ) E'EA

(A7)

(A.10)

where A = (A}, A}, ..., A}) and A,, for r = 0,1,..., h, is given by A, = d, — @ (w'd,). Hence,

GA, =d'd, - dod, =@d, — |@P'd, =@'d, — |w| ?wd, = &'d, —&'d, =0,

for r = 0,1,..., h, where the third equality follows from (A.7), and the fourth equality follows by

noting @ = [|w|| 2w (see ) The identity @' A, =0, for 7 = 0,1, ..., h, implies (I41 ® @) A =

0, so we obtain
02 (Tht1 ® &) Ii1)mA = 0.

41

(A.11)



Subtracting (A.11)) from (A.10)), we obtain

E'EA - E'E—02L( 1 1)m
m = (Ih+1 & w’) ( T (h+1) A. (A.12)

Given that Vec (ABC) = (C'® A) Vec(B) for conformable matrices A, B, and C, vectorization
of (A.12)) yields

E'EA E'E—c2L41ym
Vec = [A"® (Ih41 @ @')] Vec AR I (A.13)
Tmh Tmh
By Lemma [3]
E'E—0?1 m
Vec ( e (h+1) > —a N (0,25). (A.14)
Tinh,
Using (A.14) in , it follows
E'EA
—q N (0,XA), A.15
N (0,%4) (A.15)

where ¥ = [A'® (Ih41 @ @')] g [A ® (Ih41 ©@ @)]. Using results , and in

(A.5)), we obtain (36)). m

Proof of Proposition Proposition [3] is a direct application of the delta method. Under
Assumptions Lemmaestablishes that @p is asymptotically normally distributed. In addition,
the mapping between the estimates of the ARDL model and its multipliers, F' : 6,— d, defined
by — is continuously differentiable and its Jacobian Jr (6,) is nonsingular. Invoking the
delta method, it follows that El]‘;‘ = F (@p) is asymptotically normal and /T, (EIA — d) —q
N (0,37 (8,) Z0,d% (8,)), where 3y, is the asymptotic variance of 8,,. Using this result in d2/¢4 =

(In41 ® ') d?A, we obtain (56). =

Proof of Proposition Similarly to the proof of Proposition (3| result can be established
using the delta method. Mapping F, : 0,,,— d,,, given by —, is continuously differentiable
and its Jacobian Jp, (0,,) is nonsingular. Under Assumption 9wp is asymptotically normal

(see Lemma , and Tun (éwp — 0w> —q N (0,Xg,p). Using the delta method, it follows that

~PA  _
Tonh <dwp — dw) —4 N (0,Jpw (0up) Bopd'p, (Bup)), as required. m

Proof of Proposition Consider mappings F}, (6,) = d ;) defined by — and Fi,;, (Ourp) =
d,; defined by —. Both mappings are continuously differentiable with non-singular Jaco-
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bians matrices J i, (0kp) and J gy (Bukp), respectively. Similarly to the proofs of Propositions

and (4| under Assumptions the LS estimators 9kp and 9wkp are both asymptotically normally

distributed and converge at the rate T;}IL/ 2 (see Lemma . Using the delta method, we obtain

Tih <8MGV — d(k)) —a N (0,Tpk (Orp) Xokpd'ey (Orp)) and result now follows from not-

ing dp, = (I @ w') (Ih+1 ® s§€7l> aé‘gﬁy. Similarly, the delta method implies the asymptotic
=PV

normality of the pooled estimator, /T, <dwkp — Elw> —d N (0,3 poi (Ouwip) Bokopd e (Owip))-

A.3 Data description for inflation pass-through application

e (G5 Daily gasoline price data from NY Harbor, regular, available from:

https://www.eia.gov/dnav/pet/hist /eer epmru_ pf4 y35ny dpgD.htm (downloaded on Sep
tember 24, 2025). Series name in the database: "New York Harbor Conventional Gasoline
Regular Spot Price FOB (Dollars per Gallon)". Data availability: June 02, 1986 - September

22, 2025, working days only. (Tp = 9877) Units: $ per gallon.

e P;: Seasonally adjusted headline CPI inflation from FRED, series “CPILFESL,” Consumer
Price Index for All Urban Consumers: All Items in U.S. City Average, Index 1982-1984=100,
Monthly, Seasonally Adjusted. Downloaded on September 24, 2025, from:
https://fred.stlouisfed.org/series/ CPTAUCSL. Data availability: 1947M1 - 2025M8 (T =

944). Units: Index 1982-1984=100.

e P: Seasonally adjusted CPI inflation ex food and energy from FRED (core CPI), series
“CPILFESL,” Consumer Price Index for All Urban Consumers: All Items Less Food and En-
ergy in U.S. City Average, Index 1982-1984=100, Monthly, Seasonally Adjusted. Downloaded
on September 24, 2025, from: https://fred.stlouisfed.org/series/ CPILFESL. Data availability:
1957M1 - 2025M8 (Tps = 824). Units: Index 1982-1984=100.

e P, Seasonally adjusted gasoline consumer price index from FRED. Series “CUSR0000SETBO01,”

Consumer Price Index for All Urban Consumers: Gasoline (All Types) in U.S. City Average.

Downloaded on September 24, 2025, from: https://fred.stlouisfed.org/series/CUUR0000SETBO1.

Data availability: 1935M13- 2025M8 but only the subperiod 1966M1 - 2025M8 has no gaps
(Ths = 705). Units: Index 1982-1984=100.
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The common sample for all variables is 1986M6 - 2025M8 (T = 471).

Figure B1 below reports the histogram of the number of daily gasoline observations per month.
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FIGURE B1: Histograms of the number of trading days per month. Sample: 1986M6 - 2025M8.

44



	Introduction
	Model
	Definitions of impulse response functions of interest and additional notations

	Mean Group and Pooled Mixed-Frequency Estimators
	Estimators based on DL estimating equations
	Mean Group DL estimator
	Pooled DL estimator

	Estimators based on ARDL estimating equations
	Mean Group ARDL estimator
	Pooled ARDL estimator

	Mean Group and Pooled Estimators based on Vector Autoregressive Distributed Lag (VARDL) estimating equations

	Monte Carlo Experiments
	Data Generating Process
	Estimators
	Findings

	Empirical Application: Passthrough of Daily Gasoline Price Shocks to Monthly Inflation
	Some Hypothetical Thought Experiments
	Four Episodes of Daily Gasoline Price Shocks

	Conclusion
	Appendix
	Lemmas: Statements and proofs
	Proofs of propositions
	Data description for inflation pass-through application




