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Abstract  
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1 Introduction

This paper develops a simple and tractable approach to computing equilibrium �nancial

asset portfolios in open economy dynamic stochastic general equilibrium (DSGE) models.

To a large extent, existing open economy macroeconomic models ignore portfolio compo-

sition, analyzing �nancial linkages between countries in terms of net foreign assets, with

no distinction made between assets and liabilities. But recent research has highlighted

the presence of large cross-country gross asset and liability positions, and considerable

heterogeneity among countries in portfolio composition among di¤erent classes of assets.

Lane and Milesi-Ferretti (2001, 2006) show that these gross portfolio holdings have grown

rapidly, particularly in the last decade. Their measures show that even large countries

such as the UK hold gross assets and liabilities that are multiples of GDP.

The growth in international �nancial portfolios raises a number of important ques-

tions for open economy macroeconomics. What are the determinants of the size and

composition of gross portfolio positions? Can standard theories account for the observed

structure of portfolio holdings? Moreover, the large size of gross positions makes it likely

that the portfolio composition itself a¤ects macroeconomic outcomes. With gross posi-

tions as large as GDP, unanticipated changes in exchange rates or asset prices can generate

valuation e¤ects that are the same order of magnitude as annual current accounts1. This

raises questions about how portfolio composition may a¤ect the international business

cycle and international transmission of shocks. Finally, by generating signi�cant wealth

re-distributions in response to �uctuations in exchange rates and asset prices, interna-

tional portfolio composition may have signi�cant implications for economic policy. How

should monetary and �scal policies be designed in an environment of endogenous portfolio

choice?

While these questions are obviously of interest to open economy macroeconomists and

policymakers, current theoretical models and solution methods cannot answer them in

any very systematic way. This is because the standard approaches to solving general

equilibrium models make it di¢ cult to incorporate portfolio choice. The usual method of

analysis in DSGE models is to take a linear approximation around a non-stochastic steady

1Lane and Milesi-Ferretti (2001) emphasize the quantitative importance of valuation e¤ects on external

assets and liabilities. See also subsequent work by Ghironi et al. (2005), Gourinchas and Rey (2005),

and Tille (2003, 2004).
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state. But optimal portfolios are not uniquely de�ned in a non-stochastic steady state,

so there is no natural point around which to approximate. Moreover, portfolios are also

not de�ned in a �rst-order approximation to a DSGE model, since such an approximation

satis�es certainty equivalence, so all assets become perfect substitutes. As a result, the

analysis of portfolio choice in DSGE models appears to be intractable in all but the most

restricted of cases.2

In this paper we develop and present an approximation method which overcomes these

problems. Our method can be applied to any standard open economy model with any

number of assets, any number of state variables, and complete or incomplete markets,

so long as the model is amenable to solution by the usual approximation methods. We

�nd a general formula for asset holdings which can be very easily incorporated into the

standard solution approach for DSGE models. The technique is simple to implement and

can be used to derive either analytical results (for su¢ ciently small models) or numerical

results for larger models.

A key feature of our approach is to recognize that, at the level of approximation

usually followed in open economy macroeconomics, one only requires a solution for the

�steady-state�portfolio holdings. The steady state portfolio is de�ned as the constant (or

�zero-order�) term in a Taylor series approximation of the true equilibrium portfolio func-

tion. Higher-order aspects of portfolio behaviour are not relevant for �rst-order accurate

macro dynamics. Equivalently, time variation in portfolios is irrelevant for all questions

regarding �rst-order responses of macroeconomic variables like consumption, output, real

exchange rates, etc. in a DSGE model. Therefore, the solution we derive exhausts all

the macroeconomic implications of portfolio choice at this level of approximation.

How do we obtain the zero-order component of the equilibrium portfolio? We do so

2If there are enough �nancial assets to allow perfect risk sharing (so that international �nancial mar-

kets are e¤ectively complete) then the problem becomes somewhat easier. In this case, it is possible to

identify an equilibrium macroeconomic allocation independent of �nancial structure, and then, given this

allocation, one can derive the implied portfolios which support the equilibrium. Engel and Matsumoto

(2005) and Kollmann (2006) represent examples of such an approach. However, when markets are incom-

plete (in the sense that there are not su¢ cient assets to allow perfect risk sharing) optimal portfolios and

macroeconomic equilibrium must be derived simultaneously. This makes the problem considerably more

di¢ cult. Heathcote and Perri (2004) provide one example of an incomplete markets model in which it is

possible to derive explicit expressions for equilibrium portfolios. Their model is, however, only tractable

for a speci�c menu of assets and for speci�c functional forms for preferences and technology.
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using a combination of a second-order approximation of the portfolio selection condition

with a �rst-order approximation to the remaining parts of the model. Of course, these

two approximations will be interdependent; the endogenous portfolio weights will depend

on the variance-covariance matrix of excess returns produced by the general equilibrium

model, but that in turn will depend on the portfolio positions themselves. We show that

this simultaneous system can be solved to give a simple closed-form analytical solution

for the equilibrium portfolio.

While our solution procedure is novel, the mathematical foundations of the solution

we derive are already established in the literature, in particular in the work of Samuelson

(1970), and in di¤erent form by Judd (1998) and Judd and Guu (2001). Samuelson

shows how a mean-variance approximation of a portfolio selection problem is su¢ cient

to identify the optimal portfolio in a near-non-stochastic world. In a related paper, Judd

and Guu show how the same equilibrium can be identi�ed by using a combination of a

Bifurcation theorem and the Implicit Function Theorem. Our solution approach relies

on �rst-order and second-order approximations of the model, rather than the Implicit

Function and Bifurcation Theorems, but the underlying theory described by Judd and

Guu (2001) is applicable to our equilibrium solution. In particular, the steady-state

portfolio derived using our technique corresponds to a bifurcation point in the set of non-

stochastic equilibria. The main contribution of this paper is to show how this solution can

easily be derived in standard DSGE models. We note in addition, that there is nothing

about the approximation method that restricts its use to open economy models. It can be

applied to any heterogeneous agent DSGE model, whether in a closed or open economy

context.3

As we have already stated, the steady-state portfolio is all that is needed in order

to analyze the �rst-order properties of a general equilibrium model. But for many pur-

poses, it may be useful to analyze the dynamics of portfolio holdings themselves. In

addition, in order to do welfare analysis, it is usually necessary to analyze a second-order

approximation of a model. At the level of second-order approximation, time variation

in portfolios becomes relevant for macroeconomic dynamics. But these features can be

obtained by an extension of our method to higher-order approximations of the model. In

3Samuelson (1970) and Judd and Guu (2001) did not develop their results in open economy (or general

equilibrium) contexts.
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particular, the state-contingent, or �rst-order aspects of the equilibrium portfolio, can be

obtained by combining a third-order approximation of the portfolio selection equations,

with a second-order approximation to the rest of the model. The current paper focuses

on the derivation of steady-state portfolios because this represents a distinct and valuable

�rst-step in the analysis of portfolio choice in open-economy DSGE models. We do,

however, discuss brie�y the extension of the method to higher orders. In a companion

paper, Devereux and Sutherland (2007), we show how higher-order solutions to portfolios

also have an analytical representation.

In the related literature a number of approaches have been developed for analysing

portfolio choice in incomplete-markets general equilibrium models. In a recent paper,

Tille and Van Wincoop (2007) show how the zero and higher-order components of port-

folio behaviour in an open economy model can be obtained numerically via an iterative

algorithm. Their approach delivers a numerical solution for steady-state portfolios in man-

ner analogous to the analytical solutions derived in this paper. Judd et al (2002) develop

a numerical algorithm based on �spline collocation�and Evans and Hnatkovska (2005)

present a numerical approach that relies on a combination of perturbation and continuous-

time approximation techniques.4 The methods developed by Judd et al and Evans and

Hnatkovska are very complex compared to our approach and they represent a signi�cant

departure from standard DSGE solution methods. Devereux and Saito (2005) use a con-

tinuous time framework which allows some analytical solutions to be derived, but their

approach can not handle general international macroeconomic models with diminishing-

returns technology or sticky nominal goods prices.

This paper proceeds as follows. The next section sets out a two-asset portfolio choice

problem within a simple two-country endowment model and shows how our method can

be applied in this context. Section 3 develops a more general n-asset portfolio problem

within a generic two country DSGE model and shows how the method can be generalised

to accommodate a wide class of models. Section 4 brie�y outlines how the method can be

extended to derive a solution for the �rst-order component of the equilibrium portfolio.

Section 5 concludes the paper.

4Evans and Hnatkovska (2005) develop an approach similar to that of Campbell and Viceira (2005),

who present a comprehensive analysis of optimal portfolio allocation for a single agent.
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2 Example: A Simple Two-Asset Endowment Model

2.1 The Model

We �rst illustrate how the solution procedure works in a simple two-country example with

only two internationally traded assets, where agents consume an identical consumption

good, and income takes the form of a exogenous endowment of the consumption good.

Agents in the home country have a utility function of the form

Ut = Et

1X
�=t

���tu(C� ) (1)

where C is consumption and u(C� ) = (C1��� )=(1� �).
The budget constraint for home agents is given by

�1;t + �2;t = �1;t�1r1;t + �2;t�1r2;t + Yt � Ct (2)

where Y is the endowment received by home agents, �1;t�1 and �2;t�1 are the real holdings

of the two assets (purchased at the end of period t� 1 for holding into period t) and r1;t
and r2;t are gross real returns: It is assumed that the vector of available assets is exogenous

and prede�ned. The stochastic process determining endowments and the nature of the

assets and the properties of their returns are speci�ed below.

De�neWt = �1;t+�2;t to be the total net claims of home agents on the foreign country

at the end of period t (i.e. the net foreign assets of home agents). The budget constraint

can then be re-written as

Wt = �1;t�1rx;t + r2;tWt�1 + Yt � Ct (3)

where

rx;t = r1;t � r2;t

Here asset 2 is used as a numeraire and rx;t measures the "excess return" on asset 1.

At the end of each period agents select the portfolio of assets to hold into the following

period. Thus, for instance, at the end of period t home agents select �1;t to hold into

period t+1. The �rst-order condition for the choice of �1;t can be written in the following

form

Et [u
0(Ct+1)r1;t+1] = Et [u

0(Ct+1)r2;t+1] (4)
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Foreign agents face a similar portfolio allocation problem with a budget constraint

given by

W �
t = �

�
1;t�1rx;t + r2;tW

�
t�1 + Y

�
t � C�t (5)

where an asterisk indicates foreign variables. In equilibrium it follows that W �
t = �Wt:

Foreign agents have preferences similar to (1) so the �rst-order condition for foreign agents�

choice of ��1;t is

Et
�
u0(C�t+1)r1;t+1

�
= Et

�
u0(C�t+1)r2;t+1

�
(6)

Assets are assumed to be in zero net supply, so market clearing in asset markets implies

�1;t�1 + �
�
1;t�1 = 0; �2;t�1 + �

�
2;t�1 = 0

To simplify notation, in what follows we will drop the subscript from �1;t and simply

refer to �t: It should be understood, therefore, that �1;t = ���1;t�1 = �t, �2;t = Wt � �t
and ��2;t = W

�
t + �t:

Endowments are the sum of two components, so that

Yt = YK;t + YL;t; Y �t = Y
�
K;t + Y

�
L;t (7)

where YK;t and Y �K;t represent �capital income�and YL;t and Y
�
L;t �labour income�. The

endowments are determined by the following simple stochastic processes

log YK;t = log �YK + "K;t; log YL;t = log �YL + "L;t

log Y �K;t = log
�YK + "

�
K;t; log Y �L;t = log

�YL + "
�
L;t

where "K;t; "L;t; "�K;t and "
�
L;t are zero-mean i.i.d. shocks which are symmetrically distrib-

uted over the interval [��; �] with V ar["K ] = V ar["�K ] = �2K ; V ar["L] = V ar["�L] = �2L.

We assume Cov["K ; "�K ] = Cov["L; "
�
L] = 0 and Cov["K ; "L] = Cov["

�
K ; "

�
L] = �KL:

The two assets are assumed to be one-period equity claims on the home and foreign

capital income.5 The real payo¤ to a unit of the home equity in period t is de�ned to be

5Notice that we are assuming that, by default, all capital in a country is owned by the residents of that

country. This allows us to treat equity claims to capital income as inside assets, i.e. assets in zero net

supply. This is purely an accounting convention. Our solution method works equally in the alternative

approach, where capital is not included in the de�nition of Y and Y � and equity is treated as an outside

asset which is in positive net supply. The present approach makes our derivations easier however.
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YK;t and the real price of a unit of home equity is denoted ZE;t�1. Thus the gross real

rate of return on home equity is

r1;t = YK;t=ZE;t�1 (8)

Likewise the gross real return on foreign equity is

r2;t = Y
�
K;t=Z

�
E;t�1 (9)

where Z�E;t�1 is the price of the foreign equity.

The �rst-order conditions for home and foreign consumption are

C��t = �Et
�
C��t+1r2;t+1

�
; C���t = �Et

�
C���t+1 r2;t+1

�
(10)

Finally, equilibrium consumption plans must satisfy the resource constraint

Ct + C
�
t = Yt + Y

�
t (11)

2.2 Zero-order and �rst-order components

Despite the extreme simplicity of this model, it is only in special cases that an exact

solution can be found, e.g. when there is no labour income (in which case trade in

equities supports the perfect risk-sharing equilibrium).6 The model is also not amenable

to standard �rst-order approximation techniques, so standard linearisation approaches to

DSGE models can not provide even an approximate solution to the general case. Our

method, nevertheless, does yield an approximate solution to the general case. Before

describing the method, it is useful to show why standard solution techniques do not work

for this model, and to demonstrate how our method o¤ers a way around the problems.

First, we de�ne some terms relating to the true and approximate portfolio solutions.

Notice that agents make their portfolio decisions at the end of each period and are free

to re-arrange their portfolios each period. In a recursive equilibrium, therefore, the equi-

librium asset allocation will be some function of the state of the system in each period -

6If there is no labour income then equities can be used to trade all income risk. It is easy to show that

the equilibrium portfolio is for home and foreign agents to hold portfolios equally split between home and

foreign equity. This implies perfect consumption risk sharing. This is a useful benchmark for comparison

with the solution yielded by our method.
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which is summarised by the state variables. We therefore postulate that the true portfolio

(i.e. the equilibrium portfolio in the non-approximated model) is a function of state vari-

ables. In the model de�ned above there is only one state variable, W - so we postulate

�t = �(Wt).7

Now consider a �rst-order Taylor-series expansion of �(Wt) around the point W = �W

�(Wt) ' �( �W ) + �0( �W )(Wt � �W )

This approximation contains two terms: �( �W ); which is the zero-order component (i.e. �

at the point of approximation) and �0( �W )(Wt � �W ); which is the �rst-order component

(assuming (Wt � �W ) is evaluated up to �rst-order accuracy). Notice that, by de�nition,

the zero-order component of � is non-time varying. The approximate dynamics of the

portfolio are captured by the �rst-order component.

When analysing a DSGE model up to �rst-order accuracy the standard solution ap-

proach is to use the non-stochastic steady-state of the model as the approximation point,

(i.e. the zero-order component of each variable) and to use a �rst-order approximation

of the model�s equations to solve for the �rst-order component of each variable. Neither

of these steps can be used in the above model. It is very simple to see why. In the

non-stochastic equilibrium equations (4) and (6) imply

r1;t+1 = r2;t+1

i.e. both assets pay the same rate of return. This implies that, for given W , all portfolio

allocations pay the same return, so any value for � is consistent with equilibrium. Thus

the non-stochastic steady state does not tie down a unique portfolio allocation.

A similar problem arises in a �rst-order approximation of the model. First-order

approximation of equations (4) and (6) imply

Et[r1;t+1] = Et[r2;t+1]

i.e. both assets have the same expected rate of return. Again, any value of � is consistent

with equilibrium.

7Optimal portfolio allocation will of course depend on the properties of asset returns generated by the

model. In equilibrium, however, the stochastic properties of asset returns will also be a function of state

variables, so the impact of asset returns on portfolio allocation is implicit in the function �(Wt):
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So neither the non-stochastic steady state nor a �rst-order approximation of the model

provide enough equations to tie down the zero or �rst-order components of �. The basic

problem is easy to understand in economic terms. Assets in this model are only distin-

guishable in terms of their risk characteristics and neither the non-stochastic steady state

nor a �rst-order approximation capture the di¤erent risk characteristics of assets. In the

case of the non-stochastic steady state there is, by de�nition, no risk, while in a �rst-order

approximation there is certainty equivalence.

This statement of the problem immediately suggests a solution. It is clear that the

risk characteristics of assets only show up in the second-moments of model variables, and

it is only by considering higher-order approximations of the model that the e¤ects of

second-moments can be captured. This fundamental insight has existed in the literature

for many years. It was �rst formalised by Samuelson (1970), who established that, in

order to derive the zero-order component of the portfolio, it is necessary to approximate

the portfolio problem up to the second order. Our solution approach follows this princi-

ple. We show that a second-order approximation of the portfolio optimality conditions

provides a condition which makes it possible to tie down the zero-order component of �.

The second-order approximation captures the impact of the portfolio on the correlation

between portfolio returns and the marginal utility of consumption. It therefore captures

di¤erences between assets in their ability to hedge consumption risk and thus ties down an

optimal portfolio allocation. In this paper we show in detail how to use second-order ap-

proximations of the portfolio optimality conditions to solve for the zero-order component

of �:8

Having established this starting point, it is relatively straightforward to extend the

procedure to higher-order components on �: Samuelson (1970) in fact states a general

principle that, in order to derive the Nth-order component of the portfolio, it is necessary

to approximate the portfolio problem up to order N + 2. In section 4 we brie�y outline

how, by following this principle, the solution for the �rst-order component of � can be

derived from third-order approximations of the portfolio optimality conditions. The full

details of the solution procedure for the �rst-order component are given in a companion

paper, Devereux and Sutherland (2007).

8Note that Samuelson approached the problem by approximating the agent�s utility function, while

we take approximations of agents��rst-order conditions. It is possible to show that the two approaches

produce identical results.
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While Samuelson (1970) was the �rst to show how solutions for the zero and higher-

order components of the portfolio may be derived, more recently Judd and Guu (2001)

have demonstrated an alternative solution approach which sheds further light on the na-

ture of the zero-order portfolio. They show how the problem of portfolio indeterminacy in

the non-stochastic steady state can be overcome by using a Bifurcation theorem in con-

junction with the Implicit Function Theorem. Their approach shows that the zero-order

portfolio is a bifurcation point in the set of non-stochastic equilibria. Like Samuelson

(1970), our solution approach relies on second-order approximations of the model to iden-

tify the zero-order component, but the underlying theory described by Judd and Guu

(2001) is also applicable to our equilibrium solution. In particular, the zero-order portfo-

lio derived using our technique corresponds to the solution that emerges from the Judd

and Guu approach. Our solution can therefore be rationalised in the same way, i.e. it is

a bifurcation point in the set of non-stochastic equilibria.9

The general underlying principles of the solution we derive are thus well established.

The main contribution of this paper is to provide a solution approach which can easily

be applied to DSGE models.10 We now demonstrate this by solving for the zero-order

component of � in the simple two-asset endowment model described above.

2.3 Solving for the zero-order portfolio

In what follows, a bar over a variable indicates its value at the approximation point (i.e.

the zero-order component) and a hat indicates the log-deviation from the approximation

point (except in the case of �̂; Ŵ and r̂x; which are de�ned below). Notice that the

non-stochastic steady state, while failing to tie down �; still provides solutions for output,

consumption and rates of return. We therefore use the non-stochastic steady state of the

9As already explained, in a non-stochastic world all portfolio allocations are equivalent and can be

regarded as valid equilibria. A stochastic world on the other hand (assuming independent asset returns

and suitable regularity conditions on preferences) has a unique equilibrium portfolio allocation. If one

considers the limit of a sequence of stochastic worlds, with diminishing noise, the equilibrium portfolio

tends towards a limit which correspond to one of the many equilibria in the non-stochastic world. This

limiting portfolio is the bifurcation point described by Judd and Guu (2001), i.e. it is the point in the

set of non-stochastic equilibria which intersects with the sequence of stochastic equilibria.
10Note that both Samuelson (1970) and Judd and Guu (2001) demonstrate their results using static

partial equilibrium models of portfolio allocation.
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model as the approximation point for all variables except �. In particular we use the

symmetric non-stochastic steady state, where �W = 0: It follows from equations (4) and

(6) that �r1 = �r2 = 1=� and thus �rx = 0: Equations (3) and (5) therefore imply that
�Y = �Y � = �C = �C�: Since �W = 0, it also follows that ��2 = ���1 = ����2 = ���1 = ���:
As argued above, solving for the zero-order component of � requires a second-order

expansion of the portfolio problem. So we start by taking a second-order approximation

of the home-country portfolio �rst-order condition, (4), to yield

Et

�
r̂x;t+1 +

1

2
(r̂21;t+1 � r̂22;t+1)� �Ĉt+1r̂x;t+1

�
= O

�
�3
�

(12)

where r̂x;t+1 = r̂1;t+1 � r̂2;t+1 and O (�3) is a residual which contains all terms of order
higher than two. Applying a similar procedure to the foreign �rst-order condition, (6),

yields

Et

�
r̂x;t+1 +

1

2
(r̂21;t+1 � r̂22;t+1)� �Ĉ�t+1r̂x;t+1

�
= O

�
�3
�

(13)

These expression can now be combined to show that, in equilibrium, the following equa-

tions must hold

Et

h
(Ĉt+1 � Ĉ�t+1)r̂x;t+1

i
= 0 +O

�
�3
�

(14)

and

Et [r̂x;t+1] = �
1

2
Et
�
r̂21;t+1 � r̂22;t+1

�
+ �

1

2
Et

h
(Ĉt+1 + Ĉ

�
t+1)r̂x;t+1

i
+O

�
�3
�

(15)

These two equations express the portfolio optimality conditions in a form which is partic-

ularly convenient for deriving equilibrium portfolio holdings and excess returns. Equation

(14) provides an equation which must be satis�ed by equilibrium portfolio holdings. And

equation (15) shows the corresponding set of equilibrium expected excess returns.

We will now show that equation (14) provides a su¢ cient condition to tie down the

zero-order component of �: In order to do this we �rst state two important properties of

the approximated model.

Property 1 In order to evaluate the left hand side of equation (14) it is su¢ cient to

derive expressions for the �rst-order accurate behaviour of consumption and excess

returns. This is because the only terms that appear in equation (14) are products,

and second-order accurate solutions for products can be obtained from �rst-order

accurate solutions for individual variables.
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Property 2 The only aspect of the portfolio decision that a¤ects the �rst-order

accurate behaviour of consumption and excess returns is ��, i.e. the zero-order

component of the �. The �rst-order component, i.e. the deviation of � from the

approximation point, does not a¤ect the �rst-order behaviour of consumption and

excess returns. To see why this is true notice that portfolio decisions only enter

the model via the portfolio excess return, i.e. via the term �1;t�1rx;t in the budget

constraints. A �rst-order expansion of this term is ��r̂x;t + �rx�̂1;t�1: But �rx = 0 so

only ��r̂x;t remains.

It is now straightforward to show that equation (14) provides a condition which ties

down ��: Property 2 tells us that it is possible to evaluate the �rst-order behaviour of

(Ĉt+1 � Ĉ�t+1) and r̂x;t+1 conditional on a given value of ��: Property 1 tells us that
Et

h
(Ĉt+1 � Ĉ�t+1)r̂x;t+1

i
can therefore also be evaluated conditional on a given value of ��:

Equation (14) tells us that a solution for �� is one which implies Et
h
(Ĉt+1 � Ĉ�t+1)r̂x;t+1

i
=

0:

In order to derive this solution for �� it is �rst necessary to solve for the �rst-order

accurate behaviour of (Ĉt+1 � Ĉ�t+1) and r̂x;t+1 conditional on a given value of ��: The
�rst-order accurate behaviour of r̂x;t+1 is particularly simple in this model. First-order

approximations of (8) and (9) imply

r̂x;t+1 = ŶK;t+1 � Ŷ �K;t+1 � (ẐE;t � Ẑ�E;t) +O
�
�2
�

where O (�2) is a residual which contains all terms of order higher than one, so

Et[r̂x;t+1] = Et[ŶK;t+1]� Et[Ŷ �K;t+1]� (ẐE;t � Ẑ�E;t) +O
�
�2
�

Notice that (15) implies that, up to a �rst-order approximation, Et[r̂x;t+1] = 0 so

(ẐE;t � Ẑ�E;t) = Et[ŶK;t+1]� Et[Ŷ �K;t+1] +O
�
�2
�

and thus, since YK and Y �K are i.i.d:, r̂x;t+1 is given by
11

r̂x;t+1 = ŶK;t+1 � Ŷ �K;t+1 +O
�
�2
�

(16)

11Notice from this derivation that, in this model, rx is completely independent from �: This makes the

application of our solution process particularly simple. In the next section we will show that our method

can easily be applied to more general models where � may have a direct or indirect impact on rx.
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The �rst-order accurate solution for (Ĉt+1� Ĉ�t+1) is also straightforward to derive. A
�rst-order approximation of the home and foreign budget constraints implies

Ŵt+1 =
1

�
Ŵt + Ŷt+1 � Ĉt+1 + ~�r̂x;t+1 +O

�
�2
�

(17)

�Ŵt+1 = �
1

�
Ŵt + Ŷ

�
t+1 � Ĉ�t+1 � ~�r̂x;t+1 +O

�
�2
�

(18)

where Ŵt = (Wt � �W )= �C and ~� = ��=(� �Y ). Combining (17) and (18) with (16) and an

appropriate transversality condition implies

1X
i=0

�iEt+1(Ĉt+1+i � Ĉ�t+1+i) =
2

�
Ŵt + (Ŷt+1 � Ŷ �t+1)

+2~�(ŶK;t+1 � Ŷ �K;t+1) +O
�
�2
�

(19)

where use has been made of he fact that Et+1[Ŷt+1+i] = Et+1[Ŷ �t+1+i] = Et+1[ŶK;t+1+i] =

Et+1[Ŷ
�
K;t+1+i] = 0 for all i > 0.

The �rst-order conditions for consumption, equations (10), imply

Et+1[Ĉt+1+i � Ĉ�t+1+i] = Ĉt+1 � Ĉ�t+1 +O
�
�2
�
for all i > 0 (20)

so (Ĉt+1 � Ĉ�t+1) is given by

Ĉt+1 � Ĉ�t+1 =
2(1� �)
�

Ŵt + (1� �)(Ŷt+1 � Ŷ �t+1)

+2(1� �)~�(ŶK;t+1 � Ŷ �K;t+1) +O
�
�2
�

(21)

Equations (16) and (21) show the �rst-order accurate behaviour of (Ĉt+1 � Ĉ�t+1) and
r̂x;t+1 conditional on a given value of ��: Combining these expression yields

Et

h
(Ĉt+1 � Ĉ�t+1)r̂x;t+1

i
=

(1� �)Et
h�
(Ŷt+1 � Ŷ �t+1) + 2~�(ŶK;t+1 � Ŷ �K;t+1)

�
(ŶK;t+1 � Ŷ �K;t+1)

i
+O

�
�3
�

(22)

It follows from (14) and (22) that the solution for ~� is

~� = �1
2

Et[(Ŷt+1 � Ŷ �t+1)(ŶK;t+1 � Ŷ �K;t+1)]
Et[(ŶK;t+1 � Ŷ �K;t+1)2]

+O (�) (23)

or

~� = �� + (1� �)�KL=�
2
K

2
+O (�) (24)
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where � = �YK=( �YK + �YL) = �YK= �Y . Notice that the residual in this expression is a

�rst-order term. The solution for �� is then given by �� = ~�� �Y :

To provide an economic interpretation of our solution it is helpful to re-express (24) in

terms of the proportion of home equity held by home residents. The total value of home

equity is � �YK , so the proportion held by home residents is given by

� �YK + ��

� �YK
=
1 + (1� �)�KL=��2K

2
(25)

The most obvious benchmark against which to compare (25) is the case where there is no

labour income, i.e. where � = 1 and �2L = 0: In this case there is a known exact solution to

the model where home and foreign agents hold a balanced portfolio of home and foreign

equities. It is easy to see from (25) that our solution yields exactly this outcome. i.e.

home agents hold exactly half of home equity (and by implication half of foreign equity).

It is also easy to check from (21) that the equilibrium portfolio yields full consumption

risk sharing. More generally, in cases where this is labour income risk, i.e. 0 < � < 1

and �2L > 0; there is no exact solution to the model, but our zero-order solution provides

an approximate solution. Equation (25) shows that if �KL = 0 (i.e. labour and capital

income are uncorrelated) agents continue to hold a balanced portfolio of home and foreign

equity, but equation (21) shows that full consumption risk sharing is not achieved in this

case. The equilibrium portfolio deviates from an equal balance of home and foreign equity

when there is some correlation between capital and labour income. For instance, when

there is a negative correlation, i.e. �KL < 0; there will be home bias in equity holdings

(i.e. home agents will hold more then half of home equity and foreign agents will hold

more than half of foreign equity). 12

Before showing how the solution procedure can be applied to a more general model,

we use (24) to address a number of potentially puzzling issues. First, notice that despite

the presence of time subscripts, all the terms in (23), including the conditional second-

moments, are constant. So our solution for �� is non-time-varying (which is consistent

with our de�nition of the zero-order component). At �rst sight it may seem contradictory

that portfolio allocations are non-time varying while net wealth, in the form of Ŵt, is time

varying. But this is to confuse orders of approximation. �� is the zero-order component

of the portfolio, and should be compared to the zero-order component of net wealth, �W ,

12Conversely, when �KL > 0, we have a bias against home assets, as in Baxter and Jermann (1997).
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which, like ��; is non-time varying. Ŵt on the other hand, is the �rst-order component of

net wealth, and this should be compared to the �rst-order component of portfolios, �̂t.

Both Ŵt and �̂t are time varying. But notice, by Property 2 it is possible to solve for the

dynamics of Ŵ without having to know the behaviour of �̂. As explained above, having

solved for �� it is possible to solve for �̂t by analysing a third-order approximation of the

portfolio problem. This is discussed below in Section 4.

A more general implication of Property 2, which is worth emphasising, is that it is

not necessary to solve for the �rst-order behaviour of �̂ in order to solve for the �rst-

order behaviour of other variables in the model. It is therefore possible to analyse the

implications of the above model for the �rst-order behaviour of all variables other than �

without having to solve for �̂:

The logic presented above implies that the zero-order component of the portfolio, ��; is

analogous to the zero-order component of the other variables in the model. At �rst sight

this may also seem contradictory, since the zero-order components of other variables are

derived from the non-stochastic steady state, while our solution for �� is derived from an

explicitly stochastic analysis. The way to resolve this apparent contradiction is to interpret

�� as the equilibrium for portfolio holdings in a world with an arbitrarily small amount of

stochastic noise, i.e. the equilibrium in a �near-non-stochastic�world. If one considers the

limit of a sequence of stochastic worlds, with diminishing noise, the equilibrium portfolio

tends towards a limit which correspond to one of the many portfolio equilibria in the

non-stochastic world. This limiting portfolio is a bifurcation point described by Judd and

Guu (2001), i.e. it is the point in the set of non-stochastic equilibria which intersects

with the sequence of stochastic equilibria. Our solution for �� corresponds to the portfolio

allocation at this bifurcation point.13

Finally, we note a technical issue that arises regarding the point of approximation

13Suppose that the covariance matrix of the innovations is given by � = ��0 where � > 0 is a scalar

and �0 is a valid covariance matrix. Notice that the solution for ~� given in (24) is independent of �: So

the value of ~� given by (24) (and therefore the value of ��) is equivalent to the value that would arise in

the case of an arbitrarily small, but non-zero, value of � - i.e. the value of ~� that would arise in a world

which is arbitrarily close to a non-stochastic world. Furthermore, notice that as � tends to zero (which

is equivalent to � tending to zero) the size of the residual in (24) tends to zero. So, as the amount of

noise tends to zero, the value of ~� becomes arbitrarily close to the true value of portfolio holdings in the

non-approximated model. Our solution for �� can therefore be thought of as the true portfolio equilibrium

in a world which is arbitrarily close to the non-stochastic equilibrium.
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of Wt. In the example given above, there is a unit root in the dynamics of net foreign

assets at the level of �rst-order approximation. This means that we would not be able to

compute unconditional second moments from the model. But this has no bearing on the

portfolio solution. Equilibrium portfolios depend only on conditional second moments,

which are well de�ned. The unit root property could easily be eliminated using any of

the approaches discussed in Schmitt-Grohe and Uribe (2003), and it should be clear from

the above presentation that our approach works equally well in this case. We chose to use

the model here however, because it gives very simple and intuitive expressions for optimal

portfolios.

3 Generalising to an n-Asset Model

3.1 The Model

We now show how the solution method can be extended to a much more general model

with many assets. The model we now describe is general enough to encompass the range

of structures that are widely used in the recent open economy macro literature. However,

only those parts of the model directly necessary for understanding the portfolio selection

problem need to be explicitly described. Other components of the model, such as the

labour supply decisions of households and the production and pricing decisions of �rms,

are not directly relevant to the portfolio allocation problem, so these parts of the model

are suppressed. The solution approach is consistent with a wide range of speci�cations

for labour supply, pricing and production. Thus, the non-portfolio parts of the model

may be characterised by endogenous or exogenous employment, sticky or �exible prices

and wages, local currency pricing or producer currency pricing, perfect competition or

imperfect competition, etc.

We continue to assume that the world consists of two countries. The home country

is assumed to produce a good (or a bundle of goods) with aggregate quantity denoted

YH (which can be endogenous) and aggregate price PH . Similarly the foreign country

produces quantity YF of a (potentially di¤erentiated) foreign good (or bundle of goods)

at price P �F . In what follows foreign currency prices are denoted with an asterisk.
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Agents in the home country now have a utility function of the form

Ut = Et

1X
�=t

���t [u(C� ) + v(:)] (26)

where C is a bundle of the home and foreign goods and u(:) is a twice continuously di¤er-

entiable period utility function. The function v(:) captures those parts of the preference

function which are not relevant for the portfolio problem.14 The aggregate consumer price

index for home agents is denoted P .

There are n assets and a vector of n returns (for holdings of assets from period t� 1
to t) given by

r0t =
h
r1;t r2;t ::: rn;t

i
Asset payo¤s and asset prices are measured in terms of the aggregate consumption good

of the home economy (i.e. in units of C). Returns are de�ned to be the sum of the payo¤

of the asset and capital gains relative to the asset price. As before, it is assumed that the

vector of available assets is exogenous and prede�ned.

The budget constraint for home agents is given byX
�i;t =

X
ri;t�i;t�1 + Yt � Ct (27)

where [�1;t�1; �2;t�1:::�n;t�1] are the holdings of the n assets purchased at the end of period

t� 1 for holding into period t. Y is the total disposable income of home agents expressed
in terms of the home consumption good. Thus, Y may be given by YHPH=P + T where

T is a �scal transfer (or tax if negative).15

Using the following de�nition of net wealth (net foreign assets)

Wt =
X
i

�i;t (28)

14For these other aspects of the preference function to be irrelevant for portfolio selection it is necessary

to assume utility is additively separable in u(C) and v(:): Extensions to cases of non-additive separability

(e.g. habit persistence in consumption) are straightforward, as will become more clear below. Using (26)

allows us to illustrate the method with minimal notation.
15Without changing any of the results below, we could augment Y to allow for convex adjustment costs

in W arising from having net foreign assets away from their long term mean W . This would ensure a

stationary distribution for W . Thus, the model developed in this section does not necessarily display the

unit root property for W .
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the budget constraint may be re-written in the following form

Wt = �
0
t�1rx;t + rn;tWt�1 + Yt � Ct (29)

where

�0t�1 =
h
�1;t�1 �2;t�1 ::: �n�1;t�1

i
and

r0x;t =
h
(r1;t � rn;t) (r2;t � rn;t) ::: (rn�1;t � rn;t)

i
=
h
rx;1;t rx;2;t ::: rx;n�1;t

i
Here the nth asset is used as a numeraire and rx;t measures the "excess returns" on the

other n� 1 assets.
There are n � 1 �rst-order conditions for the choice of the elements of �t which can

be written in the following form

Et [u
0(Ct+1)r1;t+1] = Et [u

0(Ct+1)rn;t+1]

Et [u
0(Ct+1)r2;t+1] = Et [u

0(Ct+1)rn;t+1]

:

Et [u
0(Ct+1)rn�1;t+1] = Et [u

0(Ct+1)rn;t+1]

(30)

Foreign-country agents face a similar portfolio allocation problem with a budget con-

straint given by
1

Qt
W �
t =

1

Qt

�
��0t�1rx;t + rn;tW

�
t�1
�
+ Y �t � C�t (31)

where Qt = P �t St=Pt is the real exchange rate. The real exchange rate enters this budget

constraint because Y � and C� are measured in terms of the foreign aggregate consumption

good (which may di¤er from the home consumption good) while asset holdings and rates

of return are de�ned in terms of the home consumption good.

Foreign agents are assumed to have preferences similar to (26) so the �rst-order con-

ditions for foreign-country agents�choice of ��t are

Et
�
Q�1t+1u

0(C�t+1)r1;t+1
�
= Et

�
Q�1t+1u

0(C�t+1)rn;t+1
�

Et
�
Q�1t+1u

0(C�t+1)r2;t+1
�
= Et

�
Q�1t+1u

0(C�t+1)rn;t+1
�

:

Et
�
Q�1t+1u

0(C�t+1)rn�1;t+1
�
= Et

�
Q�1t+1u

0(C�t+1)rn;t+1
� (32)

The two sets of �rst-order conditions, (30) and (32), and the market clearing condition

�t = ���t , provide 3(n�1) equations which determine the elements of �t; ��t and Et[rx;t+1]:
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Clearly, in any particular general equilibrium model, there will be a set of �rst-order

conditions relating to intertemporal choice of consumption, labour supply, etc., for the

home and foreign consumers, and a set of �rst-order conditions for price setting and

factor demands for home and foreign producers. Taken as a whole, and combined with

an appropriate set of equilibrium conditions for goods and factor markets, this full set

of equations will de�ne the general equilibrium of the model. As already explained, the

details of these non-portfolio parts of the model are not necessary for the exposition of

the solution method, so they are not shown explicitly. In what follows these omitted

equations are simply referred to as the "non-portfolio equations" of the model.

The non-portfolio equations of the model will normally include some exogenous forcing

variables. In the typical macroeconomic model these take the form of AR1 processes which

are driven by zero-mean i.i.d. innovations. We assume that there arem such disturbances,

summarised in a vector, x, which is determined by the following process

xt = Nxt�1 + "t (33)

where " is a vector of zero-mean i.i.d. innovations with covariance matrix �: It is assumed

that the innovations are symmetrically distributed over the interval [��; �]:16

3.2 Solving for the zero-order portfolio

Again we use the symmetric non-stochastic steady state of the model as the approximation

point for non-portfolio variables. Thus �W = 0; �Y = �Y � = �C = �C� and �r1 = �r2::: = �rn =

1=�: Note again that this implies �rx = 0:

As before we proceed by taking second-order approximations of the home and foreign

portfolio �rst-order conditions. For the home country this yields

Et

h
(r̂1;t+1 � r̂n;t+1) + 1

2
(r̂21;t+1 � r̂2n;t+1)� �Ĉt+1(r̂1;t+1 � r̂n;t+1)

i
= O (�3)

Et

h
(r̂2;t+1 � r̂n;t+1) + 1

2
(r̂22;t+1 � r̂2n;t+1)� �Ĉt+1(r̂2;t+1 � r̂n;t+1)

i
= O (�3)

:

Et

h
(r̂n�1;t+1 � r̂n;t+1) + 1

2
(r̂2n�1;t+1 � r̂2n;t+1)� �Ĉt+1(r̂n�1;t+1 � r̂n;t+1)

i
= O (�3)

(34)

16Clearly there must be a link between � and �: The value of � places an upper bound on the diagonal

elements of �: So an experiment which involves considering the e¤ects of reducing � implicitly involves

reducing the magnitude of the elements of �:
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where � � �u00( �C) �C=u0( �C) (i.e. the coe¢ cient of relative risk aversion). Re-writing (34)
in vector form yields

Et

�
r̂x;t+1 +

1

2
r̂2x;t+1 � �Ĉt+1r̂x;t+1

�
= O

�
�3
�

(35)

where

r̂0x;t+1 �
h
r̂1;t+1 � r̂n;t+1 r̂2;t+1 � r̂n;t+1 ::: r̂n�1;t+1 � r̂n;t+1

i
and

r̂20x;t+1 �
h
r̂21;t+1 � r̂2n;t+1 r̂22;t+1 � r̂2n;t+1 ::: r̂2n�1;t+1 � r̂2n;t+1

i
Applying a similar procedure to the foreign �rst-order conditions yields

Et

�
r̂x;t+1 +

1

2
r̂2x;t+1 � �Ĉ�t+1r̂x;t+1 + Q̂t+1

�
= 0 +O

�
�3
�

(36)

The home and foreign optimality conditions, (35) and (36), can be combined to show

that, in equilibrium, the following conditions must hold

Et

h
(Ĉt+1 � Ĉ�t+1 � Q̂t+1=�)r̂x;t+1

i
= 0 +O

�
�3
�

(37)

and

E [r̂x] = �
1

2
E
�
r̂2x
�
+ �

1

2
Et

h
(Ĉt+1 + Ĉ

�
t+1 + Q̂t+1=�)r̂x;t+1

i
+O

�
�3
�

(38)

These equations are equivalent to (14) and (15) in the example from before. There we

showed that equation (14) provided a su¢ cient condition to tie down the zero-order com-

ponent of the portfolio allocation. We now show that equation (37) provides a su¢ cient

condition to tie down the zero-order component of the portfolio in the general model.

Properties 1 and 2 played a central role in deriving the solution to the example above.

These properties also hold for the general model, and remain central in the derivation

of the solution. Clearly, Property 1 applies in the general model. The left hand side

of equation (37) consists entirely of products of variables and can thus be evaluated to

second-order accuracy using �rst-order accurate expressions for Ĉ � Ĉ� � Q̂=� and r̂x:
Likewise, Property 2 holds in the general model. Again, the portfolio allocation enters

only via the excess portfolio return, �0rx. And, just as in the simple model, �rx = 0; so the

�rst-order approximation of the excess portfolio return is ��r̂x: Thus only the zero-order

component of � enters the �rst-order approximated model.
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The general outline of the solution strategy is the same as that described for the simple

model. First we solve for the �rst-order accurate behaviour of Ĉ � Ĉ� � Q̂=� and r̂x in
terms of ��. Then we solve for the �� that ensures (37) is satis�ed.

But now things are somewhat more complicated because the behaviour of Ĉ�Ĉ��Q̂=�
and r̂x is determined by a potentially complex set of �rst-order dynamic equations. Indeed,

at �rst sight, the general model may seem too complex to be solved explicitly, and it may

appear that a numerical approach is necessary to solve for the ��. We show, however, that

it is possible to derive a closed-form analytical solution for �� in the general model. In

fact, we derive a formula for �� which is applicable to any model with the same general

features as the one described above.

To see why it is possible to obtain a closed-form solution, it is necessary to state a

further important property of the approximated model.

Property 3 To a �rst-order approximation, the portfolio excess return, ��r̂x;t+1, is a

zero mean i.i.d. random variable. This follows from equation (38), which shows that

the equilibrium expected excess return contains only second-order terms. So, up to

a �rst order approximation, Et�1 [r̂x;t+1] is zero, i.e. there is no predictable element

in r̂x;t+1: The �rst-order approximation of the portfolio excess return, ��r̂x;t+1, is

therefore a linear function of the i.i.d. innovations, "t+1; and must therefore itself

be an i.i.d. random variable.

Property 3 greatly simpli�es the solution process because it implies that �� a¤ects the

�rst-order behaviour of the economy in a very simple way. In particular, �� does not a¤ect

the eigenvalues of the �rst-order system. Thus, in any given period (e.g. period t) the

dynamic properties of the expected path of the economy from period t + 1 onwards are

independent of ��. The period t behaviour of the economy is a¤ected by �� only through

its e¤ect on the size and sign of i.i.d. innovations to wealth arising from the portfolio

excess return, ��r̂x;t.

The only remaining potential complication is that r̂x;t may itself depend on period t

innovations to wealth (and therefore ��). This complication is, however, easily overcome

by breaking the solution process for Ĉ � Ĉ� � Q̂=� and r̂x into two stages. In the �rst
stage we treat the portfolio excess return, ��r̂x, as an exogenous i.i.d. random variable, and

solve the �rst-order model to yield an expression for r̂x in terms of exogenous innovations

to wealth. In the second stage we use this expression to solve out for the behaviour of
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Ĉ � Ĉ� � Q̂=� and r̂x in terms of " (i.e. the true exogenous innovations of the model).
This provides the expressions required to evaluate (37) and thus to solve for ��.17

We now apply this procedure to the general model. First note that the �rst-order

approximation of the home budget constraint is given by

Ŵt =
1

�
Ŵt�1 + Ŷt � Ĉt + ~�0r̂xt +O

�
�2
�

where Ŵt = (Wt � �W )= �Y and ~� = ��=(� �Y ). The solution procedure will be described in

terms of deriving a solution for ~�: The corresponding solution for �� is obviously given by

�� = ~�� �Y : We now rewrite the budget constraint in the form

Ŵt =
1

�
Ŵt�1 + Ŷt � Ĉt + �t +O

�
�2
�

(39)

where ~�0r̂xt has been replaced by �t. We temporarily treat � as an exogenous i.i.d. variable.

The �rst-order approximation of the model can now be summarised in a matrix equa-

tion of the form

A1

"
st+1

Et [ct+1]

#
= A2

"
st

ct

#
+ A3xt +B�t +O

�
�2
�

(40)

where s is the vector of predetermined variables, c is the vector of jump variables, x is

de�ned in (33) and B is a column vector with unity in the row corresponding to (39) and

zero in all other rows. The state-space solution to (40) can be derived using any standard

solution method for linear rational expectations models. It can be written as follows

st+1 = F1xt + F2st + F3�t +O (�
2)

ct = P1xt + P2st + P3�t +O (�
2)

(41)

By extracting the appropriate rows from (41) it is possible to write the following

expression for the �rst-order accurate relationship between excess returns, r̂xt+1; and "t+1
and �t+1

r̂xt+1 = R1�t+1 +R2"t+1 +O
�
�2
�

(42)

where the matrices R1 andR2 are formed from the appropriate rows of (41). Equation (42)

shows how �rst-order accurate realised excess returns depend on exogenous i.i.d. shocks,

17Notice from equation (15) that, in the example, rx does not depend on ��, so this two-step process

for was not necessary.
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"t+1 and �t+1.
18 In particular, it shows how r̂xt+1 depends on i.i.d. shocks to wealth. This

completes the �rst stage in solving for the �rst-order behaviour of Ĉ � Ĉ� � Q̂=� and r̂x:
Now we impose the condition that, rather than being exogenous, the innovations to

wealth, �t+1, are endogenously determined by excess portfolio returns via the relationship

�t+1 = ~�
0r̂xt+1 (43)

where the vector of portfolio allocations, ~�; is yet to be determined. This equation,

together with (42), can be solved to yield expressions for �t+1 and r̂xt+1 in terms of the

exogenous innovations as follows

�t+1 = ~H"t+1 (44)

r̂xt+1 = ~R"t+1 +O
�
�2
�

(45)

where
~H =

~�0R2
1� ~�0R1

; ~R = R1 ~H +R2 (46)

Equation (45), which shows how realised excess returns depend on the exogenous i.i.d.

innovations of the model, provides one of the relationships necessary to evaluate the left-

hand side of (37). The other relationship required is the link between Ĉt+1�Ĉ�t+1�Q̂t+1=�
and the vector of exogenous innovations, "t+1. This relationship can derived in a similar

way to (45). First extract the appropriate rows from (41) to yield the following

Ĉt+1 � Ĉ�t+1 � Q̂t+1=� = D1�t+1 +D2"t+1 +D3

"
xt

st+1

#
+O

�
�2
�

(47)

where the matrices D1; D2 and D3 are formed from the appropriate rows of (41). After

substituting for �t+1 using (44) this implies

Ĉt+1 � Ĉ�t+1 � Q̂t+1=� = ~D"t+1 +D3

"
xt

st+1

#
+O

�
�2
�

(48)

where
~D = D1

~H +D2 (49)

Equations (45) and (48) are the equivalents of (16) and (21) in the example. They

show the �rst-order accurate behaviour of r̂xt+1 and Ĉt+1 � Ĉ�t+1 � Q̂t+1=� and they can
18Notice that, as follows from Property 3, r̂xt+1 does not depend on the values of the state variables

contained in xt or st.
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be used to evaluate the second-order accurate behaviour of the left hand side of equation

(37), as follows

Et

h
(Ĉt+1 � Ĉ�t+1 � Q̂t+1=�)r̂x;t+1

i
= ~R� ~D0 +O

�
�3
�

(50)

where � is the covariance matrix of ".19 The equilibrium value of ~� satis�es the following

equation
~R� ~D0 = 0 (51)

This matrix equation de�nes (n� 1) equations in the (n� 1) elements of ~�:
To solve for ~� �rst substitute for ~R and ~D in (51) and expand to yield

R1 ~H� ~H
0D0

1 +R2�
~H 0D0

1 +R1
~H�D0

2 +R2�D
0
2 = 0 +O

�
�3
�

(52)

Substituting for ~H and ~H 0 and multiplying by (1� ~�0R1)2 yields

R1~�
0R2�R

0
2~�D

0
1 +R2�R

0
2~�D

0
1(1� ~�0R1)

+R1~�
0R2�D

0
2(1� ~�0R1) +R2�D0

2(1� ~�0R1)2 = 0 +O
�
�3
�

(53)

Note that ~�0R1, (1 � ~�0R1) and D1 are all scalars. It therefore follows that ~�0R1 = R01~�

and D0
1 = D1. Using these facts (53) simpli�es to

D1R2�R
0
2~��R2�D0

2R
0
1~�+R2�D

0
2 = 0 +O

�
�3
�

(54)

which can be solved to yield the following expression for the equilibrium ~�

~� = [R2�D
0
2R

0
1 �D1R2�R

0
2]
�1
R2�D

0
2 +O (�) (55)

Notice that the residual in this expression is a �rst-order term. As previously noted, the

solution for �� is simply given by �� = ~�� �Y :

3.3 Summary of the procedure

It should be emphasized that implementing this procedure requires only that the user ap-

ply (55), which needs only information from the �rst-order approximation of the model in

order to construct the D and R matrices. So long as the model satis�es the general prop-

erties described above, the other details of the model, such as production, labour supply,

19Notice D3 does not appear in this expression because, by assumption, Et("t+1xt) = Et("t+1st+1) = 0.
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and price setting can be varied without a¤ecting the implementation. The derivations

used to obtain (55) do not need to be repeated. In summary, the solution for equilibrium

~� has three steps:

1. Solve the non-portfolio equations of the model in the form of (40) to yield a solution

in the form of (41):

2. Extract the appropriate rows from this solution to form R1, D1, R2 and D2:

3. Calculate ~� using (55).

4 Solving for the �rst-order portfolio

The analysis presented above shows how a second-order approximation of the portfolio

optimality condition provides a su¢ cient condition to tie down the zero-order component

of the portfolio, ��. We have shown that, from Property 2, the solution for �� is all

that is required to derive �rst-order accurate solutions for all other variables of a model.

Thus, if the objective is to analyse the impulse responses of variables such as output or

consumption (or indeed any variable other than �), or if one is primarily interested in

the business cycle properties of a model, then there is no need to go any further than

obtaining a solution for ��: It is likely however that the �rst-order dynamic behaviour of

� will also prove to be an interesting topic of research in its own right. For instance,

we might like to analyze the separate movement in di¤erent types of assets and gross

portfolio positions following macro shocks. In addition, to conduct welfare analysis, we

would generally need to evaluate the model up to a second-order approximation, which

would require incorporating the dynamic properties of �. We therefore now brie�y outline

how the solution approach can be extended to solve for the �rst-order component of �.

The general principles that underlie an extension of the procedure are simply stated. In

line with Samuelson (1970) it is necessary to approximate the portfolio problem up to the

third order. In the context of the simple model this involves a third-order approximation

of the portfolio optimality condition, as follows

Et

"
��(Ĉt+1 � Ĉ�t+1)r̂x;t+1 + �2

2
(Ĉ2t+1 � Ĉ�2t+1)r̂x;t+1

��
2
(Ĉt+1 � Ĉ�t+1)(r̂21;t+1 � r̂22;t+1)

#
= 0 +O

�
�4
�

(56)
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It is now possible to show, using modi�ed versions of Properties 1 and 2, that (56)

provides a su¢ cient condition to tie down the �rst-order component of �.

A modi�ed version of Property 1 states that the expression on the left hand side of

(56) can be evaluated up to third-order accuracy using �rst and second-order accurate

expressions for Ĉ � Ĉ�, r̂1; r̂1 and r̂x: Thus it is, at most, necessary to evaluate these
variables up to second order.

A modi�ed version of Property 2 states that only the zero and �rst-order components

of � enter a second-order approximation of the model. This is simple to show by taking

a second-order approximation of the portfolio excess return, �1;t�1rx;t, as follows

��r̂x;t + �rx�̂1;t�1 +
1

2
��(r̂21;t � r̂22;t) + �̂t�1r̂x;t +O

�
�3
�

(57)

where �̂t = (�t � ��). As before �rx = 0; so only the zero and �rst-order components of �
are necessary to evaluate (57).

The general solution strategy can now be described. First, postulate that, up to �rst-

order accuracy, �̂t is a linear function of the state variables of the model. Thus postulate

�̂t�1 = 

0zt where z is the vector of state variables and 
 is a vector of coe¢ cients which are

to be determined. The modi�ed version of Property 2 shows that it possible to evaluate

the �rst and second-order behaviour of Ĉ � Ĉ�, r̂1; r̂1 and r̂x conditional on a value for

; and hence, from the modi�ed version of Property 1, it is possible to evaluate the left

hand side of (56) conditional on 
: The equilibrium 
 is the one which ensures (56) is

satis�ed.20

The details of the solution procedure for 
 are presented in Devereux and Sutherland

(2007), where we derive a closed-form solution which is applicable to a wide class of

models.

5 Conclusion

Portfolio structure has become a central issue in open economy macroeconomics and inter-

national �nance. Despite this, existing models and solution methods are not well-suited

to analyzing portfolio choice in policy-relevant general equilibrium environments. This

20Note that the conditional third moments in (56) are time varying and depend on state variables.

The fact that (56) must be satis�ed for all values of state variables and in all time periods provides just

enough equations to tie down all the elements of 
:
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paper develops a simple approximation method for portfolio choice problems in dynamic

general equilibrium models. Our approach is extremely easy to implement and can be

used in any of the existing models that rely on �rst-order approximation methods. If the

researcher is primarily interested in the implications of portfolio choice for the �rst-order

properties of macro variables (such as GDP, consumption, or the real exchange rate), ei-

ther through impulse response analysis or by computing second moments so as to describe

volatility and comovement, then the solution method outlined here allows a full answer to

these questions. Since the overwhelming majority of the research in international �nance

and macroeconomics is carried out at the level of �rst-order approximation, the method

is widely applicable. It can be used to study many empirical questions in the interface

between international �nance and macroeconomics. Moreover, the method allows us to

study the macroeconomic determinants of optimal steady-state portfolio holdings for any

asset or combination of assets, whether markets are complete or incomplete.

We note that, although the motivation and applications discussed in the paper pertain

to open economy macro models, there is nothing inherent in the solution approach which

restricts the application to open economies. The method applies to portfolio choice in any

heterogeneous agent models dynamic general equilibrium models. This is true for both

the zero-order portfolio solution, as well as the �rst-order solution for portfolio dynamics.

Taken in combination, the methods described here o¤er a tractable approach to incor-

porating �nancial structure into a wide class of stochastic dynamic general equilibrium

models.
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