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Abstract
This paper derives new theoretical results for forecasting with Global VAR (GVAR) models.
It is shown that the presence of a strong unobserved common factor can lead to an
undetermined GVAR model. To solve this problem, we propose augmenting the GVAR
with additional proxy equations for the strong factors and establish conditions under which
forecasts from the augmented GVAR model (AugGVAR) uniformly converge in probability
(as the panel dimensions N,T— o such that N/T—x for some 0<x<®) to the infeasible
optimal forecasts obtained from a factor-augmented high-dimensional VAR model. The
small sample properties of the proposed solution are investigated by Monte Carlo
experiments as well as empirically. In the empirical part, we investigate the value of the
information content of Purchasing Managers Indices (PMIs) for forecasting global (48
countries) growth, and compare forecasts from AugGVAR models with a number of data-
rich forecasting methods, including Lasso, Ridge, partial least squares and factor-based
methods. It is found that (a) regardless of the forecasting methods considered, PMIs are
useful for nowcasting, but their value added diminishes quite rapidly with the forecast
horizon, and (b) AugGVAR forecasts do as well as other data-rich forecasting techniques for
short horizons, and tend to do better for longer forecast horizons.
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1 Introduction

International datasets with relatively large cross-section (V) and time (7') dimensions are becoming
increasingly available and frequently used in practice. How to work with such large datasets has
been the subject of intensive research in the past decades. On the one hand, individual economies
in the global system are interdependent, and a general linear dynamic framework such as high-
dimensional VARs seems to be appropriate. On the other hand, estimating high-dimensional VARs
is not feasible since the number of coefficients to be estimated grows at a quadratic rate with the
number of variables. This problem, also known as the curse of dimensionality, has been addressed
in the literature in a number of ways, but primarily in a static setting. In this paper we focus
on the Global VAR modeling approach (or GVAR for short) which has been applied extensively
to multi-country data sets and is designed to deal with the curse of dimensionality in dynamic
contexts.

The GVAR model was proposed by Pesaran et al. (2004) and provides a feasible and coherent
global reduced-form VAR representation of the data. It deals with the dimensionality problem by
estimating small-scale individual country VARX* models, where domestic variables are regressed
on country-specific weighted averages of foreign variables, which are treated as weakly exogenous
for the purpose of estimation. The individual country VARX* models are then solved in the form
of a high-dimensional VAR representation that includes all the endogenous variables of the world
economy. The structure embodied in the GVAR allows for quite complex interlinkages amongst
the variables (within as well as across economies), while being sufficiently compact and easy to
use in forecasting, simulation and counterfactual analyses. There are numerous applications of the
GVAR approach in the literature, including in the field of forecasting. Chudik and Pesaran (2014b)
provide a recent survey.

In this paper we establish conditions under which forecasts from the GVAR model converge
to optimal infeasible forecasts (as N,T EX oo, such that N/T — s, for some 0 < » < o0) when
the data is generated from a high-dimensional VAR model containing unobserved common factors.
It is shown that the presence of strong unobserved common factors can lead to an undetermined
GVAR model with a singular contemporaneous coefficient matrix. To deal with this problem, we
propose augmenting the GVAR with a sub-model for the unobserved factors that we proxy by
cross-section averages. We refer to this augmented GVAR model as AugGVAR for short, and show
that augmentation is effective regardless of how factors are introduced in the underlying model.
Specifically, we consider two methods of augmenting VARs with factors: (i) modeling deviations
from the factors as a VAR (as in Dées et al. (2007)), (ii) adding factors to the errors of the VAR
model. Since factors are unobserved, we consider both specifications and provide results that are
robust to the way factors are introduced in the underlying high-dimensional VAR model. We also
show that only the knowledge of the maximum number of unobserved common factors (mmax) is
needed, and there is no need to identify and estimate the exact number of factors. This means that
in practice it is sufficient to augment the GVAR with a sub-model in terms of mpyay cross-section

averages.



We investigate the small sample properties of the proposed approach by Monte Carlo (MC)
experiments. We find that small sample performance of the AugGVAR is at least as good as the
GVAR when there is no factor in the underlying model, and substantially better when factors
are present. MC experiments also show that using an undetermined GVAR in the presence of
factors can have serious consequences for forecasting, particularly when the time dimension is not
sufficiently large. Overall, the AugGVAR is recommended irrespective of whether the underlying
high-dimensional VAR contains an unobserved common factor or not.

The effectiveness of the proposed approach is also illustrated in the empirical application, where
we forecast output growth across 48 countries using Purchasing Managers Indices (or PMIs for
short). PMI data releases are closely watched by financial market participants for signs of improving
or deteriorating economic conditions. PMIs are available across a broad range of countries in
a timely manner (released monthly and with short time delay), and are considered important
indicators of the current level of output growth, on which official data is often released with a
considerable time delay. There is indeed a close resemblance between year-on-year economic growth
and PMlIs, as is evident from Figure 1, which plots data aggregated across countries at the global
level. However, the usefulness of PMIs in forecasting quarterly output growth, over and above the
past history of output growth rates themselves, can only be ascertained by using conditional models
where forecasts are computed with and without conditioning on PMIs.

Besides the dimensionality problem, the empirical application presents us with two additional

1" The data release lags vary across countries and types of variables, and therefore

challenges.
forecasting of output growth, if to be carried out efficiently in real time, must be done conditional
on information sets with different end dates (what we refer to as "nonsynchronous conditioning"

2 The second challenge is that PMIs are observed at a higher frequency than

information sets).
output growth. The literature has tackled these challenges in a number of different ways. One
approach is to model all variables — PMIs and output growth —in one system written in a state-space
form at the highest frequency. The problems of nonsynchronous data releases and mixed frequencies
are then translated into a missing data problem, which is overcome with the use of a Kalman filter
and smoother (see Evans (2005) and Giannone, Reichlin, and Small (2008)).> The second approach
is to temporally aggregate the high-frequency PMIs into the low frequency of the output growth
variable and then estimate a forecasting equation at the low frequency. Examples of this approach
include Trehan (1989), Parigi and Schlitzer (1995), Kitchen and Monaco (2003), Riinstler and

Sedillot (2003), Baffigi et al. (2004), Parigi and Golinelli (2007), and Diron (2008). The third

!The focus of our analysis is forecasting economic growth in a sample of 48 countries (with PMI manufacturing
and services indices being available for a subset of the 48 countries) that comprise 92% of the world’s economic output
in 2013 nominal prices. We have 87 predictors for forecasting economic growth in a particular country (or region),
and the use of methods that allow for a large number of predictors is therefore necessary.

2Nonsynchronous conditioning information sets are also called ‘ragged edge’ information sets in the literature, see
Wallis (1986).

3This approach has been applied in a number of recent papers, see Riinstler et al. (2009), Angelini et al. (2010),
Barhoumi et al. (2010), Camacho and Perez-Quiros (2010), Matheson (2010), Yiu and Chow (2010), Angelini et al.
(2011), Arnostova et al. (2011), Banbura and Riinstler (2011), de Winter (2011), Aastveit and Trovik (2012),
D’Agostino et al. (2012), Siliverstovs (2012), Siliverstovs and Kholodilin (2012), Lahiri and Monokroussos (2013),
and Banbura and Modugno (2014).



approach is the mixed-frequency data sampling (MIDAS) regression introduced by Ghysels et al.
(2004) and later extended by Ghysels et al. (2007), with applications by Clements and Galvao
(2008 and 2009), Andreou et al. (2010), Marcellino and Schumacher (2010), and Kuzin et al. (2011
and 2013).

In this paper, we follow the simple approach of aggregating PMI data into a quarterly frequency,
and show how to derive conditional forecasts using GVAR or AugGVAR models in the case of
nonsynchronous conditioning information sets. Aggregation of PMI data into the frequency of
output growth allows us to readily implement other data-rich forecasting methods as well. As an
alternative to GVAR forecasts, we consider a number of commonly used methods for forecasting
with a large number of predictors. In particular, we implement the Lasso, Ridge, factor models
(FM), factor-augmented autoregressions (FAR), and partial least squares (PLS) methods, which
are widely used in the forecasting literature (see for example reviews by Eklund and Kapetanios
(2008) and Groen and Kapetanios (2008)).* We describe individual methods in more detail and
provide references to the literature in Section 8.2.

We find that regardless of the particular forecasting method employed, the information con-
tained in PMIs substantially improves output growth forecasts for different months within the
current quarter (h = 0). This result is robust across the countries and methods considered. We
obtain about 15-20% reduction in the cross country PPP-GDP weighted average of the mean square
forecast errors over the out-of-sample forecast evaluation period of 2006Q1-2013Q2. In contrast,
the contribution of PMIs to the forecasting performance of output growth is found to be rather
limited beyond the current quarter. Also, in line with the theoretical and MC results, we find that
the AugGVAR performs better than the non-augmented GVAR, and that AugGVAR forecasts do
as well as other data-rich forecasting techniques for the months within the current quarter, but
tend to do significantly better for the months in the subsequent quarters (h > 1).

The remainder of the paper is organized as follows. Section 2 sets up two alternative high-
dimensional factor-augmented VAR model specifications. Section 3 discusses forecasting with
factor-augmented VARs and derives a large N representation of the infeasible optimal forecasts
when factors are unobserved. Section 4 discusses forecasting with GVARs, shows that the presence
of a strong unobserved common factor can lead to an undetermined GVAR model, proposes the
AugGVAR, and establishes uniform convergence of feasible AugGVAR forecasts to the infeasible
optimal forecasts as N, T EN oo such that N/T — s for some 0 < s < co. Section 5 presents an
extension of the analysis to the case of multiple factors. Section 6 discusses forecasting with GVARs
in the case of nonsynchronous conditioning information sets. Section 7 illustrates the theoretical
findings by means of Monte Carlo experiments. Section 8 presents the empirical application to
forecasting GDP growth using PMIs. This section also presents an extension of the panel Diebold
and Mariano (1995) (DM) test statistic proposed by Pesaran, Schuermann, and Smith (2009) to the

case where aggregation weights are unequal, and discusses the consequences of the panel DM test

YWe note that the existing theoretical results on Lasso and Ridge do not cover the case of dynamic models.
Nevertheless, these data-rich methods are commonly employed in the forecasting of economic variables and thus
provide an interesting benchmark.



when the differences in forecast errors are cross-sectionally dependent. Section 9 ends with some
concluding remarks. Technical proofs and further results are provided in an Appendix. Additional
results are presented in an online Supplement available from the authors upon request.

A brief word on notations: ||Al|; = 1I£1Ja<xn o laij], and A = max i1 laij| denote the

maximum absolute column and row sum norms of A € M"™*" respectively, where M"™*" is the
space of real-valued n x n matrices. A;(A) is the largest eigenvalue of A, ||A|| = /o (A’A) is the
spectral norm of A,> o (A) = |A\1(A)] is the spectral radius of A. Matrices are represented by bold
upper case letters, and vectors are represented by bold lower case letters. All vectors are column

vectors.

2 Specifications of factor-augmented VARs

We consider two alternative large dimensional factor-augmented vector autoregressive (VAR) speci-
fications that differ in the way they are augmented with the unobserved common factor. Specifically,

we consider the following two covariance stationary factor-augmented VAR models M, and M,

M, : Yt — "Yafat =, (yt—l - 'Yafa,t—l) + €at, (1)

and
My, : Yi = ®ryi—1 + Ypfor + Ents (2)

where yi = (Y1t, Y2t -, UNt) s Ys = (V1> V2s s Vsn ) » 8 = a,b are N x 1 vectors of factor loadings,
fst, s = a,b are common factors, which are treated as unobserved unless otherwise specified, ®y,
s = a,b are N x N matrices of unknown coefficients, and 4 = (Eslt,€32t,...,€sNt)/, s = a,b are
N x 1 vectors of idiosyncratic shocks. It is assumed that the common factors follow covariance

stationary AR(1) processes
fst = psf&t—l + vgt, for s = a, b. (3)

Equations (1)-(3) feature only one lag and one common factor for expositional convenience, and
higher order lags and/or more common factors could be considered. We also abstract, without the
loss of generality, from deterministic terms. Introducing these terms is relatively straightforward.

We postulate the following assumptions that, among others, restrict cross-sectional dependence
of reduced form errors and for the purpose of estimation impose some suitable restrictions on the
VAR coefficients as N — oo.

ASSUMPTION 1 (Cross-sectionally weakly dependent idiosyncratic errors) Idiosyncratic errors

in €gt, for s =a,b, follow the ‘spatial’ model

Est = Rsnst;

Note that if x is a vector, then ||x|| = 1/0 (X'x) = v/x'x corresponds to the Euclidean length of vector x.



where the N x N matriz Rs has bounded row and column matriz norms (in N), and ng ~
IID(0,Iy).

ASSUMPTION 2 (Unobserved common factor and its loadings)

a. (Model without factor) vy =0 for s = a,b and for alli=1,2,...,N.

b. (Model with factor) The unobserved common factors fs, for s = a,b, are characterized by
(8) with |pg| < 1. The macro shock vs is independently distributed of idiosyncratic errors,
E(vs) =0, E(v%4) = 0%, =1—p2, and E (vavsy) = 0 for s = a,b, and any t # t'. The
factor loadings are independently and identically distributed with a nonzero mean, v, # 0, and
a finite variance. In addition, the factor loadings are independently distributed of the macro

and the idiosyncratic shocks.

ASSUMPTION 3 (Covariance stationarity and bounded variances) There exists a small positive

constant € such that | ®s|| < 1 — €, for s = a,b, where | ®;|| denotes the spectral norm of ®.

ASSUMPTION 4 (No neighbors) There exists a (finite) positive constant K < oo, which does
not depend on N, and such that for any N € N, where N denotes the set of natural numbers, we

have
|pgiil < K, for s=a,b and anyi=1,2,....N

and

K
’¢Sij| < N fors=a,b and any j #1, 4,5 =1,2,..., N,

where ¢g;; denotes the i, j-th element of the matriz ®s.

Remark 1 Assumption 8 is stronger than the usual finite-N covariance stationarity assumption,
which restricts the eigenvalues of ®, to lie within the unit circle. Assumption 3 also ensures that

the variance of y; exists as N — oco. See Chudik and Pesaran (2011) for a related discussion.

Remark 2 Assumption 4 rules out any neighbors (with the exception of own lags). This assump-
tion can be relaxed, at the expense of notational complexity, without any fundamental implications

for the main results derived below.

Because the common factors fs are unobserved, it is unclear how one could choose between
the two specifications, (1) or (2). Therefore, it is important to develop methods that are robust to
the way the common factor is introduced in the VAR model. In view of this ambiguity, we proceed
with both models and show that under the above assumptions the common factors can be well
approximated by cross-section averages and their lags, under both specifications. The key practical
difference between the two specifications turns out to be in the number of lags of cross-section
averages that are required for consistent estimation and forecasting. While only contemporaneous

cross-section averages are required for approximating the common factor in the case of model (1),



the consequence of the factor error structure in (2) is that a large N representation for cross-
section averages features an infinite-order distributed lag function in the common factor (Chudik
and Pesaran, 2014a). Under certain conditions, such infinite lag polynomials can be inverted and
appropriately truncated for the purpose of consistent estimation and inference as in Chudik and
Pesaran (2013a).

3 Forecasting with factor-augmented VARs

Factor-augmented VAR models considered by Bernanke, Bovian, and Eliasz (2005) and Favero,
Marcellino, and Neglia (2005) are low-dimensional VARs augmented by a small set of factors that
enter as additional variables. Factors are estimated from a large set of n time series, and the
estimates of the factors are plugged into a VAR as if they were observed. This plug-in approach,
where factors are treated as if they were observed, is justified by considering n to be sufficiently
large. Factors in these models represent latent variables that summarize the behavior of a large
set of time series. Our factor-augmented VAR specifications M, or M, differ in that we include
a large number of variables in a VAR and the factor is used to capture a strong cross-sectional
dependence. Model M, is close to that of Stock and Watson (2005, equation 13), where factors are
exogenous and enter the VAR in the form of a factor error structure, but ®;, is restricted to be a
diagonal matrix. A version of the factor-augmented model M, was considered by Dées, di Mauro,
Pesaran, and Smith (2007), who imposed a block-diagonal structure on ®;,.

Forecasting with low- or high-dimensional factor-augmented VARs is straightforward when it
is assumed that the factor and coefficients are known. Consider model M, and information set
Ty U Fur, where 7, = {y¢,y¢—1,...} is an information set containing all information on N cross-
section units at time ¢, and For = { fat, fat—1,...} is an information set on current and past values
of the common factor. Solving (1) for y;1p — ¥4 fa,t+n by backward substitution yields

h—1
Yerh = Yafapen = (e = Vofar) + Z P eariht;
£=0

and after repeatedly substituting equation (3) for the unobserved common factor, we obtain the

following forecasting equation:

Yit+n = ‘I’ZYt + gahfat + £ath7 (4)

where g, = (pZIN — @Z) Yo, In is an N x N identity matrix, and

h—1 h—1
¢ l
Sath = Z PaVa,t+h—~ + Z (I.asa,t+h—f-
/=0 /=0

For h > 1, &, is serially correlated, but orthogonal to the information available at time ¢, irrespec-

tive of whether the information set includes Fg; or not; namely we have E (&,,| Zt, Fat, M) = 0,



and E (&uplZi, My) = 0, for h = 1,2,.... Assuming that the information set contains Fy;, the

optimal h-step ahead forecasts (in mean square error sense) are given by

yi+h|t =F (yt+h|It7Fat7 Ma) = ngt + gahfat7 fOI' h = 1) 2) (5)

Similarly, the optimal forecasts with respect to the full information set, Z; U Fp;, under model

M, are given by

yl,)g+h|t =F (yt+h|1—tv~7:btv Mb) = q)I})LYt + gbhfbt7 for h = L2, .., (6)

where gy, = Z?;ol pZ_£<I>£'7b. Note that under both factor-augmented VAR specifications, the
conditional forecasts in (5) and (6) are linear in y; and the unobserved factor, fg, for s = a, b, and

neither depend on the covariance of the idiosyncratic errors.

3.1 Forecasting with high-dimensional factor-augmented VARs when factors

are unobserved

The optimal forecast in (5) and (6) depends on the unobserved common factor and possibly a
large number of unknown parameters. When N is small, the optimal forecasts of y;.;, based on the
information set Z; alone can be derived using Kalman filter techniques assuming a full knowledge of
the factor-augmented model and processes that generate the factors.® In practice, the requirement
of having a full knowledge of the underlying model is a disadvantage, and methods that are robust
to certain variations in the assumptions of the model, such as the way factors are introduced in the
VAR model, are welcome. Nevertheless, application of the Kalman filter to large systems clearly
deserves attention, but this is beyond the scope of the present paper, and will be left to future
research. Instead here we propose an alternative large N approximation to the unobserved factor
problem, and derive optimal forecasts that depend on observables and a finite number of unknown
parameters, which can be consistently estimated.

We start with model M,, and using (5) we note that the optimal forecast of y; 44, the ith

element of y,p, conditional on Z; U Fg; can be written as
Y o = B (Yiienl T, Fatr, Ma) = i ®@0ye + i Vaifar — €ni®uyafar for =1,2,...,  (7)

where ey; is an N x 1 selection vector with its it element unity and zeros elsewhere. The unobserved
common factor can be approximated by cross-section averages along the same lines as in Pesaran
(2006) and Chudik and Pesaran (2011). In particular, Chudik and Pesaran (2011) show that under

Assumptions 1-3 and for any vector w = (wy, ws, ..., wy )" such that

K
1Wlloo = max fwi] <, (8)

®In the Appendix we show how to derive optimal forecasts of y,;, based on the information set Z; when the
dependent variables are generated according to (2).



we have
Gur = W'ye = (W) fur + 0 (N2). 9)

Assumption 4 implies the existence of finite positive constants K, for £ = 1,2, ..., h, such that for

any N € N and any 4,5 € {1,2,..., N} we have

K,
Pavii — Phii| < N (10)
as well as %
V4
‘éaﬁij{ < W? (11)

where ¢,;; denotes the (i, j) element of ®’. Using (10)-(11) in (7), and (9) to substitute out the

cross-section average Zj\[:l i PatijYjt yields”

y(z'l,t+h|t = ¢Ziiyit + (pg - ¢Z”> Yai fat + Op (N—l/z) ’

for any given fixed forecasting horizon h > 0. Furthermore, for any weights vector, w, which in

addition to condition (8) also satisfies

N
> wi=1, (12)
i=1
we obtain
Ywa = Ya T Op (N_l/Q) ) (13)
and hence
Y5 renle = Puigic + Canifwr + Op (N_I/Q) : (14)

for any ¢ and a given fixed forecasting horizon h, where

Pl — qbZ“) Jai - ynder Assumption 2.b

~ Y
Ywa

0, under Assumption 2.a
Cahi = (

Suppose now that y; is generated according to (2) instead of (1). Taking cross-section averages

in this case yields

Yot = WRpy_1+ (W/‘)’b) Jor + W'ey,
= W®yi1+ Vot + Op (N_1/2> ; (15)

where w'ey, = O, (N -1/ 2), and, for a given ®;, fi; can be approximated (up to a scaling constant)
by Guwt — W ®py;_1. But in practice ®; is not known, and cannot be estimated consistently when
N is large. Nevertheless, fi; can be approximated by an infinite order distributed lag function in

Jwt- In particular, under Assumption 3 and assuming that the individual dynamic processes have

! .
"We can use (9) because the vector (¢yei1, Pasizs - Gatii100s Papi i1 Parin) satisfies (8).



been in operation for some time, we have
o oo
_ J J
yt = § :‘I’beb,tﬂ' + E :‘I’b’)’bfb,tfj’
=0 =0

and hence

o0 o0
/ _ 1 +1 raJ 1
w®py 1 = E w®, ey i1+ E WPy o1
j=0 J=0

Using this result in (15) now yields
o0
Jut = dy (L) for + > W pen s, (16)
=0

where the polynomial d, (L) = 302 dpL* = 332, W' @i, L* depends on v,, w and all elements
of ®;, (including the off-diagonal elements), and

o o0
Var (Z w’@ﬁsbi_g) - Z w IR, R, ! w.
=0 =0

Taking the spectral matrix norm, under Assumptions 1 and 3, and condition (8) we have,

oo
Var (Z w’@£5b7t3>
=0

where [|w|* < [[wl|, W], < N [w]%, = O (N~") (condition (8)), [|Rs||* < |Roll |Rsll; = O (1)
(Assumption 1), and > ;2 @3] = O (1) (Assumption 3). Using (17) in (16) and noting that
E> 2, W"I'f;sw,g = 0, we obtain

< WP IRs|* Y [ ®el* = O (N7, (17)
=0

Jut = dy () for + Op (N712). (18)

Note that the coefficients in the polynomial dj (L) satisfy |dpe| = |w’<I>£’yb| < ||w]| H<I>£H vl =
0 [(1 - e)é] and are thus declining at an exponential rate. Assuming that a; (L) = d; ' (L) exists

and its coefficients also decline exponentially,® we obtain
fi = ay (L) Gur + Op (N712) (19)

and the error of approximating f; with Z@):O apey,_p declines exponentially in the truncation lag,

p. Now consider the i*" element of yl; St in (6), namely

Vi evnte = B Wieenl Ty For, My) = €y ®Lye + goni for, for h=1,2,..., (20)

8See Lemma A.1 of Chudik and Pesaran (2013b) for sufficient conditions on the existence of a (L) with exponentially
declining coefficients.



where gpp; = €/, 8n = Z?:_ol pg_ee’mq)ﬁ'yb. Define wy; = ®en; — ¢fy;en; and note that (10)-(11)
also holds for model M, and therefore ||wpyp;l|,, = O (N_l), that is wyp,; satisfies (8). Hence, we

can use the same arguments as in the derivation of (18) to obtain
4 . = . L O N_1/2
winiyt = Bpni (L) for + Op :

where By,; (L) = 320y wh, @57, L°. Using this result in e}y, ®l'y; = ¢l yi+w},;y: and substituting
(19) in (20) yields the following large N representation of yll’.y bRt

ylz‘,t_t,_h\t = ¢2uyzt + Cohi (L) Yuwt + Op (N_I/Q) ) (21)
where the polynomial
(L) 0, under Assumption 2.a
Chhi =
oh [Boni (L) + gbni] ap (L), under Assumption 2.b

Note that when Assumption 2.b holds, in general, cpp; (L) is an infinite order polynomial in the lag
operator, L.

The following proposition summarizes the main findings of this subsection.

Proposition 1 Let y; be generated by model (1) or model (2) with a factor given by (3), Assump-
tions 1, 2.a or 2.b, and 3-4 hold, w be any arbitrary vector of weights satisfying (8) and (12), and
the polynomial ay, (L) = d;l (L) exists. Then for any cross-section unit i € N, and a given fized
forecasting horizon 0 < h < K, the optimal forecasts of y; 1+, defined in (5) and (6) have a large
N representation given by (14) and (21), respectively.

Comparing (14) with (21) we see that the latter involves an infinite order lag distribution in
cross-section averages that need to be truncated, whereas under the former only contemporaneous
values of cross-section averages are included. In practice where the nature of factors and how
they enter the VAR model are not known, the lag order selection is likely to be important when
forecasting with large factor-augmented VARs. It might not be sufficient just to add factor estimates

to the VAR model. The lag orders of y;; and #,; need to be selected with care and together.

4 Forecasting with a GVAR

The GVAR approach was introduced in Pesaran et al. (2004) and has been used extensively to
model cross country, regions or market interactions. Chudik and Pesaran (2014b) provide a recent
survey. Consider N cross-section units (say countries) and suppose that the endogenous variables
specific to unit ¢, denoted by the k; x 1 vector y;;, are related to their own past, and current and
past values of the remaining units. It is clear that without further restrictions, estimation of the

full system of equations in the endogenous variables, y; = (¥} Y5 - yg\,t)', will be subject to the

10



curse of dimensionality, even for moderate values of N. The GVAR approach resolves the curse
of dimensionality by adopting a two-step procedure. In the first step, cross-sectionally augmented
conditional models are estimated for each cross-section unit, taking the cross-section average as
weakly exogenous. In the second step, the estimated conditional models are combined to form a
complete system which is then used for forecasting and policy analysis. The key assumption that
cross-section averages are weakly exogenous is justified under certain plausible assumptions (see
Chudik and Pesaran (2011)), and are routinely tested in empirical applications of the GVAR.

More specifically, for each unit 4, the following conditional model is estimated:
Vit = Oi¥it—1+ BioY it + Bit¥uwis—1 + it (22)

for i = 1,2,...,N, where y,;; = Wiy; is a k* x 1 vector of cross-section averages specific to unit
i, W, is a k x k* matrix of unit-specific weights that define the k* cross-section averages, and
k = Zfi 1 ki is the total number of variables. We abstract from the deterministic components,
observed common factors, and additional lags for the simplicity of exposition, but these additions
can be readily accommodated.

In the second step, individual models in (22) are stacked and solved in one large VAR. Stacking
(22) for i = 1,2, ..., N yields

Yi =0y, 1+ BoYu + B1Vu 1+ & (23)

— . — — /
where y,,, = (yéult7y£1)2t’ "'?y{th)la §t = (E/1t7€/2t7 --~759Vt) , and

® 0 - 0 By, O 0
0 O, 0 0 By, 0

e=| . CBh=1| . ‘ ,for h=1,2,....
0 o0 Oy 0 o By

Recognizing that ¥,,, = Wy,, where W = (W1, Wy, .... Wy)', (23) can be written as
Goy: = Gix¢—1 + &, (24)
where
Gy = (Ik — B()W) , and G| = (@ + B1W) . (25)

Finally, provided that Gy is invertible, we can multiply (24) by Gy ' from the left to obtain the
following GVAR model:

yi = Gy;_1 +uy, (26)

where G = GGy, and u; = Gy '¢;.
To forecast with a GVAR, one can assume that (26) is the data-generating process (DGP),
or alternatively one can assume that the DGP is model M, or M;, and the GVAR is used as an
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approximation of the model M, or M. In the former case, where the DGP is (26), forecasting
is straightforward. But in the latter case, where M, or M, is the DGP, there is no reason to
believe that the inverse of Gg exists when the unobserved common factor is present. Even if the
estimate of G is not rank deficient, the singularity of Gg will have adverse effects on the forecasting
performance.

To show the rank deficiency of Gy, assume that the DGP is model M,, given by (1) and (3),
that is k; = 1, k = N, y¢ = (y1t, Yot, ...,yNt)', k* = 1 and the cross-section average ,; = W'yy,
where the weights vector w is common across units and satisfies (8) and (12).” In what follows we
focus on model M,, and drop the subscript a to simplify notations. This specification (as opposed
to Mp) allows us to work with a finite lag polynomial, and also allows us to use the properties
of the cross-section augmented least squares (CALS) estimator developed in Chudik and Pesaran
(2011). The main arguments put forward in this section apply equally to the alternative model
specification, M, defined by (2) and (3), by relying on the CALS estimation with appropriately
truncated lags as considered in Chudik and Pesaran (2013a).

Using (1), (3) and Assumptions 1-4 above, and following a similar line argument as in Chudik

and Pesaran (2011), we obtain the following unit-specific equations:
Yit = GiiYit—1 + biolwt + il 41 + iy for i € {1,2,.., N}, (27)
where under Assumption 2.a we have b;yp = b;1 = 0, and under Assumption 2.b,
bio = Vi Vis bit = Vo Viuis (28)

where 7, = Zf\i1 w;y,; . Also, under both assumptions we have &;; = €4+ O, (N_1/2). Chudik and
Pesaran (2011) established that the least squares estimates of (27) are consistent and asymptotically
normally distributed. Using (27), Go = (Iy — bow’), which is easily seen to be rank deficient. The

rank deficiency follows (w'bg = 1 and therefore rows of Gg are linearly dependent)
W/GO = W, (IN - bgW,)
N
= w -5} (Z wi'yl) w' = 0. (29)
i=1

The consequence of rank deficiency of Gy is that the system of N equations in (27) is undetermined,

and we discuss this problem in greater detail next.

4.1 Rank deficient case

The GVAR model (26) is derived under the assumption that the contemporaneous coefficient ma-
trix, Go, (defined by (25)) has full rank. To clarify the role of this assumption and to illustrate the

consequences of possible rank deficiency of Gg, abstracting from lags of (y;t, Jwit) , we consider the

¥ Conditions (8) and (12) are sufficient for the usual granularity conditions (see (45) and (46)) to hold.
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following illustrative GVAR model:
Yit :)\igwit+5it7 for ¢ = 1727"'7N7 (30)

where Gyit = W,y:. Let A be the N x N diagonal matrix defined by A = diag (A1, A2, ..., An), and
let W= (w,,wo,...., wy). Write (30) as

yi = AWy, + ¢4,

or

GoXt = &g, (31)

where Gy = Iy — AW. Suppose that Gy is rank deficient, namely rank (Go) = N — m, for some
m > 0. Then the solution of (31) exists only if &; lies in the range of Gy, denoted as Col (Gy).
Assuming this is the case, system (31) does not uniquely determine y;, and the set of all its possible
solutions can be characterized as

yi = I'f, + Gles, (32)

where f, is a vector of m arbitrary stochastic processes, I is a k X m matrix which is a basis of the null
space of Gg, namely GoI' = 0, rank (I'T") = m, and Gg is the Moore-Penrose pseudo-inverse of
Gyo. To verify that (32) maps all possible solutions of (31), note that G e is the particular solution
of (31) and I‘/E is a general solution of the homogenous counterpart of (31), given by Goy: = 0.
To prove the former, from the property of Moore-Penrose inverses, namely GOG(J]r Go = Gy, we
note that G’OG’S— Goy: = Goyy, or g, = GOGSF g+, which establishes that GSF €; is indeed a solution
of Ggy; = &;. To prove the latter, we note that I'" is a basis of the null space of Gg and therefore
GOI‘ft = 0 for any m X 1 arbitrary stochastic process ft, and the set of solutions must be complete
since the dimension of Col (T") is m.

Let f; = f't —F (f‘t‘ st> = f’t — D’g;. Then (32) can also be written as an approximate factor
model, namely

y: = I'f; + Hey,

where f; is uncorrelated with &; by construction, and
H=TM +G{.

Without any loss of generality, it is standard convention to use the normalization Var (f;) = I,,,
and to set the first non-zero element in each of the m column vectors of I" to be positive. These
normalization conditions ensure that I' is unique, in which case H is unique up to the rotation
matrix, M. Therefore, the full rank condition, rank(Go) = N, is necessary and sufficient for yy,
given by (30), to be uniquely determined. It also follows that y; must have a factor structure in
cases where Gy is rank deficient. Finally, note that all of the above results hold for any N, and as

N — oo.
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4.2 Dealing with rank deficiency by augmentation

If Gy is known to be rank deficient with rank N —m and m > 0, then the GVAR model (30) would
need to be augmented by m equations that determine the m cross-section averages, defined by I'y;,
in order for y; to be uniquely determined. In the case of system (27), m = 1, and augmentation
by one additional equation is needed in order to obtain a unique solution for y;. Different options
could be considered for the augmentation of (27). We consider augmenting the set of conditional

equations in (27) with the following marginal equation for cross-section averages:

Ywt = PYwt—1 T &g, where gy = v + Op <N_l/2> , (33)

and we treat §,; as a proxy for the (scaled) unobserved common factor (see (9)). Stacking (27)
and (33), we obtain the following VAR model in z; = (¥}, Juwt)':

Aoz = A1z41 + ey, (34)

where e, = (€,,&5) = (e}, vv) + O, (N71/?),

Iy —b ® b
Ag=| Y 0], Ay = ), (35)
0 1 0 »p

and ® is an N x N diagonal matrix with elements ¢,;, for « = 1,2,..., N, on the diagonal. The
matrix Ay is (by construction) invertible, and let A = AalAl. Note that (using b; = —®by, see
(28))

Al ( ®! (p'Iy — ©') by

fort=1,2,..., 36
. p ) (36)

and consider the following forecast of y; ;4p:

au

g N h
Yitrnt = en+1,;A %, (37)

where ey11, is an IV + 1 dimensional selection vector that selects the i-th element. Substituting
the expression (36) for A" in (37), we obtain

aug Dy under Assumption 2.a -
Yitvnie = h, . b h\ Y- . (38)
OuYit + (p qb,-,-) 5 Yt under Assumption 2.b
It now readily follows by comparing (38) and (14) that
Yigtne = Yigrhlt + Op (N*m) : (39)

which establishes the consistency of the forecast y‘;qﬁrhl , defined in (37). These findings are sum-

marized in the following proposition.
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Proposition 2 Lety; be generated by (1), Assumptions 1, 2.a or 2.b, and 3-4 hold, and w be any
arbitrary vector of weights satisfying (8) and (12). Then for any cross-section unit i € N, and any

given fixed forecasting horizon 0 < h < K, the forecast y’ defined in (37) is consistent, that is

au,
i t+h\t
au,

yi,t—&-h\t — Yit+hlt L 0 as N — oo.
y?iim , is still an infeasible forecast since the parameters in (37) are unknown and need to be

estimated. It is therefore important to establish asymptotic results for feasible forecasts.

We consider estimation of GVAR forecasts y; ;44); and AugGVAR forecasts ya Sl by using
least squares estimates of parameters of the conditional cross-section augmented models (27) and
(in the case of the AugGVAR only) also the marginal model (33). Namely, we define

.@i,t+h|t = elN,iGhYta (40)

and

~aug

AR
Y, t—‘rh\t elN+1,iA Zy, (41)

fori=1,2,...,N and h = 1,2, ..., where we use hats on G and A to denote that these matrices are
constructed based on the least squares estimates of the unknown parameters in (27) and (33).

We collect the individual forecasts in the vectors §; p; = (y1 t+hlts U2t 4hlts - UN t+h‘t)l and

~aug ~Qu, ~aug ~aug ~aug
Yitnit = y1t+h|t’y2t+h|t" YN t+hlt t+hlt

the case of the weakly cross-sectionally dependent model and the case of the model featuring an

/
> . We investigate the asymptotic properties of § in

unobserved common factor.

Theorem 1 Suppose y; is generated by model (1), w is any vector satisfying conditions (8) and
(12), Assumptions 1, 2.a (weakly cross-sectionally dependent model) or 2.b (model featuring unob-
served common factor), and 3-4 hold, and N,T 2 0o such that N/T — 5 for some 0 < 3 < 0.
Then for any fixed 0 < h < K, the h-step-ahead forecast yﬁ%“ defined by (41) satisfies

HYtJrhlt yt+h\t” = 0. (42)

Moreover, in the case when Assumption 2.b holds, the matriz Go = Iy — bow’ is singular for any
N e N.

The proof is provided in the Appendix.

5 Extension to multiple unobserved common factors

Theorem 1 establishes that regardless of whether an unobserved common factor is included in the
VAR, it is asymptotically justified to use S/ﬁ%l , for forecasting individual endogenous variables
in the sense that the differences between infeasible optimal forecasts and feasible forecasts are
arbitrarily small as N, T 7, oo such that N /T — 5 for some 0 < 3 < oo. This result is established

under the restrictive assumption that the number of unobserved factors in the underlying VAR
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model is at most equal to unity. Here we relax this assumption and consider VAR models with
multiple factors. As in Chudik and Pesaran (2011), we shall assume that there are up to mmax
factors, where mpayx is a fixed known integer, and the data is generated by model (1) with v f;
replaced by I'f,,

yi —Ify =@ (yio1 — 1) + &4, (43)

where T' = (y;,72, ..., 7y) is the N x m matrix of factor loadings, and f; is an m x 1 vector of
unobserved common factors, m < mpax, but m is otherwise unknown. As before, we assume that &;
is independently distributed of f;. Moreover, the vector of unobserved common factors is assumed

to follow the covariance stationary VAR(1) process,
ft = ]-_-[fft—l + v¢. (44)

. . — ! .
Consider muyax cross-section averages y, = W'y, where W = (w1, wa,...,wy) is an N X Muyax

matrix of predetermined granular weights satisfying the conditions

1
Wl = o(n3), (45)
[[w; EFN o
= O (N2 uniformly in j. (46)
W] ( )

Following the same steps as in the case of a single factor, we obtain the following large N repre-

sentation for cross-section averages:
Fur = Dufi + 0, (N712) (47)

and it is clear that the full column rank of T, is necessary for ., to approximate the space spanned

by f;. To this end, we postulate the following assumption instead of Assumption 2.

ASSUMPTION 5 (Multiple unobserved common factors and their loadings) The m x 1 vector of
unobserved common factors is characterized by (44) with |\ (IL¢)| < 1. The macro shocks in vy are
independently distributed of idiosyncratic errors, e¢, E (v¢) =0, |[E (v4v})|| < K, and E (v¢v),) =0
for any t # t'. The factor loadings are bounded, ||v;|| < K, and T\, = W'T is a full column rank

matrix.

Under Assumption 5, we can multiply (47) by (f‘iuf‘w)fl I, from the left to obtain

fi = (T, T0) " T Fur + 0, (N7Y2),

and then using this expression in the VAR model for factors (44), we obtain the following large N
VAR representation for y,:

Yuwt = Hyw,tfl + €gt> (48)

where IT = T, I1; (I_‘QUI_‘U,)f1 I/, and & = Tyvi. AugGVAR representation in the case of aug-

mentation by mmay cross-section averages can be easily obtained as before, but by using marginal
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model (48) instead of (33), and the conditional models (27) augmented with mpyax cross-section
averages in . In particular, we obtain the following AugGVAR representation for z; = (y}, ¥,)":

Aoz = A1z41 + ey, (49)

| —-B ® B
Ay = N ), A= ",
0 L. 0 II

©® is the same as before and By for £ = 0,1 are N X mmax coefficient matrices that collect the

/
where e,; = (£Q,€§7t) )

coefficients corresponding to regressors ¥,, ;¢ in the conditional models (27). Forecasts based on
(49) are given by

aug o h
yi,t+h‘t - eN“l‘mmaxviA Zt- (50)

As in the case when mpa.x = 1, y?fﬁh‘ , can be estimated consistently using the least squares
estimates of the unknown parameters on the right side of (50).

When m < mmpax, augmentation by mpyax cross-section averages is clearly not necessary, and
as can be seen from (47), ¥, are asymptotically (as N — oo) multicollinear. Nevertheless, the
asymptotic multicollinearity does not invalidate the consistency of the AugGVAR forecasts so long
as T, has full column rank. As discussed in Chudik and Pesaran (2011), this rank condition is
necessary for the consistency of estimates of individual parameters of the conditional models (27),
and it is therefore also necessary for the consistency of the AugGVAR forecasts. The following

theorem establishes consistency of the AugGVAR forecasts in the case of multiple factors.

Theorem 2 Suppose y; is generated by model (43), W is any N X mmax matrixz satisfying condi-
tions (45) and (46), Assumptions 1, and 3-5 hold, and N,T 2 o such that N/T — 3 for some
0 < 2 < 0. Then for any fired 0 < h < K, the h-step-ahead forecast

~aug

Yitnt satisfies

~ QU Ly
HYtJrh|t - yt+gh\tHoo — 0.
Proof of Theorem 2 is provided in a Supplement available from the authors upon request.
Instead of pre-determined cross-section averages, augmentation by principal components could
be considered as well. It is analytically more convenient to work with predetermined cross-section
averages as opposed to the principal components, which are essentially cross-section averages with
weights that contemporaneously depend on the observations, y;. We leave it for future research to

establish asymptotic results when ¥y, is replaced by mpyax principal components.

6 Forecasting with nonsynchronous conditioning

Economic variables are typically released with a lag, which could widely differ across countries and
variable types. As a result forecasting must often be carried out with respect to nonsynchronous

information sets. An illustrative example of a nonsynchronous conditioning set arises when obser-
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vations on a subset of variables are available up to time ¢ — 1, but for the remainder of the variables
observations are available up to t. As before, let 7, = {y,y¢-1, ...}, and F; = {f, fi—1,...}, and
suppose that y; can be partitioned as y; = (y1t, ygt)/. Then, a simple example of a nonsynchronous

information set is given by yo UZ;_1 U F;.

6.1 Infeasible optimal forecasts with nonsynchronous information
Solving (1) from ¢ + h backward gives

h—1
Yerh = Vfern =" (v —vfi) + e+ Y ®leriny,
/=0
and after substituting (3) for the factor and taking expectations conditional on yo; UZ;—1 U Fy, we

obtain

E(yisn|yo, Ti-1, Fi) = p"vfi + " (vt — vfio1) + ®"E (e yor, Ti-1, F) - (51)

Therefore, in the presence of nonsynchronous conditioning E (&¢|yat, Zi—1,F;) # 0 and must be
derived. Let Nj (N3) denote the number of elements of y1; (y2:), and partition &, = (&}, &)’
conformably, so that the dimension of €;; = N; for j = 1,2. Since yg; is included in the conditioning

set, we have

E (eat| yot, Ze—1, Ft) = €24,

whereas E (e1¢| yat, Zi—1, Ft) can differ from zero due to possible non-zero correlations between &1,

and e9;. Partition the covariance matrix of &;, denoted by . = (g4€}), as

b >
25 _ ( ell el2 ) : (52)

o1 22

where 3., = FE (gji€},) has dimensions N; x Ny, for j,k = 1,2. The conditional expectations,

E (e1t|y2t,Zi—1,Ft), can now be readily obtained as
E (e yat, Ti—1, Fr) = Te12X 9ot

and hence

PSS
E (etlyat, Tt-1,Ft) = ( s125e22 > €2¢. (53)
Iy,

Substituting (53) in (51), the optimal forecasts in the presence of nonsynchronous conditioning are

given by

E(yisn|yo, Ti-1, Fi) = p"vfi + " (yio1 — v fi1) + @" ( I
N2

-1
25122522
€at,
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where €91 = yor — Yo ft — SH® (y1—1 — v fi—1), and Sy is a selection matrix that selects yo;, defined
by ya: = Shy:.

The covariance matrix of idiosyncratic errors, 3., plays an important role in the case of nonsyn-
chronous conditioning, in contrast with the case discussed in Section 3, where X, did not enter the
forecasting equations. It is clear that a consistent estimation of F (e1;| yat, Zi—1, Ft) is necessary for
consistency of feasible forecasts when the conditioning information set is nonsynchronous, which
adds further complexity to the forecasting exercise since when N is large, estimation of 3. will
be subject to the curse of dimensionality. Estimation of large covariance matrices is discussed in
Ledoit and Wolf (2004), Bickel and Levina (2008), Cai and Liu (2011) and Bailey, Pesaran, and
Smith (2014).

6.2 Forecasting with GVARs with nonsynchronous conditioning

In the case of the non-augmented GVAR specification (26), feasible forecasts based on the nonsyn-

chronous conditioning set yo; UZ;_1 can be obtained as
- _ (At Ah s
Vitnlys,zios = G yi—1 + G Gy,

where

A

. DIPS g A
u; = ( “ I u22 > <YQt - Slsztq) )
n

and 2ujk for j,k = 1,2 are suitably partitioned sub-matrices of 3= Ggligégl’ as in (52), and
f)g is an appropriate estimator of the covariance matrix of the reduced-form errors Et defined by
(24).

Consider now the following augmented GVAR specification (see (34)):

z; = Az 1 + G, (54)

where A = Ao_ 1A1, and G, = Aa 1&,;. In the case of AugGVAR specification (54), feasible forecasts
conditional on y9; UZ;_1 can be obtained in a similar way. Assuming that the country-specific and

macro shocks are uncorrelated, we have
— ~ o 2 0\ o
E(uqul,) = A, ' ( ~2 ) Ag Y,

where 25 is a suitable estimator of 3¢, and &gg is the estimator of Var(§;,) defined by (33).

In practice, inverting large covariance matrices has proven problematic, and therefore we also
consider alternative AugGVAR forecasts that avoid inverting large covariance matrices by es-
timating a prediction for y; using the nonsynchronous conditioning set yo: U Z;—1. Let 7y, =

Ny ! vaz Ny+1Yit be the cross-section average of y2, and note that g, and ¥y, are asymptotically
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(as N2 — oo) multicollinear, namely,

e =Yu+0p (N2_1/2> .

Predictions for g, based on the nonsynchronous conditioning set yo; U Z;—1 can be obtained using

an auxiliary regression. We consider

Ui = QY1 + BoV2 + B1Y2i—1 + €t (55)

After constructing the prediction for ,, we proceed with forecasting individual elements of y1; using
the conditional models (27) and taking forecasts of ¥, as given. Forecasts for y;ip, for h = 1,2, ...
can subsequently be obtained recursively using formula (69) by substituting the derived forecasts

for yi;.

7 Monte Carlo experiments

This section investigates the relative forecasting performance of augmented and non-augmented
GVAR models denoted as before by AugGVAR and GVAR, respectively. Our main objective is
to illustrate the main theoretical results of the previous sections on the need to augment GVAR
models with additional equations for cross-section averages in cases where the underlying high
dimensional VARs contain unobserved common factors. We consider two sets of experiments. In
the first set, forecasts for the period T+ 1 are constructed based on the observed data for time
periods t = 1,2,...,T. These experiments correspond to a conventional forecasting exercise in the
literature without nonsynchronous conditioning. In the second set of experiments, we consider

forecasting with nonsynchronous conditioning.

7.1 MC Design

Three DGPs are considered: a high-dimensional VAR model without a common factor, and two
high-dimensional VARs featuring a common factor. The latter two DGPs differ in the way the factor
is introduced in the model and are used to illustrate that the GVAR and AugGVAR methods are

robust to the way unobserved factors are specified to enter the underlying DGP.

DGP1: A high-dimensional VAR without a common factor. The first DGP assumes
7, = 0 for all 4, but allows for weak cross-sectional dependence of errors. y; = (y1¢, y2t, ..., yn¢)  for
t=-M+1,...,0,1,2,..., T is generated as

Yt = ®y;1 + e, (56)

with starting values y_as = 0. The first M = 100 observations are discarded to reduce the effects
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of the initial observations on the results. Matrix ® is taken to be block-diagonal,

(I>1 02><2 et 02><2
O2x2 P2 0252

P = . _ . : (57)
O2x2 0O2x2 -+ P,

where n = N/2 with N being an even integer. Matrices ®s = (¢g;;), s = 1,2,...,n, are 2 x 2

dimensional with their elements generated randomly as

¢sij ~ IIDU(0,0.7), for i = j, and
¢gj ~ I1IDU(0,0.7— ¢g), for i # j.

This ensures || @], < 0.7, for all s, which implies that ||®| . < 0.7, and in turn ensures that the
DGP is stationary for any N € N. Replacing the non-zero elements of ® with O, (N -1/ 2) such
that ||®]|, < 1 has little effect on the MC findings reported below.!”
The idiosyncratic errors, &;, are generated according to the following spatial autoregressive
process:
€t =0.8:e¢+m, 0 < o<1,

where 1, = (014, Nops s Ing) > Mg ~ IIDN (0,0‘%1]\[), and the N x N dimensional spatial weights

matrix S; is given by

01 0 0 0

1 1

0 L o0 0

o L o 1 0
Sa:,2 ‘2

0 i 0 3

0 0 0 0

To ensure that the idiosyncratic errors are weakly correlated, the spatial autoregressive parameter,

0., must lie in the range [0,1). We consider a low and a high value for the spatial coefficient and
1N

set o, = 0.2 and 0.6. We also set a% to ensure N1 Y0 Var (e) = 1.1

DGP2: A high-dimensional VAR with an additive common factor. y; and f;, for
t=—M+1,...,0,1,2,..., T, are generated according to

Vi —Yft = ®(yi—1 — vfi-1) + &1, (58)

0Tn particular, we have considered generating the elements outside the block-diagonal as $;; = Aiwij, where

Xi ~ IIDU (—0.2,0.2) and wi; = ¢;5/ E;\Ll Gijswith ¢;; ~ ITDU (0,1). These findings are available in the Supplement.

"'More specifically, we set af, =N/ Zil e, vR:Rle;n, where e; is an N x 1 selection vector for the unit 7, and
R. = (In —0.S:)" "
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and
fe=pfi-i+ (1— P2)1/2 Vg,

with the starting values y_pr = 0, f_pr = 0. As before the first M = 100 observations are
discarded. The coefficient matrix ® and the idiosyncratic errors in g; are generated in the same
way as in DGP1. We set p = 0.8 and generate v; as N(0,1). Factor loadings are generated as
v; ~IIDN (fy, 03) with v =1 and o, = 0.2.

DGP3: A high-dimensional VAR with a factor error structure. f; ~ IIDN (0,1) and
yg, fort =—M +1,...,0,1,2,..., T, are generated according to

yt =Py, +vft + &1, (59)

with starting values y_ s = 0, and discarding the first M = 100 observations. The coefficient matrix
® and the idiosyncratic errors in €; are generated in the same way as in DGP1. Factor loadings are
generated asy; ~ [IDN ('y, 03) , with 0, = 0.2 and 7 is set to ensure that N~ 17/ (I — <I>)71 TNY =
1, where 7y is an N x 1 vector of ones.

All experiments are carried out for N,7T € {30, 50, 100,200,500}, and replicated R = 2,000

times.
7.2 Individual forecasts and average MSFEs

7.2.1 Forecasting with synchronous conditioning

Our primary objective is to investigate the forecasting performance of the AugGVAR and the non-
augmented GVAR for horizon h = 1 (one-step-ahead forecasts). We do so by comparing these
forecasts with their infeasible counterparts. In particular, we compute the following average mean

square forecast errors (MSFE) relative to the optimal infeasible forecasts:

R N (Ar N o)
D1 2im1 (y(i,%+1|T - yz(,i)“-i-l)

MSFEpy (T +1|T) = |
ry (T + SR SN [E (y§9+1‘2§r)’ft(r)) — y§f%+1]2

(60)

where It(T) = {yt(r),yir_)l, }, ]:t(T) = {ftT), ft(i)l, } , and yfgﬂ is the realized value for unit i,

at time T+ 1, and the Monte Carlo replication, r. Similarly, we compute the MSFE for Aug-
GVAR forecasts ﬁj”é,? T The optimal infeasible one-step-ahead forecasts are computed as (we are

dropping the superscript (r) to simplify the notations)

e v Pyr, in the case of DGP1
E(yir+1|Zr, Fr) = § vipfr +€y® (yr —~vfr), in the case of DGP2 . (61)
vipfr + €Ny Py, in the case of DGP3
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The non-augmented GVAR forecasts (§; r41j7) are based on the following regressions:

P
Yit = Ci+ Gp¥it—1+ Qi iYitie—1 + Z bitYwir—e + Eip, for i =1,3,5,..., N -1, (62)
=0

p
Yio = Cit+GpYit-1+ i 1Yi-10-1+ Z bitYuwi—e + &t for i =2,4,6,..., N, (63)
=0

where §,,;; = Z;VZI w;;y;t. Aggregation weights are such that 7,,;; is a simple cross-section average
of units that do not directly enter individual cross-section augmented regressions in (62)-(63). In
particular, when 4 is odd, wj; = w; ;41 = 0 and w;; = (N — 2)71 for i # j, 7+ 1; and when 7 is even,
wi; = wi;—1 = 0, and w;; = (N — 2)_1 for i # j,j — 1. Let W = [w;;] and

Bg = diag (f)g) for £=0,1,...,p,

where by is the least squares estimate of by = (b1, bag, ..., bae)’. The estimated (non-augmented)
GVAR representation is

P
ye=0+Y Wy o+, (64)
=1
which yields the GVAR forecasts
p A ~
Yriyr = Z Yiyrii—e+9, (65)
=1

where ¥, = Gglég, for 0=1,2,...p, 6 = Galé, Go=1Iy—-BW, G, =& +B,W, G, =B/W,
for £ = 2,3,..,p, ® is a block-diagonal matrix constructed based on the estimates of the block-
diagonal coefficients in (62)-(63), & = (é1, éa...,éx)" is the vector of estimated fixed effects in (62)-
(63), and @, = Gg'&;.

One-step-ahead forecasts based on an augmented GVAR model (

~aug
Yrir

similar way as described in Section 4. In particular, the following regressions are estimated instead

of (62)-(63):

) are constructed in a

p
it = G+ GuYis1+ GipViste1+ Y bl g+ &y fori=1,3,5.,N—-1,  (66)
=0
p
Yit = Ci+ OpYit—1+ @i 1Yi-1—1+ Z bieYs—g + &gy, for i =2,4,6,..., N, (67)
£=0
together with
p
e =cy+ Y peli—t+ &g (68)
(=1
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where 7y = N1 vaz 1 Yit- Individual elements of y(;?ﬁl\T are given by

p

~aug o P _ 5 Y

Yir+1r = Ci,N+12T+1 = € N+1 <5 + E TZZT—£> ) (69)
(=1

where z; = (yg,gt)’, Y, = AalAg, for ¢ =1,2,...,p, o = (é’,ég)/,

. Iy -b < & b R 0 b
Ay = N 0 , A = Al ,and Ay = NN Af ,for £=2,3,...,p,
Oi1xnN 1 O1xN P1 O1xN Py

in which all estimated coefficients are based on (66)-(68).
The number of lags for cross-section averages in both augmented and non-augmented GVARs

is set to p = [Tl/?’], where [.] denotes the integer part.

7.2.2 Forecasting with nonsynchronous conditioning

We consider forecasting the period T+ 1 conditional on a nonsynchronous information set, which
includes observations on odd cross-section units for periods t = 1,2, ..., T — 1, and even cross-section
units for periods t = 1,2, ...,7. We consider the following nonsynchronous conditioning information
set:

St =S17-1U Sar, (70)

where Sl,T—l = {yit>t = 1,2, ,T - 1,’i = 1,3,5, ,N - 1}, and SQT = {yityt = 1,2, ...,T,i = 2,4,6,

As in the case of forecasting without nonsynchronous conditioning, we compute the simple cross-

section average MSFE of the feasible GVAR nowcasts relative to the optimal infeasible nowcasts

R N (1) " \?
Dore1 Diet (yi,Tﬂ\sT - yz‘,T+1)

S S [B (s P UFD) — 4]

MSFEgy (T +1|T) = (71)

and similarly for the AugGVAR forecasts 7/ 1Sy
; T
We compute GVAR forecasts in the presence of nonsynchronous conditioning as outlined in
Section 6, and consider two options for the estimation of the covariance matrix of idiosyncratic
shocks. First is Ledoit and Wolf (2004)’s estimator of 3¢, denoted as f)g? rw. The second option

is to use the following block-diagonal specification:

1 0gxz o Ooxo

. O2x2 39 022

3¢ = . _ _ , (72)
Osx2 Oaxa -+ 3,

where 3, is the sample estimate of the covariance matrix of the 2 x 1 vector (52371,t£2s,t)/ for
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s=1,2,...,n.!2

Forecasting with an AugGVAR is subject to the same problems as in the case of a non-augmented
GVAR when the conditioning information set is nonsynchronous. We consider the same two options
for estimating the large-dimensional covariance matrix ¢, namely 257 Lw, and 257 B- In addition

we consider the AugGVAR forecasts (see Section 6.2) that avoid inverting large covariance matrices.

7.3 Monte Carlo results
7.3.1 Case of synchronous conditioning

Table 1 reports the results for the augmented and non-augmented GVAR methods in experiments
with low cross-section dependence of idiosyncratic shocks (o, = 0.2) and a sparse matrix ®. The
top panel of this table presents relative MSFE in the case of data generated by a high-dimensional
VAR model without a common factor. We can see that both augmented and non-augmented GVAR
methods converge to the infeasible forecasts as the sample size grows, and the difference between the
GVAR and AugGVAR is minimal with the latter marginally better. It is interesting to observe that
the augmentation with an additional equation for cross-section averages, although asymptotically
redundant, does not worsen the forecasting performance. We also observe that an increase in the
time dimension is crucial for the improvement in the forecasting performance, as expected, whereas
increasing N (beyond 30) does not seem to make that much of a difference to the results.

In contrast, qualitatively different results are reported in the middle and bottom panels of
Table 1 which report the results for the two specifications of the VAR with an unobserved common
factor. AugGVAR forecasts are not affected by the inclusion of the factors, and their performance is
generally similar to those reported in the top panel of the table for the VAR model without a factor.
This confirms that the AugGVAR is robust to the way the unobserved factor is introduced in the
analysis. However, the performance of the GVAR without augmentation deteriorates considerably
with the introduction of an unobserved common factor, especially when T is small and N large.
This finding is in line with our theoretical result which suggests that in the presence of a common
factor the contemporaneous matrix Gy becomes singular as N — oo. The results clearly illustrate
that the AugGVAR performs well, irrespective of whether the underlying VAR contains a factor or
not. Also, when a factor is included, the results are robust to the way the factor is introduced in
the VAR.

The findings for the experiments with a high spatial coefficient (namely o. = 0.6) and/or a
non-sparse coefficient matrix ® are qualitatively similar and are reported in a Supplement which

is available upon request.

7.3.2 Case of nonsynchronous conditioning

The results for forecasting with nonsynchronous conditioning are summarized in Table 2. Similarly

to Table 1, this table reports the results for experiments with g, = 0.2 and a sparse matrix ®.

12While we acknowledge that several other options for estimating large covariance matrices have been proposed in
the literature, we do not consider them here. We leave this important topic for future research.
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Recall that an estimate of the covariance matrix X is required for the computation of forecasts
when the conditioning information set is nonsynchronous. Table 2 summarizes the findings when
5)5, Lw and 5)57 p are used (in the case of both the GVAR and the AugGVAR) and when a non-
synchronous cross-section average is used instead of an estimate of X (AugGVAR).!3 Table 2
shows that with nonsynchronous conditioning, augmentation continues to be preferable. It does no
harm (or marginally improves the forecasting performance) when no unobserved common factor
is present, and continues to perform well when a factor is present. It is also robust to the way
the unobserved common factor is introduced in the underlying VAR model. Moreover, the GVAR
forecasts without augmentation perform poorly when a factor is present and 7'/N is small. Similar
results (reported in the Supplement) are obtained in the case of experiments with a high value of
the spatial AR parameter, g, and/or a non-sparse matrix ®.

Regarding the choice of the estimator of 3¢, we found that no clear ordering is observed between
AugGVAR(flg, LW), AugGVAR(ZA]& B) and the AugGVAR forecasts, where the cross-section av-
erages are directly forecast. For experiments with a low value for the SAR parameter, o, = 0.2,
the forecasts from AugGVAR outperform forecasts based on 257 Lw, but this is not always the case
when g, is increased to 0.6 and T is relatively large.

The small sample evidence presented in this section overwhelmingly supports augmenting the
GVAR with additional equations for cross-section averages when factors are present, and shows
that there is no harm in augmentation when factors are absent. The results also show that under

nonsynchronous conditioning, no clear conclusion regarding the choice of 3¢ emerges.

8 Empirical application: forecasting GDP using PMlIs

In this section we apply a number of different methods for the analysis of large data sets, including
the GVAR and AugGVAR, to assess the extent to which using PMIs helps forecast GDP growth
in a multi-country setting. We also provide a comparative analysis of the alternative forecasting
techniques, with particular emphasis on a comparison of GVAR and AugGVAR outcomes. We

begin by describing the data first, followed by a summary description of forecasting methods.

8.1 GDP and PMI data

We have compiled a panel of quarterly data on real output covering 48 countries representing 92%
of world output. We chose the starting period to be 1998Q4, for which quarterly output data for
all 48 countries is available, and at the same time we also have a good country coverage for PMI
data. The latest available observation on output is 2013Q2. All of the output data is seasonally
adjusted, most series by the source. Table A.1 describes the sources and construction of the output
data in detail. We denote the first differences in the logarithm of real output in country ¢ and
quarter t by zj, for i = 1,2,..., N; and t = 1,2,...,T, where ¢t = 1 corresponds to 1999Q1 (due to
differencing) and T' = 58 corresponds to 2013Q2. Figure A.1 plots x; for the group of advanced

13 The variance matrix estimators 2§,LW and ZAJ&B are defined in Subsection 7.2.2.
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economies (Panel A) and emerging economies (Panel B) over the period 1999Q1-2013Q2.'4

PMIs are reported monthly as seasonally adjusted diffusion indices in which a number greater
than 50 indicates an expansion, and a number below 50 indicates a contraction. We use two types
of PMIs: manufacturing PMIs denoted as x; m ¢, and services PMIs denoted as s; m . Subscripts m
and t refer to month m in quarter ¢t. PMIs are not available for all countries in our dataset. We
have manufacturing PMI data on 30 countries with a sufficiently long history. Country coverage
on services PMIs is much less comprehensive with only 10 countries having available data with a
sufficiently long history. Table A.2 provides further details on country, time coverage, and sources

of the PMI data. Figures A.2 and A.3 plot the manufacturing and services PMIs, respectively.

8.1.1 Information sets

We use Q¢ to denote the available information set (consisting of both quarterly and monthly data)
at the end of month m = 1,2,3 of quarter t. We are interested in forecasting output growth in
country % in period ¢+ h conditional on the information set available at the end of month m =1,2,3
of quarter t. We omit reference to the information set 24 explicitly to economize on notations,
but it will be understood that all forecasts are conditional on the nonsynchronous information set
Q.

We denote the latest available observation on country i output growth in the information set
Qmt as T4r,,, where 74 = 74 (7, Qme) is a function that depends on ¢, the chosen month m, and the
country ¢, but we abbreviate this function as 7,;. We also denote the difference between ¢ and the

latest period for which an observation is available on x;; by Sz =t — T4;.

8.1.2 From monthly PMIs to quarterly PMIs

Dealing with different frequencies is not a central contribution of this paper, and we follow a simple
solution of transforming monthly data into quarterly observations as opposed to developing a fully
fledged mixed-frequency model (such as the MIDAS approach mentioned in the Introduction). In
particular, we consider two ways of transforming monthly observations into a quarterly series.

First we employ a sequential sampling scheme where for a given month, m, we define
Riy(M) = Kim¢, and 55 (m) = sjmy¢, for m=1,2,3 (73)

where superscript s stands for sequential sampling, ¢ = 1,2, ..., N indexes individual countries and
t =1,2,...,T indexes quarterly time periods. This gives us three sequentially sampled quarterly

series. The latest available monthly observation is used in estimation of the parameters of the

" There are two countries with notable outliers in the group of emerging economies: Venezuela (2003Q1-Q2) and
Thailand (2011Q4-2012Q2). Venezuela had a recession in 2002-03, low oil prices, a coup attempt in 2002 and a
business strike. Thailand had massive flooding in late 2011 that disrupted the economy. Looking at both advanced
and emerging economies, there appears to be large cross-sectional comovement across countries, especially during the
2007-08 global financial crisis.
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forecasting equations. Second, we use a temporally aggregated measure, defined by

k(1) = (Rigt—1+ Kigt—1 + ki) /3, (74)
Ki(2) = (Rige—1+ KiLe+ Ki2e) /3, (75)
Ri(3) = (Riie+ Rize+Kize) /3, (76)

where as before £f,(m), for m = 1,2, 3 denote month m of quarter ¢. Similar temporally aggregated
services PMI series can be constructed. As in the case of sequential sampling, we always select m
based on the latest available monthly observation in ;.

In the case of the forecasts that make use of PMIs we compute two sets of forecasts: one based
on sequentially sampled PMIs, and the other based on temporally aggregated PMIs. We report a
simple average of the two forecasts. In this way we avoid the potential data mining problem that
could arise due to the choice of data transformation from monthly to quarterly observations.

The timing of data releases differs across countries and by variable types. As a general rule,
manufacturing PMI data is released on the first working day of the month after the reference period.
Israel and New Zealand release their manufacturing PMI data in the middle of the month after
the reference period. Services PMI data is released on the third working day of the month after
the reference period. GDP releases vary substantially across countries—some countries adhere to
a strict release schedule, while the publication date for others can be variable and/or affected by
national holidays. Figure A.4 plots the GDP release lags for each of the countries in our sample
ordered by the number of days after the beginning of the reference quarter for Q2 of 2013. We
assume the same schedule applies to previous and subsequent releases, although release lags may

vary.

8.2 Forecasting methods with a large number of predictors

We consider three basic benchmarks and a number of data-rich methods summarized below. A
detailed description of individual methods is provided in the Supplement.

Let y;+ be a k; x 1 vector of country-specific quarterly variables consisting of output growth
(zi¢) and, where available, manufacturing and services PMI country indices. Thus, k; = 3 if all
three series are available, in which case y;(m;) = (2, Rit(m;), 5;¢(m;))’, whereas k; = 1 or 2 if one
or both PMI indices are not available.'> We employ the GVAR model as given by (26), including
an intercept term. We compute country-specific cross-section averages as y,,;; = (Ewit,ﬁwitﬁwit)/,
where T, = Z;V: 1 WijTy is the cross-section average of output growth, Ky = ngn wfjkjt(mj)
is the cross-section average of manufacturing PMI indices, and Zj is the index set of countries with
available manufacturing PMI data. Similarly, S, is defined as Sy = ez, wfjgjt(mj), in which
T, is the index set of countries with available services PMI data. The weights {w;;} are based
on bilateral aggregate trade flows obtained from the IMF DOTS database such that w;; = 0 and

' Strictly speaking the vector of observations on country i should be defined as y?,(q:) = (2, &%, (q:), §ft(q¢))/ for
j = s,a, which makes the choice of transformation from monthly PMIs to quarterly observations explicit. But here
we have simplified the notation for ease of exposition.
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Ej.v:l w;; = 1 for all i.' Weights used for PMI indices are constructed from {w;;} as follows:
wi; = 1 if 7 € Z,, and 0 otherwise.

We allow for only one lag of y;;(m;) and y,: in the conditional VAR models, (22), due to the
short sample available. For the full sample 7" = 58, but in the out-of-sample forecasting exercise
the first forecast is made for 2006Q1, which leaves us with 28 quarterly observations to estimate
the conditional VAR models. We proceed with model (26) to derive conditional forecasts in the
same way as outlined in Section 6.2. We denote the GVAR forecasts as GVAR-PMI and GVAR,
depending on whether PMI data is included in y;;, or only output growth is considered, in which

case k; = 1.

8.2.1 Augmented GVARs

We use the AugGVAR representation (see (49)) derived from the marginal VAR model (48) featur-
ing arithmetic cross-section averages denoted as y, = (Zy, &, 5¢), and from individual conditional
models (22), in which y;; is defined in the same way as in the case of the non-augmented GVAR
above and the augmentation is carried out with simple cross-section averages, y,. Augmented
GVAR forecasts for the target variables, x;;, are constructed in the same way as outlined in Section
6.2, and are denoted as AugGVAR-PMI and AugGVAR, depending on whether the PMI variables
are included in y;;. Multi-step ahead forecasts from the GVAR and AugGVAR methods are com-
puted iteratively. The remaining data-rich forecasts explained below are computed using the direct
approach where different regressions are considered for computing forecasts at different horizons.
For a discussion of iterative and direct procedures for computation of multi-step ahead forecasts
see, for example, Ing (2003), Marcellino et al. (2006), and Pesaran et al. (2011).

8.2.2 Lasso regressions

Our next data-rich forecasting method is based on Lasso regressions, popularized in the literature
following the seminal contribution of Tibshirani (1996). A recent textbook exposition of the Lasso
regression can be found in Hastie et al. (20()9).17 The forecasts of x; ;45 are based on the linear
penalized regressions of x;; on all k = Zf\; 1 ki predictors lagged by h quarters. But before running
the regressions we first standardize the predictors using the information available at time t — h.
The estimation is carried out by minimizing the sum of squared residuals subject to the Lasso
constraint, which bounds by A; the sum of absolute values of estimated coefficients. We denote the
Lasso forecasts by LASSO-PMI or LASSO depending on whether PMI data is included in the set

of predictors.

Y8 Weights are constructed as a ratio of total exports (from i to j) and imports (from j to i) over total foreign trade
(of country 4) using 2000-2010 trade data.

""However, it is important to note that the use of Lasso (and Ridge below) is theoretically justified in the case of
exogenous predictors and does not necessarily apply to the dynamic case where the predictors are lagged values of
the dependent variables from a large dimensional VAR.
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8.2.3 Ridge regressions

Ridge forecasts are constructed similarly to Lasso forecasts, with the difference that instead of
constraining the sum of absolute values of coefficients, it is the sum of squared coefficients which
is restricted to not exceed \;. The consequence of the Ridge constraint is that it does not penalize
small coefficients as much as the Lasso constraint. The main difference between the Ridge and
Lasso is therefore the tendency of the Ridge regression to favor many small coefficients as opposed
to the Lasso which tends to select a small number of nonzero coefficients. Ridge regression can
also be interpreted as a Bayesian normal regression with Gaussian priors. For further details and
applications of the Ridge approach in economics see De Mol et al. (2008), Lin and Tsay (2006),
Groen and Kapetanios (2008), and Eickmeier and Ng (2011). We denote the Ridge forecasts as
RIDGE-PMI (when both output and PMI data are included in the set of predictors), and RIDGE

(when only output data is included in the set of predictors).

8.2.4 Factor models

Instead of estimating a linear relationship between the target variable, x;;, and k predictors, an
alternative strategy considered in the literature is to shrink the large number of available predictors
first into a small m x 1 dimensional vector of factors (pooled predictors) and then forecast the target
variable in terms of these m factors. To this end both static (principal components) and dynamic
factors are used. Dynamic factor models were introduced by Geweke (1977) and Sargent and
Sims (1977), and later generalized to allow for weak cross-sectional dependence by Forni and Lippi
(2001), Forni et al. (2000) and Forni et al. (2004). In a typical macroeconomic dataset, empirical
evidence suggests that few factors are needed to explain a significant portion of the co-variations
of the predictors under consideration (see Stock and Watson (1999), Stock and Watson (2002),
Giannone, Reichlin, and Sala (2005), Bai and Ng (2007) and Stock and Watson (2005)).

We use the method of principal components and extract the first m principal components of
the k predictors available, after standardization. A key choice is the number of factors to use in the
subsequent analysis. We estimate separate models for m = 1,2, ..., 5 factors and then average the
corresponding forecasts. We denote the corresponding forecasts as FM-PMI and FM, depending on
whether the set of predictors contains PMIs. This procedure is followed as a diversification device

to avoid the difficult choice of determining the optimal number of factors.

8.2.5 Factor-augmented AR models

Factor-augmented autoregressive (FAR) forecasts are computed in the same way as the FM fore-
casts, but the model is augmented with lagged values of x;;. We consider again up to 5 factors
(m =1,2,...,5) and average the forecasts that result for each value of m. Depending on whether
or not PMIs are included when extracting the factors, the corresponding forecasts are denoted by
FAR-PMI and FAR, respectively.
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8.2.6 Partial least squares regressions

Partial least squares (PLS) regressions are due to Wold (1982), who proposed constructing factors
based on the covariance of the predictors with the target variable(s). We estimate PLS factors from
the set of standardized predictors in the same way as in Groen and Kapetanios (2008). As with
the FM method, we consider up to 5 factors and then average across the corresponding forecasts.
We use PLS-PMI and PLS to denote the forecasts based on PLS regressions with and without PMI
data.

8.3 Choice of the penalty parameter

The selection of the shrinkage parameter, \;, has important consequences for the forecasting per-
formance in a data-rich environment and the choice of \; should therefore be made with care. This
problem has been addressed in different ways in the literature. Perhaps the most common solution
is to choose A; by cross-validation. Although, a priori fixed values for \; have also been used in the
literature. See, for example, Groen and Kapetanios (2008). In our forecasting exercise we consider
a number of different options for the selection of A;. For the Lasso and Ridge methods, we employ

the following 7 options.

Option 1 : \; is set to 0.25 for all 4, as in Groen and Kapetanios (2008).

Option 2 : \; is chosen based on an 80%-20% split of the available observations, with the first 80%
of the observations used as the training sub-sample and the last 20% as the evaluation
sub-sample. We compute forecasts using a fine grid of A; € {0.01,0.02,...,2} and choose \; with

the smallest MSFE computed based on the evaluation sub-sample.
Option 3 : \; is set to a simple average of the penalty parameters estimated under Option 2.

Option 4 : \;is restricted to be the same across all 7, but unlike Option 3, we choose the value of

A for which the average of the RMSFEs from Option 2 above is minimized.
Option 5 : A; is chosen by standard 10-fold cross-validation for all 4.
Option 6 : \; is set equal to a simple average of the penalty parameters estimated under Option 5.

Option 7 : \;is restricted to be the same across all ¢, but unlike Option 6, we choose the value of

A; = A for which the average of the RMSFEs from Option 5 above is minimized.

In the case of the AugGVAR model, we choose the shrinkage parameter, A4,4, based on an
80%-20% split of the available sample with the first 80% of the observations used as the training
sub-sample and the last 20% as the evaluation sub-sample (as in Option 2). We compute forecasts
using a fine grid of A4 € {0.01,0.02,...,2} and choose A4,y With the smallest MSFE based on the

evaluation sub-sample.
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8.4 Benchmark forecasts

We consider three benchmarks. A random walk (RW) benchmark where the forecasts (at all
horizons) are set to the latest available observation on output growth. A first-order autoregression,
AR(1), benchmark where output growth forecasts at different horizons are computed using the
direct approach where x; ;.5 is regressed on an intercept and wx;;. The third benchmark is an
extension of the AR(1) benchmark where the AR(1) model is augmented with domestic PMIs. As
in the case of data-rich methods that use PMI data, we compute two benchmark forecasts, one
using sequentially sampled PMIs and a second one using temporally aggregated PMIs. The PMI-
augmented AR benchmark is then given by a simple average of the two forecasts which we denote
by AR-PMI.

8.5 Empirical results

Using the alternative forecasting schemes set out above we generated recursive quarterly forecasts
of GDP growth for all 48 countries over the period 2006QQ1 —2013Q2 using an expanding estimation
window starting in 1999Q1. To compare the average forecasting performance of the different
schemes we first computed MSFEs for each country over the evaluation sample, 2006QQ1 — 2013Q2,
for different PMI release months within a quarter, m = 1,2, 3, and the forecast horizons, h = 0, 1, 2
quarters ahead. We then computed a GDP-weighted average of these MSFEs using 2013 GDP
measures in PPP terms which we report in the tables below.

First we consider how AugGVAR forecasts perform as compared to the GVAR forecasts without
augmentation. Table 3 reports the average GDP-weighted MSFEs for the AugGVAR-PMI relative
to the non-augmented GVAR-PMI, when Ledoit and Wolf (2004)’s estimator of the error covariance
matrix, 25, Lw, is used to take account of the nonsynchronous nature of the GDP and PMI release
dates (see Section 6.2). As can be seen from this table the average MSFE of the augmented GVAR
at horizon h = 0 for the different PMI release months, m = 1,2, 3, range between 13 and 30 percent
of the MSFE of the non-augmented GVAR, which means that the augmented GVAR has about
3 to 7 times smaller MSFE than the benchmark. The differences in the forecasting performance
of the augmented and non-augmented procedures are even more pronounced at longer horizons.
Similar results are also obtained when other estimators of the covariance matrix of errors are used
(reported in the Supplement). Therefore, augmentation of the GVAR model with an additional
equation for cross-section averages improves the forecasting performance for all choices of f}g and
horizons considered.

Table 4 investigates how the choice of 25 and the shrinkage estimation of individual country
models affect the forecasting performance of the AugGVAR-PMI method. In this table, we choose
the AugGVAR-PMI with 257 w as a benchmark and report the GDP-weighted cross-section av-
erage MSFE of individual AugGVAR-PMI methods relative to this benchmark. There are some
important differences in forecasting performance for different choices of 25. The block-diagonal es-
timate EA]& p and the AugGVAR-PMI, which makes use of a nonsynchronous cross-section average,
perform better at h = 0, but not at longer horizons. But the AugGVAR-PMI forecasts that are
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based on shrinkage estimators of the individual country models perform marginally better than the
AugGVAR-PMI forecasts without shrinkage, with the former performing about 15 percent better
than the latter.

Table 5 gives the GDP-weighted average MSFEs of the other data-rich forecasting techniques
as well as the AR benchmark forecasts. The results in this table show how the different forecasts
compare with the random walk (RW) benchmark. The top panel (a) of the table gives the results
when PMI data are not used in forecasting whilst the bottom panel (b) gives the results when PMI
data are used.

In the case where PMI data are not used, depending on the choice of the forecast horizon, h,
and data release month, m, the AR forecasts show between 22 to 47 percent improvement over
the RW benchmark, which is quite substantial. Adding the PMI data does not improve the AR
forecasts much and seems to help only in the case of nowcasting (h = 0). A similar picture also
emerges when we consider the data-rich techniques. It is clear that regardless of the forecasting
method considered, the inclusion of PMIs always decreases the MSFE at horizon h = 0, by about
19 percent on average for m = 1, 14 percent for m = 2, and 20 percent for m = 3. The information
contained in PMIs is still useful at horizon A = 1, but the average improvement is smaller, about 8
to 13 percent. At the longer forecast horizon, h = 2, the use of PMI data does not seem to help. In
fact, for h = 2 the simple AR forecasts do slightly better than the AR-PMI forecasts for all release
months m.

Consider now the performance of the forecasts based on the data-rich methods. The results
are mixed and depend on the choice of the forecasting scheme, forecast horizon, h, data release
date, m, and whether PMI data are used in forecasting. But on average data-rich methods tend
to outperform AR forecasts when h = 0 and PMI data are used in forecasting. But for longer
forecast horizons neither PMI nor data-rich techniques seem to help, with the possible exception of
the AugGVAR-PMI forecasts which outperform or perform as well as AR forecasts for all forecast
horizons and release months.

Overall, perhaps not surprisingly, the use of PMIs helps for the nowcasting of GDP growth and

its added value diminishes quite rapidly with the forecast horizon.

8.6 Panel DM test statistics

The forecast comparisons in Table 5 provide clear-cut evidence of improvements when AR and data-
rich forecasts are compared to the RW benchmark, but the evidence is much less clear-cut when
one considers the relative performance of simple AR and data-rich forecasting techniques. To check
the statistical significance of the relative performance of forecasting schemes we use an extension
of the panel Diebold and Mariano (1995) (DM) test statistic proposed in Pesaran, Schuermann,
and Smith (2009) that allows for unequal weights in the pooling of the country specific MSFEs,
and also discuss the robustness of the panel DM test to possible cross-sectional dependence of the
differences in squared forecast errors.

Let z = e?t A e?t g be the difference in the squared forecasting errors of models A and B, and
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consider the following pooled test statistic:

T N
1
= T E : WiZit,
t=1 =1

where the weights {wl} _, are given and are not necessarily granular. Initially, suppose that z;
is serially uncorrelated, but could be correlated over the cross-section units. Decompose z;; as
zit = o + 1y, where o; represents the systematic difference between the two forecasts, and n,; the
idiosyncratic component. Let 1, = (91,79, -, Mny)  and suppose that n, ~ I1D (Onx1, 3,). The
implicit null and alternative hypotheses of interest are now given by Hy : &, = Zf\il wic; = 0 and
Hy : &, < 0, respectively. Under the null hypothesis E (z,) = 0, whereas under the alternative
E (z,) = &, # 0, with forecast A preferred to forecast B if &, < 0, and the reverse if a,, > 0.

To derive a test based on Z,, we first note that under Hy

T N 2
V (2.,) = E (32) ( ZZM%)

t=1 1=1

Under the assumption that m, are serially uncorrelated we have

2
(Zw) = =72 ZE (Z wmzt> T '3,w,
=1

where w = (w1, ws, ...,wy)". Denoting the elements of X, by o, ;;, then V (z,) can be written

equivalently as

N
V(5) = ZELYE (g, 4 ),
T

where

N -1 N

= (Zw?) : Zw?an,ii,

i=1 i=1

and

N -1 N N
192 = <Z w?) . Z Z wiwjaij.

i=1 i=1 j=1,j%i

In the special case when X, is a diagonal matrix, ¥ = 0, and V (Z,) converges towards zero at
1/2

the rate of 7—1/2 (EZ 1 w2> , which yields the standard rate of (NT)_l/2 when the weights are
granular. In the non-diagonal case the limiting behavior of V' (Z,) depends on the degree of cross-
sectional dependence of z;;. A distinction can be made depending on whether the row (column)
norm of ¥, is bounded in N. In the bounded case the cross-sectional dependence is weak and
the rate at which V (z,) converges towards zero is the same as in the diagonal case. In contrast,

when the row (column) norm of ¥, is not bounded in N then the rate of convergence of V' (Z,)

~1/2
towards zero is slower than /T - (Zf\i 1 w?) and inference based on z, will depend on the
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off-diagonal elements of X,, and in general require 7' to be much larger than N. In the current
pair-wise comparisons where the forecast errors are obtained conditional on a common set of factors,
it is reasonable to expect that the dependence of z;; across i is reasonably weak and when making
inference the off-diagonal elements of X, can be ignored. Accordingly, we base the panel DM tests

on the following weighted pooled DM test statistic:

N ~1/2
WPDM =T - (Z w?) v (77)
=1

S

where
N -1 N
. 2 24
v = E w; E W; O LRi,
i=1 i=1

in which 6p; is the Newey and West (1987) estimator of the long-run variance of z;; to take into
account possible serial correlations of z;;. We set the truncation lag in the Newey-West estimator
to 2. Under the null hypothesis the W PDM is asymptotically normally distributed with mean zero
and a unit variance as N, T 7, 00 but only if ¥9 — 0. Hence, WPDM is valid when the weighted
sum of off-diagonal elements of 3 is sufficiently small. We leave the further development of the
panel DM test statistics under more general form of cross-sectional dependence to future research
and present test results based on WPDM as defined by (77).

All methods that use PMIs are significantly better than the RW at the 1% level for all the
three months in the current quarter, h = 0, and the vast majority at the 1% level for A > 0.1%
These findings are not surprising given the differences in MSFE reported in Table 5. We consider
next testing whether adding PMIs significantly improves the MSFEs. The top panel of Table 6
presents pair-wise GDP-weighted panel DM test statistics comparing the performance of individual
forecasting techniques with and without the use of PMIs. We see that using PMIs significantly
improves the forecasting performance at the 1% level for the vast majority of tests when h = 0, but
this is no longer the case for h > 0. We also provide panel DM test statistics for all the forecasting
methods against the AugGVAR-PMI forecasts at the bottom panel of Table 6. These results show
that, for h = 0, AugGVAR-PMI is not significantly better (or worse) than the other methods that
use PMIs. In contrast, statistically significant differences at the 1% level can be observed for longer

horizons (h > 0), where AugGVAR performs significantly better in the majority of cases.

9 Conclusion

In this paper we have shown that the GVAR model can be undetermined when strong unobserved
common factors are present, and propose augmenting the GVAR model with additional equations in
cross-sectional averages that proxy the common factors. The validity of the augmentation procedure
is established theoretically for N and T — oo, jointly such that N/T — 3¢ for some 0 < » < c0.

The theoretical results are illustrated by MC experiments, and extended to the case of forecasting

I8WPDM tests using the RW benchmark are reported in the Supplement.
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with GVARs in the presence of nonsynchronous conditioning sets. Empirical application to the
forecasting of output growth with PMIs using a sample of 48 countries also confirms the superior
forecasting performance of the AugGVARs relative to the non-augmented GVARs. A number of
other data-rich methods were also implemented. It was found that, regardless of the forecasting
method considered, PMIs are useful in nowcasting (h = 0), but their value added is rather limited
for forecasting when h > 0. It is also found that AugGVAR forecasts do as well as other data-rich
forecasting techniques for H = 0, and tend to do better for longer forecast horizons. Furthermore,
the AugGVAR approach has the added advantage that it can be used for impulse response and
other forms of counterfactual analyses whilst the single equation data-rich techniques are limited

in this respect.
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Figure 1: Global growth (thick blue line, left scale, quarter-on-quarter log-difference in percentages),
global manufacturing PMI (thin red line, right scale, diffusion index) and global services PMI
(dashed green line, right scale, diffusion index), 1999Q1-2013Q2.
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Notes: See Section 8.1 for more information on diffusion indices. Global manufacturing PMI and global services PMI

are series reported by JP Morgan (see www.markiteconomics.com), and global output growth is calculated using
PPP-weighted GDP from 48 countries.
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Table 1: Cross-section average MSFE of one-step-ahead GVAR forecasts relative to infeasible op-
timal forecasts in Monte Carlo experiments without mixed conditioning, SAR parameter set equal
to 0.6 and sparse coefficient matrix.

GVAR AugGVAR
(N,T) 30 50 100 200 500 30 50 100 200 500
DGP1: High-dimensional VAR without common factor

30 1.35 117 1.09 1.05 1.02 | 1.31 1.15 1.08 1.04 1.02
50 1.35 117 1.08 1.05 1.02 | 1.32 1.15 1.08 1.05 1.02
100 1.36 1.16 1.08 1.04 1.02 | 1.34 1.15 1.08 1.04 1.02
200 1.35  1.16 1.08 1.04 1.02 | 1.33 1.15 1.08 1.04 1.02
500 134  1.16 1.08 1.04 1.02 | 1.32 1.16 1.08 1.04 1.02
DGP2: High-dimensional VAR with an additive common factor
30 208 149 122 117 111|131 1.16 1.08 1.05 1.03
50 | 1746 1.67 135 1.22 1.18 | 1.29 1.16 1.08 1.04 1.03
100 | 483.07 221 154 136 1.26 | 130 1.15 1.08 1.05 1.02
200 | 477.42 567 197 1.60 1.51 | 1.30 1.15 1.07 1.04 1.02
500 | >10% >10® 3.70 2.58 2.12 [ 1.32 1.15 1.08 1.04 1.02

DGP3: High-dimensional VAR with a factor error structure
30 1.67 129 114 1.09 1.05| 129 1.14 1.07 1.04 1.02
50 2.46 1.35 118 1.11 1.07 | 1.29 1.14 1.08 1.04 1.02
100 245 148 124 115 110|129 1.15 1.07 1.04 1.02
200 | 129.18 196 142 1.25 1.17 | 1.30 1.14 1.08 1.04 1.02
500 | >10% 31.92 1.90 1.58 1.44 | 1.31 1.14 1.08 1.04 1.02

Notes: This table reports the simple cross-section average mean square forecast error of GVAR and AugGVAR
forecasts relative to infeasible optimal forecasts, see (60). DGPs 1-3 are given by models (56), (58) and (59),
respectively. Infeasible forecasts are defined as F (y; r+1|Z¢, Fi). See (61). Computations of GVAR and AugGVAR
forecasts are explained in Subsection 7.2.1. In particular, see (65) and (69).
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Table 2: Cross-section average MSFE of one-step ahead GVAR forecasts relative to infeasible
optimal forecasts in Monte Carlo experiments with additive common factor, mixed conditioning
and sparse coefficient matrix.

Experiments with SAR coef. p = 0.2 | Experiments with SAR coef. o = 0.6
(N,T) 30 50 100 200 500 30 50 100 200 500

GVAR without augmentation
GVAR(Z: 1w)
30 | 2.67 1.47 124 1.16 1.11 | 3.65 1.50 1.20 1.14 1.09
50 | 12.47 1.66 1.31 121 1.16 | 3.65 1.66 1.30 1.18 1.13
100 | >103 2.55 1.58 1.37 1.27 | >10% 222.05 1.45 1.27 1.18
200 | >10° 436.35 221 1.73 1.55 | >10° 411 1.78 1.43 1.35
500 | >10° >10% 210.17 296 241 | >102 >10®> 3.19 2.15 1.78
GVAR(Z¢.5)
30 | 2.52 1.46 123 115 1.11 | 3.32 1.46 1.19 1.14 1.10
50 | 11.61 1.62 1.30 1.19 1.16 | 3.43 1.59 1.27 1.17 1.13
100 | >103 2.41 1.54 134 1.25 | >10% 226.85 1.41 1.24 1.17
200 | >10° 377.57 2.09 1.65 1.49 | >10° 3.36 1.66 1.38 1.29
500 | >10° >10° 221.81 2.73 222 | >10® >10® 268 1.91 1.68

Augmented GVAR
AugGVAR(Z¢ Lw)
30 | 1.50 1.22 1.12 1.06 1.04 | 1.51 1.24 1.10 1.06 1.03
50 | 1.49 1.23 1.11 1.06 1.03 | 1.51 1.25 1.11 1.06 1.03
100 1.53 1.23 1.12 1.06 1.03 1.55 1.25 1.13 1.06 1.03
200 | 1.53 1.22 1.11 1.06 1.03 | 1.58 1.28 1.13 1.07 1.03
500 | 1.52 1.22 1.11 1.06 1.03 | 1.61 1.28 1.14 1.08 1.04
AugGVAR(Z¢ )
30 | 1.49 1.21 1.11 1.06 1.04 | 1.47 1.23 1.11 1.07 1.05
50 1.48 1.23 1.11 1.06 1.03 1.46 1.23 1.11 1.07 1.04
100 | 1.51 1.22 1.11 1.06 1.03 | 1.47 1.22 112 1.07 1.04
200 | 1.51 1.21 1.10 1.06 1.03 | 1.49 1.23 1.11 1.07 1.04
500 | 1.50 1.21 1.11 1.06 1.03 | 1.52 1.23 1.11 1.07 1.04
AugGVAR
30 | 1.38 1.17 1.10 1.05 1.04 | 1.46 1.24 113 1.10 1.07
50 1.37 1.18 1.09 1.06 1.03 1.44 1.24 1.14 1.09 1.07
100 | 1.39 1.18 1.10 1.05 1.03 | 1.46 1.23 1.14 1.10 1.07
200 | 1.39 1.17 1.09 1.06 1.03 | 147 1.25 1.13 1.09 1.06
500 | 1.39 1.17 1.09 1.056 1.03 | 1.49 1.24 1.13 1.09 1.07

Notes: This table reports the simple cross-section average mean square forecast error of GVAR forecasts relative to
the infeasible optimal forecasts. See (71). DGPs 1-3 are given by models (56), (58) and (59), respectively. Infeasible
forecasts are given by E (yi7+1| Qr). e rw is Ledoit and Wolf (2004)’s estimator of ¢, 3¢ p is the block-diagonal
estimator defined by (72), and AugGVAR uses nonsynchronous cross-section averages and auxiliary regression (55).
See Subsection 7.2.2 for a detailed description of forecasting methods.
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Table 3: GDP-weighted cross-section average MSFE of AugGVAR-PMI relative to non-augmented

GVAR-PMI
forecasting horizon (quarters): h=0 h=1 h=2
month: m=1 m=2 m=3 m=1 m=2 m=3 m=1 m=2 m=3
GVAR,—PMI(EA]&LW) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(11.7)  (74)  (6.4) (59.3) (29.3) (19.5) (98.9) (79.6) (365.2)
AugGVAR-Pl\H(ggﬁLW) 0.135 0.223 0.296 0.027  0.054 0.085 0.017  0.022 0.005

Notes: MSFE is computed based on the evaluation sample 2006Q1-2013Q2. The GDP-weighted cross-section
average MSFE of the non-augmented GVAR-PMI with ¥¢ rw is reported in parentheses.

Table 4: GDP-weighted cross-section average MSFE of AugGVAR-PMI methods relative to the
benchmark AugGVAR-PMI with ¥ and without shrinkage

forecasting horizon (quarters): h=0 h=1 =2
month: m=1 m=2 m=3 m=1 m=2 m=3 m=1 m=2 m=3
Individual country models estimated without shrinkage
1 AugGVAR—PMI(flg,LW) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(1.58) (1.66) (1.88) (1.60) (1.59) (1.65) (1.72) (1.74) (1.77)
2 AugGVAR-PMI(3 5) 0.84 0.86 0.79 1.04 1.04 1.02 1.01 1.02 0.99
3  AugGVAR-PMI 0.89 0.82 0.71 0.96 0.95 1.00 0.94 0.93 0.96
Individual country models estimated with shrinkage
4 AugGVAR-PMI(Z¢ rw) 0.82 0.79 0.66 0.88 0.87 0.83 0.91 0.88 0.87
5 AugGVAR—PMI(XAlg,B) 0.74 0.71 0.60 0.86 0.85 0.80 0.90 0.87 0.86
6 AugGVAR-PMI 0.75 0.70 0.58 0.90 0.91 0.84 0.89 0.88 0.84

Notes: 3¢, zw is Ledoit and Wolf (2004)’s covariance matrix estimator and 3¢ p is the block-diagonal covariance
matrix estimator of Z¢. AugGVAR-PMI does not make use of 3¢, but augment the GVAR with an additional
equation for forecasting cross-section averages computed using the nonsynchronous conditioning information set.
MSFE is computed based on the evaluation sample 2006Q1-2013Q2. The GDP-weighted average MSFE of the

AugGVAR-PMI with 3¢ 1w and without shrinkage is reported in parentheses.
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Table 5: GDP-weighted cross-section average MSFE of individual methods relative to RW

forecasting horizon (quarters): h=0 h=1 h=2
month: m=1 m=2 m=3 m=1 m=2 m=3 m=1 m=2 m=3
1 RW (benchmark) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(2.01)  (1.77) (1.73) (2.39) (2.31) (2.28) (2.83) (2.59) (2.54)

(a) Models without PMI
2.a AR 0.71 0.77 0.78 0.61 0.64 0.66 0.53 0.59 0.60
3.a Lasso 0.66 0.74 0.76 0.67 0.70 0.72 0.52 0.60 0.62
4.a Ridge 0.68 0.79 0.77 0.71 0.84 0.80 0.63 0.77 0.77
5.a FM 0.75 0.92 0.81 0.72 0.97 0.96 0.65 0.75 0.77
6.a FM-AR 0.77 0.93 0.83 0.72 0.98 0.97 0.67 0.78 0.80
7.a PLS 0.81 0.95 0.91 0.92 1.10 1.00 0.85 1.10 1.11
8.a AugGVAR 0.79 0.76 0.75 0.62 0.66 0.68 0.55 0.61 0.62
(b) Models with PMI

2b AR-PMI 0.63 0.66 0.64 0.66 0.68 0.62 0.59 0.64 0.65
3.b  Lasso-PMI 0.61 0.69 0.66 0.62 0.69 0.69 0.52 0.59 0.62
4.b Ridge-PMI 0.57 0.70 0.62 0.65 0.77 0.70 0.66 0.74 0.78
5b FM-PMI 0.59 0.79 0.62 0.72 0.88 0.82 0.76 0.81 0.84
6.b FM-AR-PMI 0.61 0.81 0.64 0.75 0.91 0.85 0.79 0.83 0.88
7.b PLS-PMI 0.61 0.74 0.65 0.70 0.85 0.77 0.76 0.87 0.88
8b AugGVAR-PMI 0.58 0.66 0.62 0.58 0.59 0.58 0.54 0.59 0.59

Notes: The GDP-weighted cross-section average MSFE of RW forecasts is reported in parentheses. MSFE is

computed based on the evaluation sample 2006Q1-2013Q2. The AugGVAR-PMI is the simple average of

AugGVAR-PMI models with shrinkage (models 4-6 in Table 4). Similarly, AugGVAR is the simple average of

AugGVAR models with shrinkage. All methods are described in Subsection 8.2.
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Table 6: GDP-weighted pair-wise panel DM test statistics

forecasting horizon (quarters): h=0 h=1 h=2

month: m=1 m=2 m=3 m=1 m=2 m=3 m=1 m=2 m=23

(a) Benchmark is the same method without PMI

2.a  AR-PMI -2.11 -3.06 -3.43 2.04 1.34 -1.38 2.58 2.30 241
3.a  Lasso-PMI -3.39 -2.78 -3.95 -3.89 -0.80 -2.48 -0.03 -0.88 -0.50
4.a  Ridge-PMI -4.14 -3.94 -4.45 -2.85 -2.66 -3.53 2.62 -1.20 0.75
5.a FM-PMI -4.41 -3.20 -4.40 0.07 -2.26 -3.19 3.92 2.28 2.50
6.2 FM-AR-PMI -4.37 -2.96 -4.09 0.83 -2.01 -2.90 3.97 1.51 2.55
7.a PLS-PMI -5.05 -4.19 -5.15 -5.12 -4.45 -4.46 -2.74 -3.38 -3.93
8.a AugGVAR-PMI -3.58 -1.92 -2.07 -3.43 -2.62 -3.19 -1.43 -2.97 -2.78
(b) Benchmark is AugGVAR-PMI
2.b  AR-PMI 1.38 0.20 0.55 3.53 3.49 1.19 1.84 1.95 2.25
3.b  Lasso-PMI 1.22 0.76 1.00 2.14 3.91 3.87 -1.71 0.02 1.34
4.b Ridge-PMI -0.10 0.73 -0.07 2.39 4.05 3.47 4.76 4.15 3.97
5b FM-PMI 0.27 1.92 -0.06 3.94 4.69 4.07 4.78 4.12 4.19
6.b FM-AR-PMI 0.94 2.04 0.38 4.29 4.98 4.43 5.25 4.32 4.29
7.b PLS-PMI 0.74 1.32 0.57 3.42 5.00 4.30 6.62 5.57 5.03

8b AugGVAR-PMI . - - ; - . . ] _

Notes: Panel DM test statistics are computed based on the evaluating sample 2006Q1-2013Q2. The panel DM test
is a one-sided test and asymptotically normal, so the relevant 1% and 5% critical values for a given method to
outperform the benchmark are -2.326 and -1.645, respectively. The AugGVAR-PMI is the simple average of
AugGVAR-PMI models with shrinkage (models 4-6 in Table 4).
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A Appendix

A.1 Derivation of optimal forecasts when factors are unobserved

Consider the problem of optimal forecasts of y;j generated by (2) based on the information set Z; alone. To
derive optimal forecasts in this case we also assume that ,; and v, are normally distributed. In particular,
let ey ~ IIDN (0,%.), vy ~ IIDN (O,agv), and assume that €,; and vy are independently distributed
for all £ and ¢'. We have

E(yisnl L, My) = <I>f,’yt +gon L ( foe| Zo, My) .

Optimal prediction of the common factor, E ( fp:| Z¢, M), can be obtained (under the above assumptions)

using a Kalman filter, noting that
Wt =y — Opyi—1 = Yy for + Ent-

Z; contains information on the infinite past of y;, and under stationarity requirements |p,| < 1 and |A; (®p)] <

1, the steady-state Kalman filter gives
E (for| Zt, My) = fb,t\t—l +qp (ubt - ’Ybfb,t\t—l) )
where qj = pyy;, (PvYp Y, + Ebg)fl, py is the unique solution of
po=1-p}+(1-p}) " meativs,
and fb$t|t,1 = E (fot| Zt—1, Mp) is a stationary process given by
fb7t|t71 =pp (1 —ayvy) fb7t71\t72 + Py Up 1.

A.2 Proofs

Proof of Theorem 1. We provide proof for the weakly cross-sectionally dependent model first, namely

under Assumptions 1, 2.a, and 3-4. For h = 1 we have
9559 = [0+ (Pbo+ 1) W] 3.
Consider
B(yen | T F) =518, = @y~ [0+ (pbo+b1) W]y,

(2-©)y: — (@ - @> Vi — (ﬁgo + 61) w'yi. (A1)

Consider the individual elements on the right side of (A.1) below. Note that the row 4 of matrix (® — @),
namely

elN,i (®—-0)= ¢

—1)
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satisfies condition (8). By Liapunov’s inequality

(E |¢1—th|)2 < KB (¢,—th)2
< o(E(yyy) ¢ 0,
K
< AT
- N

where constant K < oo does not depend on N. We have used the Rayleigh-Ritz theorem!'® to obtain the
second inequality and

o(E(yeyt) < IIEeydl,
- 20
< |RR|DCI®1™,
£=0
- o), (A:2)
follows from Assumptions 1 and 3. Therefore
El¢" A.
By, ety =0 (4-3)

and similarly it can be shown that (replacing ¢_; with ex ;)

Eley.y:| < K. A4
emax Elely i (A4)
Equation (A.3) implies

El(®-0)yill, —0. (A.5)

Now consider the second term on the right side of (A.1), namely ((:) - @) y:. Equation (A.4) implies
that the elements of y; are uniformly bounded in L; norm, namely

Ellytll < K. (A.6)

Chudik and Pesaran (2011, Theorem 2) established asymptotic distribution of the diagonal elements of e

in the special case when there is no common factor (rank deficient case with m = 0), and we have
VT (¢Lz - ¢“> =0, (1), (A7)

uniformly in 4. It follows that H(:) - OH =0, (T~'/?), and together with (A.6) we obtain

£(6 o)

~0. (A.8)

oo

Now consider the last term on the right side of (A.1). Let us define §; = VNW'y;, by; = N~1/2bg;, for

s =0,1 and for all 4, and consider the least squares regression:

Yir = Gi¥ia—1 +boiW'yr +boiw'yi1 + eir
= Gitia—1 + boiffut + brifwr—1 + €ir. (A.9)
'“See Horn and Johnson (1985, p. 176).

44



Under the assumptions of Theorem 1, which rule out strong cross-sectional dependence in y;;, and using
(A.2), we obtain
w'y: =0, (N71/2> , (A.10)
gwt == \/Nwlyt = OP (1) )

and note that all of the regressors in (A.9) are O, (1). Using similar arguments as in Chudik and Pesaran
(2011), it can be established that plim bsi = 0, for s = 0,1, uniformly in 4, which in turn implies gsi =
VNbs; = o (Nl/z), for s =0, 1, uniformly in 4. This result together with p = O, (1), and (A.10) establish

E H (ﬁgo + 61) w'y;

— 0. (A.11)

o0

Using (A.5), (A.8), and (A.11) in (A.1) establish F HE(YtH | Ty, Fi) — 95 — 0. This completes the

Y o
proof of result (42) for h = 1 in the weakly cross-sectionally dependent model. The proof of (42) for h > 1

in the weakly cross-sectionally dependent model can be constructed in a similar way.
Next, we provide proof for the model featuring an unobserved common factor, namely under Assumptions
1, 2.b, and 3-4. For h = 1 we have

E(yiy1 | Ze, i) = ® (ye —vft) + pvfe = Oy, — Oy fi + pvfie + (2 — O) (y: —ft), (A.12)

and as before

Y419 = ©yi — Obow'y, + pbow'y:. (A.13)

Subtracting (A.13) from (A.12) yields
E(ye | L, 7)) =959 = (('“) - (:)) yi — (P’th - ﬁBOW/Yt) (A.14)

+ <@7ft - @BOWIYt) +(®—-0)(yt —fi)-

We now investigate the properties of the individual elements on the right side of (A.14). First, consider
(@ — (:)) y: and note that

E(yi) =) _en @ RR® ex; + E (1 f7),
£=0
where E (72 f?) < K under Assumption 2.b and
Y e RR@%ey, < [len|” IRI* Y 12" < K,
=0 =0

in which |len|| = 1, |R|* < IR|l; IR|l,, < K by Assumption 1, and >_,°, |®|* < K by Assumption 3.
It therefore follows that E (y?t) < K, where K does not depend on ¢ nor on N, and similar to the weakly

dependent case, we obtain
Elyle < K. (A.15)

Chudik and Pesaran (2011, Theorem 1) establishes that

VT (#; — 1) = 0, (1) (A.16)
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uniformly in ¢ as N, T 2, 50 such that N/T — 3 for some 0 < » < oo, where #; = (¢ii,bi07bi1> is the
vector of least squares estimates of 7; = (¢;;, bio, bs1)’. This implies H@ - @H = 0, (1) and together with
(A.15) we obtain >

£f(e-8)x

— 0. (A.17)

(oo}

Consider next

pYfe — /IO\EOW/Yt = p (’th - BOW/Yt) - (/,0\ - P) BOW/Yt

p(vfi —bow'ys) —p (Bo - bo) w'y: —(p—p) bow'y:.

Since wW'y; — 7, ft = O, (N71/2), it can be shown that p is a consistent estimator of p and therefore
E|p — p| — 0. Furthermore, (A.15) and (8) imply E ||[w'y;| ., < K and (A.16) implies £ HEO — bOH — 0.
It therefore follows that =

E HP’th - ﬁBOWIYtHOO — 0. (A.18)

Similarly, (A.16) also implies that F HEO — boH —0and E H@ — @H — 0, and it follows that

— 0. (A.19)

oo

E||©v/, - ©byw'y,

Consider now the i-th element of (® — ©) (y: — vf+), denoted as

Vit

e?v,i (®—-0)(y: —fr) = ¢L¢ (ye —ft)

¢Ll Z (I)ZRT/t—Zv

£=0

where ¢_; = (® — ©) ey, satisfies condition (8) under Assumption 4, and y; —vf; = > oo, ®‘Rn,_,. The

second moment of ¥;; is uniformly bounded by K N~—!, using similar arguments as before:

EW;) = Y ¢ 2RR®"¢,
=0
< o IRIP S 12>
=0
K
< (A.20)

where H¢LZ‘H2 < KN~! by Assumption 4, HR||2 < |R|l; IR, < K by Assumption 1, and )2, ||<I>H2Z <K
by Assumption 3. (A.20) implies
E|(®-0)(y:—vf)l. — 0. (A.21)

Using (A.17)-(A.19), and (A.21) in (A.14), we obtain

*)0’
00

E||B (yea 1T F) - 37559,

as desired. Result (42) in the case of the model featuring a common factor for b > 1 can be established in a

similar way. Singularity of Go = Iy — bow’ is implied by (29). This completes the proof. m
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Figure A.1: Output (1st differences of logs)
A. Advanced Economies
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Figure A.2: Manufacturing Purchasing Managers Indices
A. Advanced Economies
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20

Figure A.3: All Economies’ Services Purchasing Managers Indices
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Figure A.4: GDP Release Lags
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