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Abstract  
This paper derives new theoretical results for forecasting with Global VAR (GVAR) models. 
It is shown that the presence of a strong unobserved common factor can lead to an 
undetermined GVAR model. To solve this problem, we propose augmenting the GVAR 
with additional proxy equations for the strong factors and establish conditions under which 
forecasts from the augmented GVAR model (AugGVAR) uniformly converge in probability 
(as the panel dimensions N,T→ ∞ such that N/T→κ for some 0<κ<∞) to the infeasible 
optimal forecasts obtained from a factor-augmented high-dimensional VAR model. The 
small sample properties of the proposed solution are investigated by Monte Carlo 
experiments as well as empirically. In the empirical part, we investigate the value of the 
information content of Purchasing Managers Indices (PMIs) for forecasting global (48 
countries) growth, and compare forecasts from AugGVAR models with a number of data-
rich forecasting methods, including Lasso, Ridge, partial least squares and factor-based 
methods. It is found that (a) regardless of the forecasting methods considered, PMIs are 
useful for nowcasting, but their value added diminishes quite rapidly with the forecast 
horizon, and (b) AugGVAR forecasts do as well as other data-rich forecasting techniques for 
short horizons, and tend to do better for longer forecast horizons. 
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1 Introduction

International datasets with relatively large cross-section (N) and time (T ) dimensions are becoming

increasingly available and frequently used in practice. How to work with such large datasets has

been the subject of intensive research in the past decades. On the one hand, individual economies

in the global system are interdependent, and a general linear dynamic framework such as high-

dimensional VARs seems to be appropriate. On the other hand, estimating high-dimensional VARs

is not feasible since the number of coeffi cients to be estimated grows at a quadratic rate with the

number of variables. This problem, also known as the curse of dimensionality, has been addressed

in the literature in a number of ways, but primarily in a static setting. In this paper we focus

on the Global VAR modeling approach (or GVAR for short) which has been applied extensively

to multi-country data sets and is designed to deal with the curse of dimensionality in dynamic

contexts.

The GVAR model was proposed by Pesaran et al. (2004) and provides a feasible and coherent

global reduced-form VAR representation of the data. It deals with the dimensionality problem by

estimating small-scale individual country VARX∗ models, where domestic variables are regressed

on country-specific weighted averages of foreign variables, which are treated as weakly exogenous

for the purpose of estimation. The individual country VARX∗ models are then solved in the form

of a high-dimensional VAR representation that includes all the endogenous variables of the world

economy. The structure embodied in the GVAR allows for quite complex interlinkages amongst

the variables (within as well as across economies), while being suffi ciently compact and easy to

use in forecasting, simulation and counterfactual analyses. There are numerous applications of the

GVAR approach in the literature, including in the field of forecasting. Chudik and Pesaran (2014b)

provide a recent survey.

In this paper we establish conditions under which forecasts from the GVAR model converge

to optimal infeasible forecasts (as N,T
j→ ∞, such that N/T → κ, for some 0 < κ < ∞) when

the data is generated from a high-dimensional VAR model containing unobserved common factors.

It is shown that the presence of strong unobserved common factors can lead to an undetermined

GVAR model with a singular contemporaneous coeffi cient matrix. To deal with this problem, we

propose augmenting the GVAR with a sub-model for the unobserved factors that we proxy by

cross-section averages. We refer to this augmented GVAR model as AugGVAR for short, and show

that augmentation is effective regardless of how factors are introduced in the underlying model.

Specifically, we consider two methods of augmenting VARs with factors: (i) modeling deviations

from the factors as a VAR (as in Dées et al. (2007)), (ii) adding factors to the errors of the VAR

model. Since factors are unobserved, we consider both specifications and provide results that are

robust to the way factors are introduced in the underlying high-dimensional VAR model. We also

show that only the knowledge of the maximum number of unobserved common factors (mmax) is

needed, and there is no need to identify and estimate the exact number of factors. This means that

in practice it is suffi cient to augment the GVAR with a sub-model in terms of mmax cross-section

averages.
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We investigate the small sample properties of the proposed approach by Monte Carlo (MC)

experiments. We find that small sample performance of the AugGVAR is at least as good as the

GVAR when there is no factor in the underlying model, and substantially better when factors

are present. MC experiments also show that using an undetermined GVAR in the presence of

factors can have serious consequences for forecasting, particularly when the time dimension is not

suffi ciently large. Overall, the AugGVAR is recommended irrespective of whether the underlying

high-dimensional VAR contains an unobserved common factor or not.

The effectiveness of the proposed approach is also illustrated in the empirical application, where

we forecast output growth across 48 countries using Purchasing Managers Indices (or PMIs for

short). PMI data releases are closely watched by financial market participants for signs of improving

or deteriorating economic conditions. PMIs are available across a broad range of countries in

a timely manner (released monthly and with short time delay), and are considered important

indicators of the current level of output growth, on which offi cial data is often released with a

considerable time delay. There is indeed a close resemblance between year-on-year economic growth

and PMIs, as is evident from Figure 1, which plots data aggregated across countries at the global

level. However, the usefulness of PMIs in forecasting quarterly output growth, over and above the

past history of output growth rates themselves, can only be ascertained by using conditional models

where forecasts are computed with and without conditioning on PMIs.

Besides the dimensionality problem, the empirical application presents us with two additional

challenges.1 The data release lags vary across countries and types of variables, and therefore

forecasting of output growth, if to be carried out effi ciently in real time, must be done conditional

on information sets with different end dates (what we refer to as "nonsynchronous conditioning"

information sets).2 The second challenge is that PMIs are observed at a higher frequency than

output growth. The literature has tackled these challenges in a number of different ways. One

approach is to model all variables —PMIs and output growth —in one system written in a state-space

form at the highest frequency. The problems of nonsynchronous data releases and mixed frequencies

are then translated into a missing data problem, which is overcome with the use of a Kalman filter

and smoother (see Evans (2005) and Giannone, Reichlin, and Small (2008)).3 The second approach

is to temporally aggregate the high-frequency PMIs into the low frequency of the output growth

variable and then estimate a forecasting equation at the low frequency. Examples of this approach

include Trehan (1989), Parigi and Schlitzer (1995), Kitchen and Monaco (2003), Rünstler and

Sédillot (2003), Baffi gi et al. (2004), Parigi and Golinelli (2007), and Diron (2008). The third

1The focus of our analysis is forecasting economic growth in a sample of 48 countries (with PMI manufacturing
and services indices being available for a subset of the 48 countries) that comprise 92% of the world’s economic output
in 2013 nominal prices. We have 87 predictors for forecasting economic growth in a particular country (or region),
and the use of methods that allow for a large number of predictors is therefore necessary.

2Nonsynchronous conditioning information sets are also called ‘ragged edge’information sets in the literature, see
Wallis (1986).

3This approach has been applied in a number of recent papers, see Rünstler et al. (2009), Angelini et al. (2010),
Barhoumi et al. (2010), Camacho and Perez-Quiros (2010), Matheson (2010), Yiu and Chow (2010), Angelini et al.
(2011), Arnostova et al. (2011), Bańbura and Rünstler (2011), de Winter (2011), Aastveit and Trovik (2012),
D’Agostino et al. (2012), Siliverstovs (2012), Siliverstovs and Kholodilin (2012), Lahiri and Monokroussos (2013),
and Bańbura and Modugno (2014).
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approach is the mixed-frequency data sampling (MIDAS) regression introduced by Ghysels et al.

(2004) and later extended by Ghysels et al. (2007), with applications by Clements and Galvão

(2008 and 2009), Andreou et al. (2010), Marcellino and Schumacher (2010), and Kuzin et al. (2011

and 2013).

In this paper, we follow the simple approach of aggregating PMI data into a quarterly frequency,

and show how to derive conditional forecasts using GVAR or AugGVAR models in the case of

nonsynchronous conditioning information sets. Aggregation of PMI data into the frequency of

output growth allows us to readily implement other data-rich forecasting methods as well. As an

alternative to GVAR forecasts, we consider a number of commonly used methods for forecasting

with a large number of predictors. In particular, we implement the Lasso, Ridge, factor models

(FM), factor-augmented autoregressions (FAR), and partial least squares (PLS) methods, which

are widely used in the forecasting literature (see for example reviews by Eklund and Kapetanios

(2008) and Groen and Kapetanios (2008)).4 We describe individual methods in more detail and

provide references to the literature in Section 8.2.

We find that regardless of the particular forecasting method employed, the information con-

tained in PMIs substantially improves output growth forecasts for different months within the

current quarter (h = 0). This result is robust across the countries and methods considered. We

obtain about 15-20% reduction in the cross country PPP-GDP weighted average of the mean square

forecast errors over the out-of-sample forecast evaluation period of 2006Q1-2013Q2. In contrast,

the contribution of PMIs to the forecasting performance of output growth is found to be rather

limited beyond the current quarter. Also, in line with the theoretical and MC results, we find that

the AugGVAR performs better than the non-augmented GVAR, and that AugGVAR forecasts do

as well as other data-rich forecasting techniques for the months within the current quarter, but

tend to do significantly better for the months in the subsequent quarters (h ≥ 1).

The remainder of the paper is organized as follows. Section 2 sets up two alternative high-

dimensional factor-augmented VAR model specifications. Section 3 discusses forecasting with

factor-augmented VARs and derives a large N representation of the infeasible optimal forecasts

when factors are unobserved. Section 4 discusses forecasting with GVARs, shows that the presence

of a strong unobserved common factor can lead to an undetermined GVAR model, proposes the

AugGVAR, and establishes uniform convergence of feasible AugGVAR forecasts to the infeasible

optimal forecasts as N,T
j→ ∞ such that N/T → κ for some 0 < κ < ∞. Section 5 presents an

extension of the analysis to the case of multiple factors. Section 6 discusses forecasting with GVARs

in the case of nonsynchronous conditioning information sets. Section 7 illustrates the theoretical

findings by means of Monte Carlo experiments. Section 8 presents the empirical application to

forecasting GDP growth using PMIs. This section also presents an extension of the panel Diebold

and Mariano (1995) (DM) test statistic proposed by Pesaran, Schuermann, and Smith (2009) to the

case where aggregation weights are unequal, and discusses the consequences of the panel DM test

4We note that the existing theoretical results on Lasso and Ridge do not cover the case of dynamic models.
Nevertheless, these data-rich methods are commonly employed in the forecasting of economic variables and thus
provide an interesting benchmark.
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when the differences in forecast errors are cross-sectionally dependent. Section 9 ends with some

concluding remarks. Technical proofs and further results are provided in an Appendix. Additional

results are presented in an online Supplement available from the authors upon request.

A brief word on notations: ‖A‖1 ≡ max
1≤j≤n

∑n
i=1 |aij | , and ‖A‖∞ ≡ max

1≤i≤n

∑n
j=1 |aij | denote the

maximum absolute column and row sum norms of A ∈ Mn×n, respectively, where Mn×n is the

space of real-valued n× n matrices. λ1(A) is the largest eigenvalue of A , ‖A‖ =
√
% (A′A) is the

spectral norm of A,5 % (A) = |λ1(A)| is the spectral radius of A. Matrices are represented by bold

upper case letters, and vectors are represented by bold lower case letters. All vectors are column

vectors.

2 Specifications of factor-augmented VARs

We consider two alternative large dimensional factor-augmented vector autoregressive (VAR) speci-

fications that differ in the way they are augmented with the unobserved common factor. Specifically,

we consider the following two covariance stationary factor-augmented VAR models Ma and Mb

Ma : yt − γafat = Φa (yt−1 − γafa,t−1) + εat, (1)

and

Mb : yt = Φbyt−1 + γbfbt + εbt, (2)

where yt = (y1t, y2t, ..., yNt)
′, γs = (γs1, γs2, ..., γsN )′, s = a, b are N × 1 vectors of factor loadings,

fst, s = a, b are common factors, which are treated as unobserved unless otherwise specified, Φs,

s = a, b are N × N matrices of unknown coeffi cients, and εst = (εs1t, εs2t, ..., εsNt)
′, s = a, b are

N × 1 vectors of idiosyncratic shocks. It is assumed that the common factors follow covariance

stationary AR(1) processes

fst = ρsfs,t−1 + vst, for s = a, b. (3)

Equations (1)-(3) feature only one lag and one common factor for expositional convenience, and

higher order lags and/or more common factors could be considered. We also abstract, without the

loss of generality, from deterministic terms. Introducing these terms is relatively straightforward.

We postulate the following assumptions that, among others, restrict cross-sectional dependence

of reduced form errors and for the purpose of estimation impose some suitable restrictions on the

VAR coeffi cients as N →∞.

ASSUMPTION 1 (Cross-sectionally weakly dependent idiosyncratic errors) Idiosyncratic errors
in εst, for s = a, b, follow the ‘spatial’model

εst = Rsηst,

5Note that if x is a vector, then ‖x‖ =
√
% (x′x) =

√
x′x corresponds to the Euclidean length of vector x.
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where the N × N matrix Rs has bounded row and column matrix norms (in N), and ηst ∼
IID (0, IN ).

ASSUMPTION 2 (Unobserved common factor and its loadings)

a. (Model without factor) γsi = 0 for s = a, b and for all i = 1, 2, ..., N .

b. (Model with factor) The unobserved common factors fst, for s = a, b, are characterized by

(3) with |ρs| < 1. The macro shock vst is independently distributed of idiosyncratic errors,

E (vst) = 0, E
(
v2
st

)
= σ2

sv = 1 − ρ2
s, and E (vstvst′) = 0 for s = a, b, and any t 6= t′. The

factor loadings are independently and identically distributed with a nonzero mean, γs 6= 0, and

a finite variance. In addition, the factor loadings are independently distributed of the macro

and the idiosyncratic shocks.

ASSUMPTION 3 (Covariance stationarity and bounded variances) There exists a small positive
constant ε such that ‖Φs‖ < 1− ε, for s = a, b, where ‖Φs‖ denotes the spectral norm of Φs.

ASSUMPTION 4 (No neighbors) There exists a (finite) positive constant K < ∞, which does
not depend on N , and such that for any N ∈ N, where N denotes the set of natural numbers, we
have

|φsii| < K, for s = a, b and any i = 1, 2, ..., N

and ∣∣φsij∣∣ < K

N
, for s = a, b and any j 6= i, i, j = 1, 2, ..., N,

where φsij denotes the i, j-th element of the matrix Φs.

Remark 1 Assumption 3 is stronger than the usual finite-N covariance stationarity assumption,

which restricts the eigenvalues of Φs to lie within the unit circle. Assumption 3 also ensures that

the variance of yit exists as N →∞. See Chudik and Pesaran (2011) for a related discussion.

Remark 2 Assumption 4 rules out any neighbors (with the exception of own lags). This assump-
tion can be relaxed, at the expense of notational complexity, without any fundamental implications

for the main results derived below.

Because the common factors fst are unobserved, it is unclear how one could choose between

the two specifications, (1) or (2). Therefore, it is important to develop methods that are robust to

the way the common factor is introduced in the VAR model. In view of this ambiguity, we proceed

with both models and show that under the above assumptions the common factors can be well

approximated by cross-section averages and their lags, under both specifications. The key practical

difference between the two specifications turns out to be in the number of lags of cross-section

averages that are required for consistent estimation and forecasting. While only contemporaneous

cross-section averages are required for approximating the common factor in the case of model (1),
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the consequence of the factor error structure in (2) is that a large N representation for cross-

section averages features an infinite-order distributed lag function in the common factor (Chudik

and Pesaran, 2014a). Under certain conditions, such infinite lag polynomials can be inverted and

appropriately truncated for the purpose of consistent estimation and inference as in Chudik and

Pesaran (2013a).

3 Forecasting with factor-augmented VARs

Factor-augmented VAR models considered by Bernanke, Bovian, and Eliasz (2005) and Favero,

Marcellino, and Neglia (2005) are low-dimensional VARs augmented by a small set of factors that

enter as additional variables. Factors are estimated from a large set of n time series, and the

estimates of the factors are plugged into a VAR as if they were observed. This plug-in approach,

where factors are treated as if they were observed, is justified by considering n to be suffi ciently

large. Factors in these models represent latent variables that summarize the behavior of a large

set of time series. Our factor-augmented VAR specifications Ma or Mb differ in that we include

a large number of variables in a VAR and the factor is used to capture a strong cross-sectional

dependence. Model Mb is close to that of Stock and Watson (2005, equation 13), where factors are

exogenous and enter the VAR in the form of a factor error structure, but Φb is restricted to be a

diagonal matrix. A version of the factor-augmented model Ma was considered by Dées, di Mauro,

Pesaran, and Smith (2007), who imposed a block-diagonal structure on Φb.

Forecasting with low- or high-dimensional factor-augmented VARs is straightforward when it

is assumed that the factor and coeffi cients are known. Consider model Ma and information set

It ∪ Fat, where It = {yt,yt−1, ...} is an information set containing all information on N cross-

section units at time t, and Fat = {fat, fa,t−1, ...} is an information set on current and past values
of the common factor. Solving (1) for yt+h − γafa,t+h by backward substitution yields

yt+h − γafa,t+h = Φh
a (yt − γafat) +

h−1∑
`=0

Φ`
aεa,t+h−`,

and after repeatedly substituting equation (3) for the unobserved common factor, we obtain the

following forecasting equation:

yt+h = Φh
ayt + gahfat + ξath, (4)

where gah =
(
ρhaIN −Φh

a

)
γa, IN is an N ×N identity matrix, and

ξath =
h−1∑
`=0

ρ`ava,t+h−` +
h−1∑
`=0

Φ`
aεa,t+h−`.

For h > 1, ξath is serially correlated, but orthogonal to the information available at time t, irrespec-

tive of whether the information set includes Fat or not; namely we have E (ξath| It,Fat,Ma) = 0,
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and E (ξath| It,Ma) = 0, for h = 1, 2, .... Assuming that the information set contains Fat, the
optimal h-step ahead forecasts (in mean square error sense) are given by

yat+h|t = E (yt+h| It,Fat,Ma) = Φh
ayt + gahfat, for h = 1, 2, .... (5)

Similarly, the optimal forecasts with respect to the full information set, It ∪ Fbt, under model
Mb are given by

ybt+h|t = E (yt+h| It,Fbt,Mb) = Φh
byt + gbhfbt, for h = 1, 2, ..., (6)

where gbh =
∑h−1

`=0 ρ
h−`
b Φ`

bγb. Note that under both factor-augmented VAR specifications, the

conditional forecasts in (5) and (6) are linear in yt and the unobserved factor, fst, for s = a, b, and

neither depend on the covariance of the idiosyncratic errors.

3.1 Forecasting with high-dimensional factor-augmented VARs when factors
are unobserved

The optimal forecast in (5) and (6) depends on the unobserved common factor and possibly a

large number of unknown parameters. When N is small, the optimal forecasts of yt+h based on the

information set It alone can be derived using Kalman filter techniques assuming a full knowledge of
the factor-augmented model and processes that generate the factors.6 In practice, the requirement

of having a full knowledge of the underlying model is a disadvantage, and methods that are robust

to certain variations in the assumptions of the model, such as the way factors are introduced in the

VAR model, are welcome. Nevertheless, application of the Kalman filter to large systems clearly

deserves attention, but this is beyond the scope of the present paper, and will be left to future

research. Instead here we propose an alternative large N approximation to the unobserved factor

problem, and derive optimal forecasts that depend on observables and a finite number of unknown

parameters, which can be consistently estimated.

We start with model Ma, and using (5) we note that the optimal forecast of yi,t+h, the ith

element of yt+h, conditional on It ∪ Fat can be written as

yai,t+h|t = E (yi,t+h| It,Fat,Ma) = e′NiΦ
h
ayt + ρhaγaifat − e′NiΦ

h
aγafat for h = 1, 2, ..., (7)

where eNi is anN×1 selection vector with its ith element unity and zeros elsewhere. The unobserved

common factor can be approximated by cross-section averages along the same lines as in Pesaran

(2006) and Chudik and Pesaran (2011). In particular, Chudik and Pesaran (2011) show that under

Assumptions 1-3 and for any vector w = (w1, w2, ..., wN )′ such that

‖w‖∞ = max
i
|wi| <

K

N
, (8)

6 In the Appendix we show how to derive optimal forecasts of yt+h based on the information set It when the
dependent variables are generated according to (2).
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we have

ȳwt = w′yt =
(
w′γa

)
fat +Op

(
N−1/2

)
. (9)

Assumption 4 implies the existence of finite positive constants K`, for ` = 1, 2, ..., h, such that for

any N ∈ N and any i, j ∈ {1, 2, ..., N} we have∣∣∣φa`ii − φ`aii∣∣∣ < K`

N
, (10)

as well as ∣∣φa`ij∣∣ < K`

N
, (11)

where φa`ij denotes the (i, j) element of Φ`
a. Using (10)-(11) in (7), and (9) to substitute out the

cross-section average
∑N

j=1,j 6=i φa`ijyjt yields
7

yai,t+h|t = φhaiiyit +
(
ρha − φhaii

)
γaifat +Op

(
N−1/2

)
,

for any given fixed forecasting horizon h > 0. Furthermore, for any weights vector, w, which in

addition to condition (8) also satisfies
N∑
i=1

wi = 1, (12)

we obtain

γ̄wa = γa +Op

(
N−1/2

)
, (13)

and hence

yai,t+h|t = φhaiiyit + cahiȳwt +Op

(
N−1/2

)
, (14)

for any i and a given fixed forecasting horizon h, where

cahi =

{
0, under Assumption 2.a(

ρha − φhaii
) γai
γ̄wa
, under Assumption 2.b

.

Suppose now that yt is generated according to (2) instead of (1). Taking cross-section averages

in this case yields

ȳwt = w′Φbyt−1 +
(
w′γb

)
fbt + w′εbt,

= w′Φbyt−1 + γ̄wbfbt +Op

(
N−1/2

)
, (15)

where w′εbt = Op
(
N−1/2

)
, and, for a given Φb, fbt can be approximated (up to a scaling constant)

by ȳwt −w′Φbyt−1. But in practice Φb is not known, and cannot be estimated consistently when

N is large. Nevertheless, fbt can be approximated by an infinite order distributed lag function in

ȳwt. In particular, under Assumption 3 and assuming that the individual dynamic processes have

7We can use (9) because the vector
(
φa`i1, φa`i2, ..., φa`i,i−1, 0, φa`i,i+1, ..., φa`iN

)′
satisfies (8).
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been in operation for some time, we have

yt =
∞∑
j=0

Φj
bεb,t−j +

∞∑
j=0

Φj
bγbfb,t−j ,

and hence

w′Φbyt−1 =
∞∑
j=0

w′Φj+1
b εb,t−j−1 +

∞∑
j=0

w′Φj+1
b γbfb,t−j−1.

Using this result in (15) now yields

ȳwt = db (L) fbt +
∞∑
`=0

w′Φ`
bεb,t−`, (16)

where the polynomial db (L) =
∑∞

`=0 db`L
` =

∑∞
`=0 w′Φ`

bγbL
` depends on γb, w and all elements

of Φb (including the off-diagonal elements), and

V ar

( ∞∑
`=0

w′Φ`
bεb,t−`

)
=
∞∑
`=0

w′Φ`
bRbR

′
bΦ

`′
b w.

Taking the spectral matrix norm, under Assumptions 1 and 3, and condition (8) we have,∥∥∥∥∥V ar
( ∞∑
`=0

w′Φ`
bεb,t−`

)∥∥∥∥∥ ≤ ‖w‖2 ‖Rb‖2
∞∑
`=0

‖Φb‖2` = O
(
N−1

)
, (17)

where ‖w‖2 ≤ ‖w‖∞ ‖w‖1 ≤ N ‖w‖2∞ = O
(
N−1

)
(condition (8)), ‖Rb‖2 ≤ ‖Rb‖∞ ‖Rb‖1 = O (1)

(Assumption 1), and
∑∞

`=0 ‖Φb‖2` = O (1) (Assumption 3). Using (17) in (16) and noting that

E
∑∞

`=0 w′Φ`
bεb,t−` = 0, we obtain

ȳwt = db (L) fbt +Op

(
N−1/2

)
. (18)

Note that the coeffi cients in the polynomial db (L) satisfy |db`| =
∣∣w′Φ`

bγb
∣∣ ≤ ‖w‖∥∥Φ`

b

∥∥ ‖γb‖ =

O
[
(1− ε)`

]
and are thus declining at an exponential rate. Assuming that ab (L) = d−1

b (L) exists

and its coeffi cients also decline exponentially,8 we obtain

ft = ab (L) ȳwt +Op

(
N−1/2

)
, (19)

and the error of approximating ft with
∑p

`=0 ab`yt−` declines exponentially in the truncation lag,

p. Now consider the ith element of ybt+h|t in (6), namely

ybi,t+h|t = E (yi,t+h| It,Fbt,Mb) = e′NiΦ
h
byt + gbhifbt, for h = 1, 2, ..., (20)

8See Lemma A.1 of Chudik and Pesaran (2013b) for suffi cient conditions on the existence of a (L)with exponentially
declining coeffi cients.
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where gbhi = e′Nigbh =
∑h−1

`=0 ρ
h−`
b e′NiΦ

`
bγb. Define ωbhi = Φh′

b eNi−φhbiieNi and note that (10)-(11)
also holds for model Mb, and therefore ‖ωbhi‖∞ = O

(
N−1

)
, that is ωbhi satisfies (8). Hence, we

can use the same arguments as in the derivation of (18) to obtain

ω′bhiyt = βbhi (L) fbt +Op

(
N−1/2

)
,

where βbhi (L) =
∑∞

s=0ω
′
bhiΦ

s
bγbL

s. Using this result in e′NiΦ
h
byt = φhbiiyit+ω

′
bhiyt and substituting

(19) in (20) yields the following large N representation of ybi,t+h|t:

ybi,t+h|t = φhbiiyit + cbhi (L) ȳwt +Op

(
N−1/2

)
, (21)

where the polynomial

cbhi (L) =

{
0, under Assumption 2.a

[βbhi (L) + gbhi] ab (L) , under Assumption 2.b
.

Note that when Assumption 2.b holds, in general, cbhi (L) is an infinite order polynomial in the lag

operator, L.

The following proposition summarizes the main findings of this subsection.

Proposition 1 Let yt be generated by model (1) or model (2) with a factor given by (3), Assump-

tions 1, 2.a or 2.b, and 3-4 hold, w be any arbitrary vector of weights satisfying (8) and (12), and

the polynomial ab (L) = d−1
b (L) exists. Then for any cross-section unit i ∈ N, and a given fixed

forecasting horizon 0 < h < K, the optimal forecasts of yi,t+h, defined in (5) and (6) have a large

N representation given by (14) and (21), respectively.

Comparing (14) with (21) we see that the latter involves an infinite order lag distribution in

cross-section averages that need to be truncated, whereas under the former only contemporaneous

values of cross-section averages are included. In practice where the nature of factors and how

they enter the VAR model are not known, the lag order selection is likely to be important when

forecasting with large factor-augmented VARs. It might not be suffi cient just to add factor estimates

to the VAR model. The lag orders of yit and ȳwt need to be selected with care and together.

4 Forecasting with a GVAR

The GVAR approach was introduced in Pesaran et al. (2004) and has been used extensively to

model cross country, regions or market interactions. Chudik and Pesaran (2014b) provide a recent

survey. Consider N cross-section units (say countries) and suppose that the endogenous variables

specific to unit i, denoted by the ki × 1 vector yit, are related to their own past, and current and

past values of the remaining units. It is clear that without further restrictions, estimation of the

full system of equations in the endogenous variables, yt = (y′1t,y
′
2t, ...,y

′
Nt)
′, will be subject to the
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curse of dimensionality, even for moderate values of N . The GVAR approach resolves the curse

of dimensionality by adopting a two-step procedure. In the first step, cross-sectionally augmented

conditional models are estimated for each cross-section unit, taking the cross-section average as

weakly exogenous. In the second step, the estimated conditional models are combined to form a

complete system which is then used for forecasting and policy analysis. The key assumption that

cross-section averages are weakly exogenous is justified under certain plausible assumptions (see

Chudik and Pesaran (2011)), and are routinely tested in empirical applications of the GVAR.

More specifically, for each unit i, the following conditional model is estimated:

yit = Θiyi,t−1 + Bi0ywit + Bi1ywi,t−1 + ξit, (22)

for i = 1, 2, ..., N , where ywit = W′
iyt is a k

∗ × 1 vector of cross-section averages specific to unit

i, Wi is a k × k∗ matrix of unit-specific weights that define the k∗ cross-section averages, and

k =
∑N

i=1 ki is the total number of variables. We abstract from the deterministic components,

observed common factors, and additional lags for the simplicity of exposition, but these additions

can be readily accommodated.

In the second step, individual models in (22) are stacked and solved in one large VAR. Stacking

(22) for i = 1, 2, ..., N yields

yt = Θyt−1 + B0ywt + B1yw,t−1 + ξt, (23)

where ywt = (y′w1t,y
′
w2t, ...,y

′
wNt)

′, ξt =
(
ξ′1t, ξ

′
2t, ..., ξ

′
Nt

)′, and

Θ =


Θ1 0 · · · 0

0 Θ2 0
...

. . .

0 0 ΘN

 , Bh =


B1,h 0 · · · 0

0 B2,h 0
...

. . .

0 0 BN,h

 , for h = 1, 2, ....

Recognizing that ywt = Wyt, where W = (W1,W2, ...,WN )′, (23) can be written as

G0yt = G1xt−1 + ξt, (24)

where

G0 = (Ik −B0W) , and G1 = (Θ + B1W) . (25)

Finally, provided that G0 is invertible, we can multiply (24) by G−1
0 from the left to obtain the

following GVAR model:

yt = Gyt−1 + ut, (26)

where G = G−1
0 G1, and ut = G−1

0 ξt.

To forecast with a GVAR, one can assume that (26) is the data-generating process (DGP),

or alternatively one can assume that the DGP is model Ma or Mb, and the GVAR is used as an

11



approximation of the model Ma or Mb. In the former case, where the DGP is (26), forecasting

is straightforward. But in the latter case, where Ma or Mb is the DGP, there is no reason to

believe that the inverse of G0 exists when the unobserved common factor is present. Even if the

estimate ofG0 is not rank deficient, the singularity ofG0 will have adverse effects on the forecasting

performance.

To show the rank deficiency of G0, assume that the DGP is model Ma, given by (1) and (3),

that is ki = 1, k = N , yt = (y1t, y2t, ..., yNt)
′, k∗ = 1 and the cross-section average ȳwt = w′yt,

where the weights vector w is common across units and satisfies (8) and (12).9 In what follows we

focus on model Ma, and drop the subscript a to simplify notations. This specification (as opposed

to Mb) allows us to work with a finite lag polynomial, and also allows us to use the properties

of the cross-section augmented least squares (CALS) estimator developed in Chudik and Pesaran

(2011). The main arguments put forward in this section apply equally to the alternative model

specification, Mb, defined by (2) and (3), by relying on the CALS estimation with appropriately

truncated lags as considered in Chudik and Pesaran (2013a).

Using (1), (3) and Assumptions 1-4 above, and following a similar line argument as in Chudik

and Pesaran (2011), we obtain the following unit-specific equations:

yit = φiiyi,t−1 + bi0ȳwt + bi1yw,t−1 + ξit, for i ∈ {1, 2, ..., N} , (27)

where under Assumption 2.a we have bi0 = bi1 = 0, and under Assumption 2.b,

bi0 = γ̄−1
w γi, bi1 = −γ̄−1

w γiφii, (28)

where γ̄w =
∑N

i=1wiγi . Also, under both assumptions we have ξit = εit+Op
(
N−1/2

)
. Chudik and

Pesaran (2011) established that the least squares estimates of (27) are consistent and asymptotically

normally distributed. Using (27), G0 = (IN − b0w
′), which is easily seen to be rank deficient. The

rank deficiency follows (w′b0 = 1 and therefore rows of G0 are linearly dependent)

w′G0 = w′
(
IN − b0w

′)
= w′ − γ̄−1

w

(
N∑
i=1

wiγi

)
w′ = 0. (29)

The consequence of rank deficiency ofG0 is that the system of N equations in (27) is undetermined,

and we discuss this problem in greater detail next.

4.1 Rank deficient case

The GVAR model (26) is derived under the assumption that the contemporaneous coeffi cient ma-

trix, G0, (defined by (25)) has full rank. To clarify the role of this assumption and to illustrate the

consequences of possible rank deficiency of G0, abstracting from lags of (yit, ȳwit)
′, we consider the

9Conditions (8) and (12) are suffi cient for the usual granularity conditions (see (45) and (46)) to hold.
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following illustrative GVAR model:

yit = λiȳwit + εit, for i = 1, 2, ..., N , (30)

where ȳwit = w′iyt. Let Λ be the N ×N diagonal matrix defined by Λ = diag (λ1, λ2, ..., λN ) , and

let W′= (w1,w2, ....,wN ). Write (30) as

yt = ΛWyt + εt,

or

G0xt = εt, (31)

where G0 = IN −ΛW. Suppose that G0 is rank deficient, namely rank (G0) = N −m, for some
m > 0. Then the solution of (31) exists only if εt lies in the range of G0, denoted as Col (G0).

Assuming this is the case, system (31) does not uniquely determine yt, and the set of all its possible

solutions can be characterized as

yt = Γf̃ t + G+
0 εt, (32)

where f̃t is a vector ofm arbitrary stochastic processes, Γ is a k×mmatrix which is a basis of the null

space of G0, namely G0Γ = 0, rank (Γ′Γ) = m, and G+
0 is the Moore-Penrose pseudo-inverse of

G0. To verify that (32) maps all possible solutions of (31), note thatG+
0 εt is the particular solution

of (31) and Γ′f̃t is a general solution of the homogenous counterpart of (31), given by G0yt = 0.

To prove the former, from the property of Moore-Penrose inverses, namely G0G
+
0 G0 = G0, we

note that G0G
+
0 G0yt = G0yt, or εt = G0G

+
0 εt, which establishes that G+

0 εt is indeed a solution

of G0yt = εt. To prove the latter, we note that Γ is a basis of the null space of G0 and therefore

G0Γf̃ t = 0 for any m× 1 arbitrary stochastic process f̃t, and the set of solutions must be complete

since the dimension of Col (Γ) is m.

Let ft = f̃t − E
(

f̃t

∣∣∣ εt) = f̃t −D′εt. Then (32) can also be written as an approximate factor

model, namely

yt = Γf t + Hεt,

where ft is uncorrelated with εt by construction, and

H = ΓM′ + G+
0 .

Without any loss of generality, it is standard convention to use the normalization V ar (ft) = Im,

and to set the first non-zero element in each of the m column vectors of Γ to be positive. These

normalization conditions ensure that Γ is unique, in which case H is unique up to the rotation

matrix, M. Therefore, the full rank condition, rank(G0) = N , is necessary and suffi cient for yt,

given by (30), to be uniquely determined. It also follows that yt must have a factor structure in

cases where G0 is rank deficient. Finally, note that all of the above results hold for any N, and as

N →∞.
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4.2 Dealing with rank deficiency by augmentation

If G0 is known to be rank deficient with rank N −m and m > 0, then the GVAR model (30) would

need to be augmented by m equations that determine the m cross-section averages, defined by Γ′yt,

in order for yt to be uniquely determined. In the case of system (27), m = 1, and augmentation

by one additional equation is needed in order to obtain a unique solution for yt. Different options

could be considered for the augmentation of (27). We consider augmenting the set of conditional

equations in (27) with the following marginal equation for cross-section averages:

ȳwt = ρyw,t−1 + ξȳt, where ξȳt = γvt +Op

(
N−1/2

)
, (33)

and we treat ȳwt as a proxy for the (scaled) unobserved common factor (see (9)). Stacking (27)

and (33), we obtain the following VAR model in zt = (y′t, ȳwt)
′:

A0zt = A1zt−1 + ezt, (34)

where ezt =
(
ξ′t, ξȳt

)′
= (ε′t, γvt)

′ +Op
(
N−1/2

)
,

A0 =

(
IN −b0

0 1

)
, A1 =

(
Θ b1

0 ρ

)
, (35)

and Θ is an N × N diagonal matrix with elements φii, for i = 1, 2, ..., N , on the diagonal. The

matrix A0 is (by construction) invertible, and let A = A−1
0 A1. Note that (using b1 = −Θb0, see

(28))

A` =

(
Θ`

(
ρ`IN −Θ`

)
b0

0 ρ`

)
for ` = 1, 2, ..., (36)

and consider the following forecast of yi,t+h:

yaugi,t+h|t = e′N+1,iA
hzt, (37)

where eN+1,i is an N + 1 dimensional selection vector that selects the i-th element. Substituting

the expression (36) for Ah in (37), we obtain

yaugi,t+h|t =

{
φhiiyit under Assumption 2.a

φhiiyit +
(
ρh − φhii

) γi
γ̄w
ȳwt under Assumption 2.b

. (38)

It now readily follows by comparing (38) and (14) that

yaugi,t+h|t = y i,t+h|t +Op

(
N−1/2

)
, (39)

which establishes the consistency of the forecast yaugi,t+h|t defined in (37). These findings are sum-

marized in the following proposition.
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Proposition 2 Let yt be generated by (1), Assumptions 1, 2.a or 2.b, and 3-4 hold, and w be any

arbitrary vector of weights satisfying (8) and (12). Then for any cross-section unit i ∈ N, and any
given fixed forecasting horizon 0 < h < K, the forecast yaugi,t+h|t defined in (37) is consistent, that is∣∣∣yaugi,t+h|t − y i,t+h|t

∣∣∣ p→ 0 as N →∞.

yaugi,t+h|t is still an infeasible forecast since the parameters in (37) are unknown and need to be

estimated. It is therefore important to establish asymptotic results for feasible forecasts.

We consider estimation of GVAR forecasts y i,t+h|t and AugGVAR forecasts yaugi,t+h|t by using

least squares estimates of parameters of the conditional cross-section augmented models (27) and

(in the case of the AugGVAR only) also the marginal model (33). Namely, we define

ŷ i,t+h|t = e′N,iĜ
hyt, (40)

and

ŷaugi,t+h|t = e′N+1,iÂ
hzt, (41)

for i = 1, 2, ..., N and h = 1, 2, ..., where we use hats on G and A to denote that these matrices are

constructed based on the least squares estimates of the unknown parameters in (27) and (33).

We collect the individual forecasts in the vectors ŷ t+h|t =
(
ŷ1,t+h|t, ŷ2,t+h|t, ..., ŷN,t+h|t

)′ and
ŷaugt+h|t =

(
ŷaug1,t+h|t, ŷ

aug
2,t+h|t, ..., ŷ

aug
N,t+h|t

)′
. We investigate the asymptotic properties of ŷaugt+h|t in

the case of the weakly cross-sectionally dependent model and the case of the model featuring an

unobserved common factor.

Theorem 1 Suppose yt is generated by model (1), w is any vector satisfying conditions (8) and

(12), Assumptions 1, 2.a (weakly cross-sectionally dependent model) or 2.b (model featuring unob-

served common factor), and 3-4 hold, and N,T
j→ ∞ such that N/T → κ for some 0 < κ < ∞.

Then for any fixed 0 < h < K, the h-step-ahead forecast ŷaugt+h|t defined by (41) satisfies∥∥∥y t+h|t − ŷaugt+h|t

∥∥∥
∞

L1→ 0. (42)

Moreover, in the case when Assumption 2.b holds, the matrix G0 = IN − b0w
′ is singular for any

N ∈ N.

The proof is provided in the Appendix.

5 Extension to multiple unobserved common factors

Theorem 1 establishes that regardless of whether an unobserved common factor is included in the

VAR, it is asymptotically justified to use ŷaugt+h|t for forecasting individual endogenous variables

in the sense that the differences between infeasible optimal forecasts and feasible forecasts are

arbitrarily small as N,T
j→∞ such that N/T → κ for some 0 < κ <∞. This result is established

under the restrictive assumption that the number of unobserved factors in the underlying VAR
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model is at most equal to unity. Here we relax this assumption and consider VAR models with

multiple factors. As in Chudik and Pesaran (2011), we shall assume that there are up to mmax

factors, where mmax is a fixed known integer, and the data is generated by model (1) with γft
replaced by Γf t,

yt − Γf t = Φ (yt−1 − Γf t−1) + εt, (43)

where Γ = (γ1,γ2, ...,γN )′ is the N × m matrix of factor loadings, and ft is an m × 1 vector of

unobserved common factors, m ≤ mmax, butm is otherwise unknown. As before, we assume that εt
is independently distributed of ft. Moreover, the vector of unobserved common factors is assumed

to follow the covariance stationary VAR(1) process,

ft = Πf ft−1 + vt. (44)

Consider mmax cross-section averages ȳwt = W′yt, where W = (w1,w2, ...,wN )′ is an N ×mmax

matrix of predetermined granular weights satisfying the conditions

‖W‖ = O
(
N−

1
2

)
, (45)

‖wj‖
‖W‖ = O

(
N−

1
2

)
uniformly in j. (46)

Following the same steps as in the case of a single factor, we obtain the following large N repre-

sentation for cross-section averages:

ȳwt = Γ̄wft +Op

(
N−1/2

)
, (47)

and it is clear that the full column rank of Γ̄w is necessary for ȳwt to approximate the space spanned

by ft. To this end, we postulate the following assumption instead of Assumption 2.

ASSUMPTION 5 (Multiple unobserved common factors and their loadings) The m×1 vector of

unobserved common factors is characterized by (44) with |λ1 (Πf )| < 1. The macro shocks in vt are

independently distributed of idiosyncratic errors, εt, E (vt) = 0, ‖E (vtv
′
t)‖ < K, and E

(
vtv

′
t′
)

= 0

for any t 6= t′. The factor loadings are bounded, ‖γi‖ < K, and Γ̄w = W′Γ is a full column rank

matrix.

Under Assumption 5, we can multiply (47) by
(
Γ̄′wΓ̄w

)−1
Γ̄′w from the left to obtain

ft =
(
Γ̄′wΓ̄w

)−1
Γ̄′wȳwt +Op

(
N−1/2

)
,

and then using this expression in the VAR model for factors (44), we obtain the following large N

VAR representation for ȳwt:

ȳwt = Πȳw,t−1 + ξȳt, (48)

where Π = Γ̄wΠf

(
Γ̄′wΓ̄w

)−1
Γ̄′w and ξȳt = Γ̄wvt. AugGVAR representation in the case of aug-

mentation by mmax cross-section averages can be easily obtained as before, but by using marginal
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model (48) instead of (33), and the conditional models (27) augmented with mmax cross-section

averages in ȳwt. In particular, we obtain the following AugGVAR representation for zt = (y′t, ȳ
′
wt)
′:

A0zt = A1zt−1 + ezt, (49)

where ezt =
(
ξ′t, ξ

′
ȳt

)′,
A0 =

(
IN −B0

0 Immax

)
, A1 =

(
Θ B1

0 Π

)
,

Θ is the same as before and B` for ` = 0, 1 are N × mmax coeffi cient matrices that collect the

coeffi cients corresponding to regressors ȳw,t−` in the conditional models (27). Forecasts based on

(49) are given by

yaugi,t+h|t = e′N+mmax,iA
hzt. (50)

As in the case when mmax = 1, yaugi,t+h|t can be estimated consistently using the least squares

estimates of the unknown parameters on the right side of (50).

When m < mmax, augmentation by mmax cross-section averages is clearly not necessary, and

as can be seen from (47), ȳwt are asymptotically (as N → ∞) multicollinear. Nevertheless, the
asymptotic multicollinearity does not invalidate the consistency of the AugGVAR forecasts so long

as Γ̄w has full column rank. As discussed in Chudik and Pesaran (2011), this rank condition is

necessary for the consistency of estimates of individual parameters of the conditional models (27),

and it is therefore also necessary for the consistency of the AugGVAR forecasts. The following

theorem establishes consistency of the AugGVAR forecasts in the case of multiple factors.

Theorem 2 Suppose yt is generated by model (43), W is any N ×mmax matrix satisfying condi-

tions (45) and (46), Assumptions 1, and 3-5 hold, and N,T
j→ ∞ such that N/T → κ for some

0 < κ <∞. Then for any fixed 0 < h < K, the h-step-ahead forecast ŷaugt+h|t satisfies∥∥∥y t+h|t − ŷaugt+h|t

∥∥∥
∞

L1→ 0.

Proof of Theorem 2 is provided in a Supplement available from the authors upon request.

Instead of pre-determined cross-section averages, augmentation by principal components could

be considered as well. It is analytically more convenient to work with predetermined cross-section

averages as opposed to the principal components, which are essentially cross-section averages with

weights that contemporaneously depend on the observations, yt. We leave it for future research to

establish asymptotic results when ȳwt is replaced by mmax principal components.

6 Forecasting with nonsynchronous conditioning

Economic variables are typically released with a lag, which could widely differ across countries and

variable types. As a result forecasting must often be carried out with respect to nonsynchronous

information sets. An illustrative example of a nonsynchronous conditioning set arises when obser-

17



vations on a subset of variables are available up to time t−1, but for the remainder of the variables

observations are available up to t. As before, let It = {yt,yt−1, ...}, and Ft = {ft, ft−1, ...}, and
suppose that yt can be partitioned as yt = (y1t,y2t)

′. Then, a simple example of a nonsynchronous

information set is given by y2t ∪ It−1 ∪ Ft.

6.1 Infeasible optimal forecasts with nonsynchronous information

Solving (1) from t+ h backward gives

yt+h − γft+h = Φh+1 (yt−1 − γft−1) + Φhεt +
h−1∑
`=0

Φ`εt+h−`,

and after substituting (3) for the factor and taking expectations conditional on y2t ∪ It−1 ∪Ft, we
obtain

E (yt+h|y2t, It−1,Ft) = ρhγft + Φh+1 (yt−1 − γft−1) + ΦhE (εt|y2t, It−1,Ft) . (51)

Therefore, in the presence of nonsynchronous conditioning E (εt|y2t, It−1,Ft) 6= 0 and must be

derived. Let N1 (N2) denote the number of elements of y1t (y2t), and partition εt = (ε′1t, ε
′
2t)
′

conformably, so that the dimension of εjt = Nj for j = 1, 2. Since y2t is included in the conditioning

set, we have

E (ε2t|y2t, It−1,Ft) = ε2t,

whereas E (ε1t|y2t, It−1,Ft) can differ from zero due to possible non-zero correlations between ε1t

and ε2t. Partition the covariance matrix of εt, denoted by Σε = (εtε
′
t), as

Σε =

(
Σε11 Σε12

Σε21 Σε22

)
, (52)

where Σεjk = E (εjtε
′
kt) has dimensions Nj × Nk for j, k = 1, 2. The conditional expectations,

E (ε1t|y2t, It−1,Ft), can now be readily obtained as

E (ε1t|y2t, It−1,Ft) = Σε12Σ
−1
ε22ε2t,

and hence

E (εt|y2t, It−1,Ft) =

(
Σε12Σ

−1
ε22

IN2

)
ε2t. (53)

Substituting (53) in (51), the optimal forecasts in the presence of nonsynchronous conditioning are

given by

E (yt+h|y2t, It−1,Ft) = ρhγft + Φh+1 (yt−1 − γft−1) + Φh

(
Σε12Σ

−1
ε22

IN2

)
ε2t,
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where ε2t = y2t − γ2ft − S′2Φ (yt−1 − γft−1), and S2 is a selection matrix that selects y2t, defined

by y2t = S′2yt.

The covariance matrix of idiosyncratic errors, Σε, plays an important role in the case of nonsyn-

chronous conditioning, in contrast with the case discussed in Section 3, where Σε did not enter the

forecasting equations. It is clear that a consistent estimation of E (ε1t|y2t, It−1,Ft) is necessary for
consistency of feasible forecasts when the conditioning information set is nonsynchronous, which

adds further complexity to the forecasting exercise since when N is large, estimation of Σε will

be subject to the curse of dimensionality. Estimation of large covariance matrices is discussed in

Ledoit and Wolf (2004), Bickel and Levina (2008), Cai and Liu (2011) and Bailey, Pesaran, and

Smith (2014).

6.2 Forecasting with GVARs with nonsynchronous conditioning

In the case of the non-augmented GVAR specification (26), feasible forecasts based on the nonsyn-

chronous conditioning set y2t ∪ It−1 can be obtained as

ŷ t+h|y2t,It−1
= Ĝh+1yt−1 + Ĝhût,

where

ût =

(
Σ̂u12Σ̂

−1
u22

In

)(
y2t − S′2Ĝyt−1

)
,

and Σ̂ujk for j, k = 1, 2 are suitably partitioned sub-matrices of Σ̂u= Ĝ
−1
0 Σ̂ξĜ

−1′
0 as in (52), and

Σ̂ξ is an appropriate estimator of the covariance matrix of the reduced-form errors ξ̂t defined by

(24).

Consider now the following augmented GVAR specification (see (34)):

zt = Âzt−1 + ûzt, (54)

where Â = Â−1
0 Â1, and ûzt = Â−1

0 êzt. In the case of AugGVAR specification (54), feasible forecasts

conditional on y2t ∪It−1 can be obtained in a similar way. Assuming that the country-specific and

macro shocks are uncorrelated, we have

̂E (uztu′zt) = Â−1
0

(
Σ̂ξ 0

0 σ̂2
ξȳ

)
Â−1′

0 ,

where Σ̂ξ is a suitable estimator of Σξ, and σ̂2
ξȳ
is the estimator of V ar(ξȳt) defined by (33).

In practice, inverting large covariance matrices has proven problematic, and therefore we also

consider alternative AugGVAR forecasts that avoid inverting large covariance matrices by es-

timating a prediction for ȳt using the nonsynchronous conditioning set y2t ∪ It−1. Let y2t =

N−1
2

∑N
i=N1+1 yit be the cross-section average of y2t, and note that ȳt and y2t are asymptotically
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(as N2 →∞) multicollinear, namely,

yt = y2t +Op

(
N
−1/2
2

)
.

Predictions for yt based on the nonsynchronous conditioning set y2t ∪ It−1 can be obtained using

an auxiliary regression. We consider

yt = αyt−1 + β0y2t + β1y2,t−1 + εt. (55)

After constructing the prediction for yt, we proceed with forecasting individual elements of y1t using

the conditional models (27) and taking forecasts of yt as given. Forecasts for yt+h, for h = 1, 2, ...

can subsequently be obtained recursively using formula (69) by substituting the derived forecasts

for y1t.

7 Monte Carlo experiments

This section investigates the relative forecasting performance of augmented and non-augmented

GVAR models denoted as before by AugGVAR and GVAR, respectively. Our main objective is

to illustrate the main theoretical results of the previous sections on the need to augment GVAR

models with additional equations for cross-section averages in cases where the underlying high

dimensional VARs contain unobserved common factors. We consider two sets of experiments. In

the first set, forecasts for the period T + 1 are constructed based on the observed data for time

periods t = 1, 2, ..., T . These experiments correspond to a conventional forecasting exercise in the

literature without nonsynchronous conditioning. In the second set of experiments, we consider

forecasting with nonsynchronous conditioning.

7.1 MC Design

Three DGPs are considered: a high-dimensional VAR model without a common factor, and two

high-dimensional VARs featuring a common factor. The latter two DGPs differ in the way the factor

is introduced in the model and are used to illustrate that the GVAR and AugGVAR methods are

robust to the way unobserved factors are specified to enter the underlying DGP.

DGP1: A high-dimensional VAR without a common factor. The first DGP assumes
γi = 0 for all i, but allows for weak cross-sectional dependence of errors. yt = (y1t, y2t, ..., yNt)

′ for

t = −M + 1, ..., 0, 1, 2, ..., T is generated as

yt = Φyt−1 + εt, (56)

with starting values y−M = 0. The first M = 100 observations are discarded to reduce the effects
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of the initial observations on the results. Matrix Φ is taken to be block-diagonal,

Φ =


Φ1 02×2 · · · 02×2

02×2 Φ2 02×2

...
. . .

...

02×2 02×2 · · · Φn

 , (57)

where n = N/2 with N being an even integer. Matrices Φs = (φsij), s = 1, 2, ..., n, are 2 × 2

dimensional with their elements generated randomly as

φsij ∼ IIDU (0, 0.7) , for i = j, and

φsij ∼ IIDU (0, 0.7− φsii) , for i 6= j.

This ensures ‖Φs‖∞ ≤ 0.7, for all s, which implies that ‖Φ‖∞ < 0.7, and in turn ensures that the

DGP is stationary for any N ∈ N. Replacing the non-zero elements of Φ with Op
(
N−1/2

)
such

that ‖Φ‖∞ < 1 has little effect on the MC findings reported below.10

The idiosyncratic errors, εt, are generated according to the following spatial autoregressive

process:

εt = %εSεεt + ηt, 0 < % < 1,

where ηt = (η1t, η2t, ..., ηNt)
′, ηt ∼ IIDN

(
0, σ2

ηIN
)
, and the N × N dimensional spatial weights

matrix Sε is given by

Sε =



0 1 0 0 · · · 0
1
2 0 1

2 0 · · · 0

0 1
2 0 1

2 0
...

. . . . . . . . .

0 1
2 0 1

2

0 0 · · · 0 1 0


.

To ensure that the idiosyncratic errors are weakly correlated, the spatial autoregressive parameter,

%ε, must lie in the range [0, 1). We consider a low and a high value for the spatial coeffi cient and

set %ε = 0.2 and 0.6. We also set σ2
η to ensure N

−1
∑N

i=1 V ar (εit) = 1.11

DGP2: A high-dimensional VAR with an additive common factor. yt and ft, for

t = −M + 1, ..., 0, 1, 2, ..., T , are generated according to

yt − γft = Φ (yt−1 − γft−1) + εt, (58)

10 In particular, we have considered generating the elements outside the block-diagonal as φij = λiωij , where
λi ∼ IIDU (−0.2, 0.2) and ωij = ςij/

∑N
j=1 ςij ,with ςij ∼ IIDU (0, 1). These findings are available in the Supplement.

11More specifically, we set σ2
η = N/

∑N
i=1 e′iNRεR

′
εeiN , where eiN is an N × 1 selection vector for the unit i, and

Rε = (IN − %εSε)
−1.
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and

ft = ρft−1 +
(
1− ρ2

)1/2
vt,

with the starting values y−M = 0, f−M = 0. As before the first M = 100 observations are

discarded. The coeffi cient matrix Φ and the idiosyncratic errors in εt are generated in the same

way as in DGP1. We set ρ = 0.8 and generate vt as N(0, 1). Factor loadings are generated as

γi ∼ IIDN
(
γ, σ2

γ

)
with γ = 1 and σγ = 0.2.

DGP3: A high-dimensional VAR with a factor error structure. ft ∼ IIDN (0, 1) and

yt, for t = −M + 1, ..., 0, 1, 2, ..., T , are generated according to

yt = Φyt−1 + γft + εt, (59)

with starting values y−M = 0, and discarding the firstM = 100 observations. The coeffi cient matrix

Φ and the idiosyncratic errors in εt are generated in the same way as in DGP1. Factor loadings are

generated as γi ∼ IIDN
(
γ, σ2

γ

)
, with σγ = 0.2 and γ is set to ensure thatN−1τ ′N (I−Φ)−1 τNγ =

1, where τN is an N × 1 vector of ones.

All experiments are carried out for N,T ∈ {30, 50, 100, 200, 500}, and replicated R = 2, 000

times.

7.2 Individual forecasts and average MSFEs

7.2.1 Forecasting with synchronous conditioning

Our primary objective is to investigate the forecasting performance of the AugGVAR and the non-

augmented GVAR for horizon h = 1 (one-step-ahead forecasts). We do so by comparing these

forecasts with their infeasible counterparts. In particular, we compute the following average mean

square forecast errors (MSFE) relative to the optimal infeasible forecasts:

MSFERN (T + 1|T ) =

∑R
r=1

∑N
i=1

(
ŷ

(r)
i,T+1|T − y

(r)
i,T+1

)2

∑R
r=1

∑N
i=1

[
E
(
y

(r)
i,T+1

∣∣∣ I(r)
t ,F (r)

t

)
− y(r)

i,T+1

]2 , (60)

where I(r)
t =

{
y

(r)
t ,y

(r)
t−1, ...

}
, F (r)

t =
{
f

(r)
t , f

(r)
t−1, ...

}
, and y(r)

i,T+1 is the realized value for unit i,

at time T + 1, and the Monte Carlo replication, r. Similarly, we compute the MSFE for Aug-

GVAR forecasts ŷaugi,T+1|T . The optimal infeasible one-step-ahead forecasts are computed as (we are

dropping the superscript (r) to simplify the notations)

E (yi,T+1| IT ,FT ) =


e′iNΦyT , in the case of DGP1

γiρfT + e′iNΦ (yT − γfT ) , in the case of DGP2

γiρfT + e′iNΦyT , in the case of DGP3

. (61)
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The non-augmented GVAR forecasts (ŷ i,T+1|T ) are based on the following regressions:

yit = ci + φiiyi,t−1 + φi,i+1yi+1,t−1 +

p∑
`=0

bi`ywi,t−` + ξit, for i = 1, 3, 5, ..., N − 1, (62)

yit = ci + φiiyi,t−1 + φi,i−1yi−1,t−1 +

p∑
`=0

bi`ywi,t−` + ξit, for i = 2, 4, 6, ..., N , (63)

where ywit =
∑N

j=1wijyjt. Aggregation weights are such that ywit is a simple cross-section average

of units that do not directly enter individual cross-section augmented regressions in (62)-(63). In

particular, when i is odd, wii = wi,i+1 = 0 and wij = (N − 2)−1 for i 6= j, j+ 1; and when i is even,

wii = wi,i−1 = 0, and wij = (N − 2)−1 for i 6= j, j − 1. Let W = [wij ] and

B̂` = diag
(
b̂`

)
for ` = 0, 1, ..., p,

where b̂` is the least squares estimate of b` = (b1`, b2`, ..., bN`)
′. The estimated (non-augmented)

GVAR representation is

yt = δ̂ +

p∑
`=1

Ψ̂`yt−` + ût, (64)

which yields the GVAR forecasts

ŷT+1|T =

p∑
`=1

Ψ̂`yT+1−` + δ̂, (65)

where Ψ̂` = Ĝ−1
0 Ĝ`, for ` = 1, 2, ..., p, δ̂ = Ĝ

−1
0 ĉ, Ĝ0 = IN − B̂0W, Ĝ1 = Φ̂ + B̂1W, Ĝ` = B̂`W,

for ` = 2, 3, .., p, Φ̂ is a block-diagonal matrix constructed based on the estimates of the block-

diagonal coeffi cients in (62)-(63), ĉ = (ĉ1, ĉ2..., ĉN )′ is the vector of estimated fixed effects in (62)-

(63), and ût = Ĝ−1
0 ξ̂t.

One-step-ahead forecasts based on an augmented GVAR model (ŷaugT+1|T ) are constructed in a

similar way as described in Section 4. In particular, the following regressions are estimated instead

of (62)-(63):

yit = ci + φiiyi,t−1 + φi,i+1yi+1,t−1 +

p∑
`=0

bi`yt−` + ξit, for i = 1, 3, 5, ..., N − 1, (66)

yit = ci + φiiyi,t−1 + φi,i−1yi−1,t−1 +

p∑
`=0

bi`yt−` + ξit, for i = 2, 4, 6, ..., N , (67)

together with

ȳt = cȳ +

p∑
`=1

ρ`ȳt−` + ξȳt, (68)

23



where ȳt = N−1
∑N

i=1 yit. Individual elements of ŷaugT+1|T are given by

ŷaugi,T+1|T = e′i,N+1ẑT+1 = e′i,N+1

(
δ̂ +

p∑
`=1

Υ̂`zT−`

)
, (69)

where zt = (y′t, ȳt)
′, Υ̂` = Â−1

0 Â`, for ` = 1, 2, ..., p, δ̂ = (ĉ′, ĉȳ)
′,

Â0 =

(
IN −b̂0

01×N 1

)
, Â1 =

(
Φ̂ b̂1

01×N ρ̂1

)
, and Â` =

(
0N×N b̂`

01×N ρ̂`

)
, for ` = 2, 3, ..., p,

in which all estimated coeffi cients are based on (66)-(68).

The number of lags for cross-section averages in both augmented and non-augmented GVARs

is set to p =
[
T 1/3

]
, where [.] denotes the integer part.

7.2.2 Forecasting with nonsynchronous conditioning

We consider forecasting the period T + 1 conditional on a nonsynchronous information set, which

includes observations on odd cross-section units for periods t = 1, 2, ..., T −1, and even cross-section

units for periods t = 1, 2, ..., T . We consider the following nonsynchronous conditioning information

set:

ST ≡ S1,T−1 ∪ S2T , (70)

where S1,T−1 = {yit, t = 1, 2, ..., T − 1, i = 1, 3, 5, ..., N − 1}, and S2T = {yit, t = 1, 2, ..., T, i = 2, 4, 6, ..., N}.
As in the case of forecasting without nonsynchronous conditioning, we compute the simple cross-

section average MSFE of the feasible GVAR nowcasts relative to the optimal infeasible nowcasts

MSFERN (T + 1|T ) =

∑R
r=1

∑N
i=1

(
ŷ

(r)
i,T+1|ST − y

(r)
i,T+1

)2

∑R
r=1

∑N
i=1

[
E
(
y

(r)
i,T+1

∣∣∣S(r)
T ∪ F

(r)
T

)
− y(r)

i,T+1

]2 , (71)

and similarly for the AugGVAR forecasts ŷaugi,T+1|ST .

We compute GVAR forecasts in the presence of nonsynchronous conditioning as outlined in

Section 6, and consider two options for the estimation of the covariance matrix of idiosyncratic

shocks. First is Ledoit and Wolf (2004)’s estimator of Σξ, denoted as Σ̂ξ,LW . The second option

is to use the following block-diagonal specification:

Σ̂ξ,B =


Σ̂1 02×2 · · · 02×2

02×2 Σ̂2 02×2

...
. . .

...

02×2 02×2 · · · Σ̂n

 , (72)

where Σ̂s is the sample estimate of the covariance matrix of the 2 × 1 vector
(
ξ2s−1,tξ2s,t

)′ for
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s = 1, 2, ..., n.12

Forecasting with an AugGVAR is subject to the same problems as in the case of a non-augmented

GVAR when the conditioning information set is nonsynchronous. We consider the same two options

for estimating the large-dimensional covariance matrix Σξ, namely Σ̂ξ,LW , and Σ̂ξ,B. In addition

we consider the AugGVAR forecasts (see Section 6.2) that avoid inverting large covariance matrices.

7.3 Monte Carlo results

7.3.1 Case of synchronous conditioning

Table 1 reports the results for the augmented and non-augmented GVAR methods in experiments

with low cross-section dependence of idiosyncratic shocks (%ε = 0.2) and a sparse matrix Φ. The
top panel of this table presents relative MSFE in the case of data generated by a high-dimensional

VAR model without a common factor. We can see that both augmented and non-augmented GVAR

methods converge to the infeasible forecasts as the sample size grows, and the difference between the

GVAR and AugGVAR is minimal with the latter marginally better. It is interesting to observe that

the augmentation with an additional equation for cross-section averages, although asymptotically

redundant, does not worsen the forecasting performance. We also observe that an increase in the

time dimension is crucial for the improvement in the forecasting performance, as expected, whereas

increasing N (beyond 30) does not seem to make that much of a difference to the results.

In contrast, qualitatively different results are reported in the middle and bottom panels of

Table 1 which report the results for the two specifications of the VAR with an unobserved common

factor. AugGVAR forecasts are not affected by the inclusion of the factors, and their performance is

generally similar to those reported in the top panel of the table for the VAR model without a factor.

This confirms that the AugGVAR is robust to the way the unobserved factor is introduced in the

analysis. However, the performance of the GVAR without augmentation deteriorates considerably

with the introduction of an unobserved common factor, especially when T is small and N large.

This finding is in line with our theoretical result which suggests that in the presence of a common

factor the contemporaneous matrix G0 becomes singular as N →∞. The results clearly illustrate
that the AugGVAR performs well, irrespective of whether the underlying VAR contains a factor or

not. Also, when a factor is included, the results are robust to the way the factor is introduced in

the VAR.

The findings for the experiments with a high spatial coeffi cient (namely %ε = 0.6) and/or a

non-sparse coeffi cient matrix Φ are qualitatively similar and are reported in a Supplement which

is available upon request.

7.3.2 Case of nonsynchronous conditioning

The results for forecasting with nonsynchronous conditioning are summarized in Table 2. Similarly

to Table 1, this table reports the results for experiments with %ε = 0.2 and a sparse matrix Φ.

12While we acknowledge that several other options for estimating large covariance matrices have been proposed in
the literature, we do not consider them here. We leave this important topic for future research.
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Recall that an estimate of the covariance matrix Σξ is required for the computation of forecasts

when the conditioning information set is nonsynchronous. Table 2 summarizes the findings when

Σ̂ξ,LW and Σ̂ξ,B are used (in the case of both the GVAR and the AugGVAR) and when a non-

synchronous cross-section average is used instead of an estimate of Σξ (AugGVAR).13 Table 2

shows that with nonsynchronous conditioning, augmentation continues to be preferable. It does no

harm (or marginally improves the forecasting performance) when no unobserved common factor

is present, and continues to perform well when a factor is present. It is also robust to the way

the unobserved common factor is introduced in the underlying VAR model. Moreover, the GVAR

forecasts without augmentation perform poorly when a factor is present and T/N is small. Similar

results (reported in the Supplement) are obtained in the case of experiments with a high value of

the spatial AR parameter, %ε, and/or a non-sparse matrix Φ.

Regarding the choice of the estimator of Σξ, we found that no clear ordering is observed between

AugGVAR
(
Σ̂ξ,LW

)
, AugGVAR

(
Σ̂ξ,B

)
and the AugGVAR forecasts, where the cross-section av-

erages are directly forecast. For experiments with a low value for the SAR parameter, %ε = 0.2,

the forecasts from AugGVAR outperform forecasts based on Σ̂ξ,LW , but this is not always the case

when %ε is increased to 0.6 and T is relatively large.

The small sample evidence presented in this section overwhelmingly supports augmenting the

GVAR with additional equations for cross-section averages when factors are present, and shows

that there is no harm in augmentation when factors are absent. The results also show that under

nonsynchronous conditioning, no clear conclusion regarding the choice of Σ̂ξ emerges.

8 Empirical application: forecasting GDP using PMIs

In this section we apply a number of different methods for the analysis of large data sets, including

the GVAR and AugGVAR, to assess the extent to which using PMIs helps forecast GDP growth

in a multi-country setting. We also provide a comparative analysis of the alternative forecasting

techniques, with particular emphasis on a comparison of GVAR and AugGVAR outcomes. We

begin by describing the data first, followed by a summary description of forecasting methods.

8.1 GDP and PMI data

We have compiled a panel of quarterly data on real output covering 48 countries representing 92%

of world output. We chose the starting period to be 1998Q4, for which quarterly output data for

all 48 countries is available, and at the same time we also have a good country coverage for PMI

data. The latest available observation on output is 2013Q2. All of the output data is seasonally

adjusted, most series by the source. Table A.1 describes the sources and construction of the output

data in detail. We denote the first differences in the logarithm of real output in country i and

quarter t by xit, for i = 1, 2, ..., N ; and t = 1, 2, ..., T , where t = 1 corresponds to 1999Q1 (due to

differencing) and T = 58 corresponds to 2013Q2. Figure A.1 plots xit for the group of advanced

13The variance matrix estimators Σ̂ξ,LW and Σ̂ξ,B are defined in Subsection 7.2.2.
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economies (Panel A) and emerging economies (Panel B) over the period 1999Q1-2013Q2.14

PMIs are reported monthly as seasonally adjusted diffusion indices in which a number greater

than 50 indicates an expansion, and a number below 50 indicates a contraction. We use two types

of PMIs: manufacturing PMIs denoted as κi,m,t, and services PMIs denoted as si,m,t. Subscripts m

and t refer to month m in quarter t. PMIs are not available for all countries in our dataset. We

have manufacturing PMI data on 30 countries with a suffi ciently long history. Country coverage

on services PMIs is much less comprehensive with only 10 countries having available data with a

suffi ciently long history. Table A.2 provides further details on country, time coverage, and sources

of the PMI data. Figures A.2 and A.3 plot the manufacturing and services PMIs, respectively.

8.1.1 Information sets

We use Ωmt to denote the available information set (consisting of both quarterly and monthly data)

at the end of month m = 1, 2, 3 of quarter t. We are interested in forecasting output growth in

country i in period t+h conditional on the information set available at the end of month m = 1, 2, 3

of quarter t. We omit reference to the information set Ωmt explicitly to economize on notations,

but it will be understood that all forecasts are conditional on the nonsynchronous information set

Ωmt.

We denote the latest available observation on country i output growth in the information set

Ωmt as xiτxi , where τxi = τx (i,Ωmt) is a function that depends on t, the chosen month m, and the

country i, but we abbreviate this function as τxi. We also denote the difference between t and the

latest period for which an observation is available on xit by sxi = t− τxi.

8.1.2 From monthly PMIs to quarterly PMIs

Dealing with different frequencies is not a central contribution of this paper, and we follow a simple

solution of transforming monthly data into quarterly observations as opposed to developing a fully

fledged mixed-frequency model (such as the MIDAS approach mentioned in the Introduction). In

particular, we consider two ways of transforming monthly observations into a quarterly series.

First we employ a sequential sampling scheme where for a given month, m, we define

κ̄sit(m) = κi,m,t, and s̄sit(m) = si,m,t, for m = 1, 2, 3 (73)

where superscript s stands for sequential sampling, i = 1, 2, ..., N indexes individual countries and

t = 1, 2, ..., T indexes quarterly time periods. This gives us three sequentially sampled quarterly

series. The latest available monthly observation is used in estimation of the parameters of the

14There are two countries with notable outliers in the group of emerging economies: Venezuela (2003Q1-Q2) and
Thailand (2011Q4-2012Q2). Venezuela had a recession in 2002-03, low oil prices, a coup attempt in 2002 and a
business strike. Thailand had massive flooding in late 2011 that disrupted the economy. Looking at both advanced
and emerging economies, there appears to be large cross-sectional comovement across countries, especially during the
2007-08 global financial crisis.
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forecasting equations. Second, we use a temporally aggregated measure, defined by

κ̄ait(1) = (κi,2,t−1 + κi,3,t−1 + κi,1,t) /3, (74)

κ̄ait(2) = (κi,3,t−1 + κi,1,t + κi,2,t) /3, (75)

κ̄ait(3) = (κi,1,t + κi,2,t + κi,3,t) /3, (76)

where as before κ̄ait(m), for m = 1, 2, 3 denote month m of quarter t. Similar temporally aggregated

services PMI series can be constructed. As in the case of sequential sampling, we always select m

based on the latest available monthly observation in Ωmt.

In the case of the forecasts that make use of PMIs we compute two sets of forecasts: one based

on sequentially sampled PMIs, and the other based on temporally aggregated PMIs. We report a

simple average of the two forecasts. In this way we avoid the potential data mining problem that

could arise due to the choice of data transformation from monthly to quarterly observations.

The timing of data releases differs across countries and by variable types. As a general rule,

manufacturing PMI data is released on the first working day of the month after the reference period.

Israel and New Zealand release their manufacturing PMI data in the middle of the month after

the reference period. Services PMI data is released on the third working day of the month after

the reference period. GDP releases vary substantially across countries– some countries adhere to

a strict release schedule, while the publication date for others can be variable and/or affected by

national holidays. Figure A.4 plots the GDP release lags for each of the countries in our sample

ordered by the number of days after the beginning of the reference quarter for Q2 of 2013. We

assume the same schedule applies to previous and subsequent releases, although release lags may

vary.

8.2 Forecasting methods with a large number of predictors

We consider three basic benchmarks and a number of data-rich methods summarized below. A

detailed description of individual methods is provided in the Supplement.

Let yit be a ki × 1 vector of country-specific quarterly variables consisting of output growth

(xit) and, where available, manufacturing and services PMI country indices. Thus, ki = 3 if all

three series are available, in which case yit(mi) = (xit, κ̄it(mi), s̄it(mi))
′, whereas ki = 1 or 2 if one

or both PMI indices are not available.15 We employ the GVAR model as given by (26), including

an intercept term. We compute country-specific cross-section averages as ywit = (x̄wit, κ̄wit, s̄wit)
′,

where x̄wit =
∑N

j=1wijxit is the cross-section average of output growth, κ̄wit =
∑

j∈Iκ w
κ
ij κ̄jt(mj)

is the cross-section average of manufacturing PMI indices, and Iκ is the index set of countries with
available manufacturing PMI data. Similarly, s̄wit is defined as s̄wit =

∑
j∈Is w

s
ij s̄jt(mj), in which

Is is the index set of countries with available services PMI data. The weights {wij} are based
on bilateral aggregate trade flows obtained from the IMF DOTS database such that wii = 0 and

15Strictly speaking the vector of observations on country i should be defined as yjit(qi) =
(
xit, κ̄

j
it(qi), s̄

j
it(qi)

)′
for

j = s, a, which makes the choice of transformation from monthly PMIs to quarterly observations explicit. But here
we have simplified the notation for ease of exposition.
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∑N
j=1wij = 1 for all i.16 Weights used for PMI indices are constructed from {wij} as follows:

wij = 1 if j ∈ Iκ and 0 otherwise.

We allow for only one lag of yit(mi) and ȳwit in the conditional VAR models, (22), due to the

short sample available. For the full sample T = 58, but in the out-of-sample forecasting exercise

the first forecast is made for 2006Q1, which leaves us with 28 quarterly observations to estimate

the conditional VAR models. We proceed with model (26) to derive conditional forecasts in the

same way as outlined in Section 6.2. We denote the GVAR forecasts as GVAR-PMI and GVAR,

depending on whether PMI data is included in yit, or only output growth is considered, in which

case ki = 1.

8.2.1 Augmented GVARs

We use the AugGVAR representation (see (49)) derived from the marginal VAR model (48) featur-

ing arithmetic cross-section averages denoted as yt = (x̄t, κ̄t, s̄t)
′, and from individual conditional

models (22), in which yit is defined in the same way as in the case of the non-augmented GVAR

above and the augmentation is carried out with simple cross-section averages, yt. Augmented

GVAR forecasts for the target variables, xit, are constructed in the same way as outlined in Section

6.2, and are denoted as AugGVAR-PMI and AugGVAR, depending on whether the PMI variables

are included in yit. Multi-step ahead forecasts from the GVAR and AugGVAR methods are com-

puted iteratively. The remaining data-rich forecasts explained below are computed using the direct

approach where different regressions are considered for computing forecasts at different horizons.

For a discussion of iterative and direct procedures for computation of multi-step ahead forecasts

see, for example, Ing (2003), Marcellino et al. (2006), and Pesaran et al. (2011).

8.2.2 Lasso regressions

Our next data-rich forecasting method is based on Lasso regressions, popularized in the literature

following the seminal contribution of Tibshirani (1996). A recent textbook exposition of the Lasso

regression can be found in Hastie et al. (2009).17 The forecasts of xi,t+h are based on the linear

penalized regressions of xit on all k =
∑N

i=1 ki predictors lagged by h quarters. But before running

the regressions we first standardize the predictors using the information available at time t − h.
The estimation is carried out by minimizing the sum of squared residuals subject to the Lasso

constraint, which bounds by λi the sum of absolute values of estimated coeffi cients. We denote the

Lasso forecasts by LASSO-PMI or LASSO depending on whether PMI data is included in the set

of predictors.

16Weights are constructed as a ratio of total exports (from i to j) and imports (from j to i) over total foreign trade
(of country i) using 2000-2010 trade data.
17However, it is important to note that the use of Lasso (and Ridge below) is theoretically justified in the case of

exogenous predictors and does not necessarily apply to the dynamic case where the predictors are lagged values of
the dependent variables from a large dimensional VAR.
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8.2.3 Ridge regressions

Ridge forecasts are constructed similarly to Lasso forecasts, with the difference that instead of

constraining the sum of absolute values of coeffi cients, it is the sum of squared coeffi cients which

is restricted to not exceed λi. The consequence of the Ridge constraint is that it does not penalize

small coeffi cients as much as the Lasso constraint. The main difference between the Ridge and

Lasso is therefore the tendency of the Ridge regression to favor many small coeffi cients as opposed

to the Lasso which tends to select a small number of nonzero coeffi cients. Ridge regression can

also be interpreted as a Bayesian normal regression with Gaussian priors. For further details and

applications of the Ridge approach in economics see De Mol et al. (2008), Lin and Tsay (2006),

Groen and Kapetanios (2008), and Eickmeier and Ng (2011). We denote the Ridge forecasts as

RIDGE-PMI (when both output and PMI data are included in the set of predictors), and RIDGE

(when only output data is included in the set of predictors).

8.2.4 Factor models

Instead of estimating a linear relationship between the target variable, xit, and k predictors, an

alternative strategy considered in the literature is to shrink the large number of available predictors

first into a smallm×1 dimensional vector of factors (pooled predictors) and then forecast the target

variable in terms of these m factors. To this end both static (principal components) and dynamic

factors are used. Dynamic factor models were introduced by Geweke (1977) and Sargent and

Sims (1977), and later generalized to allow for weak cross-sectional dependence by Forni and Lippi

(2001), Forni et al. (2000) and Forni et al. (2004). In a typical macroeconomic dataset, empirical

evidence suggests that few factors are needed to explain a significant portion of the co-variations

of the predictors under consideration (see Stock and Watson (1999), Stock and Watson (2002),

Giannone, Reichlin, and Sala (2005), Bai and Ng (2007) and Stock and Watson (2005)).

We use the method of principal components and extract the first m principal components of

the k predictors available, after standardization. A key choice is the number of factors to use in the

subsequent analysis. We estimate separate models for m = 1, 2, ..., 5 factors and then average the

corresponding forecasts. We denote the corresponding forecasts as FM-PMI and FM, depending on

whether the set of predictors contains PMIs. This procedure is followed as a diversification device

to avoid the diffi cult choice of determining the optimal number of factors.

8.2.5 Factor-augmented AR models

Factor-augmented autoregressive (FAR) forecasts are computed in the same way as the FM fore-

casts, but the model is augmented with lagged values of xit. We consider again up to 5 factors

(m = 1, 2, ..., 5) and average the forecasts that result for each value of m. Depending on whether

or not PMIs are included when extracting the factors, the corresponding forecasts are denoted by

FAR-PMI and FAR, respectively.
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8.2.6 Partial least squares regressions

Partial least squares (PLS) regressions are due to Wold (1982), who proposed constructing factors

based on the covariance of the predictors with the target variable(s). We estimate PLS factors from

the set of standardized predictors in the same way as in Groen and Kapetanios (2008). As with

the FM method, we consider up to 5 factors and then average across the corresponding forecasts.

We use PLS-PMI and PLS to denote the forecasts based on PLS regressions with and without PMI

data.

8.3 Choice of the penalty parameter

The selection of the shrinkage parameter, λi, has important consequences for the forecasting per-

formance in a data-rich environment and the choice of λi should therefore be made with care. This

problem has been addressed in different ways in the literature. Perhaps the most common solution

is to choose λi by cross-validation. Although, a priori fixed values for λi have also been used in the

literature. See, for example, Groen and Kapetanios (2008). In our forecasting exercise we consider

a number of different options for the selection of λi. For the Lasso and Ridge methods, we employ

the following 7 options.

Option 1 : λi is set to 0.25 for all i, as in Groen and Kapetanios (2008).

Option 2 : λi is chosen based on an 80%-20% split of the available observations, with the first 80%

of the observations used as the training sub-sample and the last 20% as the evaluation

sub-sample. We compute forecasts using a fine grid of λi ∈ {0.01, 0.02, ..., 2} and choose λi with
the smallest MSFE computed based on the evaluation sub-sample.

Option 3 : λi is set to a simple average of the penalty parameters estimated under Option 2.

Option 4 : λi is restricted to be the same across all i, but unlike Option 3, we choose the value of

λ for which the average of the RMSFEs from Option 2 above is minimized.

Option 5 : λi is chosen by standard 10-fold cross-validation for all i.

Option 6 : λi is set equal to a simple average of the penalty parameters estimated under Option 5.

Option 7 : λi is restricted to be the same across all i, but unlike Option 6, we choose the value of

λi = λ for which the average of the RMSFEs from Option 5 above is minimized.

In the case of the AugGVAR model, we choose the shrinkage parameter, λAug, based on an

80%-20% split of the available sample with the first 80% of the observations used as the training

sub-sample and the last 20% as the evaluation sub-sample (as in Option 2). We compute forecasts

using a fine grid of λA ∈ {0.01, 0.02, ..., 2} and choose λAug with the smallest MSFE based on the
evaluation sub-sample.
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8.4 Benchmark forecasts

We consider three benchmarks. A random walk (RW) benchmark where the forecasts (at all

horizons) are set to the latest available observation on output growth. A first-order autoregression,

AR(1), benchmark where output growth forecasts at different horizons are computed using the

direct approach where xi,t+h is regressed on an intercept and xit. The third benchmark is an

extension of the AR(1) benchmark where the AR(1) model is augmented with domestic PMIs. As

in the case of data-rich methods that use PMI data, we compute two benchmark forecasts, one

using sequentially sampled PMIs and a second one using temporally aggregated PMIs. The PMI-

augmented AR benchmark is then given by a simple average of the two forecasts which we denote

by AR-PMI.

8.5 Empirical results

Using the alternative forecasting schemes set out above we generated recursive quarterly forecasts

of GDP growth for all 48 countries over the period 2006Q1−2013Q2 using an expanding estimation

window starting in 1999Q1. To compare the average forecasting performance of the different

schemes we first computed MSFEs for each country over the evaluation sample, 2006Q1− 2013Q2,

for different PMI release months within a quarter, m = 1, 2, 3, and the forecast horizons, h = 0, 1, 2

quarters ahead. We then computed a GDP-weighted average of these MSFEs using 2013 GDP

measures in PPP terms which we report in the tables below.

First we consider how AugGVAR forecasts perform as compared to the GVAR forecasts without

augmentation. Table 3 reports the average GDP-weighted MSFEs for the AugGVAR-PMI relative

to the non-augmented GVAR-PMI, when Ledoit and Wolf (2004)’s estimator of the error covariance

matrix, Σ̂ξ,LW , is used to take account of the nonsynchronous nature of the GDP and PMI release

dates (see Section 6.2). As can be seen from this table the average MSFE of the augmented GVAR

at horizon h = 0 for the different PMI release months, m = 1, 2, 3, range between 13 and 30 percent

of the MSFE of the non-augmented GVAR, which means that the augmented GVAR has about

3 to 7 times smaller MSFE than the benchmark. The differences in the forecasting performance

of the augmented and non-augmented procedures are even more pronounced at longer horizons.

Similar results are also obtained when other estimators of the covariance matrix of errors are used

(reported in the Supplement). Therefore, augmentation of the GVAR model with an additional

equation for cross-section averages improves the forecasting performance for all choices of Σ̂ξ and

horizons considered.

Table 4 investigates how the choice of Σ̂ξ and the shrinkage estimation of individual country

models affect the forecasting performance of the AugGVAR-PMI method. In this table, we choose

the AugGVAR-PMI with Σ̂ξ,LW as a benchmark and report the GDP-weighted cross-section av-

erage MSFE of individual AugGVAR-PMI methods relative to this benchmark. There are some

important differences in forecasting performance for different choices of Σ̂ξ. The block-diagonal es-

timate Σ̂ξ,B and the AugGVAR-PMI, which makes use of a nonsynchronous cross-section average,

perform better at h = 0, but not at longer horizons. But the AugGVAR-PMI forecasts that are
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based on shrinkage estimators of the individual country models perform marginally better than the

AugGVAR-PMI forecasts without shrinkage, with the former performing about 15 percent better

than the latter.

Table 5 gives the GDP-weighted average MSFEs of the other data-rich forecasting techniques

as well as the AR benchmark forecasts. The results in this table show how the different forecasts

compare with the random walk (RW) benchmark. The top panel (a) of the table gives the results

when PMI data are not used in forecasting whilst the bottom panel (b) gives the results when PMI

data are used.

In the case where PMI data are not used, depending on the choice of the forecast horizon, h,

and data release month, m, the AR forecasts show between 22 to 47 percent improvement over

the RW benchmark, which is quite substantial. Adding the PMI data does not improve the AR

forecasts much and seems to help only in the case of nowcasting (h = 0). A similar picture also

emerges when we consider the data-rich techniques. It is clear that regardless of the forecasting

method considered, the inclusion of PMIs always decreases the MSFE at horizon h = 0, by about

19 percent on average for m = 1, 14 percent for m = 2, and 20 percent for m = 3. The information

contained in PMIs is still useful at horizon h = 1, but the average improvement is smaller, about 8

to 13 percent. At the longer forecast horizon, h = 2, the use of PMI data does not seem to help. In

fact, for h = 2 the simple AR forecasts do slightly better than the AR-PMI forecasts for all release

months m.

Consider now the performance of the forecasts based on the data-rich methods. The results

are mixed and depend on the choice of the forecasting scheme, forecast horizon, h, data release

date, m, and whether PMI data are used in forecasting. But on average data-rich methods tend

to outperform AR forecasts when h = 0 and PMI data are used in forecasting. But for longer

forecast horizons neither PMI nor data-rich techniques seem to help, with the possible exception of

the AugGVAR-PMI forecasts which outperform or perform as well as AR forecasts for all forecast

horizons and release months.

Overall, perhaps not surprisingly, the use of PMIs helps for the nowcasting of GDP growth and

its added value diminishes quite rapidly with the forecast horizon.

8.6 Panel DM test statistics

The forecast comparisons in Table 5 provide clear-cut evidence of improvements when AR and data-

rich forecasts are compared to the RW benchmark, but the evidence is much less clear-cut when

one considers the relative performance of simple AR and data-rich forecasting techniques. To check

the statistical significance of the relative performance of forecasting schemes we use an extension

of the panel Diebold and Mariano (1995) (DM) test statistic proposed in Pesaran, Schuermann,

and Smith (2009) that allows for unequal weights in the pooling of the country specific MSFEs,

and also discuss the robustness of the panel DM test to possible cross-sectional dependence of the

differences in squared forecast errors.

Let zit = e2
itA − e2

itB be the difference in the squared forecasting errors of models A and B, and
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consider the following pooled test statistic:

z̄ω =
1

T

T∑
t=1

N∑
i=1

ωizit,

where the weights {ωi}Ni=1 are given and are not necessarily granular. Initially, suppose that zit
is serially uncorrelated, but could be correlated over the cross-section units. Decompose zit as

zit = αi + ηit, where αi represents the systematic difference between the two forecasts, and ηit the

idiosyncratic component. Let ηt = (η1t, η2t, ..., ηNt)
′ and suppose that ηt ∼ IID (0N×1,Ση). The

implicit null and alternative hypotheses of interest are now given by H0 : ᾱω =
∑N

i=1 ωiαi = 0 and

H1 : ᾱω < 0, respectively. Under the null hypothesis E (z̄ω) = 0, whereas under the alternative

E (z̄ω) = ᾱω 6= 0, with forecast A preferred to forecast B if ᾱω < 0, and the reverse if ᾱω > 0.

To derive a test based on z̄ω we first note that under H0

V (z̄ω) = E
(
z̄2
ω

)
= E

( 1

T

T∑
t=1

N∑
i=1

ωiηit

)2
 .

Under the assumption that ηt are serially uncorrelated we have

V (z̄ω) =
1

T 2

T∑
t=1

E

(
N∑
i=1

ωiηit

)2

=
1

T
ω′Σηω,

where ω = (ω1, ω2, ..., ωN )′. Denoting the elements of Ση by ση,ij , then V (z̄ω) can be written

equivalently as

V (z̄ω) =

∑N
i=1 ω

2
i

T
(ϑ1 + ϑ2) ,

where

ϑ1 =

(
N∑
i=1

ω2
i

)−1

·
N∑
i=1

ω2
iση,ii,

and

ϑ2 =

(
N∑
i=1

ω2
i

)−1

·
N∑
i=1

N∑
j=1,j 6=i

ωiωjσij .

In the special case when Ση is a diagonal matrix, ϑ2 = 0, and V (z̄ω) converges towards zero at

the rate of T−1/2
(∑N

i=1 ω
2
i

)1/2
, which yields the standard rate of (NT )−1/2 when the weights are

granular. In the non-diagonal case the limiting behavior of V (z̄ω) depends on the degree of cross-

sectional dependence of zit. A distinction can be made depending on whether the row (column)

norm of Ση is bounded in N . In the bounded case the cross-sectional dependence is weak and

the rate at which V (z̄ω) converges towards zero is the same as in the diagonal case. In contrast,

when the row (column) norm of Ση is not bounded in N then the rate of convergence of V (z̄ω)

towards zero is slower than
√
T ·

(∑N
i=1w

2
i

)−1/2
and inference based on z̄ω will depend on the
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off-diagonal elements of Ση, and in general require T to be much larger than N . In the current

pair-wise comparisons where the forecast errors are obtained conditional on a common set of factors,

it is reasonable to expect that the dependence of zit across i is reasonably weak and when making

inference the off-diagonal elements of Ση can be ignored. Accordingly, we base the panel DM tests

on the following weighted pooled DM test statistic:

WPDM =
√
T ·
(

N∑
i=1

w2
i

)−1/2
z̄w√
ϑ̂1

, (77)

where

ϑ̂1 =

(
N∑
i=1

w2
i

)−1

·
N∑
i=1

w2
i σ̂LRi,

in which σ̂LRi is the Newey and West (1987) estimator of the long-run variance of zit to take into

account possible serial correlations of zit. We set the truncation lag in the Newey-West estimator

to 2. Under the null hypothesis theWPDM is asymptotically normally distributed with mean zero

and a unit variance as N,T
j→∞ but only if ϑ2 → 0. Hence, WPDM is valid when the weighted

sum of off-diagonal elements of Σ is suffi ciently small. We leave the further development of the

panel DM test statistics under more general form of cross-sectional dependence to future research

and present test results based on WPDM as defined by (77).

All methods that use PMIs are significantly better than the RW at the 1% level for all the

three months in the current quarter, h = 0, and the vast majority at the 1% level for h > 0.18

These findings are not surprising given the differences in MSFE reported in Table 5. We consider

next testing whether adding PMIs significantly improves the MSFEs. The top panel of Table 6

presents pair-wise GDP-weighted panel DM test statistics comparing the performance of individual

forecasting techniques with and without the use of PMIs. We see that using PMIs significantly

improves the forecasting performance at the 1% level for the vast majority of tests when h = 0, but

this is no longer the case for h > 0. We also provide panel DM test statistics for all the forecasting

methods against the AugGVAR-PMI forecasts at the bottom panel of Table 6. These results show

that, for h = 0, AugGVAR-PMI is not significantly better (or worse) than the other methods that

use PMIs. In contrast, statistically significant differences at the 1% level can be observed for longer

horizons (h > 0), where AugGVAR performs significantly better in the majority of cases.

9 Conclusion

In this paper we have shown that the GVAR model can be undetermined when strong unobserved

common factors are present, and propose augmenting the GVAR model with additional equations in

cross-sectional averages that proxy the common factors. The validity of the augmentation procedure

is established theoretically for N and T → ∞, jointly such that N/T → κ for some 0 < κ < ∞.
The theoretical results are illustrated by MC experiments, and extended to the case of forecasting

18WPDM tests using the RW benchmark are reported in the Supplement.
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with GVARs in the presence of nonsynchronous conditioning sets. Empirical application to the

forecasting of output growth with PMIs using a sample of 48 countries also confirms the superior

forecasting performance of the AugGVARs relative to the non-augmented GVARs. A number of

other data-rich methods were also implemented. It was found that, regardless of the forecasting

method considered, PMIs are useful in nowcasting (h = 0), but their value added is rather limited

for forecasting when h > 0. It is also found that AugGVAR forecasts do as well as other data-rich

forecasting techniques for H = 0, and tend to do better for longer forecast horizons. Furthermore,

the AugGVAR approach has the added advantage that it can be used for impulse response and

other forms of counterfactual analyses whilst the single equation data-rich techniques are limited

in this respect.
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Figure 1: Global growth (thick blue line, left scale, quarter-on-quarter log-difference in percentages),
global manufacturing PMI (thin red line, right scale, diffusion index) and global services PMI
(dashed green line, right scale, diffusion index), 1999Q1-2013Q2.

Notes: See Section 8.1 for more information on diffusion indices. Global manufacturing PMI and global services PMI

are series reported by JP Morgan (see www.markiteconomics.com), and global output growth is calculated using

PPP-weighted GDP from 48 countries.

37



Table 1: Cross-section average MSFE of one-step-ahead GVAR forecasts relative to infeasible op-
timal forecasts in Monte Carlo experiments without mixed conditioning, SAR parameter set equal
to 0.6 and sparse coeffi cient matrix.

GVAR AugGVAR

(N,T) 30 50 100 200 500 30 50 100 200 500

DGP1: High-dimensional VAR without common factor

30 1.35 1.17 1.09 1.05 1.02 1.31 1.15 1.08 1.04 1.02

50 1.35 1.17 1.08 1.05 1.02 1.32 1.15 1.08 1.05 1.02

100 1.36 1.16 1.08 1.04 1.02 1.34 1.15 1.08 1.04 1.02

200 1.35 1.16 1.08 1.04 1.02 1.33 1.15 1.08 1.04 1.02

500 1.34 1.16 1.08 1.04 1.02 1.32 1.16 1.08 1.04 1.02

DGP2: High-dimensional VAR with an additive common factor

30 2.08 1.49 1.22 1.17 1.11 1.31 1.16 1.08 1.05 1.03

50 17.46 1.67 1.35 1.22 1.18 1.29 1.16 1.08 1.04 1.03

100 483.07 2.21 1.54 1.36 1.26 1.30 1.15 1.08 1.05 1.02

200 477.42 5.67 1.97 1.60 1.51 1.30 1.15 1.07 1.04 1.02

500 >103 >103 3.70 2.58 2.12 1.32 1.15 1.08 1.04 1.02

DGP3: High-dimensional VAR with a factor error structure

30 1.67 1.29 1.14 1.09 1.05 1.29 1.14 1.07 1.04 1.02

50 2.46 1.35 1.18 1.11 1.07 1.29 1.14 1.08 1.04 1.02

100 2.45 1.48 1.24 1.15 1.10 1.29 1.15 1.07 1.04 1.02

200 129.18 1.96 1.42 1.25 1.17 1.30 1.14 1.08 1.04 1.02

500 >103 31.92 1.90 1.58 1.44 1.31 1.14 1.08 1.04 1.02

Notes: This table reports the simple cross-section average mean square forecast error of GVAR and AugGVAR
forecasts relative to infeasible optimal forecasts, see (60). DGPs 1-3 are given by models (56), (58) and (59),
respectively. Infeasible forecasts are defined as E (yi,T+1| It,Ft). See (61). Computations of GVAR and AugGVAR
forecasts are explained in Subsection 7.2.1. In particular, see (65) and (69).
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Table 2: Cross-section average MSFE of one-step ahead GVAR forecasts relative to infeasible
optimal forecasts in Monte Carlo experiments with additive common factor, mixed conditioning
and sparse coeffi cient matrix.

Experiments with SAR coef. % = 0.2 Experiments with SAR coef. % = 0.6

(N,T) 30 50 100 200 500 30 50 100 200 500

GVAR without augmentation

GVAR(Σ̂ξ,LW )

30 2.67 1.47 1.24 1.16 1.11 3.65 1.50 1.20 1.14 1.09

50 12.47 1.66 1.31 1.21 1.16 3.65 1.66 1.30 1.18 1.13

100 >103 2.55 1.58 1.37 1.27 >103 222.05 1.45 1.27 1.18

200 >103 436.35 2.21 1.73 1.55 >103 4.11 1.78 1.43 1.35

500 >103 >103 210.17 2.96 2.41 >103 >103 3.19 2.15 1.78

GVAR(Σ̂ξ,B)

30 2.52 1.46 1.23 1.15 1.11 3.32 1.46 1.19 1.14 1.10

50 11.61 1.62 1.30 1.19 1.16 3.43 1.59 1.27 1.17 1.13

100 >103 2.41 1.54 1.34 1.25 >103 226.85 1.41 1.24 1.17

200 >103 377.57 2.09 1.65 1.49 >103 3.36 1.66 1.38 1.29

500 >103 >103 221.81 2.73 2.22 >103 >103 2.68 1.91 1.68

Augmented GVAR

AugGVAR(Σ̂ξ,LW )

30 1.50 1.22 1.12 1.06 1.04 1.51 1.24 1.10 1.06 1.03

50 1.49 1.23 1.11 1.06 1.03 1.51 1.25 1.11 1.06 1.03

100 1.53 1.23 1.12 1.06 1.03 1.55 1.25 1.13 1.06 1.03

200 1.53 1.22 1.11 1.06 1.03 1.58 1.28 1.13 1.07 1.03

500 1.52 1.22 1.11 1.06 1.03 1.61 1.28 1.14 1.08 1.04

AugGVAR(Σ̂ξ,B)

30 1.49 1.21 1.11 1.06 1.04 1.47 1.23 1.11 1.07 1.05

50 1.48 1.23 1.11 1.06 1.03 1.46 1.23 1.11 1.07 1.04

100 1.51 1.22 1.11 1.06 1.03 1.47 1.22 1.12 1.07 1.04

200 1.51 1.21 1.10 1.06 1.03 1.49 1.23 1.11 1.07 1.04

500 1.50 1.21 1.11 1.06 1.03 1.52 1.23 1.11 1.07 1.04

AugGVAR

30 1.38 1.17 1.10 1.05 1.04 1.46 1.24 1.13 1.10 1.07

50 1.37 1.18 1.09 1.06 1.03 1.44 1.24 1.14 1.09 1.07

100 1.39 1.18 1.10 1.05 1.03 1.46 1.23 1.14 1.10 1.07

200 1.39 1.17 1.09 1.05 1.03 1.47 1.25 1.13 1.09 1.06

500 1.39 1.17 1.09 1.05 1.03 1.49 1.24 1.13 1.09 1.07

Notes: This table reports the simple cross-section average mean square forecast error of GVAR forecasts relative to
the infeasible optimal forecasts. See (71). DGPs 1-3 are given by models (56), (58) and (59), respectively. Infeasible
forecasts are given by E (yi,T+1|ΩT ). Σ̂ξ,LW is Ledoit and Wolf (2004)’s estimator of Σξ, Σ̂ξ,B is the block-diagonal
estimator defined by (72), and AugGVAR uses nonsynchronous cross-section averages and auxiliary regression (55).
See Subsection 7.2.2 for a detailed description of forecasting methods.
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Table 3: GDP-weighted cross-section average MSFE of AugGVAR-PMI relative to non-augmented
GVAR-PMI

forecasting horizon (quarters): h = 0 h = 1 h = 2

month: m = 1 m = 2 m = 3 m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

GVAR-PMI(Σ̂ξ,LW ) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(11.7) (7.4) (6.4) (59.3) (29.3) (19.5) (98.9) (79.6) (365.2)

AugGVAR-PMI(Σ̂ξ,LW ) 0.135 0.223 0.296 0.027 0.054 0.085 0.017 0.022 0.005

Notes: MSFE is computed based on the evaluation sample 2006Q1-2013Q2. The GDP-weighted cross-section
average MSFE of the non-augmented GVAR-PMI with Σ̂ξ,LW is reported in parentheses.

Table 4: GDP-weighted cross-section average MSFE of AugGVAR-PMI methods relative to the
benchmark AugGVAR-PMI with Σ̂LW and without shrinkage

forecasting horizon (quarters): h = 0 h = 1 h = 2

month: m = 1 m = 2 m = 3 m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

Individual country models estimated without shrinkage

1 AugGVAR-PMI(Σ̂ξ,LW ) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.58) (1.66) (1.88) (1.60) (1.59) (1.65) (1.72) (1.74) (1.77)

2 AugGVAR-PMI(Σ̂ξ,B) 0.84 0.86 0.79 1.04 1.04 1.02 1.01 1.02 0.99

3 AugGVAR-PMI 0.89 0.82 0.71 0.96 0.95 1.00 0.94 0.93 0.96

Individual country models estimated with shrinkage

4 AugGVAR-PMI(Σ̂ξ,LW ) 0.82 0.79 0.66 0.88 0.87 0.83 0.91 0.88 0.87

5 AugGVAR-PMI(Σ̂ξ,B) 0.74 0.71 0.60 0.86 0.85 0.80 0.90 0.87 0.86

6 AugGVAR-PMI 0.75 0.70 0.58 0.90 0.91 0.84 0.89 0.88 0.84

Notes: Σ̂ξ,LW is Ledoit and Wolf (2004)’s covariance matrix estimator and Σ̂ξ,B is the block-diagonal covariance
matrix estimator of Σξ. AugGVAR-PMI does not make use of Σ̂ξ, but augment the GVAR with an additional
equation for forecasting cross-section averages computed using the nonsynchronous conditioning information set.
MSFE is computed based on the evaluation sample 2006Q1-2013Q2. The GDP-weighted average MSFE of the
AugGVAR-PMI with Σ̂ξ,LW and without shrinkage is reported in parentheses.
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Table 5: GDP-weighted cross-section average MSFE of individual methods relative to RW

forecasting horizon (quarters): h = 0 h = 1 h = 2

month: m = 1 m = 2 m = 3 m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

1 RW (benchmark) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(2.01) (1.77) (1.73) (2.39) (2.31) (2.28) (2.83) (2.59) (2.54)

(a) Models without PMI

2.a AR 0.71 0.77 0.78 0.61 0.64 0.66 0.53 0.59 0.60

3.a Lasso 0.66 0.74 0.76 0.67 0.70 0.72 0.52 0.60 0.62

4.a Ridge 0.68 0.79 0.77 0.71 0.84 0.80 0.63 0.77 0.77

5.a FM 0.75 0.92 0.81 0.72 0.97 0.96 0.65 0.75 0.77

6.a FM-AR 0.77 0.93 0.83 0.72 0.98 0.97 0.67 0.78 0.80

7.a PLS 0.81 0.95 0.91 0.92 1.10 1.00 0.85 1.10 1.11

8.a AugGVAR 0.79 0.76 0.75 0.62 0.66 0.68 0.55 0.61 0.62

(b) Models with PMI

2.b AR-PMI 0.63 0.66 0.64 0.66 0.68 0.62 0.59 0.64 0.65

3.b Lasso-PMI 0.61 0.69 0.66 0.62 0.69 0.69 0.52 0.59 0.62

4.b Ridge-PMI 0.57 0.70 0.62 0.65 0.77 0.70 0.66 0.74 0.78

5.b FM-PMI 0.59 0.79 0.62 0.72 0.88 0.82 0.76 0.81 0.84

6.b FM-AR-PMI 0.61 0.81 0.64 0.75 0.91 0.85 0.79 0.83 0.88

7.b PLS-PMI 0.61 0.74 0.65 0.70 0.85 0.77 0.76 0.87 0.88

8.b AugGVAR-PMI 0.58 0.66 0.62 0.58 0.59 0.58 0.54 0.59 0.59

Notes: The GDP-weighted cross-section average MSFE of RW forecasts is reported in parentheses. MSFE is
computed based on the evaluation sample 2006Q1-2013Q2. The AugGVAR-PMI is the simple average of
AugGVAR-PMI models with shrinkage (models 4-6 in Table 4). Similarly, AugGVAR is the simple average of
AugGVAR models with shrinkage. All methods are described in Subsection 8.2.
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Table 6: GDP-weighted pair-wise panel DM test statistics

forecasting horizon (quarters): h = 0 h = 1 h = 2

month: m = 1 m = 2 m = 3 m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

(a) Benchmark is the same method without PMI

2.a AR-PMI -2.11 -3.06 -3.43 2.04 1.34 -1.38 2.58 2.30 2.41

3.a Lasso-PMI -3.39 -2.78 -3.95 -3.89 -0.80 -2.48 -0.03 -0.88 -0.50

4.a Ridge-PMI -4.14 -3.94 -4.45 -2.85 -2.66 -3.53 2.62 -1.20 0.75

5.a FM-PMI -4.41 -3.20 -4.40 0.07 -2.26 -3.19 3.92 2.28 2.50

6.a FM-AR-PMI -4.37 -2.96 -4.09 0.83 -2.01 -2.90 3.97 1.51 2.55

7.a PLS-PMI -5.05 -4.19 -5.15 -5.12 -4.45 -4.46 -2.74 -3.38 -3.93

8.a AugGVAR-PMI -3.58 -1.92 -2.07 -3.43 -2.62 -3.19 -1.43 -2.97 -2.78

(b) Benchmark is AugGVAR-PMI

2.b AR-PMI 1.38 0.20 0.55 3.53 3.49 1.19 1.84 1.95 2.25

3.b Lasso-PMI 1.22 0.76 1.00 2.14 3.91 3.87 -1.71 0.02 1.34

4.b Ridge-PMI -0.10 0.73 -0.07 2.39 4.05 3.47 4.76 4.15 3.97

5.b FM-PMI 0.27 1.92 -0.06 3.94 4.69 4.07 4.78 4.12 4.19

6.b FM-AR-PMI 0.94 2.04 0.38 4.29 4.98 4.43 5.25 4.32 4.29

7.b PLS-PMI 0.74 1.32 0.57 3.42 5.00 4.30 6.62 5.57 5.03

8.b AugGVAR-PMI - - - - - - - - -

Notes: Panel DM test statistics are computed based on the evaluating sample 2006Q1-2013Q2. The panel DM test
is a one-sided test and asymptotically normal, so the relevant 1% and 5% critical values for a given method to
outperform the benchmark are -2.326 and -1.645, respectively. The AugGVAR-PMI is the simple average of
AugGVAR-PMI models with shrinkage (models 4-6 in Table 4).
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A Appendix

A.1 Derivation of optimal forecasts when factors are unobserved

Consider the problem of optimal forecasts of yt+h generated by (2) based on the information set It alone. To
derive optimal forecasts in this case we also assume that εbt and vbt are normally distributed. In particular,

let εbt ∼ IIDN (0,Σbε) , vt ∼ IIDN
(
0, σ2bv

)
, and assume that εbt and vbt′ are independently distributed

for all t and t′. We have

E (yt+h| It,Mb) = Φh
byt + gbhE (fbt| It,Mb) .

Optimal prediction of the common factor, E (fbt| It,Mb), can be obtained (under the above assumptions)

using a Kalman filter, noting that

ubt ≡ yt −Θbyt−1 = γbfbt + εbt.

It contains information on the infinite past of yt, and under stationarity requirements |ρb| < 1 and |λ1 (Θb)| <
1, the steady-state Kalman filter gives

E (fbt| It,Mb) = f̂b, t|t−1 + q′b

(
ubt − γbf̂b, t|t−1

)
,

where q′b = pbγ
′
b (pbγbγ

′
b + Σbε)

−1, pb is the unique solution of

pb = 1− ρ2b +
(
1− ρ2b

)−1
pbq
′
bγb,

and f̂b, t|t−1 = E (fbt| It−1,Mb) is a stationary process given by

f̂b, t|t−1 = ρb (1− q′bγb) f̂b, t−1|t−2 + ρbq
′
bub,t−1.

A.2 Proofs

Proof of Theorem 1. We provide proof for the weakly cross-sectionally dependent model first, namely

under Assumptions 1, 2.a, and 3-4. For h = 1 we have

ŷaugt+1|t =
[
Θ̂ +

(
ρ̂b̂0 + b̂1

)
w′
]

yt.

Consider

E (yt+1 | It,Ft)− ŷaugt+1|t = Φyt −
[
Θ̂ +

(
ρ̂b̂0 + b̂1

)
w′
]

yt

= (Φ−Θ) yt −
(
Θ̂−Θ

)
yt −

(
ρ̂b̂0 + b̂1

)
w′yt. (A.1)

Consider the individual elements on the right side of (A.1) below. Note that the row i of matrix (Φ−Θ),

namely

e′N,i (Φ−Θ) = φ′−i,
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satisfies condition (8). By Liapunov’s inequality(
E
∣∣φ′−iyt∣∣)2 ≤ E

(
φ′−iyt

)2
≤ % (E (yty

′
t))φ

′
−iφ−i

≤ K

N
,

where constant K < ∞ does not depend on N . We have used the Rayleigh-Ritz theorem19 to obtain the

second inequality and

% (E (yty
′
t)) ≤ ‖E (yty

′
t)‖ ,

≤
∥∥RR′

∥∥ ∞∑
`=0

‖Φ‖2` ,

= O (1) , (A.2)

follows from Assumptions 1 and 3. Therefore

max
i∈{1,..,N}

E
∣∣φ′−iyt∣∣→ 0, (A.3)

and similarly it can be shown that (replacing φ−i with eN,i)

max
i∈{1,..,N}

E
∣∣e′N,iyt∣∣ < K. (A.4)

Equation (A.3) implies

E ‖(Φ−Θ) yt‖∞ → 0. (A.5)

Now consider the second term on the right side of (A.1), namely
(
Θ̂−Θ

)
yt. Equation (A.4) implies

that the elements of yt are uniformly bounded in L1 norm, namely

E ‖yt‖∞ < K. (A.6)

Chudik and Pesaran (2011, Theorem 2) established asymptotic distribution of the diagonal elements of Θ̂

in the special case when there is no common factor (rank deficient case with m = 0), and we have

√
T
(
φ̂ii − φii

)
= Op (1) , (A.7)

uniformly in i. It follows that
∥∥∥Θ̂−Θ

∥∥∥
∞

= Op
(
T−1/2

)
, and together with (A.6) we obtain

E
∥∥∥(Θ̂−Θ

)
yt

∥∥∥
∞
→ 0. (A.8)

Now consider the last term on the right side of (A.1). Let us define ỹt =
√
Nw′yt, b̃si = N−1/2bsi, for

s = 0, 1 and for all i, and consider the least squares regression:

yit = φiiyi,t−1 + b0iw
′yt + b0iw

′yt−1 + eit

= φiiyi,t−1 + b̃0iỹwt + b̃1iỹw,t−1 + eit. (A.9)

19See Horn and Johnson (1985, p. 176).
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Under the assumptions of Theorem 1, which rule out strong cross-sectional dependence in yit, and using

(A.2), we obtain

w′yt = Op

(
N−1/2

)
, (A.10)

ỹwt =
√
Nw′yt = Op (1) ,

and note that all of the regressors in (A.9) are Op (1). Using similar arguments as in Chudik and Pesaran

(2011), it can be established that p lim
̂̃
bsi = 0, for s = 0, 1, uniformly in i, which in turn implies b̂si =

√
N
̂̃
bsi = o

(
N1/2

)
, for s = 0, 1, uniformly in i. This result together with ρ̂ = Op (1), and (A.10) establish

E
∥∥∥(ρ̂b̂0 + b̂1

)
w′yt

∥∥∥
∞
→ 0. (A.11)

Using (A.5), (A.8), and (A.11) in (A.1) establish E
∥∥∥E (yt+1 | It,Ft)− ŷaugt+1|t

∥∥∥
∞
→ 0. This completes the

proof of result (42) for h = 1 in the weakly cross-sectionally dependent model. The proof of (42) for h > 1

in the weakly cross-sectionally dependent model can be constructed in a similar way.

Next, we provide proof for the model featuring an unobserved common factor, namely under Assumptions

1, 2.b, and 3-4. For h = 1 we have

E (yt+1 | It,Ft) = Φ (yt − γft) + ργft = Θyt −Θγft + ργft + (Φ−Θ) (yt − γft) , (A.12)

and as before

ŷaugt+1|t = Θ̂yt − Θ̂b̂0w
′yt + ρ̂b̂0w

′yt. (A.13)

Subtracting (A.13) from (A.12) yields

E (yt+1 | It,Ft)− ŷaugt+1|t =
(
Θ− Θ̂

)
yt −

(
ργft − ρ̂b̂0w′yt

)
(A.14)

+
(
Θγft − Θ̂b̂0w

′yt

)
+ (Φ−Θ) (yt − γft) .

We now investigate the properties of the individual elements on the right side of (A.14). First, consider(
Θ− Θ̂

)
yt and note that

E
(
y2it
)

=

∞∑
`=0

e′N,iΦ
`RR′Φ`′eN,i + E

(
γ2i f

2
t

)
,

where E
(
γ2i f

2
t

)
< K under Assumption 2.b and

∞∑
`=0

e′N,iΦ
`RR′Φ`′eN,i ≤ ‖eN,i‖2 ‖R‖2

∞∑
`=0

‖Φ‖2` < K,

in which ‖eN,i‖ = 1, ‖R‖2 ≤ ‖R‖1 ‖R‖∞ < K by Assumption 1, and
∑∞
`=0 ‖Φ‖

2`
< K by Assumption 3.

It therefore follows that E
(
y2it
)
< K, where K does not depend on i nor on N , and similar to the weakly

dependent case, we obtain

E ‖yt‖∞ < K. (A.15)

Chudik and Pesaran (2011, Theorem 1) establishes that

√
T (π̂i − πi) = Op (1) (A.16)
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uniformly in i as N,T
j→ ∞ such that N/T → κ for some 0 < κ < ∞, where π̂i =

(
φ̂ii, b̂i0, b̂i1

)′
is the

vector of least squares estimates of πi = (φii, bi0, bi1)
′. This implies

∥∥∥Θ̂−Θ
∥∥∥
∞

= op (1) and together with

(A.15) we obtain

E
∥∥∥(Θ− Θ̂

)
yt

∥∥∥
∞
→ 0. (A.17)

Consider next

ργft − ρ̂b̂0w′yt = ρ
(
γft − b̂0w

′yt

)
− (ρ̂− ρ) b̂0w

′yt

= ρ (γft − b0w
′yt)− ρ

(
b̂0 − b0

)
w′yt − (ρ̂− ρ) b̂0w

′yt.

Since w′yt − γ̄wft = Op
(
N−1/2

)
, it can be shown that ρ̂ is a consistent estimator of ρ and therefore

E |ρ̂− ρ| → 0. Furthermore, (A.15) and (8) imply E ‖w′yt‖∞ < K and (A.16) implies E
∥∥∥b̂0 − b0

∥∥∥
∞
→ 0.

It therefore follows that

E
∥∥∥ργft − ρ̂b̂0w′yt∥∥∥

∞
→ 0. (A.18)

Similarly, (A.16) also implies that E
∥∥∥b̂0 − b0

∥∥∥
∞
→ 0 and E

∥∥∥Θ̂−Θ
∥∥∥
∞
→ 0, and it follows that

E
∥∥∥Θγft − Θ̂b̂0w

′yt

∥∥∥
∞
→ 0. (A.19)

Consider now the i-th element of (Φ−Θ) (yt − γft), denoted as

ϑit ≡ e′N,i (Φ−Θ) (yt − γft) = φ′−i (yt − γft)

= φ′−i

∞∑
`=0

Φ`Rηt−`,

where φ−i = (Φ−Θ)
′
eN,i satisfies condition (8) under Assumption 4, and yt−γft =

∑∞
`=0 Φ`Rηt−`. The

second moment of ϑit is uniformly bounded by KN−1, using similar arguments as before:

E
(
ϑ2it
)

=

∞∑
`=0

φ′−iΦ
`RR′Φ`′φ−i

≤
∥∥φ−i∥∥2 ‖R‖2 ∞∑

`=0

‖Φ‖2`

≤ K

N
, (A.20)

where
∥∥φ−i∥∥2 < KN−1 by Assumption 4, ‖R‖2 ≤ ‖R‖1 ‖R‖∞ < K by Assumption 1, and

∑∞
`=0 ‖Φ‖

2`
< K

by Assumption 3. (A.20) implies

E ‖(Φ−Θ) (yt − γft)‖∞ → 0. (A.21)

Using (A.17)-(A.19), and (A.21) in (A.14), we obtain

E
∥∥∥E (yt+1 | It,Ft)− ŷaugt+1|t

∥∥∥
∞
→ 0,

as desired. Result (42) in the case of the model featuring a common factor for h > 1 can be established in a

similar way. Singularity of G0 = IN − b0w
′ is implied by (29). This completes the proof.
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A.3 Additional Tables and Figures
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Figure A.1: Output (1st differences of logs)
A. Advanced Economies

B. Emerging Economies
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Figure A.2: Manufacturing Purchasing Managers Indices
A. Advanced Economies

B. Emerging Economies
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Figure A.3: All Economies’Services Purchasing Managers Indices
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Figure A.4: GDP Release Lags
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