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This online Supplement is organised as follows: Section A provides a proof of Theorem 3.

Section B provides a discussion of various results related to the case where both signal and

noise variables are mixing. Section C presents Lemmas related to mixing regressors. Section D

provides Lemmas for the case where the regressors are deterministic while Section E provides

some auxiliary Lemmas.

A. Proof of Theorem 3

We proceed as in the proof of (A.87) of Lemma 16. We have that
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and, by Lemma 3
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We further note that since cp(n)→∞, T 1/2|θi|
σe,(T )σxi,(T )

> cp(n)

1+dT
implies T 1/2 |θi| > C2, for some C2.

Then, noting that x
′
iMqη

T
− θ is the average of a martingale difference process, by Lemma 12,

for some positive constants, C1, C2, C3, C4, c, and for any φ > 0, we have
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since exp
[
− ln(n)C4

]
= o(nφ), which follows by noting that C0 ln(n)1/2 = o (C1 ln(n)), for any

C0, C1 > 0. As a result, the crucial term for the behaviour of FPRn,T is the first term on

the RHS of (B.1). Consider now the above probability bound under the two specifications

assumed for θi as given by (26) and (27). Under (26), for any φ > 0,
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.
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Remark 22 Note that if κ = 1, then the condition for (B.2) requires that γ > 1
2
.

B. Some results for the case where either noise variables are mixing,
or both signal/pseudo-signal and noise variables are mixing

When only noise variables are mixing, all the results of the main paper go through since we

can use the results obtained under (D1)-(D3) of Lemma 22 to replace Lemma 12.

As discussed in Section 4.7, some weak results can be obtained if both signal/pseudo-signal

and noise variables are mixing processes, but only if cp(n) is allowed to grow faster than under

the assumption of a martingale difference. This case is covered under (D4) of Lemma 22 and

(B.30)-(B.31) of Lemma 23. There, it is shown that, for suffi ciently large constants C1−C4 for

Assumption 3, the martingale difference bound which is given by exp
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]
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in Assumption 3. It is important to note here that this bound seems to be sharp (see, e.g.,

Roussas (1996)) and so we need to understand its implications for our analysis. Given (see

result (i) of Lemma 1),
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To obtain the same bound as for the martingale difference case, we need to find a sequence

{an} , such that nCan = O (ln(n)). Setting nCan = ln(n), it follows that an = ln (ln(n)) /C lnn.

Further, setting C = s/2(s+1), we have an = 2(s+1) ln(ln(n))
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for all C2 > 0, as long as s > 0.

We need to understand the implications of this result. For example, setting s = 2 which cor-

responds to the normal case gives exp (ln(n)3) which makes the calculation of Φ−1
(

1− p
2f(n)

)
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numerically problematic for n > 25. The fast rate at which f (n) grows basically implies

that we need s → ∞ which corresponds to f (n) = 2p exp (ln(n)2). Even then, the analysis

becomes problematic for large n. s → ∞ corresponds for all practical purposes to assuming

boundedness for xit. As a result, while the case of mixing xit can be analysed theoretically,

its practical implications are limited. On the other hand our Monte Carlo study in Section

5 suggests that setting f (n) = nδ, δ ≥ 1 provides quite good results for autoregressive xit in

small samples.

C. Lemmas for mixing results

We consider the following assumptions that replace Assumption 4.
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)
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given by αik = Cikξ
k for some Cik such that supi,k Cik <∞ and some 0 < ξ < 1.

Assumption 7 xit, i = 1, 2, ..., k + k∗ are independent of xit, i = k + k∗ + 1, ..., n. xit,

i = 1, ..., n, are heterogeneous strongly mixing processes with mixing coeffi cients given by

αik = Cikξ
k for some Cik such that supi,k Cik <∞ and some 0 < ξ < 1.
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Proof. We reconsider the proof of Theorem 3.5 of White and Wooldridge (1991). Define

wt = ξtI(zt ≤ DT ) and vt = ξt − wt where DT will be defined below. Using Theorem 3.4 of
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which uses Theorem 3.3 of White and Wooldridge (1991). We explore the effects this change

has on the final rate. We revisit the analysis of the bottom half of page 489 of White and

Wooldridge (1991). We need to determine DT such that
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T T
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]
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and
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2sqvT
T (1+δ)/2DT

. (B.5)

Set

DT =

(
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,

so that (B.5) holds with equality. But since vT ≥ εT λ, λ > (1 + δ)/2, (B.4) holds. Therefore,
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=

(
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,

and the desired result follows.

Remark 23 The above Lemma shows how one can relax the boundedness assumption in The-
orem 3.4 of White and Wooldridge (1991) to obtain an exponential inequality for mixing

processes with exponentially declining tail probabilities. It is important for the rest of the

Lemmas in this Appendix, and in particular, the results obtained under (D4) of Lemma 22, to

also note that Lemma 2 of Dendramis, Giraitis, and Kapetanios (2015) provides the result of

Lemma 21 when δ = 0.

Lemma 22 Let xt, q·t = (q1,t, q2,t, ..., qlT ,t)
′, and ut be sequences of random variables and sup-

pose that there exist finite positive constants C0 and C1, and s > 0 such that supt Pr (|xt| > α) ≤
C0 exp (−C1α

s), supi,t Pr (|qi,t| > α) ≤ C0 exp (−C1α
s), and supt Pr (|ut| > α) ≤ C0 exp (−C1α

s),

for all α > 0. Let Σqq = 1
T

∑T
t=1 E (q·tq

′
·t) be a nonsingular matrix such that 0 <

∥∥Σ−1
qq

∥∥
F
.

Suppose that Assumption 5 holds for the pairs xt and q·t, and denote the corresponding projec-

tion residuals defined by (15) as ux,t = xt−γ ′qx,Tq·t. Let ûx = (ûx,1, ..., ûx,T )′ denote the T ×1
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OLS residual vector of the regression of xt on q·t. Let Ft = Fxt ∪ Fut , F
q
t = σ

(
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for all λ > 1/2, or (D3) xt, ut and q·t are exponentially mixing processes, and ζT = o(T λ),

for all λ > 1, or (D4) xt, ut and q·t are exponentially mixing processes, and and ζT = o(T λ),

for all λ > 1/2. Then, we have the following. If (D1) or (D2) hold, then, for any π in the
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as long as lT = o(T 1/3). Finally, if (D4) holds,
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as long as lT = o(T 1/3).

Proof. We first prove the Lemma under (D1) and then modify arguments to show results
under (D2)-(D4).The assumptions of the Lemma state that there exists a regression model

underlying ûx,t which is denoted by

xt = β′qq·t + ux,t
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for some l × 1 vector, βq. Denoting ux = (ux,1, ..., ux,T )′, u = (u1, ..., uT )′, Σ̂qq = T−1 (Q′Q),

Q = (q1, ..., ql), and qi· = (qi1, qi2, ..., qiT )′, we have

û′xu = u′xu−
(
T−1u′xQ

)
Σ̂−1
qq (Q′u) = u′x u−

(
T−1u′xQ

) (
Σ̂−1
qq −Σ−1

qq

)
(Q′u) +(

T−1u′xQ
)
Σ−1
qq (Q′u)

Noting that, since ut is a martingale difference process with respect to σ
(
{us}t−1

s=1 , {ux,s}
t
s=1 , {qs}

t
s=1

)
,

by Lemma 10,

Pr (|u′xu| > ζT ) ≤ exp

[
−(1− π)2ζ2

T

2Tω2
xu,T

]
. (B.12)

It therefore suffi ces to show that

Pr
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T
u′xQ

)(
Σ̂−1
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qq

)
(Q′u)

∣∣∣∣ > ζT

)
≤ exp

[
−C0T

C1
]

(B.13)

and

Pr
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T
u′xQ

)
Σ−1
qq (Q′u)

∣∣∣∣ > ζT

)
≤ exp

[
−C0T

C1
]

(B.14)

We explore (B.12) and (B.13). We start with (B.12). We have by Lemma 2 that, for some

sequence δT ,1

Pr

(∣∣∣∣( 1

T
u′xQ

)(
Σ̂−1
qq −Σ−1

qq

)
(Q′u)

∣∣∣∣ > ζT

)
≤

Pr

(∥∥∥∥ 1

T
u′xQ

∥∥∥∥∥∥∥(Σ̂−1
qq −Σ−1

qq

)∥∥∥ ‖Q′u‖F > ζT

)
≤ Pr

(∥∥∥(Σ̂−1
qq −Σ−1

qq

)∥∥∥ > ζT
δT

)
+

Pr (‖u′xQ‖F ‖Q′u‖F > δTT ) (B.16)

We consider the first term of the RHS of (B.16). Note that for all 1 ≤ i, j ≤ l.

Pr

(∣∣∣∣∣ 1

T

T∑
t=1

[qitqjt − E(qitqjt)]

∣∣∣∣∣ > ζT

)
≤ exp(−C0

(
T 1/2ζT

)s/(s+2)
), (B.17)

1In what follows we use
Pr (|AB| > c) ≤ Pr (|A| |B| > c) (B.15)

where A and B are random variables. To see this note that |AB| ≤ |A| |B|. Further note that for any random
variables A1 > 0 and A2 > 0 for which A2 > A1 the occurrence of the event {A1 > c}, for any constant c > 0,
implies the occurrence of the event {A2 > c}. Therefore, Pr (A2 > c) ≥ Pr (A1 > c) proving the result.
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since qitqjt − E(qitqjt) is a mixing process and supi Pr (|qi,t| > α) ≤ C0 exp (−C1α
s), s > 0.

Then, by Lemma 28,

Pr

(∥∥∥(Σ̂−1
qq −Σ−1

qq

)∥∥∥ > ζT
δT

)
≤ l2T exp

 −C0T
s/2(s+2)ζ

s/(s+2)
T

δ
s/(s+2)
T l

s/(s+2)
T

∥∥Σ−1
qq

∥∥s/(s+1)

F

(∥∥Σ−1
qq

∥∥
F

+ ζT
δT

)s/(s+1)

+

l2T exp

(
−C0

T s/2(s+2)∥∥Σ−1
qq

∥∥s/(s+2)

F
l
s/(s+2)
T

)
=

l2T exp

−C0

 T 1/2ζT

δT lT
∥∥Σ−1

qq

∥∥
F

(∥∥Σ−1
qq

∥∥
F

+ ζT
δT

)
s/(s+2)

+

l2T exp

−C0

(
T 1/2∥∥Σ−1
qq

∥∥
F
lT

)s/(s+2)
 .

We now consider the second term of the RHS of (B.16). By (A.34), we have

Pr (‖u′xQ‖F ‖Q′u‖F > δTT ) ≤ Pr
(
‖u′xQ‖F > δ

1/2
T T 1/2

)
+ Pr

(
‖Q′u‖F > δ

1/2
T T 1/2

)
.

Note that ‖Q′u‖2
F =

∑lT
j=1

(∑T
t=1 qjtut

)2

, and

Pr
(
‖Q′u‖F > (δTT )1/2

)
= Pr

(
‖Q′u‖2

F > δTT
)

≤
lT∑
j=1

Pr

( T∑
t=1

qjtut

)2

>
δTT

lT


=

lT∑
j=1

Pr

[∣∣∣∣∣
T∑
t=1

qjtut

∣∣∣∣∣ >
(
δTT

lT

)1/2
]
,

Noting further that qitut and qituxt are martingale difference processes satisfying a result of

the usual form we obtain

Pr
(
‖u′xQ‖F > δ

1/2
T T 1/2

)
≤ lT Pr

(
|u′xqi| >

δ
1/2
T T 1/2

l
1/2
T

)
≤ lT exp

(
−CδT
lT

)
or

Pr
(
‖u′xQ‖F > δ

1/2
T T 1/2

)
≤ lT Pr

(
|u′xqi| >

δ
1/2
T T 1/2

l
1/2
T

)
≤ lT exp

((
−δTT
lT

)s/2(s+2)
)

depending on the order of magnitude of δ
1/2
T T 1/2

l
1/2
T

, and a similar result for Pr
(
‖Q′u‖F > δ

1/2
T T 1/2

)
.

Therefore,

Pr (‖u′xQ‖F ‖Q′u‖F > δTT ) ≤ exp
[
−C0T

C1
]
. (B.18)
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We wish to derive conditions for lT under which
T 1/2ζT

δT lT‖Σ−1qq ‖
F

(
‖Σ−1qq ‖

F
+
ζT
δT

) , T 1/2

‖Σ−1qq ‖
F
lT
, and δT

lT

are of larger, polynomial in T , order than ζ2T
T
. Then, the factors in lT in (A.49) and (B.18) are

negligible. We let ζT = T λ, lT = T d,
∥∥Σ−1

qq

∥∥
F

= l
1/2
T = T d/2 and δT = Tα, where α ≥ 0, can

be chosen freely. This is a complex analysis and we simplify it by considering relevant values

for our setting and, in particular, λ ≥ 1/2, λ < 1/2 + c, for all c > 1/2, and d < 1. We have

T 1/2ζT

δT lT
∥∥Σ−1

qq

∥∥
F

(∥∥Σ−1
qq

∥∥
F

+ ζT
δT

) = O
(
T 1/2+λ−α−2d

)
+O

(
T 1/2−3d/2

)
(B.19)

T 1/2∥∥Σ−1
qq

∥∥
F
lT

= O
(
T 1/2−3d/2

)
(B.20)

δT
lT

= O
(
Tα−d

)
(B.21)

and
ζ2
T

T
= O

(
T 2λ−1

)
= O (c lnT ) (B.22)

Clearly d < 1/3. Setting α = 1/3, ensures all conditions are satisfied. Since Σ−1
qq is of lower

norm order than Σ̂−1
qq −Σ−1

qq , (B.14) follows similarly proving the result under (D1). For (D2)

and (D3) we proceed as follows. Under (D3), noting that ut is a mixing process, then by

Lemma 21, we have that (B.12) is replaced by

Pr (|u′xu| > ζT ) ≤ exp
[
−C0

(
T−(1+ϑ)/2ζT

)s/(s+2)
]
, (B.23)

else, under (D2), we have again that (B.12) holds. Further, by a similar analysis to that above,

it is easily seen that, under (D2),

Pr (‖u′xQ‖F ‖Q′u‖F > δTT ) ≤ lT exp

(
−CδT
lT

)
+ lT exp

−C0

(
T−ϑ/2δ

1/2
T

l
1/2
T

)s/(s+2)


and under (D3),

Pr (‖u′xQ‖F ‖Q′u‖F > δTT ) ≤ 2lT exp

[
−C0

(
T−ϑ/2δT

lT

)s/2(s+2)
]

Under (D2), we wish to derive conditions for lT under which
T 1/2ζT

δT lT‖Σ−1qq ‖
F

(
‖Σ−1qq ‖

F
+
ζT
δT

) , T 1/2

‖Σ−1qq ‖
F
lT
,

and δT
lT
are of larger, polynomial in T , order than ζ2T

T
. But this is the same requirement to that

under (D1). Under (D3), we wish to derive conditions for lT under which
T 1/2ζT

δT lT‖Σ−1qq ‖
F

(
‖Σ−1qq ‖

F
+
ζT
δT

) ,
T 1/2

‖Σ−1qq ‖
F
lT
, δT
lT
and

(
T−1/2ζT

)s/(s+2)
are of positive polynomial in T , order. But again the same

conditions are needed as for (D1) and (D2). Finally, we consider (D4). But, noting Remark

23, the only difference to (D3) is that ζT ≥ T 1/2, rather than ζT ≥ T . Then, as long as(
T−1/2ζT

)s/(s+2) →∞ the result follows.
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Lemma 23 Let yt, for t = 1, 2, ..., T , be given by the data generating process (1) and suppose

that ut and xnt = (x1t, x2t, ..., xnt)
′ satisfy Assumptions 1-3. Let q·t = (q1,t, q2,t, ..., qlT ,t)

′ con-

tain a constant and a subset of xnt, and let ηt = x′b,tβb+ut, where xb,t is kb×1 dimensional vec-

tor of signal variables that do not belong to q·t, with the associated coeffi cients, βb. Assume that

Σqq = 1
T

∑T
t=1 E (q·tq

′
·t) and Σ̂qq = Q′Q/T are both invertible, where Q = (q1·, q2·, ..., qlT ·)

and qi· = (qi1, qi2, ..., qiT )′, for i = 1, 2, ..., lT . Moreover, let lT = o(T 1/4) and suppose that

Assumption 5 holds for all the pairs xt and q·t, and yt and (q′·t, xt), where xt is a generic

element of {x1t, x2t, ..., xnt} that does not belong to q·t, and denote the corresponding projec-
tion residuals defined by (15) as ux,t = xt − γ ′qx,Tq·t and et = yt − γ ′yqx,T (q′·t, xt)

′. Define

x = (x1, x2, ..., xT )′, y = (y1, y2, ..., yT )′, e = (e1, e2, ..., eT )′, Mq = IT − Q(Q′Q)−1Q′, and

θ = E (T−1x′MqXb)βb, where Xb is T ×kb matrix of observations on xb,t. Finally, cp(n) is

such that cp(n) = o
(√

T
)
. Then, under Assumption 6,for any π in the range 0 < π < 1,

dT > 0 and bounded in T , and for some Ci, c > 0 for i = 0, 1,

Pr [|tx| > cp(n) |θ = 0] ≤ exp

[
− (1− π)2 σ2

e,(T )σ
2
x,(T )c

2
p (n)

2 (1 + dT )2 ω2
xe,T

]
(B.24)

+ exp
(
−C0T

C1
)
,

where

tx =
T−1/2x′Mqy√

(e′e/T )
(

x′Mqx

T

) , (B.25)

σ2
e,(T ) = E

(
T−1e′e

)
, σ2

x,(T ) = E
(
T−1x′Mqx

)
, (B.26)

and

ω2
xe,T =

1

T

T∑
t=1

E
[
(ux,tηt)

2] . (B.27)

Under σ2
t = σ2 and/or E

(
u2
x,t

)
= σ2

xt = σ2
x, for all t = 1, 2, ..., T ,

Pr [|tx| > cp(n) |θ = 0] ≤ exp

[
− (1− π)2 c2

p(n)

2 (1 + dT )2

]
+ exp

(
−C0T

C1
)
. (B.28)

In the case where θ > 0, and assuming that there exists T0 such that for all T > T0, λT −
cp(n)/

√
T > 0, where λT = θ/

(
σx,(T )σe,(T )

)
, then for dT > 0 and bounded in T and some Ci

> 0, i = 0, 1, 2, we have

Pr [|tx| > cp(n) |θ 6= 0] > 1− exp
(
−C0T

C1
)
. (B.29)

Under Assumption 7, for some C0, C1 > 0,

Pr [|tx| > cp(n) |θ = 0] ≤ exp
[
−cp(n)s/(s+2)

]
+ exp

(
−C0T

C1
)
, (B.30)
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and

Pr [|tx| > cp(n) |θ 6= 0] > 1− exp
(
−C0T

C1
)
. (B.31)

Proof. We start under assumption 6 and in the end note the steps that differ under 7. We
recall that the DGP, given by (17), can be written as

y = aτ T + Xβ + u = aτ T + Xaβa + Xbβb + u

where Xa is a subset of Q. Recall that Qx = (Q,x), Mq = IT − Q(Q′Q)−1Q′, Mqx =

IT −Qx(Q
′
xQx)

−1Q′x. Then, MqXa = 0, and let MqXb = (xbq,1, ...,xbq,T )′. Then,

tx =
T−1/2x′Mqy√

(e′e/T )
(

x′Mqx

T

) =
T−1/2x′MqXbβb√
(e′e/T )

(
x′Mqx

T

) +
T−1/2x′Mqu√

(e′e/T )
(

x′Mqx

T

) . (B.32)

Let θ = E (T−1x′MqXb)βb, η = Xbβb + u, η = (η1, η2, ..., ηT )′ , and write (A.88) as

tx =

√
Tθ√

(e′e/T )
(

x′Mqx

T

) +
T 1/2

(
x′Mqη

T
− θ
)

√
(e′e/T )

(
x′Mqx

T

) . (B.33)

First consider the case where θ = 0, and note that in this case

tx =
T 1/2

(
x′Mqx

T

)−1/2
x′Mqη

T√
(e′e/T )

.

Now by (A.81) of Lemma 15 and (B.7) of Lemma 22, we have

Pr [|tx| > cp(n) |θ = 0] = Pr


∣∣∣∣∣∣∣
T 1/2

(
x′Mqx

T

)−1/2
x′Mqη

T√
(e′e/T )

∣∣∣∣∣∣∣ > cp(n) |θ = 0

 ≤ (B.34)

Pr


∣∣∣∣∣∣∣
T 1/2

(
x′Mqx

T

)−1/2
x′Mqη

T

σe,(T )

∣∣∣∣∣∣∣ >
cp(n)

1 + dT

+ exp
(
−C0T

C1
)
.

Then, by Lemma 26, under Assumption 6 and defining α(XT ) =
(

x′Mqx

T

)−1/2

x′Mq where

α(XT ) is exogenous to yt, α(XT )′α(XT ) = 1 and by (B.7) of Lemma 22, we have,

Pr [|tx| > cp(n) |θ = 0] ≤ exp

[
− (1− π)2 σ2

e,(T )σ
2
x,(T )c

2
p (n)

2 (1 + dT )2 ω2
xe,T

]
(B.35)

+ exp
(
−C0T

C1
)
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where

ω2
xe,T =

1

T

T∑
t=1

E
[
(ux,tηt)

2] =
1

T

T∑
t=1

E
[
u2
x,t

(
x′b,tβb + ut

)2
]
,

and ux,t, being the error in the regression of xt on Q, is defined by (15). Since by assumption

ut are distributed independently of ux,t and xb,t, then

ω2
xe,T =

1

T

T∑
t=1

E
[
u2
x,t

(
x′bq,tβb

)2
]

+
1

T

T∑
t=1

E
(
u2
xt

)
E
(
u2
t

)
,

where x′bq,tβb is the t-th element ofMqXbβb. FurthermoreE
[
u2
x,t

(
x′bq,tβb

)2
]

= E
(
u2
x,t

)
E
(
x′bq,tβb

)2
=

E
(
u2
x,t

)
β′bE

(
xbq,tx

′
bq,t

)
βb, noting that under θ = 0, ux,t and xb,t are independently distrib-

uted. Hence

ω2
xe,T =

1

T

T∑
t=1

E
(
u2
x,t

)
β′bE

(
xbq,tx

′
bq,t

)
βb +

1

T

T∑
t=1

E
(
u2
xt

)
E
(
u2
t

)
(B.36)

Similarly

σ2
e,(T ) = E

(
T−1e′e

)
= E

(
T−1η′Mqxη

)
= E

[
T−1 (Xbβb + u)′Mqx (Xbβb + u)

]
= β′bE

(
T−1X′bMqxXb

)
βb +

1

T

T∑
t=1

E
(
u2
t

)
,

and since under θ = 0, x being a pure noise variable will be distributed independently of Xb,

then E (T−1X′bMqxXb) = E (T−1X′bMqXb), and we have

σ2
e,(T ) = β′bE

(
T−1X′bMqXb

)
βb +

1

T

T∑
t=1

E
(
u2
t

)
=

1

T

T∑
t=1

β′bE
(
xbq,tx

′
bq,t

)
βb +

1

T

T∑
t=1

E
(
u2
t

)
. (B.37)

Using (A.90) and (A.91), it is now easily seen that if either E
(
u2
x,t

)
= σ2

ux or E (u2
t ) = σ2, for

all t, then we have ω2
xe,T = σ2

e,(T )σ
2
x,(T ), and hence

Pr [|tx| > cp(n) |θ = 0] ≤ exp

[
− (1− π)2 c2

p (n)

2 (1 + dT )2

]
+ exp

(
−C0T

C1
)
.

giving a rate that does not depend on error variances. Next, we consider θ 6= 0. By (A.80) of

Lemma 15, for dT > 0,

Pr


∣∣∣∣∣∣∣∣

T−1/2x′Mqy√
(e′e/T )

(
x′Mqx

T

)
∣∣∣∣∣∣∣∣ > cp(n)

 ≤ Pr

(∣∣∣∣T−1/2x′Mqy

σe,(T )σx,(T )

∣∣∣∣ > cp(n)

1 + dT

)
+ exp

(
−C0T

C1
)
.
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We then have

T−1/2x′Mqy

σe,(T )σx,(T )

=
T 1/2

(
x′MqXbβb

T
− θ
)

σe,(T )σx,(T )

+
T−1/2x′Mqu

σe,(T )σx,(T )

+
T 1/2θ

σe,(T )σx,(T )

=
T 1/2

(
x′Mqη

T
− θ
)

σe,(T )σx,(T )

+
T 1/2θ

σe,(T )σx,(T )

.

Then

Pr

∣∣∣∣∣∣
T 1/2

(
x′Mqη

T
− θ
)

σe,(T )σx,(T )

+
T 1/2θ

σe,(T )σx,(T )

∣∣∣∣∣∣ > cp(n)

1 + dT


= 1− Pr

∣∣∣∣∣∣
T 1/2

(
x′Mqη

T
− θ
)

σe,(T )σx,(T )

+
T 1/2θ

σe,(T )σx,(T )

∣∣∣∣∣∣ ≤ cp(n)

1 + dT

 .

We note that, by Lemma 3,

Pr

∣∣∣∣∣∣
T 1/2

(
x′Mqη

T
− θ
)

σe,(T )σx,(T )

+
T 1/2θ

σe,(T )σx,(T )

∣∣∣∣∣∣ ≤ cp(n)

1 + dT


≤ Pr

∣∣∣∣∣∣
T 1/2

(
x′Mqη

T
− θ
)

σe,(T )σx,(T )

∣∣∣∣∣∣ > T 1/2 |θ|
σe,(T )σx,(T )

− cp(n)

1 + dT

 .

But (T−1x′Mqη − θ) is the average of a martingale difference process and so

Pr

∣∣∣∣∣∣
T 1/2

(
x′Mqη

T
− θ
)

σe,(T )σx,(T )

∣∣∣∣∣∣ > T 1/2 |θ|
σe,(T )σx,(T )

− cp(n)

1 + dT

 (B.38)

≤ exp

[
−C1

(
T 1/2

(
T 1/2 |θ|

σe,(T )σx,(T )

− θcp(n)

1 + dT

))s/(s+2)
]
.

So overall

Pr


∣∣∣∣∣∣∣∣

T−1/2x′Mqy√
(e′e/T )

(
x′Mqx

T

)
∣∣∣∣∣∣∣∣ > cp(n)

 > 1− exp
(
−C0T

C1
)

− exp

[
−C1

(
T 1/2

(
T 1/2 |θ|

σe,(T )σx,(T )

− θcp(n)

1 + dT

))s/(s+2)
]
.

Finally, we note the changes needed to the above arguments when Assumption 7 holds,

rather than 6. (B.30) follows if in (B.34) we use (B.11) of Lemma 22 rather than (B.7) and,

in (B.35), we use Lemma 27 rather than Lemma 26 and, again, we use (B.11) of Lemma 22

rather than (B.7). (B.30) follows again by using (B.11) of Lemma 22 rather than (B.7).
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Remark 24 We note that the above proof makes use of Lemmas 26 and 27. Alternatively
one can use (A.80) of Lemma 15 in (B.34)-(B.35), rather that (A.81) of Lemma 15 and use

the same line of proof as that provided in Lemma 16. However, we consider this line of proof

as Lemmas 26 and 27 are of independent interest.

D. Lemmas for the deterministic case

Lemmas 24 and 25 provide the necessary justification for the case where xit are bounded

deterministic sequences, by replacing Lemmas 12 and 16.

Lemma 24 Let xit, i = 1, 2, ..., n, be a set of bounded deterministic sequences and ut sat-

isfy Assumptions 1-3 and 4, and consider the data generating process (1) with k signal

variables x1t, x2t, ..., xkt. Let q·t = (q1,t, q2,t, ..., qlT ,t)
′ contain a constant and a subset of

xt = (x1t, x2t, ..., xnt)
′. Let ηt = xb,tβb + uη,t, where xb,t contains all signal variables that

do not belong to q·t. Let Σqq = Q′Q/T be invertible for all T , and
∥∥Σ−1

qq

∥∥
FF

= O
(√

lT
)
,

where Q = (q1·, q2·, ..., qlT ·) and qi· = (qi1, qi2, ..., qiT )′, for i = 1, 2, ..., lT . Suppose that As-

sumption 5 holds for all the pairs xit and q·t, ut and q·t, and yt and (q′·t, xt), where xt is

a generic element of {x1t, x2t, ..., xnt} that does not belong to q·t. Let uxi,T be as in (15),
such that supi,j limT→∞

‖q′iuxj,T ‖
T 1/2

< C < ∞, and let ûxi = (ûxi,1, ûxi,2, ..., ûxi,T )′ = Mqxi,

xi = (xi1, xi2, ..., xiT )′, ûη = (ûη,1, ûη,2, ..., ûη,T )′ = Mqη, η = (η1, η2, ..., ηT )′, Mq = IT −
Q (Q′Q)−1 Q, Ft = Fxt ∪Fut , µxiη,t = E (uxi,tuη,t |Ft−1 ), ω2

xiη,1,T
= 1

T

∑T
t=1E

[
(xitηt − E (xitηt |Ft−1 ))2]

and ω2
xiη,T

= 1
T

∑T
t=1 E

[
(uxi,tuη,t − µxiη,t)

2]. Then, for any π in the range 0 < π < 1, we have,

under Assumption 4,

Pr

(∣∣∣∣∣
T∑
t=1

xitηt − E (xitηt |Ft−1 )

∣∣∣∣∣ > ζT

)
≤ exp

[
− (1− π)2 ζ2

T

2Tω2
xiη,1,T

]
, (B.39)

where ζT = O
(
T λ
)
, and (s+ 1)/(s+ 2) ≥ λ. If (s+ 1)/(s+ 2) < λ,

Pr

(∣∣∣∣∣
T∑
t=1

xitηt − E (xitηt |Ft−1 )

∣∣∣∣∣ > ζT

)
≤ exp

[
−C0ζ

s/(s+2)
T

]
, (B.40)

for some C0 > 0. If it is further assumed that lT = O
(
T d
)
, for some λ and d such that

d < 1/3, and 1/2 ≤ λ ≤ (s+ 1)/(s+ 2), then

Pr

(∣∣∣∣∣
T∑
t=1

(ûxi,tuη,t − µxiη,t)
∣∣∣∣∣ > ζT

)
≤ C2 exp

[
− (1− π)2 ζ2

T

2Tω2
xiη,T

]
+ exp

(
−C0T

C1
)
.

Otherwise, if λ > (s+ 1)/(s+ 2),

Pr

(∣∣∣∣∣
T∑
t=1

(ûxi,tuη,t − µxiη,t)
∣∣∣∣∣ > ζT

)
≤ exp

[
−C2ζ

s/(s+2)
T

]
+ exp

(
−C0T

C1
)
. (B.41)
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Proof. Note that all results used in this proof hold both for sequences and triangular ar-
rays. (B.39) follows immediately given our assumptions and Lemma 9. We proceed to

prove the rest of the Lemma. Note that now ûxi is a bounded deterministic vector and

uxi = (uxi,1, uxi,2, ..., uxi,T )′ a segment of dimension T of its limit. We first note that

T∑
t=1

(ûxi,tûη,t − µxiη,t) = û′xiûη −
T∑
t=1

µxiη,t = u′xiMquη−
T∑
t=1

µxiη,t

=
T∑
t=1

(uxi,tuη,t − µxiη,t)−
(
T−1u′xiQ

)
Σ−1
qq (Q′uη) ,

where ux = (ux,t, ..., ux,t)
′ and uη = (uη,t, ..., uη,t)

′. By (A.6) and for any 0 < πi < 1 such that∑2
i=1πi = 1,we have

Pr

(∣∣∣∣∣
T∑
t=1

(ûxi,tûη,t − µxiη,t)
∣∣∣∣∣ > ζT

)
≤ Pr

(∣∣∣∣∣
T∑
t=1

(uxi,tuη,t − µxiη,t)
∣∣∣∣∣ > π1ζT

)
+ Pr

(∣∣(T−1u′xiQ
)
Σ−1
qq (Q′uη)

∣∣ > π2ζT
)
.

Also applying (A.7) to the last term of the above we obtain

Pr
(∣∣(T−1u′xiQ

)
Σ−1
qq (Q′uη)

∣∣ > π2ζT
)

≤ Pr
(∥∥Σ−1

qq

∥∥
F

∥∥T−1u′xiQ
∥∥
F
‖Q′uη‖F > π2ζT

)
≤ Pr

(∥∥Σ−1
qq

∥∥
F
>
π2ζT
δT

)
+ Pr

(
T−1

∥∥u′xiQ∥∥F ‖Q′uη‖F > π2δT
)

≤ Pr

(∥∥Σ−1
qq

∥∥
F
>
π2ζT
δT

)
+ Pr

(∥∥u′xiQ∥∥F > (π2δTT )1/2
)

+ Pr
(
‖Q′uη‖F > (π2δTT )1/2

)
,

where δT > 0 is a deterministic sequence. In what follows we set δT = O (ζαT ), with 0 < α < λ,

so that ζT/δT is rising in T . Overall

Pr

(∣∣∣∣∣
T∑
t=1

(ûx,tuη,t − µxη,t)
∣∣∣∣∣ > ζT

)
(B.42)

≤ Pr

(∣∣∣∣∣
T∑
t=1

(ux,tuη,t − µxη,t)
∣∣∣∣∣ > π1ζT

)
+ Pr

(∥∥Σ−1
qq

∥∥
F
>
π2ζT
δT

)
+ Pr

(
‖Q′uη‖F > (π2δTT )1/2

)
+ Pr

(
‖u′xQ‖F > (π2δTT )1/2

)
.

We consider the four terms of the above, and note that since by assumption {qituη,t} are mar-
tingale difference sequences and satisfy the required probability bound conditions of Lemma

15



10, and {qituxi,t} are bounded sequences, then for some C, c > 0 we have2

sup
i

Pr
(
‖q′iuη‖ > (π2δTT )1/2

)
≤ exp

(
−C0T

C1
)

and as long as lT = o (δT ),

Pr
(
‖u′xQ‖F > (π2δTT )1/2

)
= 0

Also, since ‖Q′uη‖2
F =

∑lT
j=1

(∑T
t=1 qjtut

)2

,

Pr
(
‖Q′uη‖F > (π2δTT )1/2

)
= Pr

(
‖Q′uη‖2

F > π2δTT
)

≤
lT∑
j=1

Pr

( T∑
t=1

qjtuη,t

)2

>
π2δTT

lT


=

lT∑
j=1

Pr

[∣∣∣∣∣
T∑
t=1

qjtuη,t

∣∣∣∣∣ >
(
π2δTT

lT

)1/2
]
,

which upon using (A.45) yields (for some C, c > 0)

Pr
(
‖Q′uη‖F > (π2δTT )1/2

)
≤ lT exp (−CT c) , Pr

(
‖Q′ux‖ > (π2δTT )1/2

)
= 0.

Further, it is easy to see that

Pr

(∥∥Σ−1
qq

∥∥
F
>
π2ζT
δT

)
= 0

as long as ζT

δT l
1/2
T

→ ∞. But as long as lT = o
(
T 1/3

)
, there exists a sequence δT such that

ζT/δT →∞, lT = o (δT ) and ζT

δT l
1/2
T

→∞ as required, establishing the required result.

Lemma 25 Let yt, for t = 1, 2, ..., T , be given by the data generating process (1) and suppose

that xt = (x1t, x2t, ..., xnt)
′ are bounded deterministic sequences, and ut satisfy Assumptions

1-3, and either Assumption 4 or Assumption 4 hold. Let q·t = (q1,t, q2,t, ..., qlT ,t)
′ contain a con-

stant and a subset of xt = (x1t, x2t, ..., xnt)
′, and let ηt = xb,tβb+ut, where xb,t is kb×1 dimen-

sional vector of signal variables that do not belong to q·t. Assume that Σqq = Q′Q/T is invert-

ible for all T , and
∥∥Σ−1

qq

∥∥
F

= O
(√

lT
)
, where Q = (q1·, q2·, ..., qlT ·) and qi· = (qi1, qi2, ..., qiT )′,

for i = 1, 2, ..., lT . Moreover, let lT = o(T 1/4) and suppose that Assumption 5 holds for

all the pairs xit and q·t, and ut and q·t. Define x = (x1, x2, ..., xT )′, y = (y1, y2, ..., yT )′,

2The required probability bound on uxt follows from the probability bound assumptions on xt and on qit,
for i = 1, 2, ..., lT , even if lT →∞. See also Lemma 11.
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Mq = IT − Q(Q′Q)−1Q′, and θ = T−1x′MqXbβb, where Xb is T ×kb matrix of observa-
tions on xb,t. Let uxi,T be as in (15), such that supi,j limT→∞

‖q′iuxj,T ‖
T 1/2

< C < ∞. Let

e = (e1, e2, ..., eT )′ be the T × 1 vector of residuals in the linear regression model of yt on q·t
and xt. Then, for any π in the range 0 < π < 1, dT > 0 and bounded in T , and for some

Ci > 0 for i = 0, 1,

Pr [|tx| > cp(n) |θ = 0] ≤ exp

[
− (1− π)2 σ2

u,(T )σ
2
x,(T )c

2
p(n)

2 (1 + dT )2 ω2
xu,T

]
+ exp

(
−C0T

C1
)
,

where

tx =
T−1/2x′Mqy√

(e′e/T )
(

x′Mqx

T

) ,
σ2
u,(T ) and σ

2
x,(T ) are defined by (A.71) and (A.66), and

ω2
xu,T =

1

T

T∑
t=1

σ2
xtσ

2
t ,

Under σ2
t = σ2 and/or σ2

xt = σ2
x for all t = 1, 2, ..., T ,

Pr [|tx| > cp(n) |θ = 0] ≤ exp

[
− (1− π)2 c2

p(n)

2 (1 + dT )2

]
+ exp

(
−C0T

C1
)
.

In the case where θ > 0, and assuming that cp(n) = o(
√
T ), then for dT > 0 and some Ci > 0,

i = 0, 1, 2, 3, we have

Pr [|tx| > cp(n) |θ 6= 0] > 1− C0 exp
(
−C1T

C3
)
.

Proof. The model for y can be written as

y = aτ T + Xβ + u = aτ T + Xaβa + Xbβb + u

where τ T is a T × 1 vector of ones, Xa is a subset of Q. Let Qx = (Q,x), Mq = IT −
Q(Q′Q)−1Q′, Mqx = IT − Qx(Q

′
xQx)

−1Q′x. Then, MqXa = 0. MqXb = (xbq,1, ...,xbq,T )′.

Then,

tx =
T−1/2x′Mqy√

(e′e/T )
(

x′Mqx

T

) =
T−1/2x′MqXbβb√
(e′e/T )

(
x′Mqx

T

) +
T−1/2x′Mqu√

(e′e/T )
(

x′Mqx

T

) .
Let

η = Xbβb + u, η = (η1, ..., ηT )′

17



θ = T−1x′MqXbβb,

σ2
e,(T ) = E (e′e/T ) = E

(
η′Mqxη

T

)
, σ2

x,(T ) = E

(
x′Mqx

T

)
,

and write (A.88) as

tx =

√
Tθ√

(e′e/T )
(

x′Mqx

T

) +
T−1/2 [x′Mq η− E (x′Mqη)]√

(e′e/T )
(

x′Mqx

T

) .

x′Mq η− E (x′Mqη) = [x′Mqu− E (x′Mqu)] ,

(MqXbβb)
′ (MqXbβb)

T
=

1

T

T∑
t=1

(
x′bq,1βb

)2
=

1

T

T∑
t=1

σ2
xbt = σ2

b,(T ).

Then, we consider two cases: x
′MqXbβb

T
:= θ = 0 and θ 6= 0. We consider each in turn. First,

we consider θ = 0 and note that

tx =
T−1/2 [x′Mqu− E (x′Mqu)]√

(e′e/T )
(

x′Mqx

T

) .

By Lemma 15, we have

Pr [|tx| > cp(n) |θ = 0] = Pr


∣∣∣∣∣∣∣∣

T−1/2x′Mqη√
(e′e/T )

(
x′Mqx

T

)
∣∣∣∣∣∣∣∣ > cp(n) |θ = 0

 ≤
Pr

(∣∣∣∣T−1/2x′Mqη

σx,(T )σe,(T )

∣∣∣∣ > cp(n)

1 + dT

)
+ exp

(
−C0T

C1
)
.

By Lemma 24, it then follows that,

Pr [|tx| > cp(n) |θ = 0] ≤ exp

[
− (1− π)2 σ2

e,(T )σ
2
x,(T )c

2
p (n)

2 (1 + dT )2 ω2
xe,T

]
+ exp

(
−C0T

C1
)

where ω2
xe,T = 1

T

∑T
t=1E

[
(ux,tηt)

2]. Note that, by independence of ut with ux,t and xbq,t we
have

ω2
xe,T =

1

T

T∑
t=1

E
[
(ux,tηt)

2] =
1

T

T∑
t=1

E
[
u2
x,t

(
x′bq,1βb

)2
]

+ E
(
u2
xt

)
E
(
u2
t

)
.

By the deterministic nature of xit, and under homoscedasticity for ηt, it follows that σ2
e,(T )σ

2
x,(T ) =

ω2
xe,T , and so

Pr [|tx| > cp(n) |θ = 0] ≤ exp

[
− (1− π)2 c2

p (n)

2 (1 + dT )2

]
+ exp

(
−C0T

C1
)
.

18



giving a rate that does not depend on variances. Next, we consider θ 6= 0. By Lemma 15, for

dT > 0,

Pr


∣∣∣∣∣∣∣∣

T−1/2x′Mqy√
(e′e/T )

(
x′Mqx

T

)
∣∣∣∣∣∣∣∣ > cp(n)

 ≤ Pr

(∣∣∣∣T−1/2x′Mqy

σe,(T )σx,(T )

∣∣∣∣ > cp(n)

1 + dT

)

+ exp
(
−C0T

C1
)
.

We then have
T−1/2x′Mqy

σe,(T )σx,(T )

=
T−1/2x′Mqu

σe,(T )σx,(T )

+
T 1/2θ

σe,(T )σx,(T )

=

Then,

Pr

(∣∣∣∣T−1/2x′Mqu

σe,(T )σx,(T )

+
T 1/2θ

σe,(T )σx,(T )

∣∣∣∣ > cp(n)

1 + dT

)
= 1− Pr

(∣∣∣∣T 1/2T−1/2x′Mqu

σe,(T )σx,(T )

+
T 1/2θ

σe,(T )σx,(T )

∣∣∣∣ ≤ cp(n)

1 + dT

)
.

We note that

Pr

(∣∣∣∣T−1/2x′Mqu

σe,(T )σx,(T )

+
T 1/2θ

σe,(T )σx,(T )

∣∣∣∣ ≤ cp(n)

1 + dT

)
≤ Pr

(∣∣∣∣T−1/2x′Mqu

σe,(T )σx,(T )

∣∣∣∣ > T 1/2 |θ|
σe,(T )σx,(T )

− cp(n)

1 + dT

)
.

But T−1x′Mqu is the average of a martingale difference process and so

Pr

∣∣∣∣∣∣
T 1/2

(
x′Mqu

T

)
σe,(T )σx,(T )

∣∣∣∣∣∣ > T 1/2 |θ|
σe,(T )σx,(T )

− cp(n)

1 + dT


≤ exp

(
−C0T

C1
)

+ exp

[
−C

(
T 1/2

(
T 1/2 |θ|

σe,(T )σx,(T )

− cp(n)

1 + dT

))s/(s+2)
]
.

So overall,

Pr


∣∣∣∣∣∣∣∣

T−1/2x′Mqy√
(e′e/T )

(
x′Mqx

T

)
∣∣∣∣∣∣∣∣ > cp(n)

 > 1− exp
(
−C0T

C1
)

− exp

[
−C

(
T 1/2

(
T 1/2 |θ|

σe,(T )σx,(T )

− cp(n)

1 + dT

))s/(s+2)
]
.
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E. Auxiliary Lemmas

This Section provides some auxiliary Lemmas used in Sections A and B of the online theory

Supplement.

Lemma 26 Suppose that ut, t = 1, 2, ..., T , is a martingale difference process with respect to

Fut−1 and with constant variance σ
2, and there exist constants C0, C1 > 0 and s > 0 such

that Pr (|ut| > α) ≤ C0 exp (−C1α
s), for all α > 0. Let XT = (x1,x2, ..,xT ), where xt is an

lT × 1 dimensional vector of random variables, with probability measure given by P (XT ), and

assume

E (ut |FxT ) = 0, for all t = 1, 2, ..., T , (B.43)

where FxT = σ (x1,x2, ...,xT ). Further assume that there exist functions

α(XT ) = [α1(XT ), α2(XT )..., αT (XT )]′ such that 0 < supXT
α(XT )′α(XT ) ≤ gT , for some

sequence gT > 0. Then,

Pr

(∣∣∣∣∣
T∑
t=1

αt(XT )ut

∣∣∣∣∣ > ζT

)
≤ exp

(
−ζ2

T

2gTσ2

)
.

Proof
Define AT=

{∣∣∣∑T
t=1 αt(XT )ut

∣∣∣ > ζT

}
. Then,

Pr (AT ) =

∫
XT

Pr (AT |FxT )P (XT ) ≤ sup
XT

Pr (AT |FxT )

∫
XT

P (XT ) = sup
XT

Pr (AT |FxT )

But, by (B.43) and Lemma 9

Pr (AT |FxT ) ≤ exp

(
−ζ2

T

2σ2
∑T

t=1 α
2
t (XT )

)
But

sup
XT

exp

(
−ζ2

T

2σ2
∑T

t=1 α
2
t (XT )

)
≤ exp

(
−ζ2

T

2gTσ2

)
,

proving the result.

Lemma 27 Suppose that ut, t = 1, 2, ..., T , is a mixing random variable with exponential

mixing coeffi cients given by αk = a0ϕ
k, 0 < ϕ < 1. , with constant variance σ2, and there exist

suffi ciently large constants C0, C1 > 0 and s > 0 such that Pr (|ut| > α) ≤ C0 exp (−C1α
s),

for all α > 0. Let XT = (x1,x2, ..,xT ), where xt is an lT × 1 dimensional vector of random

variables, with probability measure given by P (XT ). Further assume that there exist functions

α(XT ) = [α1(XT ), α2(XT )..., αT (XT )]′ such that 0 < supXT
α(XT )′α(XT ) ≤ gT , for some

sequence gT > 0. Then,

Pr

(∣∣∣∣∣
T∑
t=1

αt(XT )ut

∣∣∣∣∣ > ζT

)
≤ exp

−( ζT

g
1/2
T σ

)s/(s+1)
 .
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Proof. Define AT=
{∣∣∣∑T

t=1 αt(XT )ut

∣∣∣ > ζT

}
and consider FxT = σ (x1,x2, ...,xT ) . Then,

Pr (AT ) =

∫
XT

Pr (AT |FxT )P (XT ) ≤ sup
XT

Pr (AT |FxT )

∫
XT

P (XT ) = sup
XT

Pr (AT |FxT )

But, using Lemma 2 of Dendramis, Giraitis, and Kapetanios (2015) we can choose C0, C1 such

that

Pr (AT |FxT ) ≤ exp

−
 −ζT
σ
√∑T

t=1 α
2
t (XT )

s/(s+1)
 ,

and

sup
XT

exp

−
 −ζT
σ
√∑T

t=1 α
2
t (XT )

s/(s+1)
 ≤ exp

−( ζT

g
1/2
T σ

)s/(s+1)
 ,

thus establishing the desired result.

Lemma 28 Let AT = (aij,T ) be a lT × lT matrix and ÂT = (âij,T ) be an estimator of AT .

Let
∥∥A−1

T

∥∥
F
> 0 and suppose that for some s > 0, any bT > 0 and C0 > 0

sup
i,j

Pr (|âij,T − aij,T | > bT ) ≤ exp
(
−C0

(
T 1/2bT

)s/(s+2)
)
.

Then

Pr
(∥∥∥Â−1

T −A−1
T

∥∥∥ > bT

)
≤ l2T exp

(
−C0

(
T 1/2bT

)s/(s+2)

l
s/(s+2)
T

∥∥A−1
T

∥∥s/(s+2)

F

(∥∥A−1
T

∥∥
F

+ bT
)s/(s+2)

)
(B.44)

+ l2T exp

(
−C0

T s/2(s+2)∥∥A−1
T

∥∥s/(s+2)

F
l
s/(s+2)
T

)
,

where ‖A‖ denotes the Frobenius norm of A.

Proof. First note that since bT > 0, then

Pr
(∥∥∥ÂT −AT

∥∥∥
F
> bT

)
= Pr

(∥∥∥ÂT −AT

∥∥∥2

F
> b2

T

)
= Pr

([
lT∑
j=1

lT∑
i=1

(âij,T − aij,T )2 > b2
T

])
,

and using the probability bound result, (A.6), and setting πi = 1/lT , we have

Pr
(∥∥∥ÂT −AT

∥∥∥
F
> bT

)
≤

lT∑
j=1

lT∑
i=1

Pr
(
|âij,T − aij,T |2 > l−2

t b2
T

)
(B.45)

=

lT∑
j=1

lT∑
i=1

Pr
(
|âij,T − aij,T | > l−1

t bT
)

≤ l2T sup
ij

[
Pr
(
|âij,T − aij,T | > l−1

t bT
)]

= l2T exp

(
−C0T

s/2(s+1) b
s/(s+2)
T

l
s/(s+2)
t

)
.
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To establish (B.44) define the sets

AT =
{∥∥A−1

T

∥∥
F

∥∥∥ÂT −AT

∥∥∥
F
≤ 1
}
and BT =

{∥∥∥Â−1

T −A−1
T

∥∥∥ > bT

}
and note that by (2.15) of Berk (1974) if AT holds we have

∥∥∥Â−1

T −A−1
T

∥∥∥ ≤
∥∥A−1

T

∥∥2

F

∥∥∥ÂT −AT

∥∥∥
F

1−
∥∥A−1

T

∥∥
F

∥∥∥ÂT −AT

∥∥∥
F

.

Hence

Pr (BT |AT ) ≤ Pr

 ∥∥A−1
T

∥∥2

F

∥∥∥ÂT −AT

∥∥∥
F

1−
∥∥A−1

T

∥∥
F

∥∥∥ÂT −AT

∥∥∥
F

> bT


= Pr

(∥∥∥ÂT −AT

∥∥∥
F
>

bT∥∥A−1
T

∥∥
F

(∥∥A−1
T

∥∥
F

+ bT
)) .

Note also that

Pr (BT ) = Pr
(
{BT ∩ AT} ∪

{
BT ∩ ACT

})
= Pr (BT |AT ) Pr (AT ) + Pr

(
BT |ACT

)
Pr
(
ACT
)
.

Furthermore

Pr
(
ACT
)

= Pr
(∥∥A−1

T

∥∥
F

∥∥∥ÂT −AT

∥∥∥
F
> 1
)

= Pr
(∥∥∥ÂT −AT

∥∥∥
F
>
∥∥A−1

T

∥∥−1

F

)
,

and by (B.45) we have

Pr
(
ACT
)
≤ l2T exp

(
−C0T

s/2(s+2) b
s/(s+2)
T

l
s/(s+2)
t

)
= exp

(
−C0

T s/2(s+2)∥∥A−1
T

∥∥s/(s+2)

F
l
s/(s+2)
T

)
.

Using the above result, we now have

Pr (BT ) ≤ Pr

(∥∥∥ÂT −AT

∥∥∥
F
>

bT∥∥A−1
T

∥∥
F

(∥∥A−1
T

∥∥
F

+ bT
))Pr (AT )

+ Pr
(
BT |ACT

)
exp

(
−C0

T s/2(s+2)∥∥A−1
T

∥∥s/(s+2)

F
l
s/(s+2)
T

)
.

Furthermore, since Pr (AT ) ≤ 1 and Pr
(
BT |ACT

)
≤ 1 then

Pr (BT ) = Pr
(∥∥∥Â−1

T −A−1
T

∥∥∥ > bT

)
≤ Pr

(∥∥∥ÂT −AT

∥∥∥
F
>

bT∥∥A−1
T

∥∥
F

(∥∥A−1
T

∥∥
F

+ bT
))

+ exp

(
−C0

T s/2(s+2)∥∥A−1
T

∥∥s/(s+2)

F
l
s/(s+2)
T

)
.

Result (B.44) now follows if we apply (B.45) to the first term on the RHS of the above..
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Lemma 29 Consider the scalar random variable XT , and the constants B and C. Then, if

C > |B| > 0,

Pr (|X +B| > C) ≤ Pr (|X| > C − |B|) . (B.46)

Proof. The result follows by noting that |X +B| ≤ |X|+ |B|.
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