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Abstract
Model specification and selection are recurring themes in econometric analysis. Both topics
become considerably more complicated in the case of large-dimensional data sets where the
set of specification possibilities can become quite large. In the context of linear regression
models, penalised regression has become the de facto benchmark technique used to trade off
parsimony and fit when the number of possible covariates is large, often much larger than
the number of available observations. However, issues such as the choice of a penalty
function and tuning parameters associated with the use of penalized regressions remain
contentious. In this paper, we provide an alternative approach that considers the statistical
significance of the individual covariates one at a time, whilst taking full account of the
multiple testing nature of the inferential problem involved. We refer to the proposed method
as One Covariate at a Time Multiple Testing (OCMT) procedure. The OCMT provides an
alternative to penalised regression methods: It is based on statistical inference and is
therefore easier to interpret and relate to the classical statistical analysis, it allows working
under more general assumptions, it is faster, and performs well in small samples for almost
all of the different sets of experiments considered in this paper. We provide extensive
theoretical and Monte Carlo results in support of adding the proposed OCMT model
selection procedure to the toolbox of applied researchers. The usefulness of OCMT is also
illustrated by an empirical application to forecasting U.S. output growth and inflation.
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1 Introduction

The problem of correctly specifying a model has been a recurring theme in econometrics. There
are a number of competing approaches such as those based on specification testing or the use of
information criteria that have been exhaustively analysed in a, hitherto, standard framework
where the number of observations is considerably larger than the number of potential model
candidates.

However, recently, increased focus has been placed on settings where the latter number is
either similar or exceeds the number of observations. Model selection and estimation in a high-
dimensional regression setting has largely settled around a set of methods collectively known as
penalised (or regularised) regression. Penalised regression is an extension of multiple regression
where the vector of regression coefficients, 3, of a regression of y; on ©,; = (14, Toy, ..., a:nt)/ is
estimated by 8 where 8 = argming > (g — ,8)% + Py (B)]. Px(B8) is a penalty function
that penalises the complexity of 3, while A is a vector of tuning parameters to be set by the
researcher. A wide variety of penalty functions have been considered in the literature, yielding
a wide range of penalised regression methods. Chief among them is Lasso, where Py (3) is
chosen to be proportional to the L; norm of 3. This has subsequently been generalised to
the analysis of functions involving L,, 0 < ¢ < 2, norms. While these techniques have found
considerable use in econometrics®, their theoretical properties have been mainly analysed in
the statistical literature starting with the seminal work of Tibshirani (1996) and followed
up with important contributions by Zhou and Hastie (2005), Lv and Fan (2009), Efron,
Hastie, Johnstone, and Tibshirani (2004), Bickel, Ritov, and Tsybakov (2009), Candes and
Tao (2007), Zhang (2010), Fan and Li (2001), Antoniadis and Fan (2001), Fan and Lv (2013)
and Fan and Tang (2013). Despite considerable advances made in the theory and practice
of penalised regressions, there are still a number of open questions. These include the choice
of the penalty function and tuning parameters. The latter seems particularly crucial given
the fact that no fully satisfactory method has, hitherto, been proposed in the literature, and
the tuning parameters are typically chosen by cross validation. A number of contributions,
notably by Fan and Li (2001) and Zhang (2010), have considered the use of nonconvex penalty
functions with some success. However, the use of nonconvex penalties introduce numerical
challenges and can be unstable and time consuming to implement.

As an alternative to penalised regression, a number of researchers have developed methods
that focus on the predictive power of individual regressors instead of considering all the n
covariates together. This has led to a variety of alternative specification methods sometimes
referred to collectively as “greedy methods”. In such settings, regressors are chosen sequen-

tially based on their individual ability to explain the dependent variable. Perhaps the most

'A general discussion of high-dimensional data and their use in microeconomic analysis can be found in
Belloni, Chernozhukov, and Hansen (2014a).



widely known of such methods, developed in the machine learning literature, is “boosting”
whose statistical properties have received considerable attention (Friedman, Hastie, and Tib-
shirani (2000), Friedman (2001) and Buhlmann (2006)). Other machine learning approaches,
such as regression trees, and step-wise regressions, are also widely used, but they lack rigorous
theoretical underpinnings.

A further approach that has a number of common elements with our proposal and combines
penalised regression with greedy methods is sure screening. It has been put forward by Fan and
Lv (2008), and, independently by Huang, J. Horowitz, and Ma (2008), and analysed further
by Fan and Song (2010) and Fan, Samworth, and Wu (2009), among others. This approach
considers marginal correlations between each of the potential regressors and 1;, and selects
either a fixed proportion of the regressors based on a ranking of the absolute correlations, or
those regressors whose absolute correlation with i, exceeds a threshold. The latter variant
requires selecting a threshold and so the former variant is used in practice. As this approach
is mainly an initial screening device, it may select too many regressors but enables dimension
reduction in the case of ultra large datasets. As a result, a second step is usually considered
where penalised regression is applied to the regressors selected at the first stage.

The present paper contributes to this general specification literature by proposing a new
model selection approach for high-dimensional datasets. The main idea is to test the statis-
tical significance of the net contribution of each potential covariate to y; separately, whilst
taking full and rigorous account of the multiple testing nature of the problem under consider-
ation. The general case requires iterating this process by testing the statistical contribution
of covariates that have not been previously selected (again one at a time) to the unexplained
part of y;. In a final step, all statistically significant covariates are included as joint deter-
minants of y; in a multiple regression setting. Whilst the initial regressions of our procedure
are common to boosting and to the screening approach of Fan and Lv (2008), the multiple
testing and iterative elements provide a powerful stopping rule without needing to resort to
model selection or penalised regression subsequently.

We use ideas from the multiple testing literature to control the probability of selecting
the true model, the false positive rate and the false discovery rate. We refer to the proposed
method as One Covariate at a Time Multiple Testing (OCMT) procedure. In addition to its
theoretical properties which we shall discuss below, OCMT is computationally simple and fast
even for extremely large datasets. The method provides an alternative in selecting regressors
that are correlated with the true unknown conditional mean of the target variable and, as a
result, it also has good estimation properties for the unknown coefficient vector. Like penalised
regressions, the proposed method is applicable when the underlying regression model is sparse.
Further, it does not require the x,; to have a sparse covariance matrix, and is applicable even
if the covariance matrix of the noise variables (to be defined below) is not sparse. Of course,

since OCMT is a model selection device, well known impossibility results for the uniform



validity of post-selection estimators, such as those obtained in Fan and Potscher (2006) and
Fan and Pé&tscher (2008), apply.

We provide theoretical results for the proposed OCMT procedure under mild assumptions.
In particular, we do not assume either a fixed design or time series independence for x,;
but consider a martingale difference condition. While the martingale difference condition is
our maintained assumption, we also provide theoretical arguments that allow the covariates
to follow mixing processes. We report results on the true positive rate, the false positive
rate, the false discovery rate, and the norms of the coefficient estimate as well as the in-
sample regression error. We do not report any optimality results for our method. Further, we
compare the small sample properties of our proposed method with three penalised regressions
and boosting techniques using a large number of Monte Carlo experiments under different
data generating schemes, and obtain encouraging results.

The paper is structured as follows: Section 2 provides the setup of the problem. Section
3 introduces the new method. Its theoretical and small sample properties are analysed in
Sections 4 and 5, respectively. Section 6 presents a forecasting empirical illustration of the
proposed method. Section 7 concludes and technical proofs are relegated to appendices. Two
online supplements provide additional theoretical results, a complete set of Monte Carlo results
for all the experiments conducted, and additional empirical findings.

Notations: Generic positive finite constants are denoted by C; for i = 0,1,2,... . They
can take different values at different instances. Let a = (ay,as, ...,a,)" and A = (a;;) be an
n x 1 vector and an n X m matrix, respectively. Then, ||a|| = (E?:la%)lm and [ja|, = X", |a]
are the Euclidean (Ly) norm and L; norm of a, respectively. |Al, = [T (AA’)]l/ ? is the
Frobenius norm of A. 7 is a T' x 1 vector of ones, 7r = (1,1,...,1)". If {f,} -, is any real
sequence and {g, } -, is a sequences of positive real numbers, then f,, = O(g,), if there exists
a positive finite constant Cy such that |f,| /g, < Cy for all n. f, = o(gn) if fn/gn — 0 as
n — oo. I {f,} 2, and {g,} -, are both positive sequences of real numbers, then f,, = & (g,)
if there exists Ny > 1 and positive finite constants Cy and C4, such that inf,>n, (fn/9,) > Co,

and sup,,> y, (fn/gn) < C1. —, denotes convergence in probability as n, T — oc.

2 The Variable Selection Problem

Suppose that the target variable, y;, is generated from the following data generating process
(DGP)

k
yt:a—i—ZBixit—l—ut, fort=1,2,...,T, (1)
i=1



where u; is an error term whose properties will be specified below, and 0 < |5;| < C' < oo, for

1=1,2,...,k, k > 0 is fixed. In matrix notation, we have
y =atr + X0 + u, (2)

where 71 is a T x 1 vector of ones, X = (X1,Xa, ...,X) is the T" X k matrix of observations
on the covariates, 8, = (1,52, ..., Bx)’ is the k x 1 vector of associated slope coefficients and
w = (u1,us, ...,ur) is T x 1 vector of errors.

The identity of the covariates, x;, for i = 1,2, ..., k, also referred to as the “signal” vari-
ables, is not known to the investigator who faces the task of identifying them from a large
set of n covariates, denoted as S,y = {z,7 = 1,2,...,n}, with n being potentially larger than
T. We assume that the signal variables z;;, for i = 1,2, ..., k, belong to S,;, and without loss
of generality suppose that they are arranged as the first k variables of S,;. We refer to the
remaining n — k regressors in S,,; as ‘noise’ variables, defined by 5; = 0 fori = k+1,k+2, ..., n.
In addition to the constant term, other deterministic terms can also be easily incorporated
in (1), without any significant complications. It is further assumed that the following exact
sparsity condition holds: Y I (5; # 0) = k, where k is bounded but otherwise unknown,
and I (A) is an indicator function which takes the value of unity if A holds and zero otherwise.

In the presence of n potential covariates, the DGP can be written equivalently as

Yyt =a+ ZI(@ # 0)Bizi + uy. (3)

i=1
Our variable selection approach focusses on the overall or net impact of z;; (if any) on y, rather
than the marginal effects defined by I(5; # 0)3;. As noted by Pesaran and Smith (2014), the

mean net impact of x;; on y; is given by
n k
Oir = Zf(ﬁj # 0)Bj0ijr = ZﬁjUij,T, (4)
j=1 Jj=1

where 0;;7 = E (T 'a/M,z;), and M, = I+ — 7r7//T. To simplify the notations we
suppress the 7" subscript and use ; and o,; below. The parameter ¢; plays a crucial role in
our proposed approach. Ideally, we would like to be able to base our selection decision directly
on [3; and its estimate. But when n is large such a strategy is not feasible. Instead, we propose
to base inference on 6#; and then decide if such an inference can help in deciding whether or not
B; = 0. It is important to stress that knowing #; does not imply we can determine ;. But it is
possible to identify conditions under which knowing #; = 0 or #; # 0 will help identify whether
B; = 0 or not. Due to the correlation between variables, nonzero 3; does not necessarily imply

nonzero #; and we have the following four possibilities:

Bi # 0 | (I) Signal net effect is nonzero  (II) Signal net effect is zero
B; =0 | (IIT) Noise net effect is nonzero (IV) Noise net effect is zero
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The first and the last case where ; # 0 if and only if 5; # 0 is ideal. But there is also a
possibility of the second case where §; = 0 and (; # 0 and the third case where 6; # 0 and
B; = 0. These cases will also be considered in our analysis. The specificity of zero signal net
effects (case II) makes it somewhat less plausible than the other scenario, since it requires that
Bi = _Z?:L ; 7éi6j0-i_i 10”». On the other hand, the third case of noise variables with nonzero
net effect is quite likely.

For future reference we also define a conditional net impact coefficient

k
Qi,T(Z) = Zﬁjgij,T(z)y (5)

where 0;7(2) = E (T '@/M,x;), M, =17 —Z(Z'Z)'Z', Z = (21, 29,..., z7) , and z; is a
vector of variables that includes the constant and a subset of S,,;. We suppress the T" subscript
and use 6;(z) and 0;;(z) below. For the noise variables, we require their net effects on the
target variable to be controlled, which can be formalized by imposing bounds on 77, ., [6;].
Such bounds can be specified in different ways. The first and main assumption is that there
exist possibly a further k* variables which have 3; = 0 but are correlated with the signals.
We shall refer to them as “pseudo-signal” variables since they are correlated with the signal
variables and can be mistaken as possible determinants of 3;. Without loss of generality, these
will be ordered so as to follow the k signal variables, so that the first k + £* variables in S,
are signal/pseudo-signal variables. We define X ;. = (Xj41,Xk+2, ..., Xp4k+). Lhe remaining
n — k — k* variables will be assumed to have §; = 0 and be uncorrelated with the signals.
They will be referred to as “pure noise” or simply “noise” variables. We assume that k is an
unknown fixed constant, but allow k* to rise with n such that £*/n — 0, and k*/T — 0, at a
sufficiently slow rate. Specifically, we allow k* = © (n®) for some appropriately bounded ¢ > 0.
We expect € to be small when the correlation between the signal variables and the remaining
covariates is sparse. In future discussions, we shall refer to the set of models that contain the
true signal variables as well as one or more of the pseudo-signal variables as the pseudo-true

model. We make the following assumption concerning the signal and pseudo-signal variables.

Assumption 1 Let Xy = (X4, X.), where Xy = (X1, Xa, ..., Xy), and

o = (Xkt1, Xbg2y ooy Xpeir) are T X k and T X k* observation matrices on signal and noise
variables, and suppose that there exists Ty such that for all T > Ty, (T‘lX;,k*Xm*)_l
is nonsingular with its smallest eigenvalue uniformly bounded away from 0, and Xy« =
E (T_lX;ﬂ’k*Xk’k*) is nonsingular for all T'.

Our secondary maintained assumptions are somewhat more general and, accordingly, lead
to fewer and weaker results. A first specification assumes that there exists an ordering (possibly

unknown) such that 6; = C;o', |o| < 1,7 =1,2,...,n. A second specification modifies the decay



rate and assumes that §; = C;i™7, for some v > 0. In both specifications max;<;<, |C;| < C' <
oo. These specifications allow for various decays in the way noise variables are correlated with
the signals. These cases are of technical interest and cover the autoregressive type designs
considered in the literature in order to model the correlations across the covariates. See, for
example, Zhang (2010) and Belloni, Chernozhukov, and Hansen (2014b).

3 An Iterated Multiple Testing Approach

The standard approach to dealing with the problem of identifying the signal variables from the
noise variables is to use penalised regression techniques such as the Lasso. In what follows, we
propose an alternative iterative approach which is inspired by the multiple testing literature,
although here we focus on controlling the probability of selecting the true model, the false
positive rate and the false discovery rate, rather than controlling the size of the union of the
multiple tests that are being carried out. We refer to this procedure as One Covariate at a
Time Multiple Testing (OCMT). The need for an iterative scheme arises due to the possibility
of hidden signal discussed in the previous section that arises when 6; = 0 even though (; # 0.
We call such signal variables hidden signals.

Suppose we have T observations on y; and the n covariates, z;, for ¢ = 1,2,....,n; t =
1,2,...,T. In the first stage we consider the n bivariate regressions of 3; on a constant and z;,
fori=1,2,...,n,

Yi = Ci(1) + P, () Tir + €, 1), L =1,2,..,T, (6)

where ¢; 1y = 0;/0;; and 6; is defined in (4). Denote the t-ratio of ¢; ) in this regression by

ts ., and note that

T,i,(1)
L dn _ TVEMy (7)
i, (1) se. (¢ET,2‘,(1)> Gi,(1)/ T M (0)Zi

A -1 .

where x; = (151‘1,%2,--',37#)/7 Yy = (y17y27'-'ayT),7 ¢T,i,(1) = (iBQM(o)wi) $§M(0)y7 02-2,(1) =
e mem/Ts em = Mioy, Mio) = Ir = X, 0)(Xi0Xi0) " Xio) Xio = (@71),
My = Iy — 1¢7/T, and 77 is a T x 1 vector of ones. ¢r; 1) denotes the OLS estimator
of ¢; ). In future, if there is no confusion we will suppress the T' subscript to simplify

notation. The first stage multiple testing estimator of I (5; # 0) is given by I1) (8; # 0) =
1 th; (1)‘ > ¢, (n, 5)} ,for i =1,2,...,n, where c,(n,d) is a ‘critical value function’ defined by

¢, (n,6) = &1 (1 - ﬁ) , 8)

where ®~!(.) is the inverse of standard normal distribution function, f (n,d) = cn’ for some
positive constants ¢ and ¢, and p (0 < p < 1) is the nominal size of the individual tests to be

set by the investigator. We will refer to ¢ as the critical value exponent.

6



The choice of the critical value function, ¢, (n,d), is important since it allows the inves-
tigator to relate the size and power of the selection procedure to the inferential problem in
classical statistics, with the modification that p (type I error) is now scaled by a function of
the number of covariates under consideration. As we shall see, the OCMT procedure applies
irrespective of whether n is small or large relative to T, so long as T' = & (n"1), for any finite
k1 > 0. This follows from result (i) of Lemma 2, which establishes that ¢ (n,d) = O [§In (n)].
It is also helpful to bear in mind that, using (ii) of Lemma 2,

2
exp {—M} =06 (n_(s}‘) , 9)
and ¢, (n,6) = o (T'?), for all Cy > 0, assuming there exists x; > 0, such that ' = © (n").

If other deterministic terms, besides the constant, were considered they could be included in
the definition of the orthogonal projection matrix M () that filters out these effects. Similarly,
if some variables were a priori known to be signals, then they could also be included in the
definition of M (gy. The multiple testing method can easily accommodate both possibilities,
while alternative approaches, such as Lasso, may not readily allow for such conditioning.

Covariates for which 1(1)(/5;'5 0) = 1 are selected as signals or pseudo-signals. Denote
the number of variables selected in the first stage by k: 7.(1); the index set of the selected
variables by 8(1), and the T' X kn,T,(l) observation matrix of the k T,(1) selected variables by
X (1. Further, let X ) = (TT,XE’D) = (@)1, - 2a)r), krnT(l) = k:nT(l), Say = 8(1) and
Ny = {1,2,...,n} \ Suy. In stages j = 2,3, ..., we consider the n — knT(j 1) regressions of
y; on the variables in X (j—1) and, one at the time, z; for i € /\/'(j 1. We then compute the

following t¢-ratios

B (i M ;i
tqui(.) = ng,A,(J) = - i /(J M , forie Nj-1), j=2,3,..., (10)
o S.e. <¢T,i,(j)> Ui7(j) miM(j—l)wi
where ¢2Ti (bl ) (w M ;_ 1).’131)71 x;M (;_1)y, denotes the estimated conditional net ef-

fect of x;; on v, in stage j, & i,( )= =T""¢ & M-y =Ir—X - 1)(X’(jfl)X(j_l))_lX’(jfl),
e; ;) denotes the residual of the regression of y on X; ;j_1) = (ml,X (j,l)). Regressors for
which I(j)@ 0) =1 H%T,i,m‘ > ¢, (n, 5)] = 1, are then added to the set of already se-
lected signal variables from the previous stages. Denote the number of variables selected
in stage j by l%ZT(j their index set by Sé’j), and the T x @:Z’Tj(j) matrix of the ]%Z,T,(j) se-
lected variables in stage j by X{;). Also let X(;) = (X(j_l),X‘(’j)) = (®()1, T()2: - TG)T) s
k:nm( = knT(j 1) —i—k‘nT )’ Sy = S(j,l)USE’j), and Ny = {1,2,...,n}\ S, and then proceed
to the next stage by increasing j by one. Note that k, r ;) is the total number of variables
selected up to and including stage 7, qﬁT’i’(j) —p 0i.(j)/ 0ii, where 0; ;) is used in the remainder

of this paper to denote 6; (w(j_l)), introduced in (5), and note that 6; (1) is §;. The procedure



stops when no regressors are selected at a given stage, say ), r, in which case the final number
of selected variables will be given by l%n,T = lAcn,T,(jnyT_l).

It is important to characterise the number of stages needed for OCMT. To do this we
note that not all signal variables can be hidden and that once one conditions on the set of
signal variables that are not hidden, then there exists i such that 6;(z) # 0, while §; = 0

and 3; # 0, where z denotes the signal variables that are not hidden.?

This is proven in
Lemma 1. Using this lemma one can successively uncover all hidden signals. We denote by
P the number of stages that need to be considered to uncover all hidden signals. Its true
population value is denoted by Fy. This is defined as the index of the last stage where OCMT
finds further signals (or pseudo-signals), assuming that Pr[|¢ ¢37-,,<]-)‘ > ¢y (n,0) |0 #0] =1
and Pr[|t<£i,(j)| > ¢, (n,0) |6;,;) = 0] = 0, for all variables, indexed i and OCMT stages, indexed
j. Of course, these probabilities do not take the values 1 and 0 respectively, in small samples,
but we will handle this complication later on. Then, the following proposition, proven in

subsection A.1 of the Appendix, using Lemma 1, provides an upper limit for F.

Proposition 1 Suppose that v, t = 1,2,...,T, are generated according to (1), with [5; # 0
fori =1,2,....k, and that Assumption 1 holds. Then, there exists j, 1 < j < k, for which
i) # 0, and the population value of the number of stages required to select all the signals,
denoted as Py, satisfies 1 < Py < k.

Example 1 As an illustration of Proposition 1 consider the case where k = 2, x1; and To
are signal variables (hence 1 # 0 and By # 0) and the remaining n — 2 variables in x,; are
noise variables. Then 61 = B10o11 + [2012 and Oy = [oo9s + [B1012, and 6; = 0, for i > 2. Now
if 01 =0, then 5, = —Bi—‘l’lu’ and 0y = [ ((722 — %) which can only be zero if the two signals
are perfectly correlated. This is disallowed by Assumption 1. Furthermore, suppose that xo;
is selected in the first stage of OCMT, then it follows that once we condition on xo the net

effect of w1, denoted by 0, (o) will be equal to Byo11 which is non-zero by assumption.

In finite samples, when no variables are selected in stage j, then stage j — 1 will be denoted
by Pn,T, the estimator of Py. So

N

Pn,T:mjm{ Zf @7&0—0}—1,and1@0>=2”1 Bi#£0). (1)

In practice, Pn;f is likely to be small, since the occurrence of hidden signals (zero signal net
effects) is less plausible, and all signals with nonzero § will be picked up (with probability
tending to one) in the first stage. Stopping after the first stage tends to improve the small

sample performance of the OCMT approach, investigated in Section 5, only marginally when

2Note that z may contain principal components or other estimates of common effects as well as covariates
that investigator believes must be included.



no hidden signals are present. Thus, allowing ]ADnVT > 1, using the stopping rule defined above,
does not significantly deteriorate the small sample performance when hidden signal variables
are absent, while it picks-up all hidden signal variables with probability tending to one. Since
the possibility of hidden signal variables cannot be ruled out in practice, we focus on the
iterated version.

In a final step, the regression model is estimated by running the ordinary least squares
(OLS) regression of y; on all selected covariates, namely the regressors x;; for which 1 @ 0) =
1, over all i = 1,2, ...,n. Accordingly, the OCMT estimator of 3;, denoted by 3;, is then given
by

~ A(I;n,T) s 7 —
G=d O WIB A0 =1 i 12 n (12)
0, otherwise

where Bi(k"’T) is the OLS estimator of the coefficient of the " variable in a regression that

includes all the covariates for which 1 @ 0) =1, and a constant term.

Remark 1 It is important to emphasise the role played by the critical value exponent, §, in
the OCMT procedure, as a means to ensure that noise variables are not selected. Its value
can differ in various OCMT stages and, in fact, we will analyse OCMT under such a setting
where one value of § is used in the first stage, while another (denoted by §*) in subsequent
stages. In particular, while § > 1 is a theoretically valid choice for the first stage of OCMT,
subsequent stages of the procedure require 0* > 2 for the full set of our theoretical results to

hold. Henceforth, we will assume that 6* > § to simplify the analysis.

We investigate the asymptotic properties of the OCMT procedure and the associated
OCMT estimators, 3;, for i = 1,2, ...,n. To this end we consider support recovery statistics
used in the Lasso literature, namely the true positive rate, and the false positive rate, defined

by

o Dl 1B #0) = 1and §; £ 0| -

mr Z?:l [(51 7’é 0) 7
o S T[1G A0 = 1. and 5= 0 "

m > i [(Bi=0) ’
and the false discovery rate (if > | I (8; # 0) > 0 ) defined by®

ST [[ (B; £0) =1, and §; = o}

FDRmT = - — . (15)
>ica L (B #0)

3In cases where Z?:l I (@O) = 0, we set FDR,, 7= 0. Alternatively, one could re-define FDR,, 1 by

replacing the denominator of (15) by 1+ > 7", I (3; # 0), without any material difference to the theoretical
results.



We also consider the residual norm of the selected model, defined by

Fp=T7") (16)

t=1
and the coefficient norm of the selected model, defined by

1/2

Fy =18, =B, Il = |ty (- 8)| i

where 4, = y, — a — B;aznt, B, = (61,52,---,571)/7 B, for i = 1,2,...,n are given by (12),
B, = (b1, 52, ..., Bn)’, and a represents the OLS estimator of the constant term in the final
regression.

We consider the following assumptions:

Assumption 2 The error term, u;, in DGP (1) is a martingale difference process with respect
to Fy = o (U1, Us_2, ..., ), with zero mean and a constant variance, 0 < 0% < C' < oo. Each
of the n covariates considered by the researcher, collected in the set Spy = {14, Tat, ooy Tt }, 08

independently distributed of the errors uy, for allt and t'.

Assumption 3 Let Fj} = o (¥, Ti4—1, ....), where x4, for i =1,2,...,n, is the i-th covariate

in the set Sy considered by the researcher. Define Fi™ = Uj_ .1 Fjp, Fi° = Uit Fe

gt gt and

Fr=FMmUFre. Then, vy, 1 = 1,2,...,n, are martingale difference processes with respect to
Fro. xiy s independent of xp fori=1,2,.. k+k*, j=k+EkE"+1,k+k*+2,...,n, and for
allt and t', and E [.Iitl'jt — E(xixjt) ‘.7-";”_1] =0, fori,j=1,2,...,n, and all t.

Assumption 4 There exist sufficiently large positive constants Cy, C1, Cy and Cs and s;, S, >

0 such that the covariates Sp; = {11, Tat, ..., Ty} Salisfy

sup Pr (Jzi| > a) < Cyexp (—C1a’*), for all a > 0, (18)

it
and the errors, uy, in DGP (1) satisfy

sup Pr (Ju¢| > o) < Cyexp (—Csa™), for all o > 0. (19)
¢

Assumption 5 Consider the pair {x;, q,}, fort = 1,2,...,T, where q, = (qu.¢, G2t QUpt)
1s an lp X 1 vector containing a constant and a subset of Sy¢, and z; is a generic element of
Syt that does not belong to q.,. It is assumed that E (q,x¢) and X4, = E (q.,4q,) exist and 3,
is invertible. Define =y, r = 3. [Tfl STE (q,txt)} and

. _ /
Uz, 7 =" Uzt = Tt — Ygp 19t (20)

All elements of the vector of projection coefficients, v, r, are uniformly bounded and only a

finite number of the elements of v, 7 are different from zero.
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Assumption 6 The number of the true regressors in DGP (1), k, is finite, and their slope
coefficients could change with T', such that for i = 1,2,....k, Bir = © (T‘ﬂ), for some 0 <
¥ < 1/2.

The above assumption allows for the possibility of weak signals whose coefficients, 3; 1,
for 1 = 1,2, ..., k, decline with the sample size, T', at a sufficiently slow rate. But to simplify
the notations subscript 7" is dropped subsequently, and it is understood that the slope and
net effect coefficients can change with the sample size according to Assumption 6. Given the
DGP (1), it is helpful to write the conditional net effect coefficient as

k
Oy = Y Beoie (w(j—n)) = E (T 'aiM;_yX1B;) = E (T '&/M_1yy).  (21)
/=1

Under Assumption 6, and given that o, (m(j,l)) is bounded, 0; (;y are, for a suitable j, either
bounded away from 0, or declining to 0 but not faster than the rate © (T‘ﬁ) for some 0 <
¥ < 1/2 introduced in Assumption 6. Using 6; (;), we can refine our concept of pseudo-signal
variables as variables with 0; ;) = © (T‘ﬁ) fori=k+1,k+2,....k+k* some 0 <9 < 1/2
and some 1 < 5 < F,.

Before presenting our theoretical results we provide some remarks on the pros and cons
of our assumptions as compared to the ones typically assumed in the penalised and boost-
ing literature. The signal and pure noise variables are allowed to be correlated amongst
themselves; namely, no restrictions are imposed on o;; for ¢,5 = 1,2,...,k, and on o;; for
1,] = k+kE +1,k+k"+ 2, ...,n Also, signal and pseudo-signal variables are allowed to
be correlated; namely, o;; could be non-zero for i,j = 1,2,...,k + k*. Therefore, signal and
pseudo-signal variables as well as pure noise variables can contain common factors. But under
Assumption 3, E [z — E (vy) |zj) =0fori=1,2,....,kand j=k+ k" + 1L E+ k" +2,....n.
This implies that, if there are common factors, they cannot be shared between signal /pseudo-
signal variables and noise variables, although one can condition on such factors, as we do in
our empirical illustration.*

The exponential bounds in Assumption 4 are sufficient for the existence of all moments
of covariates, x;;, and errors, u;. It is very common in the literature to assume some form of
exponentially declining bound for probability tails for u; and x;; where appropriate. Such an
assumption can take the simplified form of assuming normality, as in, e.g., Zheng, Fan, and
Lv (2014).

4Note that our theory allows for conditioning on observed common factors. But when factors are unobserved
they need to be replaced by their estimates using, for example, principal components. A formal argument that
the associated estimation error is asymptotically negligible involves additional technical complications, and
requires deriving exponential inequalities for the quantities analysed in Theorem 1 of Bai and Ng (2002) and
Lemma Al of Bai and Ng (2006), and then assuming that v/7'/n — 0 as n, T — co. While such a derivation
is clearly feasible under appropriate regularity conditions, a formal analysis is beyond the scope of the present

paper.
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Assumption 6 is a set of regularity conditions. It allows for small 3; and 6; (;), for a suitable
j, as long as they are not too small - i.e. they can tend to zero but at a rate slower than 7-/2.
Remark 3 discusses further how this condition enters the theoretical results. Assumption 5 is
a technical condition that is required for some results derived in the Appendix, which consider
a more general multiple regression context where subsets of regressors in «,; are included in
the regression equation. If Q = (¢4, 44, ..,q7) = 77 = (1,1,...,1)’, then Assumption 5 is
trivially satisfied given the rest of the assumptions. Then, v, = p. 7 = %Zthl E(x;) and
Uzt T = Tt — HazT-

It is important to place our assumptions in the context of the existing literature. In many
analyses of alternative methods, such as penalised regression, it is usual to assume that the
covariates, x,;, are either deterministic or stochastic but distributed as IID random variables.
(See, for example, Buhlmann and van de Geer (2011) or Zheng, Fan, and Lv (2014) for recent
contributions). Our martingale difference assumption relaxes the IID assumption somewhat.
Further relaxation of this assumption is discussed in Section 4.

Regarding our assumptions on the correlation between signal and pseudo-signal covariates,
we allow for noise variables to have a common factor, and do not require the covariance
matrix of x,; to be sparse. To identify the signal variables we do need to assume the sparsity
of correlation between the signal and non-signal variables as captured by the presence of
k* pseudo-signal variables. The OCMT approach can identify the k signal and up to k*
pseudo-signal variables with a probability tending towards 1. The selected regressors are
then considered in a multiple regression and the relevant regression coefficients are estimated
consistently, under mild restrictions on k* such as k* = o(T%/*). In contrast, a number of
crucial issues arise in the context of Lasso, or more generally when L, penalty functions with
0 < q <1 are used. Firstly, it is customary to assume a framework of fixed-design regressor
matrices, where in many cases a generalisation to stochastic regressors is not straightforward,
requiring conditions such as the spark condition of Donoho and Elad (2003) and Zheng, Fan,
and Lv (2014). Secondly, a frequent condition for Lasso to be a valid variable selection method
is the irrepresentable condition which bounds the maximum of all regression coefficients, in
regression of any noise or pseudo-signal variable on the signal variables, to be less than one
in the case of normalised regressor variables. See, for example, Section 7.5 of Buhlmann and
van de Geer (2011).

A further issue relates to the fact that most results for penalised regressions essentially
take as given the knowledge of the tuning parameter associated with the penalty function,
in order to obtain oracle results. In practice, cross-validation is recommended to determine
this parameter but theoretical results on the properties of such cross-validation schemes are
rare. Finally, it is worth commenting on the assumptions underlying boosting as presented
in Buhlmann (2006). There, it is assumed that the regressors are iid and bounded while few

restrictions are placed on their correlation structure. Nevertheless, it is important to note
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that the aim of boosting in that paper is to obtain a good approximation to the regression

function and not to select the true regressors.

4 Main Theoretical Results

We now present the main theoretical results using lemmas established in the Appendix. The
key is Lemma 10, which provides sharp bounds for Pr Ht éi,(j)‘ > ¢p (n,0) 05,y # O] . Since we
wish to allow for the possibility that 6; = 0 if 3; # 0, the results in the appendix are obtained
for t-ratios in multiple regression contexts where subsets of regressors in x,; are included in
the regression equation. It is instructive to initially consider the properties of the first step of
the iterative OCMT as it is simpler and covers the dominant case where ; # 0 if 5; # 0. Our
results will consequently and formally be generalised for the full iterative method. We present
results for TPR,, v, FPR,, v, FDR, r, the probability of selecting the pseudo-true model and
parameter estimate error and regression error norms. Below we sketch the results we obtain
using the first step of OCMT as a vehicle, for ease of exposition, while the formal analysis is
provided in Theorems 1 and 2 and proven in Section A.2 of the Appendix.

We first examine T'PR,, r defined by (13), under the assumption that 6; # 0 if 5; # 0.
Note that

2?211[1@0):1and&7é0] ) zfﬂfp@m:mndﬁﬁéo}
> i L(Bi #0) B k '

Since the elements in the above summations are 0 or 1, then taking expectations we have

Zle E {I [I(l)(/ﬁ;:é 0) =1 and 0; # O]} Zle Pr [ ts (D’ > ¢, (n,9)0; # ()]
k N k '
Suppose there exists k; > 0 such that 7' = & (n"). Using (A.108) of Lemma 10, where the ma-
trix Q, referred to in the statement of the Lemma, is set equal to 77, and noting that ¢, (n, d)
is given by (8), 1 —Pr Hté’i,(l)) > ¢, (n,0)0; # O] = O [exp (—CoT%)] = O [exp (—Con®1)]
for some C5, C5 > 0, where as defined by (21), 6; = 0, 1) = E (z;M .y/T). Using P (A) =

— P (A°), where A° denotes the complement of event A, we obtain

TPR,r =

el

| S 0 (1:0)16: £ 0] = O fexp (~C2T)] (22)

and noting that 6; # 0 for all signals ¢ = 1,2, ..., k, then under Assumption 6 we have

= ZPrQ% .

Consider now F'PR, r defined by (14). Again, note that the elements of FPR, 1 are
either 0 or 1 and hence |FPR, r| = FPR,r. Taking expectations of (14), and assuming

< (n,0) | #0) = k™! ZO exp (—CoT)] . (23)
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QiZQ(T*ﬂ),fori:k+1,k+2,...,k;—|—k, and some 0 < ¥ < 1/2, we have

SR Pr [ tél_y(l)] > ¢, (n,0) |0; o} +
t@,(l)‘ > ¢, (n,0) |8 =0 S e Pr Ht @_’m] > ¢, (n,0)|0; = o}

n—k n—k ’
where, as before, 0; = 0; 1y = E (M .y/T) (see (21)). Using (A.108) of Lemma 10 and as-
suming there exists k1 > 0 such that ' = & (n"!), we have k*—Zf:,fH Pr [ téﬁi,(l)’ > ¢, (n,0)0; # 0] =
O [exp (_CQTC3):| , for some finite positive constants Cy and C3. Moreover, (A.107) of Lemma
10, which holds uniformly over i, given the uniformity of (18) and (19) of Assumption 4, implies

Z:’L:k+1 Pr [

that for any 0 < s < 1 there exist finite positive constants Cy and C; such that

Zn: Pr[%m‘ > ¢, (n,0)|0; = o] < Xn: {exp {W] +exp (—CoTcl)}.

i=k+k*+1 i=k+k*+1

(24)

Using these results we obtain

Yok Pr ||t | > (n,0)[Bi=0 L 2 (n, 8
R € BT O e o S

+0|[(n— k)" exp (—CoT)] . (25)

Next, we consider the probability of choosing the pseudo-true model. We denote a selected
regression model as a pseudo-true model if it contains the (true) regressors x, i = 1,2, ..., k,
and none of the noise variables, x;, i = k+ k* + 1,k + k* 4+ 2,...,n. The models in the set
may contain one or more of the pseudo-signal variables, x;, i = k+ 1,k + 2,....k + k*. We
refer to all such regressions as the set of pseudo-true models. So, the event of choosing the

pseudo-true model is given by

k n
AOZ{ZI@O)zk}m{ 3 I(E?O)zo}. (26)
i=1 i=k+k*+1

Theorem 1 states that, under certain conditions, Pr (Ay) — 1. The above discussion relates
mainly to the first step of OCMT. The results for the general case are given in the following
theorem, proven in Subsection A.2.1 of the Appendix. Given our relative n/T rate assumption,
all rate results in our analysis are reported in terms of n for presentational consistency and

ease of comprehension. They could, of course, be reported in terms of 7" instead.

Theorem 1 Consider the DGP (1) with k signal variables, k* pseudo-signal variables, and
n — k — k* noise variables, and suppose that Assumptions 1-4 and 6 hold, Assumption 5 holds
for all pairs (xy, X j—1)), © € Ny—ny, j = 1,2,..., where j denotes the stage of the OCMT
procedure, and X (;_1y, and Ny_1y are defined in Section 3. ¢, (n,0) is gwen by (8) with

14



0 <p < 1andletf(nd) = cn’, for the first stage of OCMT and f (n,8*) = cn®, for
subsequent stages, for some ¢ > 0, 6* > § > 0. n,T — o0, such that T = © (n"™), for some
k1 > 0, and k* = ©(n°) for some positive € < min{1,x,/3}. Then, for any 0 < s < 1, and

for some constant Cy > 0,

(a) the probability that the number of stages in the OCMT procedure, ]5an, defined by (11),

exceeds k is given by

Pr (Pn,T > k) =0 (') + O (n'=/37) 4 O [exp (—n“")] (27)

(b) the probability of selecting the pseudo-true model, Ag, defined by (26), is given by

Pr(As) = L+0 (1175%) +0 (12757%) + 0 (/50) 4 O exp (-], (29

(¢c) for the True Positive Rate, T PR, r, defined by (13), we have
E|TPRuz| =1+ 0 (n=/37%0) 1 O [exp (—n )], (29)

and if 6 > 1 — k1/3, then TPR, 1+ —, 1; for the False Positive Rate, FPR,, 1, defined
by (14), we have

k,*
n—=k

E|FPR,r| = +0O (n_”‘s) +0 (nl_’il/g_”‘s) +0 (nl_}“s*)qLO (n“1) 40 [exp (—nco’“)] ,
(30)
and if 6 > min{0,1 — k,/3}, and 6* > 1, then FPR, 1 —, 0. For the False Discovery
Rate, FDR,, 1, defined in (15), we have
o+

FDRyr =y

(31)

—

if i (B #0) >0, 6 > max{1,2 -k /3}, & > 2, and 0, ;) = © (T7) fori =
k+1,k+2,...k+k* some0 <19 <1/2 and some 1 < j < F.

(d) For the residual norm of the selected model, F;, defined by (16), we have

E(F;) — o?,if 6 > 1 and 6* > 2. (32)

Remark 2 Although our proof requires that 0 < 3 < 1, in practice it sufficient to set > to
be arbitrarily close to, but less than, unity. Also, k1 can be arbitrarily small which allows n
to rise much faster than T. The condition 0 < ¢ < min{1, x,/3} ensures that k*/n — 0 and
k* = o(T*?). Finally, it is clear from (28) that if § > 1 and 6* > 2, Pr(Ay) — 1, as n and
T — oo.
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Remark 3 Assumption 6 allows for weak signals. In particular, we allow slope coefficients
of order © (T~"), for some 0 < ¥ < 1/2. Then, by (A.113) and (A.114) of Lemma 10, it
18 seen that such weak signals can be picked up at no cost, in terms of rates, with respect to
the exponential inequalities that underlie all the theoretical results. In particular, the power of

the OCMT procedure in selecting the signal x;; rises with VT {9i7(]~)| [Ce,(1)0z: (1), S0 long as
cp(n,9)

VT 055

x, and Q by e;, x;, and M (;_y), respectively. When this ratio is low, a large T will be required

— 0, asn and T — oo, where 0., (1) and o, (1) are defined by (A.105), replacing e,

for the OCMT approach to select the i signal. This condition is similar to the so-called
‘beta-min’ condition assumed in the penalised regression literature. (See, for example, Section
7.4 of Buhlmann and van de Geer (2011) for a discussion.)

Remark 4 OCMT selects signals as well as pseudo-signals with nonzero net effect coefficients,
hence the probability limit of FDR,, 1+ can be nonzero when pseudo-signals are present (k* # 0).
If FDR per se was the main objective of the analysis, then, a post-OCMT selection, using, for
example, the Schwarz information criterion, could be considered to separate the signals from
the pseudo-signals. However, when the norm of slope coefficients or the in-sample fit of the
model is of main concern, then, under appropriate conditions on the rate at which k* expands
with n, the inclusion of pseudo-signals is asymptotically innocuous, as shown in Theorem 2

below.

Consider now the coefficient norm of the selected model, Fj, defined in (17). We assume

the following additional regularity condition.

Assumption 7 Let S denote the T x lp observation matriz on the lr regressors selected at
any one of the PH,T stages of the OCMT procedure. Then,

1. Let 3o = E(S'S/T) with eigenvalues denoted by iy < ps < ... < .. Let p; = O (Ir),
i =Ilp—M+1,lp—M+2,..,lp, for some finite M, and sup,<;<;,._pr i < Co < 00, for
some Cy > 0. In addition, inf1<,<;, pt; > Cy1 > 0, for some Cy > 0.

2 E [(1 ~ I e £ = =

_4 R
F) } =0 (1), where ¥4 = S'S/T.

Theorem 2 Consider the DGP defined by (1), and the coefficient norm of the selected model,
F5 defined in (17). Suppose that Assumptions 1-4 and 6-7 hold, Assumption 5 holds for the
pairs (T, X (j—1)), © € N(j—1), j = 1,2, ..., where j denotes the stage of the OCMT procedure,
and X (j_1), N(j_1) are defined in Section 3, and k* (the number of pseudo signals) is of order
& (n%) for some positive €. Let ¢, (n,d) defined by (8), 0 < p < 1 and let f (n,§) = cn®, for the
first stage of OCMT and f (n,8*) = cn®, for subsequent stages, for some ¢ > 0, 6* > § > 1

and 6* > 2. Denote the maximum number of selected regressors that is allowed to enter the
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final stage regression by lnax and suppose that ly., = © (n"?), for some Ky > 0. Let ,én be
the estimator of B,, = (P1, B2, ..., Bn)’ in the final regression with at most ly.x regressors. In
addition, T = © (n*'), for some k1 > 0. Assume that ¢ < min{kq, x1/3}. Then, for any

0 < 22 <1, and some constant Cy > 0, we have

E (FB) -0 (n25—51/2) +0 (nl—&{) +0 (n2—5*;¢) +0 (n1—5%+2f€2—f€1/2)
+ O (0T ) 40 fexp (-n )] (33)

As can be seen from the above theorem, (33) requires stronger conditions than those
needed for the proof of the earlier results in Theorem 1. In particular, the two conditions
in Assumption 7 are needed for controlling the rate of convergence of the inverse of sample
covariance matrix of the selected regressors. The first condition relates to the eigenvalues of
the population covariance of the selected regressors, denoted by X,,, and aims to control the
rate at which || 2! grows. The second condition bounds the expectation of
(1= |Z2 o ||2es — asl|#)~*, which is needed for our derivations. Under our conditions on
the number of selected regressors, | Z | E(]| s — Zusl|r) = o(1), but this is not sufficient
for B[(1— |25 [|1Zss — Zesl|#) ™4 = O (1), s0 an extra technical assumption is needed. Note
that E(F, 5) is related to, and has the same rate as, the RMSE of Bn. It is possible to easily
obtain a rate for E(Fﬁg), i.e. the MSE of 3,,, which is the square of the rate given in (33). We
focus on E(F[;) to avoid more complex regularity conditions than those given in Assumption
7.

It is important to provide intuition on why we can get a consistency result for the coefficient
norm of the selected model even though the selection process includes pseudo-signal variables.
There are two reasons for this. First, since OCMT procedure selects all the signals with
probability approaching one as n,T" — oo, then the coefficients of the additionally selected
regressors (whether pseudo-signal or noise) will tend to zero with 7. Second, restricting
k* implies that the inclusion of pseudo-signal variables can be accommodated since their
estimated coefficients will tend to zero and the variance of these estimated coefficients will
be controlled. Some noise variables may also be selected, but we restrict the overall number
of regressors that enter the final regression by using a bound, [,,... This bound applies only
at the final regression stage after the OCMT selection procedure. In the unlikely event that
l%n,T + 1 > lnax, l%nﬁT — lmax — 1 variables are dropped ex post. The proof of Theorem 2 does
not depend on which of the variables are dropped. In practice, this could be done by dropping
selected regressors with the lowest t-statistics, in absolute value, over all OCMT stages. The
bound is assumed, to allow consideration of smaller values of §. This follows if we note that ro
can be set to 1 which would imply that the restriction is not binding but, then, larger values
of 6 would be required for norm consistency. The Monte Carlo evidence in this paper suggests
that the number of noise variables selected is well controlled by multiple testing and there is

no need to impose a bound in small samples. It is also worth noting that the result (32) on
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the residual norm of the selected model does not require Assumption 7. This is because fitted
values are defined even if the sample covariance of the selected regressors is not invertible.
In the case when the net effect coefficients of signal variables in the first stage of OCMT
satisfy 0; = © (T"?), if g; # 0, for some 0 < ¥ < 1/2 and for i = 1,2,..., k, then P, = 1,
and further iterations (j > 1) of the OCMT will not be required. Consequently, the results
of Theorems 1 and 2 can be simplified and obtained under a less restrictive set of conditions.
Under Py = 1, and assuming that the conditions of Theorem 1 hold, with the exception of the
condition on € which could lie in [0, 1), we obtain the following results, established in Section

A.2.4 in the Appendix. The probability of selecting the pseudo-true model is given by
Pr(A) =1+0 (nlf‘s”) +0 [n exp (—nc")} , (34)
and Pr(Ay) —, 1, if 6 > 1. For the support recovery statistics, we have

E|TPR, 7| =14 O [exp (—n“)], and (35)

i +0 (n) +0 (n°) + O [exp(—n)] . (36)

n—k

Hence, if § > 0, then TPR,, r —, 1, and FPR,r —, 0. In addition, if > , I (5; # 0) > 0,
0>1,and 0, =S (T‘ﬁ), fori=k+1,k+2,....,k+k*, and some 0 <) < 1/2, then the result
on the false discovery rate, (31), hold. The result on the residual norm of the selected model,
(32), also hold, if § > 1. Further, if the conditions of Theorem 2 hold with the exception of

the condition on €, which now could lie in [0, 1), we have

E|FPR, | =

E ||FﬁH -0 (n2€7l'€1/2) +0 (n1+2n27n1/27%6) +0 (nlfﬂé) +0 [eXp (—TLCO)] ) (37)

Theorems 1 and 2, and the rest of the results above relate to the first maintained assump-
tion about the pseudo-signal variables where at most £* of them have non-zero 0; (;) for some
7. This result can be extended to the case where potentially all variables have non-zero 6;,
as long as 6;’s are absolutely summable. Two leading cases considered in the literature are to

assume that there exists a (possibly unknown) ordering such that
0; = C;o', fori=1,2,...,n, and || < 1, (38)
for a given set of constants, C;, with sup; |C;| < oo, or
0, =Cyi 7, fori=1,2,...,n, and for some v > 0. (39)

The assumption that there is only a finite number of variables for which 3; # 0, is retained.
The rationale for hidden signals is less clear for these cases, since rather than a discrete
separation between variables with zero and non-zero 6;, we consider a form of continuum that

unites these two classes of variables. Essentially, we have no separation in terms of signal
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variables (or pseudo-signal variables) and noise variables, since there are no noise variables.
Therefore, the relevance of the iterative OCMT scheme is less clear. As a result, we focus on
the first stage of OCMT (j = 1) and provide some results for the settings implied by (38) and
(39).

Theorem 3 Consider the DGP defined by (1), suppose that Assumptions 1-4 and 6 hold,
Assumption 5 holds for the pairs (xy,1), i = 1,2,...,n, and condition (38) holds. Moreover,
let ¢, (n,d) be given by (8) with 0 < p < 1 and f (n,8) = cn?, for some ¢,§ > 0, and suppose
there exists k1 > 0 such that T = & (n"'). Consider the variables selected at the first stage of
the OCMT procedure. Then, for all { > 0, we have E|FPR, 7| = o(n*~') 4+ O [exp(—n)],
for some finite positive constant Cy, where FPR,, r is defined by (14). If condition (39) holds

instead of condition (38), then, assuming v > %/{%, we have FPR,, r —, 0.

An important assumption made so far is that noise variables are martingale difference
processes which could be quite restrictive in the case of time series applications. This assump-
tion can be relaxed. In particular, under the less restrictive assumption that noise variables are
exponentially mixing, it can be shown that all the theoretical results derived above hold. De-
tails are provided in Section B of the online theory Supplement. A further extension involves
relaxing the martingale difference assumption for the signal and pseudo-signal covariates. If we
are willing to assume that either w,; is normally distributed or the covariates are deterministic,
then a number of results become available. The relevant lemmas for the deterministic case are
presented in Section D of the online theory Supplement. Alternatively, signal/pseudo-signal
regressors can be assumed to be exponentially mixing. In this general case, some results can

still be obtained. These are described in Section B of the online theory Supplement.

5 A Monte Carlo Study

We employ five different Monte Carlo (MC) designs that differ in the extent of correlation

across covariates, in the way 0; ;) and (3; are related, and in the size of the j3; coefficients.

5.1 Data-generating processes (DGPs)

In all five designs described below, we consider several options in generating the covariates.
We allow the covariates to be serially correlated and consider different degrees of correlations
across them. In addition, we also consider experiments with Gaussian and non-Gaussian

eIrrors.
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5.1.1 Design I (zero correlations between signal and noise variables)

There are no pseudo-signal variables and all signal variables have 0; # 0. y, is generated as:

Y = P11y + Boxor + Pase + BaTar + Sy, (40)

where u; ~ ITDN (0,1) in the Gaussian case, and u; = [xZ(2) — 2] /2 in the non-Gaussian
case, in which x?(2) are independent draws from a x2-distribution with 2 degrees of freedom,
fort=1,2,....,T. We set ; = B = 3 = 84 = 1 and consider the following alternatives ways

. /
of generating . = (z1¢, Tat, -, Tnt) :

DGP-I(a) Temporally uncorrelated and weakly collinear regressors: signal variables are
generated as z; = (5 + vg;) /V/1+ 12, for i = 1,2,3,4, and noise variables are generated as
Tyt = €5ty Tip = (€i—14+€it) / V2, for i > 5, where g, and ¢, are independent draws either
from N(0,1) or from [x%(2) — 2] /2, for t = 1,2,...,T, and i = 1,2, ....,n. We set v = 1, which
implies 50% pair-wise correlation among the signal variables.

DGP-I(b) Temporally correlated and weakly collinear regressors: Regressors are generated
as in DGP-I(a), but with ;s = pig; 11 + \/1—7,01262‘“ in which e;; ~ IIDN (0,1) or
IID[x?(2) — 2] /2. We set p; = 0.5 for all i.

DGP-I(c) Strongly collinear noise variables due to a persistent unobserved common factor:
signal variables are generated as x; = (€4 + g¢) / V2, for i = 1,2,3,4, and noise variables are
generated as x5, = (5, + b; f;) /V/3 and xy = [(81;71,15 ) /V2 + bl-ft] /\/3, for i > 5, where
bi ~ IIDN (1,1), f; = 0.95f,_1 + V1 — 0.952v;, and v;, g; and &;; are independent draws
from N (0,1) or [x?(2) — 2] /2.

DGP-I(d) Low or high pair-wise correlation of signal variables: Regressors are generated as
in DGP-I(a), but we set v = y/w/ (1 — w), for w = 0.2 (low pair-wise correlation) and 0.8
(high pair-wise correlation). This ensures that average correlation among the signal variables

is w.
5.1.2 Design II (non-zero correlations between signal and noise variables)

We allow for pseudo-signal variables (k* > 0). The DGP is given by (40) and x,, is generated

as:

DGP-II(a) Two pseudo-signal variables: signal variables are generated as

Ty = (g4 + g1) /V/2, for i = 1,2,3, 4, pseudo-signal are generated as x5, = e5; + ka1, and
Tet = €pt + Ko, and pure noise variables are generated as zy = (€;_1¢ + i) / V2, for i > 6,
where, as before, g;, and &;; are independent draws from N (0,1) or [x?(2) — 2] /2. We set

k = 1.33 (to achieve 80% correlation between the signal and the pseudo-signal variables).

DGP-II(b) All noise variables collinear with signals: x,; ~ I1D (0,3,) with the elements

of 3, given by 0.5°77!, 1 <, j < n. We generate x,; with Gaussian and non-Gaussian
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innovations. In particular, x,; = Ei/ 2¢,, where ¢, = (€1t €2ty .-, Ent) s and g;; are generated
as independent draws from N (0,1) or [x?(2) — 2] /2.

5.1.3 Design III (zero net signal effects)

We consider designs that allow for some signal variables to have zero 6. 1y, is generated by
(40), x,,; is generated as in DGP-I(a), and the slope coefficients for the signal variables in (40)

are selected so that 6, = 0:

DGP-III The fourth signal variables has zero net effect: we set 81 = 82 = 83 = 1 and
B4 = —1.5 This implies ; # 0 for : = 1,2,3 and 6; = 0 for ¢ > 4.

5.1.4 Design IV (zero net signal effects and pseudo-signal variables)

We allow for signal variables with zero 6 as well as pseudo-signal variables with non-zero 6’s.

DGP-IV(a) We generate x,; in the same way as in DGP-1I(a) which features two
pseudo-signal variables. We generate slope coefficients [3; as in DGP-III to ensure 6; # 0 for
1=1,2,3, and 0, = 0 for i = 4.

DGP-IV(b) We generate x,; in the same way as in DGP-II(b), where all noise variables
are collinear with signals. We set 8; = —0.875 and (8, = 3 = 34 = 1. This implies ¢; = 0 for
i =1and#; >0 for all 7 > 1.

5.1.5 Design V (Many signal variables)

For this design the DGP (DGP-V) is given by

"1\ 2
Y = ; (;) Tit + Suy, (41)
where x,, are generated as in design DGP-II(b), and wu; is generated in the same way as
before. This design is inspired by the literature on approximately sparse models (Belloni,
Chernozhukov, and Hansen (2014b)).

Autoregressive processes are generated with zero starting values and 100 burn-in peri-
ods. ¢ is set so that R? = 30%, 50% or 70% (on average). The sample combinations,
n = (100,200, 300) and 7" = (100,300, 500) are considered, and all experiments are carried

out using Ry;c = 2,000 replications.

5.2 Variable selection methods

We consider six variable selection procedures, namely OCMT, Lasso, Adaptive Lasso (A-
Lasso), Hard thresholding, Sica, and boosting. The OCMT method is implemented as outlined
in Section 3, where ¢, (n, d) is defined by (8) with f (n,d) = n° in the first stage and f (n,0*) =

n®" in the subsequent stages. We use p = 0.01, and in line with the theoretical derivations
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we set 6 = 1 and 6* = 2. An online Supplement provides results for other choices of p €
{0.01,0.05,0.1} and (d,6*) € {(1,1.5),(1,2)}.> It turns out that the choice of p is of second
order importance. Penalised regressions are implemented using the same set of possible values
for the penalisation parameter A as in Zheng, Fan, and Lv (2014), and following the literature
A is selected using 10-fold cross-validation. All methods are described in detail in an online

Supplement.

5.3 Monte Carlo results

Here we focus on the relative performance of Lasso, adaptive Lasso and OCMT methods, and
provide the full set of results for all experiments and all six variable selection procedures in an
online Supplement. We evaluate the small sample performance of individual methods, using
the true positive rate (TPR) defined by (13), the false positive rate (FPR) defined by (14),
the false discovery rate (FDR) defined by (15), the out-of-sample root mean square forecast
error (RMSFE), and the root mean square error of 3 (RMSEg).® We find that no method
uniformly outperforms in the set of experiments we consider. This is true for the full set of
methods (OCMT, Lasso, adaptive Lasso, Hard thresholding, Sica and Boosting) reported in
the Supplement. As a way of highlighting this point, in Table 1 we report results for DGP-1(d)
with w = 0.2 and R? = 30%, where Lasso clearly outperforms OCMT for T' = 100 (the upper
left panel), and for DGP-III with R? = 70%, where OCMT clearly dominates Lasso (the right
panel). For example, for n = T = 100, the RMSE; of OCMT is about 60% larger than that of
Lasso in the case of DGP-I(d), whereas for DGP-III the RMSE of Lasso is about three times
as large as that of the OCMT. Adaptive Lasso has better FPR and FDR performance than
Lasso, but worse TPR, RMSFE and RMSE; performance. It is also interesting to point out
that the relative performance of the Lasso, adaptive Lasso and OCMT methods could crucially
depend on the sample size, especially the time dimension. For example, when 7' is increased
from 100 in the upper panel of the table to 7" = 300 in the lower panel, RMSE; of OCMT
dominates the Lasso and adaptive Lasso in both DGPs. It is clear that the performance of
individual methods can be quite different for individual experiments, and an average relative
assessment of these methods seems to be in order.

Tables 2-4 report averaged summary statistics across the three choices of R? (30%, 50%,
70%) for each of the DGPs. Lasso’s TPR is in the majority of experiments larger than
OCMT’s, but so is the FPR and FDR as Lasso tends to overestimate the number of signal
variables, which is well known the literature. Adaptive Lasso in turn achieves better FPR

and FDR outcomes compared with Lasso, but the performance of adaptive Lasso is worse

®Monte Carlo findings for the first stage of the OCMT procedure are available upon request.

SRMSE is the square root of the trace of the MSE matrix of 3. Additional summary statistics, including
the probabilities of selecting the true model, and the statistics summarizing the distribution of the number of
selected covariates are reported in the online Supplement.
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for TPR, RMSFE and RMSE; in these experiments. Lasso and adaptive Lasso are never
the best in all support recovery statistics (TPR, FPR and FDR) simultaneously in Tables
2-4, whereas OCMT outperforms in all three dimensions simultaneously in some instances
(when 7" > 100). The reported RMSFE averages of Lasso are outperformed by OCMT in all
instances in Tables 2-4, by about 0.7% to 5.3%. Findings for RMSE; are not uniform with
OCMT outperforming Lasso in 40 out of the 45 reported average RMSEg’s. The reported
Lasso’s RMSE; averages are in the range 86% to 718% of the reported OCMT’s averages. As
mentioned in Remark 3, the power of the OCMT procedure rises with VT ‘(91-7@)‘ [ Ces (TYOw, (T
hence the magnitude of 6; (;), T and R? are all important for the power of the OCMT. For
instance, an increase in the collinearity among signal variables, which results in a larger 0; (;,
will improve the performance of OCMT, but it will worsen the performance of Lasso, since a
higher collinearity of signals diminishes the marginal contribution of signals to the fit of the
model. The average number of stages in OCMT procedure, Pn,T, is either close to one or close
to two, depending on whether zero net effect signals are present in the design.

It is also interesting to note that the relative performance of OCMT, Lasso and adaptive
Lasso methods tends to improve in OCMT’s favor with n. For example, for T = 100, the
relative performance of OCMT and Lasso, based on the average statistics reported in Table
2, increases in OCMT’s favor by about 0.8% to 1.9% in the case of RMSFE, and by about 7%
to 14% in the case of RMSEj, when n is increased from 100 to 300.

Moving on to consider the relative performance of adaptive Lasso, we note that it improves
greatly upon the FPR and FDR performance of Lasso while still performing less well than
OCMT for these statistics, most of the time. The exception is DGP-II where it performs
better that both Lasso and OCMT for a considerable number of cases and especially when
T > 100. The downside to this improvement compared to Lasso, is that Adaptive Lasso
performs considerably worse that both Lasso and OCMT in terms of TPR, especially for
small T', DGP-I and DGP-II.

Overall, the small sample evidence suggests that the OCMT method is a valuable alter-
native to penalised regressions, since it can outperform the penalised regressions, that have
become the de facto benchmark in the literature, in some cases. Another advantage of the
OCMT procedure, which could be important in some applications, is that it is very fast to
compute, about 10% to 10* times faster than penalised regression methods.

The findings presented so far relate to experiments with Gaussian innovations and, with
the exception of DGP-I(b), serially uncorrelated covariates. The online supplement presents
additional experiments to investigate the robustness of the OCMT method to non-Gaussianity
and highly serially correlated covariates. The effects of allowing for non-Gaussian innovations
seem to be rather marginal. In contrast, the deterioration in performance due to serial corre-
lation of covariates is much larger. This is because longer time series observations are needed

to detect spurious correlation when the covariates are highly serially correlated.
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6 Empirical Illustration

In this section we present an empirical illustration that highlights the utility of OCMT. In
particular, we present a macroeconomic forecasting exercise for US GDP growth and CPI
inflation using a large set of macroeconomic variables. The dataset is quarterly and comes from
Stock and Watson (2012). We use the smaller dataset considered in Stock and Watson (2012),
which contains 109 series. The series are transformed by taking logarithms and /or differencing
following Stock and Watson (2012).” The transformed series span 1960Q3 to 2008Q4 and are
collected in the vector z;. Our estimation period is from 1960Q3 to 1990Q2 (120 periods) while
the forecast evaluation period is 1990Q3 to 2008Q4. We produce one step ahead forecasts using
five different procedures: (a) AR(1) benchmark; (AR(1)), (b) AR(1) augmented with lagged
principal components; (factor-augmented AR(1)); (c-d) Lasso and adaptive Lasso regressions
of the target variable y, (either US GDP growth or differenced CPI inflation) on y;_;, lagged
principal components, and z; ;. For Lasso and adaptive Lasso regressions, both the target
variable and regressors are demeaned, and the regressors are normalised to have unit variances.
(e) OCMT procedure is applied to regressions of y; conditional on lagged principal components,
with y;_1, and elements of z;,_; considered one at a time. The procedure is then repeated to
convergence after me stages defined in (11). Similarly to the MC section, we set p = 0.01,
and § = 1 in the first stage of OCMT, and ¢* = 2 in the subsequent stages.® In all three
data-rich procedures (b) to (e), the principal components are selected in a rolling scheme by
the PC,, Bai and Ng (2002) criterion (with the maximum number of PCs set to 5).

We then use each of the methods by applying a rolling forecasting scheme with a rolling
window of 120 observations. It is important to note that all features of our analysis (such as,
e.g., lag orders) can be considerably refined. However, our aim is simply to show the potential
of OCMT, and not to produce the best forecast for the dependent variables we consider.

We evaluate the forecasting performance of the methods using relative RMSFE where
the AR(1) forecast is the benchmark. Relative RMSFE statistics for the whole evaluation
period as well as for the pre-crisis subperiod (1990Q3-2007Q2) are reported in Table 5.° In
the case of GDP growth forecasts, we note that factor-augmented AR, Lasso and OCMT
methods perform better than the AR(1) benchmark. OCMT performs the best in the full
evaluation sample, whereas Lasso leads in the pre-crisis subsample. Adaptive Lasso is the
worst performer. However, the performance of the best methods is very close, especially

during the pre-crisis subperiod. Interestingly, the inclusion frequency of lagged dependent

"For further details, see the online supplement of Stock and Watson (2012), in particular columns E and
T of their Table B.1.

SRMSFEs are reasonably robust to the choice of p. Results for p = 0.05,0.1 are reported in the online
Supplement.

9Diebold-Mariano test statistics, for all pairwise method comparisons, and the variable selection frequencies
for both LASSO and OCMT can be found in the online supplement. The RMSFE differences among the
best performing methods are not generally statistically significant.
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variable using the full evaluation sample is 20% using OCMT, while it is 0% in the case of
Lasso. Results are different when inflation is considered. In this case, the inclusion frequency
of the lagged dependent variable is 100% in both OCMT and Lasso methods. The differences
in RMSFE in the case of inflation are relatively small. For the full evaluation period, OCMT
and factor-augmented AR(1) perform about 5% better than the benchmark AR(1) and the
Lasso, and about 14% better than the adaptive Lasso. Zooming in on the results for the pre-
crisis sub-sample, OCMT, Lasso, and adaptive Lasso underperform the AR(1) benchmark, but
the differences in relative performance of OCMT and Lasso methods continue to be rather
small. In summary, we see that there is no method that uniformly outperforms all competitor
methods and that OCMT is not far behind the best performing method.

7 Conclusion

Model specification and selection are recurring and fundamental topics in econometric analy-
sis. Both problems have become considerably more difficult for large-dimensional datasets
where the set of possible specifications rise exponentially with the number of available co-
variates. In the context of linear regression models, penalised regression has become the de
facto benchmark method of choice. However, issues such as the choice of penalty function
and tuning parameters remains contentious.

In this paper, we provide an alternative approach based on multiple testing that is compu-
tationally simple, fast, and effective for sparse regression functions. Extensive theoretical and
Monte Carlo results highlight these properties and provide support for adding this method
to the toolbox of the applied researcher. In particular, we find that, for moderate values of
the R? of the true model, with the net effects for the signal variables above some minimum
threshold, our proposed method outperforms existing penalised regression methods, whilst at
the same time being computationally much faster by some orders of magnitude.

There are a number of avenues for future research. The extension of our set-up to models
with weakly exogenous and persistent regressors is clearly important for economic applications.
In addition, the possibility of weak and strong common factors affecting both the signal
and noise variables is also an important extension of the current set of assumptions. A
further possibility is to extend the idea of considering regressors individually to other testing
frameworks, such as tests of forecasting ability. It is hoped that the theoretical results and the
Monte Carlo evidence presented in this paper provide a basis for such further developments

and empirical applications.
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Table 1: Monte Carlo findings for two selected experiments

DGP-I(d) DGP-III
(w=0.2, B2 =30%) (R? =70%)
Oracle Lasso A-Lasso OCMT Oracle Lasso A-Lasso OCMT
T =100

n = 100
TPR 1.000 0.874 0.675 0.432 1.000 0.999 0.988 0.993
FPR 0.000 0.068 0.017 0.000 0.000 0.144 0.015 0.000
FDR 0.000 0.559 0.250 0.007 0.000 0.732 0.175 0.004
RMSFE 3.968 4.185 4.213 4.283 1.296 1.456 1.371 1.305
RMSEﬂ~ 0.848 1.982 2.649 3.180 0.142 0.975 0.787 0.306

n = 200
TPR 1.000 0.844 0.662 0.372 1.000  0.998 0.989 0.989
FPR 0.000  0.050 0.016 0.000 0.000 0.103 0.019 0.000
FDR 0.000 0.649 0.368 0.010 0.000  0.797 0.313 0.004
RMSFE 3.968  4.231 4.275 4.318 1.301  1.503 1.396 1.312
RMSEB~ 0.848  2.342 3.366 3.445 0.141 1.185 0.807 0.366

n = 300
TPR 1.000 0.836 0.666 0.335 1.000  0.996 0.981 0.988
FPR 0.000  0.040 0.015 0.000 0.000  0.082 0.019 0.000
FDR 0.000 0.691 0.441 0.012 0.000 0.825 0.390 0.004
RMSFE 3.967  4.267 4.332 4.357 1.300 1.549 1.431 1.314
RMSEB~ 0.851 2.512 3.857 3.589 0.137  1.408 0.996 0.408

T = 300

n = 100
TPR 1.000 0.999 0.962 0.991 1.000  1.000 1.000 1.000
FPR 0.000 0.078 0.009 0.000 0.000  0.152 0.006 0.000
FDR 0.000 0.571 0.123 0.002 0.000 0.755 0.059 0.002
RMSFE 3.903 3.976 3.965 3.907 1.276  1.317 1.283 1.276
RMSEB~ 0.279  0.697 0.830 0.363 0.044 0.231 0.098 0.045

n = 200
TPR 1.000 0.998 0.963 0.987 1.000  1.000 1.000 1.000
FPR 0.000  0.050 0.009 0.000 0.000  0.099 0.011 0.000
FDR 0.000 0.629 0.203 0.003 0.000 0.801 0.130 0.002
RMSFE 3.897 3.984 3.963 3.903 1.276  1.331 1.291 1.276
RMSEﬁ~ 0.275 0.785 0.885 0.398 0.046  0.303 0.132 0.046

n = 300
TPR 1.000  0.999 0.968 0.986 1.000  1.000 1.000 1.000
FPR 0.000 0.038 0.008 0.000 0.000 0.077 0.012 0.000
FDR 0.000  0.657 0.241 0.002 0.000 0.824 0.175 0.003
RMSFE 3.902 4.001 3.976 3.907 1.277  1.339 1.298 1.277
RMSEﬁ~ 0.277  0.841 0.983 0.402 0.045 0.334 0.158 0.046

Notes: This table reports selected experiments using DGP-I(d) and DGP-III, given by (40), with Gaussian
innovations and serially uncorrelated covariates. There are k = 4 signal variables, and w is the average pair-
wise correlation of the signal variables in DGP-I(d). See Section 5 for further details. TPR (FPR) is the true
(false) positive rate. FDR is the false discovery rate. RMSFE is the root mean square forecast error, RMSEﬂ~

is the root mean square error of B Oracle method assumes that the identity of signal variables is known.
Lasso is implemented using the same set of possible values for the penalisation parameter A as in Zheng, Fan,
and Lv (2014), and X is selected using 10-fold cross-validation. Adaptive Lasso method is implemented as
described in Section 2.8.4 of Buhlmann and van de Geer (2011) based on the implementation of the Lasso
method described above. OCMT results are based on p = 0.01, § = 1 in the first stage, and §* = 2 in the
subsequent stages of the OCMT procedure. The complete set of findings is reported in an online Supplement.
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Table 5: RMSFE performance of the AR, factor-augmented AR, Lasso and OCMT
methods

Evaluation sample: Full Pre-crisis
1990Q3-2008Q4 1990Q3-2007Q2
RMSFE Relative RMSFE Relative
(x100) RMSFE (x100) RMSFE
Real output growth

AR (1) benchmark 0.560 1.000 0.504 1.000
Factor-augmented AR (1)  0.488 0.870 0.467 0.927
Lasso 0.507 0.905 0.463 0.918
Adaptive Lasso 0.576 1.028 0.515 1.021
OCMT 0.487 0.869 0.464 0.920
Inflation
AR (1) benchmark 0.655 1.000 0.469 1.000
Factor-augmented AR (1)  0.621 0.949 0.452 0.965
Lasso 0.655 1.001 0.488 1.040
Adaptive Lasso 0.715 1.093 0.518 1.105
OoCMT 0.626 0.957 0.477 1.017

Notes: RMSFE is computed using a rolling forecasting scheme with a rolling window of 120 observations.
We use the smaller dataset considered in Stock and Watson (2012) which contains 109 series. The series are
transformed by taking logarithms and/or differencing following Stock and Watson (2012). The transformed
series span 1960Q3 to 2008Q4 and are collected in the vector z;. Set of regressors in Lasso and adaptive-Lasso
contains ;1 (lagged target variable), z;_1, and a lagged set of principal components obtained from the large
dataset given by (y:, 2;)’. OCMT procedure is applied to regressions of y; conditional on lagged principal
components, with y;_1, and elements of z;_; considered one at a time. OCMT is reported p = 0.01 and for
0 = 1 in the first stage, and §* = 2 in the subsequent stages of the OCMT procedure, similarly to the MC
section. The number of principal components in the factor-augmented AR (1), Lasso, adaptive-Lasso, and
OCMT methods is determined in a rolling scheme by using criterion PC),, of Bai and Ng (2002) (with the
maximum number of PCs set to 5). See Section 5 and the Supplement for further details.
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A Appendix

For further use throughout this appendix we define the following events. The event of choosing

the pseudo true model, Ay defined in (26), will be written as
Ay =HNG, (A.1)

where
H:{ZI@O):k}, (A.2)

is the event that all signals are selected, and

g:{ 3 1@0>=0}, (A:3)

i=k+k*+1

is the event that no noise variable is selected. We also denote the event that exactly j noise

variables are selected by G,

gj:{ i ]@0):j},fOI‘j:O’l’m’n_k—k*’ (A4)

i=k+k*+1
with G = G,. For the analysis of different stages of OCMT, we also introduce the event B, ,,
which is the event that variable i is selected at the s stage of the OCMT procedure.

£i,s = Ui:lBi,fh (A5)

L; s is the event that variable ¢ is selected up to and including stage s, namely in any of the
stages 7 = 1,2, ..., s of the OCMT procedure.

£s - mf:pci,s, (A6)

L is the event that all signal variables are selected up to and including stage s of the OCMT
procedure. 7 is the event that the OCMT procedure stops after s stages or less.

DS,T = {]%n,T,(j) <lr,j=1,2, -"78} ) (A7)

~

D, r is the event that the number of variables selected in the first s stages of OCMT (k:n;ﬂ(j),
Jj=1,2,...,s) is smaller than or equal to I, where 7 = © (n”) and v satisfies € < v < K1/3.
Note that when T = & (n*!) then, under this definition of I, we have Il = © (T”/ ’“) =
o (T"3) for v < Ky /3.
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A.1 Proof of Proposition 1

We recall that P, is a population quantity. This formally means that, to determine Fy, OCMT
is carried out assuming Pr Ht@’m‘ > cp(n,0) |05,y # O] = land Pr Ht@,u)‘ > ¢y (n,0) 05,y = 0] =
0 for all 4, j. So, if 6; 1) # 0, for all ¢ for which 3; # 0, it obviously follows that % = 1. Next,
assume that the subset of signals in Xy, such that for each element of this subset, 6; ;) = 0, is
not empty. Then, these signals will not be selected in the first stage of OCMT. By Lemma 1,
it follows that the subset of signals for which 0; ;) = 0 is smaller than the set of signals and
therefore at least one signal will be picked up in the first OCMT stage. It then follows, by
Lemma 1, that in the second OCMT stage, at least one signal, for which 60; ;) = 0 will have
0;,2) # 0. Therefore, such signal(s) will be picked up in the second stage. Proceeding recur-
sively using Lemma 1, then follows that all signals for which 6; )y = 0, will satisfy 0; ;) # 0

for some j < k, proving the proposition.!’

A.2 Proofs of theorems and corollaries

This subsection contains the proofs of the main theorems and their corollaries. All theorems
are proven based on the set of lemmas presented and proven in Section A.3. In particular,
Lemmas 1-9 are auxiliary ones, mostly providing supporting results for the main lemma of
the paper which is Lemma 10. This provides the basic exponential inequalities that underlie

most of our results.
A.2.1 Proof of Theorem 1
Noting that 7;, is the event that the OCMT procedure stops after &k stages or less, we have
Pr (ﬁn,T > k) = Pr(T¢) =1 Pr(T;),
where P, 7 is defined by (11). Substituting (A.120) of Lemma 12 for Pr (7), we obtain,
Pr (PnT > k;) =0 (") +0 (n'") + O [nexp (—Con“™)]

for some Cy,C; > 0, any > in 0 < » < 1, and any v in 0 < € < v < k;1/3, where k1 > 0 is
a positive constant that defines the rate for 7' = & (n"') and € in 0 < € < min {1, x;/3} is
a positive constant that defines the rate for k* = © (n). But note that O (n'="=*%) can be
written equivalently as O (n!=*/379)_ This follows since 1 — k1/3 — 30 = 1 — (k1/3 — £6) —
(+¢€)d =1— 0 — 36, where v = k1/3 — €6 and 3 = s + ¢, for ¢ > 0 sufficiently small.

10Note that in the proposition we have allowed for net effects that depend on T" and can therefore be small,
in line with Assumption 6 as long as they are not exactly zero. This is possible since Lemma 1 also allows for
such net effects.
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Specifically, setting ¢ < min {1 — 5, (k1/3 —€) /0}, it follows that 3 and » satisfy 0 < ¢ < 1

and € < U < K1/3, respectively, as required. Hence
Pr (PnT > k) =Pr(79) =0 (nl_“1/3_”5) +0 (n'7") + O [nexp (=Con“*™)],  (A.8)

for some Cy,C; > 0 and any s in 0 < » < 1. Noting that O [nexp (—C’Oncl’“)] =
O [exp (—n@’“)} for any 0 < Cy < (', we have

Pr <1f’nT > k:> =0 (nl_ﬂl/g_”é) +0 (nl_”‘s*) +0 [exp (—ncz”“)] ,

for some Cy > 0, which establishes (27). Similarly, by (A.123) and noting that n > n'~" for

v > 0, we also have (which is required subsequently)
Pr(Djy) = O (n'=/370) 4 O (n'=/370") + O [nexp (—CoT )], (A.9)

for some Cy, C; > 0 and any » in 0 < » < 1.
Consider now (28), and note that

Pr(Ag) = Pr(A5[Drr) Pr(Dyr) + Pr(Ag[ D) Pr(Dy r) < Pr(Ag[Drr) + Pr(Dir), (A10)
where Pr(Dj, ;) is given by (A.9). Also using (A.1) we have Aj = H°U G°, and hence

PI‘(AS’Dk’T) S Pr (HC| ij) + Pr (Q’c] Dk,T)
= A,r+ B, (A.11)

where H and G are given by (A.2) and (A.3), respectively. Therefore

Hc—{21@0)<k},andgc—{ i I@O)>O}. (A.12)

i=ktk*+1

Consider the terms A, v and B,, , in turn:
k —_—
Anz =Pr(H|Dpr) <Y Pr ([ (B; £0)=0 DM) . (A.13)
i=1

But, the event {[ @0) = 0‘ Dk,T} can occur only if { ﬂ?leEA D;@T} occurs, while {ﬂleBZA DhT}

can occur without {I (6; #0) =0 Dk,T} occurring. Therefore,
Pr (I (B, £0)=0 Dk,T) < Pr (MBS, Dir) . (A.14)
Then,

Pr (mg?:lB;’,j\ Dyr) =Pr( B;l| Dyr) x Pr( B§,2| By, Dir)
X Pr (81673‘ 822 N le,DhT)
X . X Pr(B5y| Biyy N .. N B51, Dir) - (A.15)
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But, by Proposition 1 we are guaranteed that for some jin1 < j <k, 0;; #0,1=1,2,..., k.
Therefore, for some jinl1<j <k

Pr(BS,| B, NN B2y, Dyr) = Pr(BS| BS, .. N By, 0y # 0, Dir)
and by (A.108) of Lemma 10,
Pr (B, Bi,_y N ...N B, 0iy # 0, D) = O [exp (—CoTY)], for i =1,2,...,k,
for some Cy, Cy > 0. Therefore,
Pr (1(5 #0) = 0| Dir) = O [exp (~CoT™)] , for i =1,2,...k. (A.16)

Substituting this result in (A.13), we have

Ao = Pr (M Du) < hexp (~GoT ). (a7

Similarly, for B,, r we first note that

Bn,TzPr< Xn: 1(3:#£0)>0

Dk,T) = Pr { Ui b ke 1 [I @0) > 0} Dk,T}

i=k+k*+1
< Y BB A0 D] (A.18)
i=k+k*+1

Also,

E|1(B: #0)[Dyr | = B [1(8; #0) [P, T | Pr (TulDir) + B [ (B: 7 0) [Py, T | Pr (T¢ D)

<FE [[ (Bi #0) |Dk,T>77~c] + Pr (7| Der) ,

since F [I @0) Dy, 775] < 1. Hence

Bur < Y E[I(G£0)Dir T + (0 — k= k) Pr(T¢|Dir).
i=k+k*+1

Consider now the first term of the above and note that
Y & [I (B, #0) |Dk7T,Tk] =Y P [
i=k+k*+1 i=k+k*+1

+ zn: Xk:Pr[

i=k+k*+1j=2

t(lgi,(l)’ > Cp (n,0) ‘eiv(l) =0, Dy, IE}

tqgiy(j) > Cp (n, (5*) |Qi7(j) = O,ij,ﬂ] s
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where we have made use of the fact that the net effect coefficients, 6; (;), of noise variables are
zero for i = k+ k*+ 1,k + k*+2,...,n and all j. Also by (A.107) of Lemma 10 and result

(17) of Lemma 2, we have

n n k
Z Pr Htéi,(l)‘ > ¢ (n,6) |0s1) = 07D";’T’Tk] T Z Z Pr Ht@,@ > ¢ (n,0") |05 = 0, Dr.r, 779}
i=k+k*+1 i=k+k*+1s=2

—xci(n, 0%)

<(n—Fk—Ek")exp 5

{@} +(k—1)(n—k— k") exp [

] 0 [nexp (~CoT)]
=0 (1) +0 (") + O [nexp (~CoT)].
Further, by (A.129),

nPr (T |Dyr) = O (n* ) + O [n® exp (=CoT")]

giving, overall,

B,r=0 (nlf}“s) +0 (nlf”‘s*) + 0 [n exp (—COTcl)} +0 (n2’”5*) +0 [nZ exp (—Cchl)]
=0 (") +0 (n*") + O [n®exp (—CoT")], (A.19)
where the second equality follows by noting that O [n exp (—COTcl )] is dominated by O [712 exp (—C’OTC1 )} )

and O (n'7") is dominated by O (n'=*°) for §* > § > 0. Substituting for A, and B, r
from (A.17) and (A.19) in (A.11) and using (A.10) we obtain

Pr(A5) < O (n'™%) + 0 (n*°) + O [n* exp (=CoT") | + Pr(Dj, 1),
where Pr(Dj ;) is already given by (A.9), and k exp (—CoT“") is dominated by O [n? exp (—CoT")].
Hence, noting that Pr (Ay) = 1 — Pr(Aj), then
Pr(4p) =140 (') + 0 (n* %) + O (n'"/*°) + O [n*exp (—CoT")],  (A.20)
since O [nexp (—CoT“)] is dominated by O [n? exp (—CoT")], and O (n!=%1/37%%") is dom-

inated by O (n'="1/3=%) for §* > 6 > 0. Result (28) now follows noting that 7' = & (n*') and
that O [n? exp (—Con“**)] = O [exp (—n®2"1)] for some C5 in 0 < Cy < C4. If, in addition,
d > 1, and 0* > 2, then Pr(A4y) — 1, as n,T — oo, for any x; > 0.

We establish result (30) next, before establishing results (29) and (31). Consider FPR,, r
defined by (14), and note that the probability of noise or pseudo-signal variable i being selected
in any stages of the OCMT procedure is given by Pr(L;,), for i = k+ 1,k + 2,...,n. Then

Z?:kﬂ Pr(L;)

E|FPR,r| =
n—=k
E+k* n
_ Zi=k+1 Pr(Lin) n Zz’:k+k*+l Pr (/Jm) (A.21)
n—k n—=k
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Since ij:_:l Pr(L;,) < k* then

k* Z?:Iwrk*ﬂ Pr (L)

E|\FPR, 1| < A.22
[FPRr| < n—=k + n—k ( )
Note that
r e P (L r e Pr(L;,|D
Zz-k—l—k +1 r(Lin) :Zz_k—i-k +1 1 (Lin|Dr,r) Pr(Dyr)
n—=k n—k
n—=k '
SZZ—k+k +1 r]({: 5 ‘ k7T) + Pr (D;;T) ) (A23)
n —
Furthermore
Pr (Ei,n’Dk,T) =Pr (Li,n|Dk,T7 77@) Pr (779) —+ Pr (ﬁi,n’Dk,Ta 7;:) Pr (’Z;:)
S Pr ('Ci,n|Dk,T> 776) + Pr (77:) . (A24)

~

An upper bound on Pr(7,°) = Pr (PN,T > k) is established in the first part of this proof, see
(A.8). We focus on Pr (L, ,|Dy.r, ;) next. Due to the conditioning on the event 7, we have
Pr(Lin|Dir, Tx) = Pr(Lik|, Di.r, T1), and in view of (A.5) we obtain

k
Pr(Li x| D, Te) < Pr (Bialbio) = 0, Do, Ti) , for i >k + k7, (A.25)

s=1
where we note that Pr (B, s|Dyr,7x) = Pr (Bi,s|9i,(s) = O,Dk,T,ﬂ), for ¢ > k + k* since the

net effect coefficients of the noise variables at any stage of OCMT are zero. Further, using
(A.107) of Lemma 10, for i = k + k* + 1,k + k* + 2, ..., n, we have

O exp —ep(n.d) +0 [exp(—CoTcl)} , s=1
Pr (Bi75|9i,(s) = 0, Dk7T7 776) = { —%c%z(nﬁ*) } C1
oo =t} o). o

2

. (A.26)

where s = [(1—n) /(14 dr)]*. Clearly 0 < > < 1, since 0 < 7 < 1, and dy is a bounded
positive sequence. Hence, given result (ii) of Lemma 2, for i = k+k*+ 1,k + k*+2,...,n, we

have
k
Z Pr (Bi,s|9i,(s) = O, Dk,Ta 77,3) =0 (77/—6%) + O (77,_5*%) + O [eXp(—CoTCI)] .
s=1

Using this result in (A.25) and averaging across i = k + k* + 1,k + k* + 2,...,n, we obtain

Z?:k—&-k‘*—i—l Pr (Ei,k|Dk,T7 77{:)
n—k

=0 (n )+ 0 (n) + 0 [exp(—CoT™)] . (A.27)

36



Overall, with 6* > ¢, and using 7' = & (n™), k* = & (n°), (A.8),(A.9), (A.22)-(A.24) and
(A.27), we have

k_*k + 19) (n—%é) + 9] ( —x5* ) + 19) ( 1— 51/3—%6) + 19) (nl—nl/S—%é*)

+ O (nl_”5*) + 0 [exp(—Concl’“)] +0 (ne_l) + 0 [n exp (—C’oncml)} .

E|FPR, | =

But O [exp(—Concl“l)] and O [n exp (—C’onc““)] are dominated by [exp (—nCQ’“)] for some
0 < Cy < (). In addition, since 6* > 0 and s is positive, the terms O(n_”‘s*) and
O (n'~"1/3=9") are dominated by O (n™°) and O (n'~"/3-%9)  respectively. Hence,

*

E|FPR,r| = k:

+0 (n—z5)+0 (nl—n1/3—m§) +0 (ne—l) +0 (nl—zd*)+0 [exp (_nc2lil)j| ,

for some Cy > 0, which completes the proof of (30).
To establish (29) we note from (13) that

S Pr[1 (5 £0) = 1]

E|TPR,r| = A

(A.28)

But

—

Pr{f(ﬂﬁé()):@ :1—Pr[1@0)=0],
and

—

Pr [I (B; #0) = 0] =Pr :I (Bi #0) =0 Dk,T: Pr (Dy,r)
+Pr|I(B8;#0) = 0) ’DE,T} Pr (DICg,T)

<Pr -I (Bi £0) =0 Dk,T- + Pr (DE,T) .

Using (A.16) and (A.9), and dropping the terms O [exp (—CoT?)] and O (n!~"/370") that
are dominated by O [nexp (—CoT")] and O (n'~1/37%%)  respectively (noting that 6* > § >

0) we obtain
Pr|1(3; #0) = 0] = O (n'=/*) 4 O [nexp (~CoT™)], for i = 1,2, k. (A:29)
Hence,

ZPr[ (5. #0) = 1] =k + 0 (/5 -0 [nexp (~CoT™)]

which, after substituting this expression in (A.28) and noting that T = & (n*) and O [nexp (—Con*1)] =
O [eXp (—n@’“)} for some C5 in 0 < Cy < (] yields

E|TPR, 7| =1+ 0 (n'™/37?) 4 O [exp (—n®")] (A.30)
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for some C; > 0, as required.
To establish (31) we note from (15) that

FD = : A.31
Bt = O R FPRuy + KT PRy (A-31)
for Y77, (51 #0) > 0. Using (A.30) and Markov’s inequality, we have
kTPR,r —, k, (A.32)
if § > 1 — k1/3. Using (A.21), we have
ket n
(n—k)E(FPR,7)= > Pr(Li,)+ > Pr(Lli,). (A.33)
i=k+1 i=k+k*+1

Using the same arguments as in the derivation of (A.17), we have

k—+kx

im > Pr(Li,) =k
i=k+1

Moreover, using (A.8),(A.9),(A.23), and (A.24), and noting T' = & (n"'), we also have

n

Z Pr ([’Z,n) =0 ( 1- ’/5) + O ( _%5*) + O (n2—f£1/3—%5) + O (n2—/€1/3—%6*)

i=k+k*+1
+0 (nz_”‘s*) + 0 [n exp(—C’Oncml)} +0 [nQ exp (—C’Oncml)} ,

for some Cjy, C; > 0. Using the above results in (A.33), it then follows that,

lim (n—k)E(FPR,z) =k, (A.34)

n,T'— o0

if 0 > max {1,2 — k1/3}, §* > 2, and so using again Markov’s inequality, we have
(n — k) FPR, 7 —p k*. (A.35)

Using (A.32) and (A.35) we establish (31).

To prove (32), first note that regardless of the number of selected regressors, l%n;p, 0<
]%n,T < n, and the orthogonal projection theorem can be used to show that the following upper
bound applies

la)* < [y,
where ¥ = (y1,%2,...,yr) . In particular, this is a direct implication of the fact that that for
any K > 0, we have

T K 2 T
st 3 (- ) <3t
A t=1 i=1 t=1
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We also note that if for two random variables x,y > 0 defined on a probability space, (2,

sup [y(w) — z(w)] = 0,
weN
then F(z) < E(y). The above results imply that F ||@||*> < E||y||>. Also, by Assumptions 2
and 3, E (y?) is bounded, and so we have E ||y||> = O (T'), and therefore E ||@||* = O (T).
Now let A be the set of pseudo-true models as defined in (26) and let A§ be its complement.
Then
1 ~12 1 ~12 1 ~ 112 c
FE Nl = P (A)) B (]| Ao) + [L = P (Ao)] = E ([1all’] A7)

Noting that (H&Hﬂ A5) <E ly||* = O (T), we have

LBl < P (A) LE (@l ) + 1 — P (Ag) 2120
< P (Ag) 7B (|17 Ao) + [1— P (40)] G e

where C is a finite constant that does not depend on n and/or T'. Now, using that P (Ay) — 1
for 6 > 1 and 6* > 2, and that

1

7B (18] A) = o*+ 0 <

1
)
in (A.36), we obtain
T
1 2 2
E (T Zzlut> — 0, (A.37)

as required. This completes the proof.

A.2.2 Proof of Theorem 2

Using (A.1) we have A5 = H® U G, where H® and G° are defined by (A.12). Further, since
HEUGE=H UG N (H°UH), then using the distributive law given by (AU B) N (AUC) =
AU (BNC), for some events A, B, and C, we have H° U G° = (H°UG) N (H°UH) =
HU(G°NH) = HU(H N G°). Therefore,

Agz{21@0)<k}u{121@0):k]ﬂ[ Zn: [@O)>O]}

i=k+k*+1

=HUHNG).

Further, H°U (H N G°) = HU{HN [u;?;f—k*gj] }, where G; is defined by (A.4). Moreover,
note that

HO U MG,] = Uz

Y HNG) = U (HN Gy u [N (U, e G))]

Jj=1
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and that the events Ay, H°, HNG1, HN Gy, ..., HN Gy, —k—k*—1, and [Hﬂ (U" k- kfk k*g])}
are mutually exclusive and exhaustive. Therefore,

E(||8,~8.]|) = Cox + D + Bur + P, (A.38)
where
Cor=E (‘ 3. Ao) Pr(A) (A.39)
Doz =E (|8, HE) Pr (1), (A.40)
By = lmi B (‘ 3. ) Pr(HNG,), (A.41)
and .
Fur = E | ||8. N (UE e G) | Pr O (U 6))] (A.42)

We consider the terms C,, r, D, 1, E, 7 and F, 1 in turn, starting with C,, 7. By (A.20) we

have
Pr(Ay) =140 (nl_‘”‘) +0 (nz_d*%) +0 (nl_’“/?’_}“s) + O [n*exp (—C’OTcl)} :

Also, since Ay contains k signal variables, at most k* pseudo signal variables, and no noise
variables, then using (A.146) from Lemma 15, with lp = k + k* + 1, it follows that

E<’~n AO)ZO(%),

:| {1 + 9] ( 1— 5;{) + 9] (n2—5*;4) + O (nl—m1/3—;«5> + 9] [7’1,2 exp (—C()TCI)] } ]
(A.43)
Next, consider D,, r given by (A.40) and note that by applying (A.147) of Lemma 15 to the

regression of y; on the l%n’T < lmax — 1 selected variables and a constant term, for some finite
positive constant Cy, we have

~ 12
E(\ . H) < C (mawzmax).
0 T
where [, denotes the imposed upper bound on the number of regressors including the con-
stant term (l%n,T + 1). Further,

and hence
(k+ k* +

Cor =0

Pr(H¢) = Pr(H°|Dyr) Pr(Di,r) + Pr(H|D;, 1) Pr(Dy 1)
< Pr(H*|Dyr) + Pr(Dy, 1),
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and using (A.9) and (A.17) we have
Pr(H) =0 (nl_'“/?’_”é) +0 (nl_“1/3_”5*) + O [nexp (—C’oTcl)} + O [exp (—COTcl)} ,

for some Cy, C; > 0. Therefore, noting that O [exp (—CoT")] is dominated by O [nexp (—CoT“)],
we have

2
Dy =0 (lmﬁ + lmax) {0 (n'=/377%) 10 (n'377) 1+ 0 [nexp (~CoT™)]}-
(A.44)

Consider E,, r given by (A.41) next.

—k—k*—1
= X B (B

) Pr(HNG;)

lmax—k—k*—

)} Z lpromgj).

< max E(‘ "
5=1,2,....Imax—k—k*—1

But, HNGj, for j = 1,2, ..., lnax — k — k* — 1 are mutually exclusive, and therefore

Imax—k—k*—1
Z Pr(HNgG,) =Pr [’Hﬁ ( ek k*_lgj)] |
j=1
and
Enr < Lm 77777 {Ei)ik—k*qE ( ﬂ Pr [HN (U, U kb 1G]

By (A.146) of Lemma 15, (with l; = k+k*+j+ 1, since the event H N G; means that & signal

variables, at most k* pseudo signal variables and j noise variables are selected by OCMT)

B

which leads to

} :O((k+k*+j+1)2

Cfor =12, 0 e — b — K — 1,
JT ) /

)-o(55)

Pr [(HN (U™ 7071G5)) | < Pr (U™ 71G;) < Pr(G°) < Pr(G°[Dir) + Pr (Dir)

max E ( ’ n
5=1,2,clmax—k—k*—1

In addition,

and using (A.9), (A.18) and (A.19), we have

[Hﬂ( lmax—k k* —lgj)} —O( 1— 57) +O( 2— 6*%) +0 (nlfnl/i’)féx) +0 (nlfm/?;fé*%)
+0 [n exp (—C’OTcl)] +0 [n2 exp (—C’OTcl)} .
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Since the terms O (n1*“1/3*5%), @) (n1*“1/3*5*%) and O [n exp (—COTcl)], are dominated by
the terms O (n'=°), O (n*7°"*) and O [n*exp (—CoT")], respectively, we obtain

[Hﬂ ( lma" k= k*_lgj)} =0 (nl_‘s”) +0 (n2_5*”) + 0 [nz exp (—COTcl)] .
So overall,

E,r=0 (l?nax> {O (') +0 (n*°7) + O [n®exp (=CoT")] }. (A.45)

VT

Consider the last term F), r given by (A.41) next. In the case of the event HN (U" e G))
the restriction on the number of regressors (< Iy ) that are allowed to enter the final regression
for Bn can be binding, and regardless how this restriction is implemented, result (A.147) of

Lemma 15 always applies, and therefore

2],

The event HN (U ( " k k_ e k*gj) can only occur if k£ signal variables, j noise variables, for some

e B
n (U?:llfnaf—k—k*gj)] =0 (\/T) +0 (lmax) .

7> lpax — k — k:*, and any subset of the pseudo-signal variables are selected. In other words,
the event Pr [Hﬂ (U?;l’fn;f*_k_k*gj)] can only occur if, at least, j + k > ... — k* variables are

selected or, equivalently, if l;‘n,T > lmax — k* — 1. Therefore,

Pr{HO U G]} < Pr (ur > bne — K = 1). (A.46)

Using (A.132), we have

Pr (z%n,T > Do — ¥ — 1) —Pr (l%n,T = k> D — ke — 28" — 1)

nl—é% n2—5*% L 5
:O(zm—k—zk*—1>+O(zmax—k—2k*—1)+O(” )

2
+0 (nl_”_‘s*”) +0 [ exp (—C’onol’“)} .

n
lmax — k — 2k* — 1

Combining the above results gives

For = [0 <l2 ) +0(1 max)} 0 (%) +0 (lm"}%) + 0 (%)
\/T +O (nl v—§* %) + O [m exp (_Conclfil)]

(A.47)
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Using (A.43), (A.44), (A.45), and (A.47) in (A.38), we obtain
E (‘ ) =0 <M) { 14+0 (n1—5%) +0 (n2—6*%) }

VT +0 (n'=1/3720) + O [n? exp (—CoT)]

2
#O (B 41 ) {0 (057) 40 (1755 1.0 [nexp (~CoT )}

2
+0 (B2 {0 (1175%) + 0 (%) + O [ exp (~CaT®)]}

B O (i) + 0 (=) +0 (07 7)
" [O (_> o Um“)} —i—Ol (nllj”fl‘z*”; +0 [lm:xl?# elzxp (—C’Oncl’“)}

B,—B,

VT

This expression can be simplified by noting that & is finite, lyax = © (n7?) with ke > 0,
k* = o (T with ke > € > 0,0 < < 0%, T = ©(n™) with k; > 0. In addition, using
similar arguments as in the derivation of (A.8), the term O (n'™°*) and O (n'™7°"*) can
be replaced with O (n'="/37%) and O (n'~*1/37%") 'respectively. Hence, we have

£

Bn_IBn

_ 140 (') + O (n*)

o 2¢—kK1/2

) =0 (n ) { +0 (nl_“1/3_”5) +0 [nQ exp (—an’“cl)}
+ O (n2H2—I€1/2 + nng) {O (n1—51/3—%6) + O (nl—nl/i’)—xé*) + O [n exp (_Connlcl)]}
+ 0 (n*>72) L0 (n*7) + O (n*°%) + O [n* exp (—Con™ )] }

O (n1—m2—5%) L0 (n2‘”2‘5*”) +0 (nl‘“1/3‘5”)

+ [O (n252—m/2) + 0O (n“)] [ +0 (nl‘”1/3‘5*”) + 0 [n2‘”2 exp (—Concl”“)]

The terms of the form O [n“ exp (—C’On"”"lcl)] for some a and some Cy, C; > 0 are dominated
by a single term O [exp (—nCZ”“)] for some C5 in 0 < Cy < (). Simplifying the expression
above and removing some of the terms that are dominated, we obtain

£

/én_lgn

) =0 (n25—ﬁ1/2) + 10) (nl—éz) + O (TLQ_(S*%) + 19) (n1—5%+2f€2—f€1/2)
+0 (n275*%+2n27m/2) +0 [exp (_nC’gm)] 7

for some Cy > 0, as required. This completes the proof.

A.2.3 Proof of Theorem 3

A proof of Theorem 3 is provided in Section A of the online theory supplement.

A.2.4 Proofs of the results for the case when P, =1

Result (35) follows from (23), and (36) follows from the analysis preceding Theorem 1, using
(24) and (25). Result on FFDR,, r continues to hold using the same arguments as in the proof
of (31).
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To obtain Pr(Agy) we follow the derivations in the proof of the multi-stage version of
OCMT provided in Section A.2.1, but note that we only need to consider the terms from the
first stage of OCMT. Similarly to (A.11) and without the need to condition on Dy, 1, we have

Pr(Af) < Pr (ZI@O)<I€) +Pr< zn: 1@0)>o>

i=1 i=k+k*+1
= An,T + Bn,T-

noting that 7 @O) = I(l)(/ﬂ;é 0). Also, as with (A.17) and (A.18), we have
An,T S k:eXp (—ClTCQ) .

Similarly, for B, r we first note that

Bur< Y EllnBA0)s=0]= Y P ti)i(l)‘ > 6 (n,0)10: =0,
i=ktk*41 i=ktk*+1 ’

which, by (A.107) of Lemma 10, yields

—c2(n, 0)
Bur <(n—k—Fk)exp | —2——

5 } + 0 [nexp (—C’OTcl)] .

or upon using result (ii) of Lemma 2,
Pr(Af) < A,r+B,7 <0 (nl_‘S%) +0 [n exp (—COTcl)} ,

and hence
Pr(Ap) = O (n'%) + O [exp (—n®?)] .

for some Cy > 0. If, in addition, § > 1, then Pr(A4,) — 1, as n,T" — oo such that 7' = O (n"")
for some k1 > 0, as required. The result on the residual norm of the selected model (32)
continues to hold using the same arguments as in Section A.2.2 of the Appendix.

To establish (37), we recall (A.38), and noting that we do not need to condition on Dy
and can drop terms relating to any stage of OCMT after the first, we replace (A.43), (A.44),
(A.45), and (A.47) with

Cpr =0 (%) {140 (') + O [exp (—CoT“")] }, (A.48)
Do =0 &T;x ; zmax) {0 Jexp (—CoT™)] ). (A.49)
Eur =0 (lmﬁ) {0 (n5%) + 0 [exp (~CoT)]} (A.50)
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and ( ) )
12 ) ] O (e ) +
F,r =102 +0 (lpax N , A.51
! [ ( VT () O [l”— exp (—C’oncl’“)] ( )

max—k—2k*—1

respectively, where, for (A.51), we have used (A.130) in (A.46), rather than (A.132). Com-

bining the above results, we obtain

£ (|8

> -0 (n2e—nl/2) + O (n1+252—/@1/2—%5) + O (nl—%é) + 9] [exp (_ncz)] 7

which completes the proof.

A.3 Lemmas

Lemma 1 Lety,, fort = 1,2,...T, be given by DGP (1) and define x; = (i1, iz, ..., Tir)
fori=1,2.. k, and X} = (x1,Xa, ..., X}), and suppose that Assumption 1 holds. Moreover,
let qi = (¢i, Qi - ir) > fori = 1,2, .., lp, Q = (q1,92, .., q,.), and assume M, = Iy —
Q (Q’Q)_1 Q' exists. Further, assume that the column vector T = (1,1,...,1)" belongs to Q,
0 < a < k column vectors in Xy, belong to Q, and the remaining b =k —1 > 0 columns of X,
that do not belong in Q are collected in T x b matrix X,. The slope coefficients that correspond

to regressors in Xy, are collected in b x 1 vector By, . Define

0vr = Q7B 75

where Qpr = E(T*X|M,X,). If Q7 is nonsingular, and Brr = (Bur, Bor, ooy Ber) # 0,

then at least one element of the b x 1 vector @y, 1 is nonzero.

Proof. Since €, is nonsingular and 8, # 0, it follows that 6,7 # 0; otherwise 8, =
2y 7057 = 0, which contradicts the assumption that 3, # 0. m

Lemma 2 Consider the critical value function ¢, (n,d) defined by (8), with 0 < p < 1 and
f (n,68) = en®, for some ¢, 6 > 0. Moreover, let a >0 and 0 < b < 1. Then:

() ¢ (n.6) = O ([ (m)]'"*).
(77) n®exp [—bc% (n,6)] = & (no=2).

Proof. Results follow from Lemma 3 of supplementary Appendix A of Bailey, Pesaran, and
Smith (2016). m

Lemma 3 Let 2, be a martingale difference sequence with respect to the filtration F7 , =
o ({zs}i;ll), and suppose that there exist finite positive constants Cy and Cy, and s > 0
such that sup, Pr (|z;] > o) < Cyexp (—Cia®), for all a > 0. Let 0%, = E(z? }Ff_l) and
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o2 = %25:1 o2,. Suppose that (v = S(T?), for some 0 < XA < (s+1)/(s+2). Then, for any

7 in the range 0 < ™ < 1, we have
T
Pr ( Z 2
t=1
If X > (s+1)/(s+2), then for some finite positive constant Cs,
T
Pr ( Z 2

=1
Proof. We proceed to prove (A.52) first and then prove (A.53). Decompose z; as z; = w; + vy,
where w; = 2,1(]z¢| < Dr) and v, = 2,1(|2¢:| > Dr), and note that

Pr ( Z (2t — E(2)]| > CT) <Pr ( Z [wy — E(wy)]

t=1 t=1

+Pr<

for any 0 < 7 < 1.1! Further, it is easily verified that w; — E (w;) is a martingale difference

2T0?

> CT) < exp

_(1_—7%] ‘ (A.52)

> CT) < exp [ C CS/ (s+1) ] (A.53)

> (1—m) <T>

T

Z [0 — E(wr)]

t=1

> WCT) , (A54)

process, and since |w;| < Dr then by setting b = To? and a = (1 — 7) {r in Proposition 2.1
of Freedman (1975), for the first term on the RHS of (A.54) we obtain

M( ~(1-m’¢ ]'

2[To? + (1 — ) Dr(r]
Consider now the second term on the RHS of (A.54) and first note that
T
( t=1
and by Markov’s inequality,
1 T
> < | — Elv, —
<Z | Vg — Ut | 7rCT) > (WCT) tzl |Ut
5 T
<[|[— E v . A.56
< (%) oEm (A56)

Hlet Ap = Zf:l [z — E(%)] = Bir + Bag, where Byp = Zthl [w; — E(w;)] and Bagp =
S i_y [ve — E(ve)]. We have |Az| < |Byr| +|Bar| and, therefore, Pr (|A7| > (r) < Pr(|Bir| +|Bar| > ().
Equation (A.54) now readily follows using the same steps as in the proof of (B.1).

T

S fuwr — B (w)]

t=1

> (1—m) CT) < exp

> W(T> < Pr [Z vy — E(vy)| > WCT] : (A.55)
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But by Holder’s inequality, for any finite p,¢ > 1 such that p~! + ¢! = 1 we have

E|v| = E (|2 [|=| > Drl|)

< (E|al")"{E (I (2] > D)}

= (E|a)"{E[I (|2 > Dr))}"*

= (E|z/)"" [Pr (|z| > D)2 (A.57)

& o™

Also, for any finite p > 1 there exists a finite positive constant Cy such that E'|z/|" < Cy < oo,
by Lemma A5. Further, by assumption

sgp Pr(|z:| > D) < Cyexp (—C1 D7) .
Using this upper bound in (A.57) together with the upper bound on E |z|”, we have
sup B fu| < Go"Cy/" exp (~C1 D))"
Therefore, using (A.55)-(A.56),
T
re %ok

We need to determine D such that

> WCT) (2/m)C 1/JDC'I/qC'TlT lexp (— ClDCSp)]l/q.

1/p ~1/q ~—1 . s\11/ - (1 - 7)2 C%
(2/m) Cy/PCy" (T [exp (—C1D7)] 77 < exp S Tol+ (1= ) Drlrl (A.58)
Taking logs, we have
oYrot/a —1\ _ Ch 5 - (1= W)Z G
|:<2/7T) C i| +1 (QT T) (q)DT_ 2[TU2+(1—7T)DTCT]’
N (1-m)°¢
178 1/p1/q -1 —T) St
Cig D5 > In [(Q/W) clre ] +In (G7'T) + 5 T (1= DrciT
Post-multiplying by 2 [T'0? + (1 — 7) Dr(r| > 0 we have
(202C1¢7") TD7 + (2C1¢7") (1 = 7) D7 ¢r = 2(1 = ) DrGrIn (G7'T) —
2(1 - 1) DrCrln [(2/71’) 1/1’01/"}
> 20°T' In [(2/#) UpC'l/q} +202TIn (¢7'T) + (1 — m)? 2. (A.59)

The above expression can now be simplified for values of 7" — oo, by dropping the constants
and terms that are asymptotically dominated by other terms on the same side of the inequal-
ity.!? Since (7 = © (T*), for some 0 < A < (s+1)/(s+2), and considering values of Dy such

12A term A is said to be asymptotically dominant compared to a term B if both tend to infinity and
A/B — oo.
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that Dr = © (Tw), for some ¢ > 0, implies that the third and fourth term on the LHS of
(A.59), which have the orders © [In(T)T**] and & (T*¥), respectively, are dominated by
the second term on the LHS of (A.59) which is of order & (T**¥**%). Further the first term
on the RHS of (A.59) is dominated by the second term. Note that for (z = © (TA), we have
Tl (('T) = ©[TIn(T)], whilst the order of the first term on the RHS of (A.59) is © (T).
Result (A.58) follows if we show that there exists Dy such that

(Cig7") [202TD5 + 2 (1 — 7) D5 ¢r] > 20T In (¢'T) + (1 — ) 2. (A.60)
Set

2 2
and note that (A.60) can be written as

1 1 1/(s+1)
(Crq ) D3 = 21— 7). or D = (—Cflq (1) cT)

/(s+1)
202 (Chg™") T (%Cllq (1-m) CT) +(1—7)°¢ >202TIn (¢'T) + (1 —7m)° G-

Hence, the required condition is met if

> 0.
T—o0 2 _O

1 s/(s+1)
lim [(Clql) (—C’llq (1—m) QT) —In (¢-'T)

This condition is clearly satisfied noting that for values of (r = & (T’\) ,q>0,C; >0and
0<mr<l1

R R

since s > 0 and A > 0, the first term on the RHS, which is positive, dominates the second term.
Finally, we require that Dy = o(T), since then the denominator of the fraction inside the
exponential on the RHS of (A.58) is dominated by 7" which takes us back to the Exponential

inequality with bounded random variables and proves (A.52). Consider

2+s

1 1/(s+1)
T~ Drr = (nglq (1- w)) TG

and since (r = &(T?) then Dy(r = o(T), as long as A < (s + 1)/(s + 2), as required.
IfA> (s+1)/(s+2), it follows that Dr(r dominates T in the denominator of the fraction

inside the exponential on the RHS of (A.58). So the bound takes the form exp [_c(;;r)giﬂ , for
1/(s+1)

some finite positive constant C;. Noting that Dy = & (CT ), gives a bound of the form
exp [—C’g(;/(sﬂ)] proving (A.53). =

Remark 5 We conclude that for all random variables that satisfy a probability exponential
tail with any positive rate, removing the bound in the Exponential inequality has no effect on

the relevant rate at least for the case under consideration.
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Lemma 4 Let x; and u; be sequences of random variables and suppose that there exist Cy, C7 >

0, and s > 0 such that sup, Pr (|z;| > ) < Cyexp (—C1a®) and sup, Pr (Jus| > ) < Chexp (—Cia%),

for all o > 0. Let F} )1 = o ({us}i_ R EN ) and F2 = o ({us}Z RN ). Then, as-
sume either that (i) E (ut|.7:t ) =0or (i) E (mtut - ,ut|]-"t(i1> =0, where p; = E(zus). Let
(r =6 (T?), for some X such that 0 < X < (s/2+1)/(s/2+2). Then, for any m in the range
0 <7 <1 we have

- —(1—m?¢
Pr Z (a:tut - ,LLt) > CT S exXp WT)T s (A61)
t=1

where O'(2T) = %23:1 o? and 0} = F [(xtut — )’ |ﬂ(i)1] CIfA>(s/2+41)/(s/2 4+ 2), then for

some finite positive constant Cy,

T
E xtut
t=1

Proof. Let F,_; =0 ({xsus}i;ll) and note that under (i)

> CT) < exp [—CQC;/(HQ)} . (A.62)

E(zriu|Fit) = E [E (utm@)) xtuﬁ;_l} —0.

Therefore, x,u, is a martingale difference process. Under (ii) we simply note that z,u; — pi;
is a martingale difference process by assumption. Next, for any o > 0 we have (using (B.2)
with Cy set equal to @ and C set equal to /)

Pr (|| > o] < Pr |z, > 041/2] + Pr [Ju ? > 041/2] (A.63)
But, under the assumptions of the lemma,
sup Pr [|z,]| > o'/?] < Coe G,
t

and
5/2

sup Pr [|u| > 041/2] < Coe™ 1@

Hence
sup Pr[|ziu] > o < 2Ce 1,
¢

Therefore, the process x;u; satisfies the conditions of Lemma 3 and the results of the lemma

apply. m

/ .
Lemma 5 Let © = (21,22, ....,x7) and q, = (q1+, @2ty -, Qipt) be sequences of random vari-

ables and suppose that there exist finite positive constants Cy and Ci, and s > 0 such that
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sup, Pr (|z;| > a) < Cyexp (—=C1a°) and sup;, Pr (|gis| > o) < Cpexp (—Cra®), for all a > 0.
Consider the linear projection

I
Ty = Zﬁjq]’t + Uy e, (A.64)
j=1

and assume that only a finite number of slope coefficients B's are nonzero and bounded, and

the remaining [8’s are zero. Then, there exist finite positive constants Cy and Cs, such that

sup Pr (Juz ¢| > o) < Cyexp (—Cs0°) .
t

Proof. We assume without any loss of generality that the |5;| < Cy for i = 1,2,..., M, M is
a finite positive integer and 5; = 0 for: = M +1, M + 2, ..., [p. Note that for some 0 < 7 < 1,

M
Ty — Zﬁj%t >Oé>
7j=1
> ﬂ'oz)

< sup Pr (Jz¢| > (1 — 7)) )—I—supPr (
¢
- T
<supPr(|z;| > (1 —m)a) +supZPr (lﬁjqﬁ| > M) :
¢ t 4
j=1

supPr(\uxt\ > a) < supPr (

Zﬂjfbt

7j=1

and since |3;| > 0, then

sup Pr (Jug¢| > o) < supPr(|z;| > (1 — 7)) + MsupPr <|qjt] > o )
: : M | ;]

S
But sup;, Pr (|q]t| > MIB |> < sup,, Pr (|q]t| > e ax) < Cyexp [—Cl (Mgaax) ], and, for

fixed M, the probability bound condition is clearly met. m

Lemma 6 Letxy, 1 =1,2,...n,t=1,2,....T, and n; be martingale difference processes that
satisfy exponential tail probability bounds of the form (18) and (19), with tail exponents s, and
sn, where s = min(s,,s,) > 0. Let q, = (qut,Gous - Qps) contain a constant and a subset
of 1 = (T10, Tat, ooy Tpy)'- Let Bogg =TS E(q.q,) and £,y = Q'Q/T be both invertible,
where Q = (qy.,qy.,...,q,,.) and q; = (¢, G2, -, @7)’, for i = 1,2,....lp. Suppose that
Assumption 5 holds for all the pairs x;; and q.,, and n; and q,, and denote the corresponding
projection residuals defined by (20) as Uz, t = Tit—ye, 7@+ O Uy = Nt—"g, 794, TESPECtively.
Let @y, = (Ug; 1, Ugy 2y ooy Ugym) = Mo, & = (231, Tiz, ooy Tir)'y Uy = (Uy1, U2y ooy Uy ) =
Mn, 1= (0,72, ), My =Ir —Q(QQ) ™' Q, Fi = F/UFYE, tagne = B (g, gt | Fio1),
Wazsm,l,T = %23:1 19 [(Iitnt — E (@ | Fe ))2} , and WzmT = %Zthl 19 [(uri,t“n,t = Hant) }
Let ¢r = ©(T?). Then, for any 7 in the range 0 < m < 1, we have,

T
Pr (
=1

E (ximt ’ﬂ—1)

> CT) < exp

(-G ] : (A.65)

2
21w pr
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if0 <A< (s/241)/(s/2+2). Further, if \ > (s/2+ 1)/(s/2 + 2), we have,

T
Pr (
t=1

Z Ty — E (xitnt ’thl)

> CT) < exp [—CUG/ (S”)} , (A.66)

for some finite positive constant Cy. If it is further assumed that Iy = © (Td), such that
0<d<1/3, then, if3d/2 < X < (s/2+1)/(s/2+2),

T
Pr ( Z (@xi,tfbn,t - M:rm,t)
t=1

for some finite positive constants Cy, Cy and Cy, and, if X > (s/2+1)/(s/2 + 2) we have

—(1-n)°¢
27?2

$nT

+exp [-CiT].  (A67)

> <T) < Cpexp

T

Pr<
=1

Z (ﬁwi,t@“ﬁyt - Mrimt)

> CT) < Chexp [ C CS/ (s+2) } + exp [—C’ITcﬂ , (A.68)

for some finite positive constants Cy, C1, Cy and Cj.

Proof. Note that all the results in the proofs below hold both for sequences and for triangular
arrays of random variables. If g, contains x;, all results follow trivially, so, without loss of
generality, we assume that, if this is the case, the relevant column of Q is removed. (A.65)
and (A.66) follow immediately given our assumptions and Lemma 4. We proceed to prove
the rest of the lemma. Let w,, = (ug, 1, Uz, 2, -, g, 1) and Uy = (Upy 1, Up 2, ..., Up1) . We first
note that

T

E :(uwi,tunt ,Uant § :#xmt 'LL MUU z :#mznt

t=1

T
- Z (ua:i,tun,t - Hmm,t) - (T_IU;ZQ) 2(1_(11 (Qlun) ) (A69)
t=1

where 2qq =T71(Q'Q). The second term of the above expression can now be decomposed as

(T, Q) . (Quy) = (T74,Q) (£, - 2 ) (Quy) + (T7'4,Q) B, (Qu).

(A.70)
By (B.1) and for any 0 < 7y, m, m3 < 1 such that Z?:lﬂi =1, we have
T T
( Z uml tunt - ,U/xmt) > CT) <PI‘ < Z u:}cl tunt /jlxm t) > 7TlCT)
t=1 t=1
+Pr (|(T71,Q) (85 - 3) (Quy)| > macr )
+Pr (|(T7'w ) 3. (Quy)| > mslr) .



Also applying (B.2) to the last two terms of the above we obtain

Pr(|(T7u,Q) () - =) (Quy)
<pPr(|g)-=

SPr(

<pe o> 5]+ P (@l > (radr))

+Pr (|| Qu | > (mbr D)),

> 7T2CT>
o T 1Qw e > )

2 -2, §> + Pr (77 [, Q|| 1 Quy | > mair)

g1 —1 -1
qu qu

where o7 > 0 is a deterministic sequence. In what follows, we set o7 = & (¢¢), for some o > 0.
Similarly

Pr(|(T7'u, Q) =, (Q'u,)| > m3(r)
< pr (=, |7, QHFHQ'unancT)

T
F

1/2 1/2T1/2 1/2 1/2T1/2
<P (H u, Q| > W) <HQ Uyl p > W)
T

T
PI’ ( Z ('&x,tan,t - ,uxn,t) > CT)
t=1
o _ Cr
< Pr ( tz; (U Uyt — Pant)| > 7T1CT) + Pr <H2qq1 -3, L > E

+Pr (I\Q'un\lp > (ma0rT)'7?) + Pr (Hu;QnF > wwf”)

Overall

1/2 1/2T1/2 1/2 1/2T1/2
luQl, > B Qul, > B ) A
H a7 [par |
First, since uy 4, —ftzn ¢ is @ martingale difference process with respect to o ({775}8 1,{273} {qs} )

by Lemma 4, we have, for any 7 in the range 0 < 7 < 1,

. —(1-m)?G
PI' ; (umi’tun,t — /lfmin,t) > 7T1CT S exp m y (A72)
if0< A< (s/2+1)/(s/2+2), and
T
Pr < Z (Umi,tun,t - sz,t) > 7T1CT> < exp [ COCS/ (s+1) ] (A-73)
t=1
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if A > (s/2+1)/(s/2 + 2), for some finite positive constant Cy. We now show that the last
five terms on the RHS of (A.71) are of order exp [—C’chﬂ , for some finite positive constants
C; and C. We will make use of Lemma 4 since by assumption {g;u,:} and {gqu,, .} are
martingale difference sequences. We note that some of the bounds of the last five terms
exceed, in order, T'/2. Since we do not know the value of s, we need to consider the possibility
that either (A.61) or (A.62) of Lemma 4, apply. We start with (A.61). Then, for some finite

positive constant Cj, we have!?
sup Pr <||q;u,,|] > (7r2(5TT)1/2> < exp (—Coor) . (A.74)
2
Also, using HQ’UWH; = 2221 (Zthl qjtut> and (B.1),

Pr (1 Qg > (m8rT)2) = Pr ([ Qg2 > madrT)

I
< ZPr <Z qjeUn, t) > M—TT

Iy

1/2
> <7T25TT)
It

which upon using (A.74) yields (for some finite positive constant Cj)

/ C 5 ’ C 5
Pr (1Qu, | > (7237 T)"?) < Irexp (‘ ! ) P (| Q| > (e T)2) < hrexp (— ° ) -
T

It
(A.75)
Similarly,
1/2 1/2T1/2 C CT
1Q"uy| ) I ex <—°> (A.76)
( R ST e 125 1

1/2 1/2T1/2 —CUCT )
1Q u, || > lrexp | o=
( E HW’) ’ (Hz i

Turning to the second term of (A.71), since for all ¢ and j, {gitq;: — E(qirq;:)} is a martingale
difference process and ¢;; satisfy the required probability bound then

sup Pr < > 7T§CT> < exp(ﬂ). (A.77)
T

2
6T
13The required probability bound on u,; follows from the probability bound assumptions on z; and on g,
fori=1,2,...,0l7, even if I — o0o. See also Lemma 5.

T
Z qieqjt — E(qinqjr))
t=1
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Therefore, by Lemma A6, for some finite positive constant Cy, we have

of

—CyT ¢
>§—;) < IZexp Py LKLY, S|+ (A.78)

e (=2, + or'cr)

12 exp ( —CoT )
T - 9 .
1531

Further by Lemma A4, ||E HF e (l;ﬂ), and

~1
DI 2

T TG
2
B2, m(w:nF+@%a oG S (56 15+ 1)
T
2
mmuu@GWEuFl)

Consider now the different terms in the above expression and let

or Cr
Pu=" pp=_—_T
R P
Pz = I ,and Py = L
mmmuh@wEuF 1 =i
Under 67 = © ((9), Iy = ©(T?), and {r = ©(T?), we have
Py = (;—; =o(T*), (A.79)
_ Cr _ A—3d/2
TP (420
P5 = T -0 Tmax{1—3d—(2a—2)\+d),1—3d—(a—)\+d/2),1—3d})

B =5 [orce 2+ 1)
—o (Tmax{1+2,\—4d—2a,1+,\—7d/2—a,1—3d}) ’ (A.81)

and T
Py=—— = (T3 (A.82)

=3 15 1
Suppose that d < 1/3, and by (A.80) note that A > 3d/2. Then, setting o = 1/3, ensures that
all the above four terms tend to infinity polynomially with 7. Therefore, it also follows that

they can be represented as terms of order exp [—C’ITcﬂ , for some finite positive constants
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C; and Cy, and (A.67) follows. The same analysis can be repeated under (A.62). In this case,
(A.75), (A.76), (A.77) and (A.78) are replaced by

l;/2(5+2)

Pr (”QIUWHF > (7725TT)1/2> < lrexp <_
C 55/2(8+2)Ts/2(s+2) [ 5T s/2(s+2)]
Pr <||Q'um|| > (7?25TT)1/2> <lrexp <— 0T D) =lrexp |—Cy (T—) ,
T

C 55/2(8+2)Ts/2(s+2) [ 5T s/2(s+2)]
07T =lrexp |—Cy r )

V2T oG/ 2D s 2542) [ & 5/2(s+2) 7]
(1> S ) o (s ) e |6 (e
1/2 1/2T1/2 C Cs/2(s+2)Ts/2(S+2) [ T s/2(s+2) ]
1 W) Sl <Hz TR =) e |0 (ST
T
O s/ (542) 5/ (542)
sup Pr( Z Gieqjr — E(qinq;e)]| > W;f) < 0 pc +2§T :
and, using Lemma A7,
(w0 5) < e -G g .
qq qq — s/(s+2
or 55/(s+2 s/ 5+2) HE Hs/ (s+2) (HE HF n (5;1CT> /(5+2)
l2 _OOTS/(5+2) B
T i)
s/(s+2)
I3 exp Ter +

sl [551, (17, +0rcr)

- 5/(5+2)
l% exXp C (ﬁ)

I

respectively. Once again, we need to derive conditions that imply that P = ‘SZTTT, Py =

and Poy = W are terms that tend to infinity

=zl — P

B R (||2 | torer) |l
polynomlally with 7. If that is the case then, as before, the relevant terms are of order
exp [—ClT CQ] , for some finite positive constants C; and Cs, and (A.68) follows, completing

the proof of the lemma. P, dominates Ps3 so we focus on Py, Ps3 and Ps,. We have

orT -5 <T1+a—d/2) :

Iy

TCr - [Tmax(1+)\—a—2d,1—3d/2)]
ortr [ =3 (12521 + 07'¢r)

)
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and

T

1=l o

—o (T173d/2)
It immediately follows that under the conditions set when using (A.61), which were that
a=1/3,d<1/3 and A > 3d/2, and as long as s > 0, Py to P4 tend to infinity polynomially

with T', proving the lemma.'* =

Lemma 7 Letxz;,i=1,2,...,n, be martingale difference processes that satisfy exponential tail
probability bounds of the form (18), with positive tail exponent s. Let q, = (¢4, G2+, ---, qlT’t)’
contain a constant and a subset of Tny = (14, Tog, ..., Tpy) . Suppose that Assumption 5 holds
for all the pairs x; and q,, and denote the corresponding projection residuals defined by
(20) as U,y = Tip — Vop, 744 Let Byg = T ST E(q.q,) and £, = QQ/T be both
invertible, where Q = (q,., @y., ..., q;,.) and q;. = (qi1, Giz; .-, qir)', for i = 1,2, ... Ip. Let @, =
(Glg; 15 Gy 25 oy Uy 1) = My, where X, = (Ti1, Tiz, -, Tir) and My, = Iy — Q(Q’Q)_lQ.
Moreover, suppose that E (u? , — o2 |F,—1) = 0, where F; = F} and 02, = E(u? ). Let
Cr = 6(TY). Then, if 0 < X\ < (s/2+1)/(s/2 +2), for any 7 in the range 0 < ™ < 1, and

some finite positive constant Cy, we have,

T 2
—(1-m)"¢
Z > (r| < Chexp WWT (A83)
t=1 1,1,
Otherwise, if A > (s/2+1)/(s/2 + 2), for some finite positive constant Cy, we have
T
[ Z > CT] < exp [ C CS/(S+2 } . (A.84)
t=1

If it is further assumed that It = & (Td), such that 0 < d < 1/3, then, if 3d/2 < A <
(s/241)/(s/2+2),

T
x'w

|2

t=1

for some finite positive constants Cy, Cy and Ca, and, if X > (s/2+1)/(s/2 + 2),

|

Y1t is important to highlight one particular feature of the above proof. In (A.75), Qituz+ needs to be a
martingale difference process. Note that if g;; is a martingale difference process distributed independently of
Ug.¢, then g u, ¢ is also a martingale difference process irrespective of the nature of u, ;. This implies that one
may not need to impose a martingale difference assumption on u,, if x; is a noise variable. Unfortunately,
a leading case for which this lemma is used is one where ¢;; = 1. It is then clear that one needs to impose
a martingale difference assumption on u; +, to deal with covariates that cannot be represented as martingale
difference processes. We relax this assumption in Section 4, where we allow noise variables to be mixing
processes.

—(1-n)*¢G

+ exp [-C, T, (A.85)
2Tw2T [ }

> CT] < Cpexp

T
x'u

D (@

t=1

> CT] < Cpexp [ C3CS/ (++2) ] + exp [—ClTCQ] ; (A.86)
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for some finite positive constants Cy, Cy, Cy and Cs, where w?, ;= 23/ | E [(xft — agit)Q]
1T 2

and w’i2,T =72 [(uilt - Uiit) ] .

Proof. If g, contains x;, all results follow trivially, so, without loss of generality, we assume

that, if this is the case, the relevant column of Q is removed. (A.83) and (A.84) follow similarly
o (A.65) and (A.66). For (A.85) and (A.86), we first note that

Hr7,Q) (1) (Qu)|.
Since {uit — 02} is a martingale difference process and for @ > 0 and s > 0
sup Pr (|u2 ;| > o) = sup Pr (Jug, | > @) < Coexp (—Cra®),
t t

by Lemma 5, then the conditions of Lemma 3 are met and we have

3 2
(-G
[ ; > CT] < exp W] . (A.87)
if 0< A < (s/2+1)/(s/2 +2) and
T
Pr [ Z (uozci,t - ngc,it) > CT] < exp [ COCS/ (s+2) ]
=1

if A > (s/241)/(s/2 + 2). Then, using the same line of reasoning as in the proof of Lemma
6 we establish the desired result. m

Lemma 8 Let y;, fort =1,2,...,T, be given by the data generating process (1) and suppose
that u; and x; = (14, Tog, ..., Tny)' satisfy Assumptions 2-3, with s = min(s,,s,) > 0. Let
qt = (q1 £y Gty s Qipt) cONtain a constant and a subset of T, = (T4, Tat, ..., Tny)' . Assume that

Y =7 Zt . E(q.4,) and f]qq = Q'Q/T are both invertible, where Q = (q,., qs., .-, q;,..)
and q;. = (¢;1, Qiz, -, i)', for i =1,2,....1lp. Moreover, suppose that Assumption 5 holds for
all the pairs z; and q,, and y; and (¢, x)", where x; is a generic element of {14, Taty ..., Tyt
that does not belong to q.,, and denote the corresponding projection residuals defined by (20)
as Uzt = Ty — Vour Qs A € = Yr — Vygur (@4, 21)'. Define © = (21,22, ..., 27), and M, =
Ir - QQ'Q)'Q), and let ar = © (T)‘*l). Then, for any 7 in the range 0 < w < 1, and as
long as lp = & (T%), such that 0 < d < 1/3, we have, that, if 3d/2 < X\ < (s/2+1)/(s/2+2),

—o? 1—7m)2Ta2
Pr( >aT>§eXp[ x’()( ) T

2‘% )

T %’/ M, x

-1 +exp [-CoT™'],  (A.88)

,(T)
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1/2 2
Pr —Ui’(T) —1|>ar| <ex _U;L’(T) (1 =) Tz
T-1x'M,x T| =P 2w? )

1 — 1
o= O B (i) Wl = = 3 B |(u2, — %)’
t=1

If x> (s/2+1)/(s/2+2),

d

2 1/2
Pr <¢> — 1| >ar| <exp [—C’O (TaT)S/(S+2)] + exp [—Cchﬂ )

T‘lx’qu
S L |

> aT> < exp [—C’o (TaT)S/(SH)} + exp [—C’chﬂ ,
o
z,(T)

and

T-x'M,x

Also, if 3d/2 < A < (s/2+1)/(s/2+2),

—ot 1— ) Ta?
Pr ( > aT) < exp [ (™) ( ) T
and

2w?
o2 12 —ot 1—7)°Ta?
Pr ( (1) -1 >ar| <exp w(T) ( ) a

T lee

2
Tu, (1)

—1 +exp [—CoT],

u,(T)
e'e/T

where e = (ey, ey, ...,er)"

T
1 1

02,(T) = T Z af, and win = 7 E [(uf _ 03)2] .

t=1 V

Il
—

If N> (s/2+1)/(s/2+2),
Pr(

2 1/2
Pr (e’?/?) — 1| >ar| <exp [—C’O (TaT)s/(SH)} +exp [-C1 T,

T lee

g

—1

u,(T)

> aT> < exp [—C’o (TaT)S/(SJrQ)} + exp [—C’lTCQ] ,

and
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+exp [-CoT"], (A.89)

(A.90)

(A.91)

(A.92)

(A.93)

(A.94)

(A.95)

(A.96)

(A.97)



Proof. First note that

where 4,4, for t = 1,2,...,T,. is the t-th element of 4, = M,x. Now applying Lemma 7 to
S, (42, — 02,) with ¢ = Tar we have

( ZT: > C:p) < exp [_(212_—%
t=1 2,(T)
if 3d/2 <A< (s/2+1)/(s/2+2), and

T
(e
it A\ > (s/2+1)/(s/2 +2), where w? »(r) is defined by (A.90). Also

1T (r
Ty (@2, —o2) - Cr < exp | = (1—m)2¢
o2 (1) To gy | ~ 202 oy

if 3d/2 < A< (s/24+1)/(s/2+ 2), and

+ exp [—C’OT&} ,

> CT> < exp [ C CS/ (s+2) ] +exp [-C1T],

Pr

~+ exp [—C’OTCI] ,

715 (32, — 52
Pr Zt_l ( x,t xt) > CT S exp O <s/ s5+2) + exp [_CITCQ:I ’
o’ (T) To? (T)

if A > (s/2+1)/(s/2 + 2). Therefore, setting ar = CT/TUi(T) = o (T*1), we have
—o? (1 —7)* Ta?
Pr ( > aT> < exp [ (1) ( ) !

if 3d/2 < A< (s/24+1)/(s/2+ 2), and

2wx,(T)
P <

if A > (s/2+1)/(s/2+2), as required. Now setting wy = 23

x'M,x

—1
To?

+exp [-CoT], (A.98)

z,(T)

x'M,x

-1
To?

> aT> < exp [ C CS/ s+2 ] + exp [—C’ITcﬂ ,
z,(T)

a* " and using Lemma A3, we

TJi,(T)
have
1 ™M
Pr||— — —1|>ap | <Pr| |22 14| > ap ),
;’1;4qx O (T)
92,(T)
and hence
o2 12 —ot 0 (1 —7)Ta?
u,(T) z,(T) T C
Pr —_— — 1| >ar| <exp + exp [—C'OT 1} , (A.99)
(T 1x'M,x wi(T)
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if 3d/2 <A< (s/2+1)/(s/2+2), and

2 1/2
u,(T) s/(s+2) C.
P _ — 1| > < [—C’ } -T2,

' <T1X’qu> =P otr e [ ' }

if A > (8/2 + 1)/(8/2 + 2) Furthermore
‘ ( _012)(/ qx) 1‘
z,(T)
> ar

- 172
(—T S‘qu) +1

9%.(T)

Y

T-1x'M, x V2
Pr - —1| >ar | =Pr
Ta,(T)

and using Lemma A1 for some finite positive constant C', we have

1/2 - }
T-'x'M ™M 1
Pr IX VX — 1l >ar| <Pr X VX -1 >a—T + Pr > (C
2 2 1/2
o To C
x,(T) a,(T) _ ¥ Mgx 1
(Tc’i (T)) +

= Pr

_ - 1/2
M ™M
(X qx>—1 S 9T L pr (X qx) +1<C!

Let C' =1, and note that for this choice of C'

| T-1x'M,x 2 | [ T-1x'M,x V2
Pr || ——%& +1<Ct =P || ———"%F <0| =0.
o2 i
i z,(T) | I z,(T)
Hence ~ )
T %M, x 2 | (T1x'M, x
Pr 2—q —1| >ar| <Pr 5 1 — 1| >ar|,
g o
z,(T) L z,(T)
and using (A.98),
1/2 . 2 g
T-1x'M —ot (1= 7)*Ta
Pri|{—5—=) —1]>ar| <exp|—22 ( , V707 | | exp [—CoT], (A.100)
Oﬂ“a(T) 2wa:,(T)

if 3d/2 <A< (s/2+1)/(s/2+2), and
T-x'M,x i
Pr <—q> — 1| >ar| <exp [—C’OC;/(SH)} + exp [—C’chﬂ )
o
z,(T)

if A > (s/2+1)/(s/2 +2). Consider now e'e = 3", ¢? and note that

T

> (uf —a})

t=1

T

> (e —di)

t=1

< | (T w) (T Ww) T (W)
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where W = (Q,x). As before, applying Lemma 7 to Zthl (€2 — o), and following similar

lines of reasoning we have
T

Pr [ Z (etz — af)
t=1

if 3d/2 <A< (s/2+1)/(s/2+2), and
T

Pr [ Z (ef — af)

t=1
if A > (s/2+41)/(s/2+ 2), which yield (A.93) and (A.96). Result (A.94) also follows along

similar lines as used above to prove (A.89). =

—(1-m)°¢

] CT] = [ 202 T +exp [_COTCI} ;

u,(T)

> cT] < oxp |[~Cot/ ™| + exp [~ 7]

Lemma 9 Let y;, fort =1,2,...,T, be given by the data generating process (1) and suppose
that u, and x; = (T14, T, ..., Tnr)' satisfy Assumptions 2-3. Let q, = (qu+, @o.t, -, qlT’t)/ contain
a constant and a subset of x, = (1, Tor, ..., Tn)', and lp = o(T3). Assume that Y =
%ZtT:lE(q,tqft) and 3, = Q'Q/T are both invertible, where Q = (qy., gs., ..., q,..) and
q; = (91,2, - qir), fori = 1,2,...,lp. Suppose that Assumption 5 holds for the pair y,
and (¢, xt)', where x; is a generic element of {x1t, Tat, ..., Tt} that does not belong to q.,
and denote the corresponding projection residuals defined by (20) as e; = yr — Vypur(qy; 1)
Define x = (z1,x2,...,x7)", € = (e1,€q,....;er)’, and M, = Iy — Q(Q'Q)~'Q’. Moreover, let
E(e'e/T) = a2y and E (xXMyx/T) = 02 1. Then

€, x)(T

ar

Pr o > ¢, (n,0)| <Pr (

(e (22) :

> Cf fd‘?) (A.101)

Oe,(T)T,(T)

+ exp [—COTcl]

for any random wvariable ar, some finite positive constants Cy and Ci, and some bounded

sequence dp > 0, where ¢, (n, ) is defined in (8). Similarly,
Pr [

Proof. We prove (A.101). (A.102) follows similarly. Define
5 1/2 5 1/2
gy = Te,(1) 1 = Tu,(T) 1
T-le'e ’ T-1x'M,x '
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(e'e/T)

S @ 5)) (A.102)

Oe,(T) 1+ dp

> ¢p (n,é)] <Pr (

-+ exp [—CUTcl] .




Using results in Lemma A1, note that for any dr > 0 bounded in T,

ar

e/ (22)

ar

Pr

> ¢, (n,0)0 =0 <Pr(

- cp(n,é))+

Oe (T)0,(T) 1+drp

Pr([(14gr) (14 hy)| > 1+dr).
Since (1 + gr) (1 + hy) > 0, then

= Pr(grhr + gr + hr) > dr) .

Using (A.89), (A.92), (A.94) and (A.97),

Pr(|hr| > dr] < exp [-CoT'], Pr[lhr| > c] <exp [-CoT“"],
Pr||lgr| > dr] < exp [—COTcl] , Prllgr| > dr/c] <exp [—C’OTcl} :

for some finite positive constants Cy and (. Using the above results, for some finite positive

constants Cy and C', we have,

ar ar

(o) (238)

Pr

> ¢, (n,0)0=0 <Pr(

> Cp (TL, 5)) _|_
Oe,(T)0z,(T) 1+4+dr

exp [—C’OTQ} ,
which establishes the desired the result. m

Lemma 10 Lety,, fort =1,2,...,T, be given by the data generating process (1) and suppose
that uy and T,y = (x14, Top, ..o, Tng)' satisfy Assumptions 2-3, with s = min(s,,s,) > 0. Let
a, = (que, G2, Qps) contain a constant and a subset of T, and let n, = z, By + ut,
where Ty s ky X 1 dimensional vector of signal variables that do not belong to q.,, with the
associated coefficients, B,. Assume that X, = %23:1 E(q.q,) and £, = QQ/T are both
invertible, where Q = (qy., qo., ..., q,,.) and q;. = (qi1, Giz, .-, i)', fori = 1,2, ....lp. Moreover,
let Ir = o(T'/3) and suppose that Assumption 5 holds for all the pairs vy and q,, and y, and
(q,x:)', where x; is a generic element of {x1;, o, ..., Tne} that does not belong to q.,, and
denote the corresponding projection residuals defined by (20) as u,: = xy — Voerd: and e; =
Yt = Vyqur (@4 21)' . Define © = (z1, 29, ..., 27)", y = (Y1, Yo, yr), e=(er,eq, .. er), M, =
I: - QQ'Q)'Q, and 6y = E (T 2'M,X,) By, where X, is T xky, matriz of observations
on Ty;. Finally, ¢, (n,d) is given by (8) with 0 < p <1 and f (n,d) = cn’, for some c¢,d > 0,

62



and there exists k1 > 0 such that T = & (n"'). Then, for any 7 in the range 0 < ™ < 1, any

dr > 0 and bounded in T, and for some finite positive constants Cy and C1,

—(1=m)?02,.0%, .2 (n,d
Pr [tz] > ¢, (n,0) |07 = 0] < exp =m0 “ )% (1:9) (A.103)
( +dT) zeT
+ exp [—COTCI} ,
where Lo
T M
t, = T (A.104)
\/(e e/T) (x qu>
oty =E(T7'ee), o} )= E (T"'x'Mx), (A.105)
and
Wor = ZE (aati)’] - (A.106)
Under of = 0® and/or E (u2,) = 02, = 02, for all t =1,2, ..., T,
—(1—7)"¢ (n,d)
Prl[|t,| > ¢, (n,d)|0r = 0] < ex P
2] > e (2,6) 0 = 0] p[ T
+exp (—CoT) . (A.107)

In the case where 67 # 0, let O = @(T*ﬁ), for some 0 < ¥ < 1/2, where ¢, (n,0) =
O (Tl/ 2_"9_08), for some positive Cg. Then, for some bounded positive sequence dr, and for

some Cy,C3 > 0, we have
Pr(|t,| > ¢, (n,0) |07 # 0] > 1 — exp (—CoT). (A.108)
Proof. The DGP, given by (2), can be written as
y=arr+XB+u=arr+X,8, + X3, +u

where X, is a subset of Q. Let Q, = (Q,z), M, = Iy — Q(Q’Q)_IQ’, M, = I —
Q.(Q.Q.)'Q.. Then, M, X, = 0, and let M,X}, = (€p,1, T1g2, ---; Tpqr)- Then,

T—1/2 ™ T—1/2 IMX T—1/2 ™
t = TV r By, TV (A.109)

\/(e e/T) <XMqX) \/(e’e/T) ( 'qu> \/(e’e/T) <><’MT«1><)

Let 0y = E (T '2'M,X,) B,, n = X8, + 0, 1 = (11,12, ..., nr) ", and write (A.109) as

VT0; T2 (23— o)

o \/(e’e/T) (*%=) ) \/(e/e/T) ()
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First, consider the case where 67 = 0 and note that in this case

~1/2 /Mq”I

<x’qu

Now by Lemma 9, we have

Pr(|ty| > ¢, (n,0) |0p =0] =Pr

<Pr

where o7 ;) and o2 ;) are defined by (A.105). Hence, noting that ¢, (n,d) = o(T), for all

Co > 0, under Assumption 3, and by Lemma 6, we have

—(1- 7)2 US,(T)U2 (1)%p ez (n, 5)]

Pr[|t.| > ¢, (n,0) |07 = 0] <exp [
+ exp (—COTCI) ,
where

:veT__ZE Uxt77t ZE[xt mbtﬂb+ut):|7

and u, ¢, being the error in the regression of x; on Q, is defined by (20). Since by assumption

u; are distributed independently of u,; and x4, then

T

W = —ZE[ (w180 ] + 7 S F (12) B (u)

z,t

where @}, , 3, is the t-th element of M, X;3;,. Furthermore, £ [ (o (wbq By) ] =E(u,)E (a:gq?tﬁbf
( m) BL,E (mbwmbq’t) By, noting that under ¢ = 0, u,, and x;,; are independently distrib-

uted. Hence

1T
e = ; E (u?,) BLE (2uguhy,) By + Z E (u (A.111)
Similarly
Uz,(T) =F (Tﬁle'e) =F (Tﬁln'qun) =F [Tﬁl (XpBy + 1) M, (X8, + u)]

T
= B,E (T7'X; M. X}) B, + T Z E (u})

t=1
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and since under # = 0, x being a pure noise variable will be distributed independently of X,
then £ (T'X,M,.X;) = E(T'X,M,X,), and we have

T
ol = ByE (T X)MX,) B, + T Y E (uf)

=1
1 — T

= =D B (wgeiy) By + T Y E (). (A.112)
t=1 t=1

Using (A.111) and (A.112), it is now easily seen that if either F (uit) =02 or E(u?) = o2,

for all ¢, then we have w3, 7 = 02 1,02 1, and hence

—(1—-m)%c(n,9)

20 tdr)? | P (=GT™).

Pr{|t;| > ¢, (n,0) |0r = 0] < exp [

giving a rate that does not depend on error variances. Next, we consider 67 # 0. By (A.101)
of Lemma 9, for d7 > 0 and bounded in T,

T-122'M,y

\Jleerm) (28)

We then have

Pr

—1/2 ./
> ¢, (n,0) gPr(T :chy‘>cp(n,5)

1+dr

) + exp (—CoTcl) .

Oe,(T)0,(T)

Ty TV (MR ) pognu T2
Y _ 4 ity

Oe,(T)0,(T) Oe,(T)0,(T) Oe,(T)0,(T) Oe,(T)0,(T)
PR () i,
C OemTam) Oe(T)0(T)
Then
1/2 [ *'Mgn
TV ( T _HT) V20, ¢y (n,9)
Pr + >
Oe (T)0x,(T) Oe,(T)0x,(T) 1+ dr
T1/2 <_a:’qu — 9T> 1/2
1 p T N TV207 <cp(n,(5)

Oe(T)0x,(T) Oe(1)0zy)| — 1+drp

Note that since ¢, (n,0) is given by (8), then TP0rl_ epnd) - 5 Then by Lemma A2,

? O (T)0a,(T) I4dr

x' My
T1/2< Mon _ 9T> N T2, e (n, )

Oe(T)Ta,(T) Oe(T)0zyr)| ~ 1+drp

Pr

T1/2 (w’qu _ 9T> 1/2
< Pr T - %07 ¢ (n,0)

- Oe (T)0x,(T) Oe(T)0zT)y 1 +dr
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But, setting (r = T1/2[ TV2)0r| CP(n’é)] and noting that 07 = O(T7Y), 0 < ¥ < 1/2,

O (T)0x,(T) 1+dr

implies that this choice of (1 satisfies (7 = & (TA) with A = 1 —1J, (A.68) of Lemma 6 applies

regardless of s > 0, which gives us

' My
T1/2 ( . n_ 9T> N T1/2 6] 5 (n, )

Oe (T)0x,(T) Oe(T)0x(T) 1+drp

1/2 s/(s+2)
< Cyexp {_05 {T1/2 ( TV20r| o (n,é))] }

Pr

(A.113)

Oe(T)0z(T) 1+dr
+ exp (—CGTC7) ,

for some Cy, Cs, Cg and C7 > 0. Hence, as long as the assumption that ¢, (n,6) = O (Tl/Q_ﬁ_Cs)

holds, for some positive Cy, there must exist positive finite constants Cy and (5, such that

x'M,
T1/2< Tn_9> N T2 |0 6 (n,9)

Oe (T)0x,(T) Oe(T)0z(T) 1+drp

Pr < exp (—CoT) (A.114)

for any s > 0. So overall

T—2x'M,y

\Jleerm) (238)

Pr

> ¢, (n,0)| >1—exp (—CoT).

Lemma 11 Let S, and Sy, respectively, be T' X l, 7 and T X I, matrices of observations
ON Sait, and Spit, for i = 1,2, 0y, t = 1,2,...,T, and suppose that {Sat, st} are either
non-stochastic and bounded, or random with finite 8" order moments. Consider the sample

covariance matrix 2ab = T‘lsng and denote its expectations by Xgy = T E (S!Sy). Let
Zijt = Sa,itShjt — E (Sa,itsb,jt) )

and suppose that

T T
sup | D Blzijeze) | = O(T). (A.115)
b t=1 v=1
Then,
S 2 lorlor
EHE" — ||, = - |- A1l

If, in addition,
=0 (17, (A.117)

T T T T
sup | NN N B(zijazie g i)
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then
E Hiab - 2ab

T2

1 12012
=0 <M> . (A.118)
F

Proof. We first note that E(z;;:2i;¢) and E (2420 211y s%irj,s) €xist since by assumption

{Sa.t, Sv.it} have finite 8" order moments. The (4, j) element of S — X is given by

T
aij,T = Til Z Zz’j,t, (Allg)
and hence
la,7 o1 laT bt T T
ETEEN i 3 SLICHEE) 3) 35 9 DIISHENS
i=1 j=1 i=1 j=1 t=1 t'=1
l T T
< loahr [ZZE%%’]7
b =1 =1
and (A.116) follows from (A.115). Similarly,
4 la,7 o1 2
Y — Xap F: ZZaUT
=1 j=1

la o la o

= 5 9) 9 P A

i=1 j=14=175=1

But using (A.119) we have

T T T T
2 — 74 Ry Gt
Qyj, Taz’] RijtZig,t! Ziljl s Zil § s

t=1 t'=1 s=1 s'=1
T T T T
—4
=T g E E g Zijt2ig,t! Zil 5 s il 5 s
t=1 t'=1 s=1 s'=1
and

lor b lor lbr T T T T

LD 30 30 3) 3)3) 3) ) Y ICHETERI»

i=1 j=1¢=1j'=1 t=1 t/=1 s=1 s'=1
[T T T T

E Hzab - ab

laT bT

ZZZZE Zig tRigt Zil§! s %l 5! s)

t=1 t/=1 s=1 s'=1

sup
?.] ) ?.]

Result (A.118) now follows from (A.117). m

Remark 6 It is clear that conditions (A.115) and (A.117) are met under Assumption 3 that

requires zy to be a martingale difference process. But it is easily seen that condition (A.115)
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also follows if we assume that s, ;: and s j: are stationary processes with finite 8-th moments,
since the product of stationary processes is also a stationary process under a certain additional
cross-moment conditions (Wecker (1978)). The results of the lemma also follow readily if we

assume that s, and s jy are independently distributed for all i # j and all t and t'.

Lemma 12 Consider the data generating process (1) with k signal, k* pseudo-signal, and
n — k — k* noise variables. Let T be the event that the OCMT procedure stops after k
stages or less, and suppose that conditions of Lemma 10 hold. Let k* = & (n€) for some
0 < e <min{l,k,/3}, where ry is the positive constant that defines the rate for T = & (n"1)
in Lemma 10. Moreover, let 6 > 0 and §* > 0 denote the critical value exponents for stage 1

and subsequent stages of the OCMT procedure, respectively. Then,
Pr(7,) =1+0 (n""7)+ 0 (n' ") + O [nexp (—Con“"™)] (A.120)
for some Cy,Cy >0, any > in0 < x <1, and any v in e < v < k1/3.

Proof. Consider the event Dy r, defined in (A.7), for s = k£ > 1, which is the event that
the number of variables selected in the first k stages of OCMT is smaller than or equal to
lr = ©(n”), where v lies in the interval ¢ < v < k;/3. Such a v exists since by assumption
0 <e<min{l,x;/3}. We have Pr(7;) =1 — Pr(7), and

Pr(7y) = Pr(Z|Dyr) Pr (Disr) + Pr (77| Df 1) Pr (D 1)
< Pr(T¢|Dyr) + Pr (Dir)

Therefore,
Pr(T;) > 1 — Pr(Z|Der) — Pr (D5 p) - (A.121)
We note that

. l . l - l
Pr (Dy,r) = Pr [( n (1) < %) a ( Iy (2) < Z D, T> N < k) S 2 Dy 1T):| 5

where 12:70%7,7(8) is the number of variables selected in the s-th stage of OCMT and D, for
s =1,2,...,k is defined in (A.7). Hence

Pr (D) < Pr (”T“) %> ( ”T(Z) ‘DlT)
1) S
(i < o)
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Furthermore

C

Since k is finite and 0 < e < v, there exists Ty such that for all T > T, we have lr/k > k+ k*,
and we can apply (A.130) of Lemma 13 (for j = lp/k — k — k* > 0), to obtain

70 ZT 70 * lT *
Pr (kn,T,(l) > E) = PI' (kn,T,(l) — k — k > ? — k? — k )

n—k—k* »c?(n,d)
< - __N0 _ C1
_%T—k:—k* {exp{ 5 }—i—exp( CoT )},

for some Cy,C7 > 0 and any 0 < s < 1. Noting that for 0 < e < v,

n—=k—k*

= 1=v A.122
e o), (A.122)

and using also result (i7) of Lemma 2, we obtain

Pr (AZ,T“) > l—T> =0 (nl””’“s) +0 [nlf” exp (—COTcl)} )

k
Ds—l,T)

n—k—k* scy (n,0%) o
S " {eXp [_pT} +exp(~GoT >}

=0 (nlf”*”‘s*) +0 [nlﬂ’ exp (—C’OTcl)] ,

Similarly,

A [
DS—LT) =Pr (kz,T,(s) —k—K"> % —k—K

. Iy
Pr( k° > —
r( n,T,(s) L

where the critical value exponent in the higher stages (s > 1) of OCMT (¢*) could differ from

k
c 7.0 Iy 7.0 Iy

=0 (™) +0 (') + O [n'exp (—CoT™)], (A.123)

the one in the first stage (). So, overall
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for some Cy,C; > 0, any s in 0 < > < 1, and any v in € < v < k;1/3. Next, consider
Pr (7| Dk 1), and note that

Pr (7 |Dy,r) = Pr (T |Dir, Li) Pr(Li|Dir) + Pr (T |Dyr, Li) Pr(Ly| D)
S Pr (77:|Dk,T7 ,Ck) + PI‘(£2|D1€7T), (A124)

where Pr (7,¢|Dy.r, Li) is the probability that a noise variable will be selected in a stage of
OCMT that includes as regressors all signals, conditional on the event that fewer than [p
variables are selected in the first k& steps of OCMT. Note that the event 7,°|Dy 7, L) can
only occur if OCMT selects some pseudo signals and/or some noise variables in stage k + 1.
But the net effect coefficient of pseudo signal variables in stage k£ + 1 must be zero when
all signal variables were selected in earlier stages (s = 1,2,...,k), namely 6; 1) = 0 for
i=Fk+1,k+2,.., k+k*. Moreover, 0; 41y = 0 also for i = bk + k" + 1,k +k*+2,...,n, since

the net effect coefficient of noise variables is always zero (in any stage). Therefore, we have

bi, (k1)

Pr (T¢|Dir, £1) < Y Pr [

i=k+1

> Cp (n, (S*) ‘ei,(k+1) = O7 Dk,T:| .

Note that the number of regressors in the regressions involving the ¢ statistics t; )’ does
not exceed Iy = © (n¥), for v in the interval 0 < ¢ < v < k;/3 and hence Iy = o(T"/?) as
required by the conditions of Lemma 10. Using (A.107) of Lemma 10, we have

scy(n, 0F
Pr (77| Dir, Li) < (n — k) exp {%}
b (n— k) exp (—CoT . (A.125)

for some Cy, C; > 0 and any 0 < s < 1. By Lemma 2, exp [—%cﬁ(n,é*)/Z] -0 (nfms*)’ for
any 0 < » < 1, and noting that n — £ < n we obtain

Pr (T |Dyr, Li) = O (n' ) + O [nexp (—CoT“")] . (A.126)
Consider next the second term of (A.124), Pr(L{|Dyr), and recall from (A.6) that £; =
MY Liy where L; ., defined by (A.5), is L; ) = U _1Bij,i=1,2,....k. Hence L{, = F‘l B¢

0,7
and

Pr (L5 ;| Tp, Dyr) = Pr (ﬂ?lefyj‘ T, D7) =
Pr( B Th Dir) Pr (B,| Biy, T Dicr)
Pr (BSs| Biy N By, T, Dir) X ...
Pr (B | By M. N B5 1, Th, Dir) -

But by Proposition 1 we are guaranteed that for some 1 < j <k, 0; (j) # 0. Therefore,
PI’( ‘ 4,J— 1 m'l5,11’77“3’1)kT)_ ( j‘B] AR mlea %O%aDkT>
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and by (A.108) of Lemma 10,
Pr (B, Bi;_y N ...N B, 0y # 0, T, Dir) = O [exp (—CoTY)],
for some Cjy, C; > 0. Therefore, for some j € {1,2,...,k} and Cy, C; > 0,

Pr (L5 | Te, i) < Pr(B5;| Bi,_y N ...0B5y,0iy # 0, T, Dir)
= O [exp (—CoT“)] . (A.127)

Noting that & is finite and

Pr (‘Ci‘ 7;{, Dk,T) =Pr (U,’leﬁlck‘ %, Dk,T)
k

<Y Pr(L| 7, D),
i=1
it follows, using (A.127), that
Pr(L{| Tx, D) = O [exp (—CoTY)] (A.128)

for some Cy, C; > 0. Using (A.126) and (A.128) in (A.124) now gives'®
Pr (T Dir) = O (n' ) + O [nexp (—CoT")] . (A.129)
Using (A.123) and (A.129) in (A.121), yields

Pr(7;) =14+ 0 (n'™"7°) + O (n' 7)) + O [n' ¥ exp (= CoT")]
+0 (nlf”‘;*) + O [nexp (—CoT)]

for some Cy,C1,C5,C3 > 0 and any > in 0 < » < 1, and any v in ¢ < v < k;1/3.
But O (n'™*7*°") is dominated by O ("), and O [n' ™ exp (—CoT“")] is dominated by
O [n exp (—CgTC?’)], since v > € > (. Hence,

Pr(7,)=1+0 (nl’”’”‘s) +0 (nl’”‘s*) + O [nexp (—COTcl)] ,

for some Cy,C; > 0, any » in 0 < » < 1, and any v in € < v < k;/3. This result in turn
establishes (A.120), noting that T'= © (n"). =

Lemma 13 Consider the data generating process (1) with k signal variables, k* pseudo-signal
variables, and n — k — k* noise variables. Let /%;T’(S) be the number of variables selected at
the stage s of the OCMT procedure and suppose that conditions of Lemma 10 hold. Let
k* = ©(nf) for some 0 < ¢ < min{1,k;/3}, where Ky is the positive constant that defines
the rate for T' = & (n") in Lemma 10. Let Dy, be the event that the number of variables

5We have dropped the term O [exp (—C’oTcl)], which is dominated by O [n exp (—C’OTcl)].
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selected in the first s stages of OCMT is smaller than or equal to lr, where ly = © (n”) and
v satisfies € < v < k1/3. Then there exist constants Cy, C; > 0 such that for any 0 < s < 1,
any d; > 0, and any j > 0, it follows that

. —k—k* 2 (n, b,
Pr (kflm(s) —k—kK> j|DS_1,T) < # {exp [—M} + exp(—COTcl)} :
(A.130)
fors=1,2,... k.

Proof. By convention, the number of variables selected at the stage zero of OCMT is zero.
Conditioning on D,_; r allows the application of Lemma 10. We drop the conditioning nota-
tion in the rest of the proof to simplify notations. Then, by Markov’s inequality

E<@“@_k_kﬁ. (A.131)

Pr (AZ,T,(S) —k—k> j) <

J
But
E (AZ,T,(S)) = iE [%)@ 0)}
=S EG 0]+ Y Bl G0 -0]

i=k+k*+1

<k4k Z E 1) (3 7 0) |69 = 0],

i=k+k*+1

where we have used /) @ 0) < 1. Moreover,

[1(8) (B £ 0) |61 )_o} —Pr(‘t% ()‘ > ¢, (1,05) |0ic0 :o),

fori = k+k*+1,k+k*+2,....,n, and using (A.107) of Lemma 10, we have (for some 0 < » < 1
and Cy, Cy > 0)

s (n, 0s)

sup Pr(‘ ‘>cpn5)|9 8)—0)<exp{ 5

] + exp(—CoT).
i>k+k*

Hence,

B (i) ~ k= = (0= k= k) {exp | <2222 exp(-cren}.

and therefore (using this result in (A.131))

. —k—k* c2 (n, b,
Pr (kZ,T,(s) —k— k> j) < nf {eXp [—M} + eXp(—CoTcl)} ;

as desired. =

72



Lemma 14 Consider the data generating process (1) with k signal, k* pseudo-signal, and n—
k—k* noise variables. Let l%n,T be the number of variables selected by the OCMT procedure, and
suppose that conditions of Lemma 10 hold. Let k* = © (n®) for some 0 < ¢ < min {1, x;/3},
where k1 > 0 is the positive constant that defines the rate for T = © (n"') in Lemma 10.
Moreover, let § > 0 and 6* > 0 denote the critical value exponents for stage 1 and subsequent
stages of OCMT, respectively. Then for some Cy,Cy > 0, any > in 0 < 3¢ < 1, and any v in
€ < v < K1/3, we have

Tl2

Pr (l%nT —k—K"> j) =0 (jflnlf’“s) +0 (j’ln%”‘s*) +0 7 exp (—C’oncl’“)
+0 (') + 0 (ntr ), (A.132)
forj=1,2,...n—k—k*.

Proof. Consider the event Dy, defined in (A.7), for s = k£ > 1, and recall that this is
the event that the number of variables selected in the first k£ stages of OCMT is smaller
than or equal to I = ©(n”), where v satisfies € < v < k;/3, noting that by assumption
0 <e<min{l,x;/3}. We have

Pr (/%,LT -k > j) —Pr <l§:n7T k- k> jmk,T) Pr (Dyr)
+ Pr (= k= k" > j|Di1 ) Pr (D)
<Pr (knr =k = k" > j|Dir) +Pr (D). (A.133)
An upper bound to Pr (Dj ;) is established in (A.123). For the rest of the proof we focus on

Pr (EHT —k—k"> j|Dk7T>. We first note that by Markov’s inequality

n — k — k*’Dk,T)
; .

Pr (z%n,T —k—k > j|Dk,T> < . <k (A.134)
But,
B (knr|Dir) = E (kuz| T Dir) Pr(TilDir) + B (ur| T, Der ) Pr (T¢I D)
<E (/m‘ T, Dir) + E (/;n,T) T¢, Dir ) Pr (T Dir). (A.135)

An upper bound on Pr (Z,¢|Dy.r) is derived in (A.129). We consider E (l;:nT‘ 7T, Dk,T> next,
and note that

k k4-k*
E (knT‘ ﬁ7Dk,T> :Z Pr (L x| T, D) + Z Pr (L x| T, Dir)

i=1 i=k-+1

+ > Pr(Lixl Tu.Dir), (A.136)

i=k+k*+1
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and it must also be that

E (l%n,T‘ %C,D]QT> S n. (A137)

(A.137) is a very loose upper bound (since k, 7 cannot exceed n by definition), but this bound
will be sufficient for the purpose of this proof. Note that by (A.127) Pr (Efk| ’Z},ij) =
@) [exp (—COTcl)} fori =1,2,...,k, and it follows that

k k
> Pr(Lix| T, Dia) =D [1=Pr (L] Tu. Dag)] =k + O [exp (~CoT)],  (A.138)

i=1 i=1
for some Cy, C; > 0. Next, we have

kK
> Pr(Lix| Th, Dir) < k7, (A.139)
i=k—+1
since 0 < Pr(L; x| 74, Drr) < 1. Now consider the last term on the right side of (A.136).
Recalling that £, ;, = U%_ B; ,, then, given that Ois) =0foralli =k +k*+1,k+k"+2,...,n

and all s =1,2,..., k, we have

k
Pr[Li4|Th, Dir) <Y Pr(Bislfi) = 0,7, Diy) , fori > k+ k" +1,
s=1
and hence
> Pr(Lif|TDer) < > Pr(Biilbia) =0T, Dir)
i=k+k*+1 i=k+k*+1

n k
+ Z ZPI (Biys| ei,(s) =0, T, Dva) :

i=k-+k*+15=2
Now using (A.26) for Pr (B;s|0;) = 0, Ty, Der), i = k+k*+ 1, k+k*+2,...,n, s = 1,2, ..., k,
it readily follows that (noting k is fixed and n — k — k* < n)

n

S Pr (L] T Dug) 0 {nexp {_M} } ) {neXp {_MH

i=k-+k*+1 2 2
+ O [nexp (—CoT™)]. (A.140)

Using (A.138)-(A.140) in (A.136), we obtain

7 i (n,d
E <knT‘ T, Dk,T) <k+k*+Coexp (—C1T?) + Csnexp {_%}
2 5*
+ Canexp {—%} + Csnexp (—CeT7) | (A.141)
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for some Cy, C4,...,C7 > 0. (A.141) provides an upper bound on the first term on the right
side of (A.135). Consider next the second term on the right side of (A.135). Using (A.129)
for Pr (7,¢|Dy.r) and (A.137) for E (l%n,T’ '];f,Dk7T) yields,

E (Fur| T, Prr ) Pr (TelDyir) = O (077) + O [ exp (~GoT)] (A.142)

Using (A.141) and (A.142) gives an upper bound for £ (/%nT —k— k*|Dk7T>, which when used
in (A.134) yields the following bound on Pr (/%nT —k—k*> j]Dk,T),

2

+O{?exp {_@} } L0 l;exp( ¢ TC?')]

. 2 5
Pr <kn7T —k—k> j|Dk,T> =0 [j texp (—CoT“)] + O {_ exp [ 76, (n, )} }

2

+ 0 (j_1n2_”6*) +0 |:7 exp ( C4TC5):| y

for some Cy, C4, ...,C5 > 0. Noting that O [j~'exp (—CoT“)] and O [nj ' exp (—C>T%)]
are both dominated by O [nZ jtexp (—C’4T 05)], and using result (i7) of Lemma 2 for the

terms involving ¢2(n, d) and ¢;(n,*), we obtain
Pr (/%n,T k- k> j|Dk7T) — 0 (7)1 O (j- 01—
+0 (5 n* WS)—I—O[;eXp( C’OTCI)]_
But O (j7'n'~") is dominated by O (j~'n*~*"), hence
Pr (l%n,T —k—k > j|Dk7T> — 0 () 40 ()
+0 [—2 exp (— COTCI)] : (A.143)

J
Finally using (A.123) and (A.143) in (A.133), we have

2
PI' (l%n,T — ]{? — k* > ]) :O (]_17’Ll %6) + O ( 1 2 %6*) + O |:7 eXp( C()Tcl):|
+ O (nl—u—%5) + 19) (nl—l/—}té*) + 19) [nl—u exp (—OQTCB)} ’

for some Cy,C1,C5,C3 > 0. Recalling that 0 < ¢ < v < k;/3 and j < n, the term
O [nlf” exp <_CQTCS)] is always dominated by O ["72 exp (—C’oTcl)}, and noting that T =
©(n"), establishes (A.132). m

Lemma 15 Suppose that the data generating process (DGP) is given by

= X . A.144
TZ1 Txk+1 k+?x1+Tgl7 ( )

()



where X = (11, Xy) includes a column of ones, Tr, and consider the regression model

Tzl - T§ZT . ZT(§<1 + Tgxl' (A.145)
where w = (uy, Us, ..., ur) is independently distributed of X and S, E (u) = 0, E (uw’) = 0?1,
0<o0?<o0,IrisaTl xT identity matriz, and elements of 3 are bounded. In addition, it is

assumed that the following conditions hold:

i. Let X3 = E (S'S/T) with eigenvalues denoted by py < po < ... < py,.. Let p; = O (Ir),
i=Ilp—=M+1,lp —M+2,..,lp, for some finite M, and sup;<;<;,._pr pti < Co < 00,
for some Cy > 0. In addition, inf1<;<;, p; > C1 > 0, for some Cy > 0.

~ —4 ~
ii. B {(1 1=, Hz _ ., ) } — O (1), where 3, = T~'S'S.
F

ii1. Regressors in'S = (s;) have finite 8" moments and z;j; = susj— E (susji) satisfies con-
ditions (A.115) and (A.117) of Lemma 11. Moreover, 2%, = syxjy — E (syxj;) satisfies

it T

condition (A.115) of Lemma 11, and || Es| » = [|[E(T7'S'X)||, = O (1).

Then, if S = (X, W) for some T X k,, matric W,

pls-a)-o (k). (A.146)

where & is the least square estimator of 8 in the regression model (A.145) and B, = (B/, ng)/.

Further, if some column vectors of X are not contained in S, then

EHS—ﬁOH —0(lp)+0 (%) (A.147)

Proof. The least squares estimator of § is
6= (S'S) 'Sy =(89)"S (XB+u).

In addition to 3,, = 8'S/T, 3., = E(S'S/T) and X, = FE (S'X/T), define

- S'X
Yoo = — * — Eilzsx ;
ST T 75 ss /6
and
§=F (8) —E [(S’S)*1 s'xa| .
Note that
(S/S)_l S/X = AssAs:E + Asszsm + 2;51As:1: + E;glzsza

where

~

Ass = 2;91 - E_l Asx - 5351’ - 25:1:-

88 )
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Hence

/
6_5* = AssAsxﬁ + ASSESZ‘/B + E;glAszﬁ + 2;1 <STu) .

Using (2.15) of Berk (1974),

=205

Ess - 2ss
F

P 82 |8 — B
F

ol
J

We focus on the individual terms on the right side of (A.148) to establish an upper bound for
E H ASS . The assumptions on eigenvalues of 3, in this lemma are the same as in Lemma A4
F

with the only exception that O (.) terms are used instead of & (.). Using the same arguments

and using Cauchy-Schwarz inequality,

£[a.

F S HES_;”?: |:E (Hiss - Ess

1/2
1

(1= 122, | B - =

(A.148)

as in the proof of Lemma A4, it readily follows that
1Zssllp = O (Ir)

and

=2, =0 (Vir). (A.149)

Moreover, note that (i, j)-th element of <f]ss — ESS), Zijt = SusSjit — E (susjt), satisfies the

1) ~0 (%) | (A.150)

Noting that F (a?) < \/FE (a*), Assumption (i7) of this lemma implies that the last term on
the right side of (A.148) is bounded, namely

conditions of Lemma 11, which establishes

E (Hiss - Ess

E ! _oq), (A.151)

R 2
(=122, | Be -2 )

Using (A.149), (A.150), and (A.151) in (A.148),

L=0(),/0 (%)O 1)=0 (%) . (A.152)

7

E HASS




.2
It is also possible to derive an upper bound for F (HASS ), using similar arguments. In
F

particular, we have

_114
~ 2 stsl”F

N 2
Zss - Ess
F

Ss

(- e [ - =

29
)

N
i)

4
F) = O (13/T?) by (A.118) of Lemma

and using Cauchy-Schwarz inequality yields

2

A <tz [= (. - =.

1/2
1

(1= 1220 | B -

Y

where |S214 = 0 (12) by (A.149), E <H2 _ 3.

1]_, and F |:<1 - ||2;91||F Hgss - 255

—4
> } = O (1) by Assumption ii of this lemma. Hence,
F

. 2 l4 l4
_ 2 T - -z
EHASS L =0(B) 0<T2)0(1) o(T). (A.153)
Using Lemma 11 by setting S, = S (l,r = Ir) and Sy = X (lh,r = k < 00), we have, by
(A.116),
E Hz s )20 (A.154)
ST ST F - T M .
We use the above results to derive an upper bound for
Blé-o < B[|A] [Ae] J18I
i F F
FE|Au] 18181
=2 A, 181
~ S’
+ BB ( “) . (A.155)
T /g

First, note that ||3]| = O (1), and (using Cauchy-Schwarz inequality)

5\ 1/2 o\ 12
) (E)a)) e

B[]

HAsm
F

Jiei < (2]
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But EHASS — O (I%/T) by (A.153), and EHAM

Jisi=o <%)}/ o <%)]/

15/2
=0 (TT) . (A.156)

Next, note that E HASS o @) (l%/ﬁ) by (A.153), || Xs:||z = O (1) by Assumption i of
this lemma (and ||3]| = O (1)), and we obtain

2
. O (I7/T) by (A.154), and therefore

2
F

B[]

HAsz
F

" - 1%
B[[Au], Izl 81 = 0 (L) (A157
Moreover, using (A.149), and noting that £ HAW o= @) (wlT/T) by (A.154),'°
- A Vir Iy
1 _ VT _ T
il (o () o)
and hence
=2, A, 181 =0 (2F) (A158)
ss ||F s . ﬁ . .
Finally, consider
E H(S'S)‘1 S'u ‘i —E {Tr [(S'S)‘1 S'uu'S (S’S)_l] }

2
- %E {Tr

S's\
(7) Iy
where F (uu’/T) = 0?1y, and we have also used the independence of S and u. Hence

= e (52)]

0—2 02 A
=TT (B) + S F T (32 -=)]

E H (S's) ' S'u

But Tr (X;}') = O (Ir), and using (A.152), we have

Blrr (£ - =) | < wp £ - =
F
~ e |Au, -0 (L)
T 55 s ﬁ .
1/2
16E’Asm < [E( A, i)] - ,/O(KT/T):O(MKT/T).
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It follows that,

E H (S's) " S'u

>l 2\ 1
Lo(r) o ()
(i B
_0 <T) 10 (W) . (A.159)
Overall, using (A.156), (A.157), (A.158), and (A.159) in (A.155),
o) vo () o ()
7 i) PO \r

ol Ol%
+T+ W

E||é6 —8,|| — 0 when I7./T — 0,

EHS—é*

Therefore

regardless whether X is included in S or not. Consider now

zﬂﬁ—ﬁﬂzﬁwa—&+aww%n
< E|§ 6.+ E|6. — Boll-

But when S = (X, W), then

Zwaz wa _ me
Ess— < wa wa>’28x_(2wx>7

and therefore '3, = I,.. This implies ¥ '3,, = (I, Oxxxw) and 6, = T 13,8 = 3,
when S = (X, W). Result (A.146) now readily follows. When at least one of the columns of
X does not belong to S, then §, #3y. But

10, = Boll < [[0x]] + [1Boll

where ||3,]| = O (1), since B, contains finite (k) number of bounded nonzero elements, and

1611 = || Bl -
<25 e 12l

12 = O (Vir) by (A.149), and || 2y, || » = O (1) by Assumption 4 of this lemma. Hence,

when at least one of the columns of X does not belong to S,

10 = Boll = O (Ir)

which completes the proof of (A.147). m
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