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Abstract  
Model specification and selection are recurring themes in econometric analysis. Both topics 
become considerably more complicated in the case of large-dimensional data sets where the 
set of specification possibilities can become quite large. In the context of linear regression 
models, penalised regression has become the de facto benchmark technique used to trade off 
parsimony and fit when the number of possible covariates is large, often much larger than 
the number of available observations. However, issues such as the choice of a penalty 
function and tuning parameters associated with the use of penalized regressions remain 
contentious. In this paper, we provide an alternative approach that considers the statistical 
significance of the individual covariates one at a time, whilst taking full account of the 
multiple testing nature of the inferential problem involved. We refer to the proposed method 
as One Covariate at a Time Multiple Testing (OCMT) procedure. The OCMT provides an 
alternative to penalised regression methods: It is based on statistical inference and is 
therefore easier to interpret and relate to the classical statistical analysis, it allows working 
under more general assumptions, it is faster, and performs well in small samples for almost 
all of the different sets of experiments considered in this paper. We provide extensive 
theoretical and Monte Carlo results in support of adding the proposed OCMT model 
selection procedure to the toolbox of applied researchers. The usefulness of OCMT is also 
illustrated by an empirical application to forecasting U.S. output growth and inflation. 
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1 Introduction

The problem of correctly specifying a model has been a recurring theme in econometrics. There

are a number of competing approaches such as those based on specification testing or the use of

information criteria that have been exhaustively analysed in a, hitherto, standard framework

where the number of observations is considerably larger than the number of potential model

candidates.

However, recently, increased focus has been placed on settings where the latter number is

either similar or exceeds the number of observations. Model selection and estimation in a high-

dimensional regression setting has largely settled around a set of methods collectively known as

penalised (or regularised) regression. Penalised regression is an extension of multiple regression

where the vector of regression coeffi cients, β, of a regression of yt on xnt = (x1t, x2t, ..., xnt)
′ is

estimated by β̂ where β̂ = argminβ[
∑T

t=1(yt − x′ntβ)2 + Pλ (β)]. Pλ (β) is a penalty function

that penalises the complexity of β, while λ is a vector of tuning parameters to be set by the

researcher. A wide variety of penalty functions have been considered in the literature, yielding

a wide range of penalised regression methods. Chief among them is Lasso, where Pλ (β) is

chosen to be proportional to the L1 norm of β. This has subsequently been generalised to

the analysis of functions involving Lq, 0 ≤ q ≤ 2, norms. While these techniques have found

considerable use in econometrics1, their theoretical properties have been mainly analysed in

the statistical literature starting with the seminal work of Tibshirani (1996) and followed

up with important contributions by Zhou and Hastie (2005), Lv and Fan (2009), Efron,

Hastie, Johnstone, and Tibshirani (2004), Bickel, Ritov, and Tsybakov (2009), Candes and

Tao (2007), Zhang (2010), Fan and Li (2001), Antoniadis and Fan (2001), Fan and Lv (2013)

and Fan and Tang (2013). Despite considerable advances made in the theory and practice

of penalised regressions, there are still a number of open questions. These include the choice

of the penalty function and tuning parameters. The latter seems particularly crucial given

the fact that no fully satisfactory method has, hitherto, been proposed in the literature, and

the tuning parameters are typically chosen by cross validation. A number of contributions,

notably by Fan and Li (2001) and Zhang (2010), have considered the use of nonconvex penalty

functions with some success. However, the use of nonconvex penalties introduce numerical

challenges and can be unstable and time consuming to implement.

As an alternative to penalised regression, a number of researchers have developed methods

that focus on the predictive power of individual regressors instead of considering all the n

covariates together. This has led to a variety of alternative specification methods sometimes

referred to collectively as “greedy methods”. In such settings, regressors are chosen sequen-

tially based on their individual ability to explain the dependent variable. Perhaps the most

1A general discussion of high-dimensional data and their use in microeconomic analysis can be found in
Belloni, Chernozhukov, and Hansen (2014a).

1



widely known of such methods, developed in the machine learning literature, is “boosting”

whose statistical properties have received considerable attention (Friedman, Hastie, and Tib-

shirani (2000), Friedman (2001) and Buhlmann (2006)). Other machine learning approaches,

such as regression trees, and step-wise regressions, are also widely used, but they lack rigorous

theoretical underpinnings.

A further approach that has a number of common elements with our proposal and combines

penalised regression with greedy methods is sure screening. It has been put forward by Fan and

Lv (2008), and, independently by Huang, J. Horowitz, and Ma (2008), and analysed further

by Fan and Song (2010) and Fan, Samworth, and Wu (2009), among others. This approach

considers marginal correlations between each of the potential regressors and yt, and selects

either a fixed proportion of the regressors based on a ranking of the absolute correlations, or

those regressors whose absolute correlation with yt exceeds a threshold. The latter variant

requires selecting a threshold and so the former variant is used in practice. As this approach

is mainly an initial screening device, it may select too many regressors but enables dimension

reduction in the case of ultra large datasets. As a result, a second step is usually considered

where penalised regression is applied to the regressors selected at the first stage.

The present paper contributes to this general specification literature by proposing a new

model selection approach for high-dimensional datasets. The main idea is to test the statis-

tical significance of the net contribution of each potential covariate to yt separately, whilst

taking full and rigorous account of the multiple testing nature of the problem under consider-

ation. The general case requires iterating this process by testing the statistical contribution

of covariates that have not been previously selected (again one at a time) to the unexplained

part of yt. In a final step, all statistically significant covariates are included as joint deter-

minants of yt in a multiple regression setting. Whilst the initial regressions of our procedure

are common to boosting and to the screening approach of Fan and Lv (2008), the multiple

testing and iterative elements provide a powerful stopping rule without needing to resort to

model selection or penalised regression subsequently.

We use ideas from the multiple testing literature to control the probability of selecting

the true model, the false positive rate and the false discovery rate. We refer to the proposed

method as One Covariate at a Time Multiple Testing (OCMT) procedure. In addition to its

theoretical properties which we shall discuss below, OCMT is computationally simple and fast

even for extremely large datasets. The method provides an alternative in selecting regressors

that are correlated with the true unknown conditional mean of the target variable and, as a

result, it also has good estimation properties for the unknown coeffi cient vector. Like penalised

regressions, the proposed method is applicable when the underlying regression model is sparse.

Further, it does not require the xnt to have a sparse covariance matrix, and is applicable even

if the covariance matrix of the noise variables (to be defined below) is not sparse. Of course,

since OCMT is a model selection device, well known impossibility results for the uniform
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validity of post-selection estimators, such as those obtained in Fan and Pötscher (2006) and

Fan and Pötscher (2008), apply.

We provide theoretical results for the proposed OCMT procedure under mild assumptions.

In particular, we do not assume either a fixed design or time series independence for xnt
but consider a martingale difference condition. While the martingale difference condition is

our maintained assumption, we also provide theoretical arguments that allow the covariates

to follow mixing processes. We report results on the true positive rate, the false positive

rate, the false discovery rate, and the norms of the coeffi cient estimate as well as the in-

sample regression error. We do not report any optimality results for our method. Further, we

compare the small sample properties of our proposed method with three penalised regressions

and boosting techniques using a large number of Monte Carlo experiments under different

data generating schemes, and obtain encouraging results.

The paper is structured as follows: Section 2 provides the setup of the problem. Section

3 introduces the new method. Its theoretical and small sample properties are analysed in

Sections 4 and 5, respectively. Section 6 presents a forecasting empirical illustration of the

proposed method. Section 7 concludes and technical proofs are relegated to appendices. Two

online supplements provide additional theoretical results, a complete set of Monte Carlo results

for all the experiments conducted, and additional empirical findings.

Notations: Generic positive finite constants are denoted by Ci for i = 0, 1, 2, ... . They

can take different values at different instances. Let a = (a1, a2, ..., an)′ and A = (aij) be an

n× 1 vector and an n×m matrix, respectively. Then, ‖a‖ = (Σn
i=1a

2
i )

1/2 and ‖a‖1 = Σn
i=1 |ai|

are the Euclidean (L2) norm and L1 norm of a, respectively. ‖A‖F = [Tr (AA′)]
1/2 is the

Frobenius norm of A. τ T is a T × 1 vector of ones, τ T = (1, 1, ..., 1)′. If {fn}∞n=1 is any real

sequence and {gn}∞n=1 is a sequences of positive real numbers, then fn = O(gn), if there exists

a positive finite constant C0 such that |fn| /gn ≤ C0 for all n. fn = o(gn) if fn/gn → 0 as

n→∞. If {fn}∞n=1 and {gn}
∞
n=1 are both positive sequences of real numbers, then fn = 	 (gn)

if there exists N0 ≥ 1 and positive finite constants C0 and C1, such that infn≥N0 (fn/gn) ≥ C0,

and supn≥N0 (fn/gn) ≤ C1. →p denotes convergence in probability as n, T →∞.

2 The Variable Selection Problem

Suppose that the target variable, yt, is generated from the following data generating process

(DGP)

yt = a+

k∑
i=1

βixit + ut, for t = 1, 2, ...., T , (1)
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where ut is an error term whose properties will be specified below, and 0 < |βi| ≤ C <∞, for
i = 1, 2, ..., k, k > 0 is fixed. In matrix notation, we have

y = aτ T +Xkβk + u, (2)

where τ T is a T × 1 vector of ones, Xk = (x1,x2, ...,xk) is the T × k matrix of observations
on the covariates, βk = (β1, β2, ..., βk)

′ is the k × 1 vector of associated slope coeffi cients and

u = (u1, u2, ..., uT )′ is T × 1 vector of errors.

The identity of the covariates, xit, for i = 1, 2, ..., k, also referred to as the “signal”vari-

ables, is not known to the investigator who faces the task of identifying them from a large

set of n covariates, denoted as Snt = {xit, i = 1, 2, ..., n}, with n being potentially larger than
T . We assume that the signal variables xit, for i = 1, 2, ..., k, belong to Snt, and without loss
of generality suppose that they are arranged as the first k variables of Snt. We refer to the
remaining n−k regressors in Snt as ‘noise’variables, defined by βi = 0 for i = k+1, k+2, ..., n.

In addition to the constant term, other deterministic terms can also be easily incorporated

in (1), without any significant complications. It is further assumed that the following exact

sparsity condition holds:
∑n

i=1I (βi 6= 0) = k, where k is bounded but otherwise unknown,

and I (A) is an indicator function which takes the value of unity if A holds and zero otherwise.

In the presence of n potential covariates, the DGP can be written equivalently as

yt = a+
n∑
i=1

I(βi 6= 0)βixit + ut. (3)

Our variable selection approach focusses on the overall or net impact of xit (if any) on yt rather

than the marginal effects defined by I(βi 6= 0)βi. As noted by Pesaran and Smith (2014), the

mean net impact of xit on yt is given by

θi,T =
n∑
j=1

I(βj 6= 0)βjσij,T =
k∑
j=1

βjσij,T , (4)

where σij,T = E (T−1x′iM τxj), and M τ = IT − τ Tτ ′T/T . To simplify the notations we
suppress the T subscript and use θi and σij below. The parameter θi plays a crucial role in

our proposed approach. Ideally, we would like to be able to base our selection decision directly

on βi and its estimate. But when n is large such a strategy is not feasible. Instead, we propose

to base inference on θi and then decide if such an inference can help in deciding whether or not

βi = 0. It is important to stress that knowing θi does not imply we can determine βi. But it is

possible to identify conditions under which knowing θi = 0 or θi 6= 0 will help identify whether

βi = 0 or not. Due to the correlation between variables, nonzero βi does not necessarily imply

nonzero θi and we have the following four possibilities:

θi 6= 0 θi = 0
βi 6= 0 (I) Signal net effect is nonzero (II) Signal net effect is zero
βi = 0 (III) Noise net effect is nonzero (IV) Noise net effect is zero

.
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The first and the last case where θi 6= 0 if and only if βi 6= 0 is ideal. But there is also a

possibility of the second case where θi = 0 and βi 6= 0 and the third case where θi 6= 0 and

βi = 0. These cases will also be considered in our analysis. The specificity of zero signal net

effects (case II) makes it somewhat less plausible than the other scenario, since it requires that

βi = −
∑k

j=1,j 6=iβjσ
−1
ii σij. On the other hand, the third case of noise variables with nonzero

net effect is quite likely.

For future reference we also define a conditional net impact coeffi cient

θi,T (z) =
k∑
j=1

βjσij,T (z), (5)

where σij,T (z) = E (T−1x′iM zxj),M z = IT −Z(Z ′Z)−1Z ′, Z = (z1, z2, ...,zT )′, and zt is a

vector of variables that includes the constant and a subset of Snt. We suppress the T subscript
and use θi(z) and σij(z) below. For the noise variables, we require their net effects on the

target variable to be controlled, which can be formalized by imposing bounds on
∑n

j=k+1 |θj|.
Such bounds can be specified in different ways. The first and main assumption is that there

exist possibly a further k∗ variables which have βi = 0 but are correlated with the signals.

We shall refer to them as “pseudo-signal”variables since they are correlated with the signal

variables and can be mistaken as possible determinants of yt. Without loss of generality, these

will be ordered so as to follow the k signal variables, so that the first k + k∗ variables in Snt
are signal/pseudo-signal variables. We define X∗k∗ = (xk+1,xk+2, ...,xk+k∗). The remaining

n − k − k∗ variables will be assumed to have θi = 0 and be uncorrelated with the signals.

They will be referred to as “pure noise”or simply “noise”variables. We assume that k is an

unknown fixed constant, but allow k∗ to rise with n such that k∗/n→ 0, and k∗/T → 0, at a

suffi ciently slow rate. Specifically, we allow k∗ = 	 (nε) for some appropriately bounded ε ≥ 0.

We expect ε to be small when the correlation between the signal variables and the remaining

covariates is sparse. In future discussions, we shall refer to the set of models that contain the

true signal variables as well as one or more of the pseudo-signal variables as the pseudo-true

model. We make the following assumption concerning the signal and pseudo-signal variables.

Assumption 1 Let Xk,k∗ = (Xk,X
∗
k∗), where Xk = (x1,x2, ...,xk), and

X∗k∗ = (xk+1,xk+2, ...,xk+k∗) are T × k and T × k∗ observation matrices on signal and noise
variables, and suppose that there exists T0 such that for all T > T0,

(
T−1X ′k,k∗Xk,k∗

)−1

is nonsingular with its smallest eigenvalue uniformly bounded away from 0, and Σk,k∗ =

E
(
T−1X ′k,k∗Xk,k∗

)
is nonsingular for all T .

Our secondary maintained assumptions are somewhat more general and, accordingly, lead

to fewer and weaker results. A first specification assumes that there exists an ordering (possibly

unknown) such that θi = Ci%
i, |%| < 1, i = 1, 2, ..., n. A second specification modifies the decay
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rate and assumes that θi = Cii
−γ, for some γ > 0. In both specifications max1≤i≤n |Ci| < C <

∞. These specifications allow for various decays in the way noise variables are correlated with
the signals. These cases are of technical interest and cover the autoregressive type designs

considered in the literature in order to model the correlations across the covariates. See, for

example, Zhang (2010) and Belloni, Chernozhukov, and Hansen (2014b).

3 An Iterated Multiple Testing Approach

The standard approach to dealing with the problem of identifying the signal variables from the

noise variables is to use penalised regression techniques such as the Lasso. In what follows, we

propose an alternative iterative approach which is inspired by the multiple testing literature,

although here we focus on controlling the probability of selecting the true model, the false

positive rate and the false discovery rate, rather than controlling the size of the union of the

multiple tests that are being carried out. We refer to this procedure as One Covariate at a

Time Multiple Testing (OCMT). The need for an iterative scheme arises due to the possibility

of hidden signal discussed in the previous section that arises when θi = 0 even though βi 6= 0.

We call such signal variables hidden signals.

Suppose we have T observations on yt and the n covariates, xit, for i = 1, 2, ..., n; t =

1, 2, ..., T . In the first stage we consider the n bivariate regressions of yt on a constant and xit,

for i = 1, 2, ..., n,

yt = ci,(1) + φi,(1)xit + eit,(1), t = 1, 2, ..., T, (6)

where φi,(1) = θi/σii and θi is defined in (4). Denote the t-ratio of φi,(1) in this regression by

tφ̂T,i,(1), and note that

tφ̂i,(1) =
φ̂T,i,(1)

s.e.
(
φ̂T,i,(1)

) =
T−1/2x′iM (0)y

σ̂i,(1)

√
x′iM (0)xi

, (7)

where xi = (xi1, xi2, ..., xiT )′, y = (y1, y2, ..., yT )′, φ̂T,i,(1) =
(
x′iM (0)xi

)−1
x′iM (0)y, σ̂2

i,(1) =

e′i,(1)ei,(1)/T , ei,(1) = M i,(0)y, M i,(0) = IT −X i,(0)(X
′
i,(0)X i,(0))

−1X ′i,(0), X i,(0) = (xi, τ T ),

M (0) = IT − τ Tτ ′T/T , and τ T is a T × 1 vector of ones. φ̂T,i,(1) denotes the OLS estimator

of φi,(1). In future, if there is no confusion we will suppress the T subscript to simplify

notation. The first stage multiple testing estimator of I (βi 6= 0) is given by ̂I(1) (βi 6= 0) =

I
[∣∣∣tφ̂i,(1)∣∣∣ > cp (n, δ)

]
, for i = 1, 2, ..., n, where cp(n, δ) is a ‘critical value function’defined by

cp (n, δ) = Φ−1

(
1− p

2f (n, δ)

)
, (8)

where Φ−1 (.) is the inverse of standard normal distribution function, f (n, δ) = cnδ for some

positive constants δ and c, and p (0 < p < 1) is the nominal size of the individual tests to be

set by the investigator. We will refer to δ as the critical value exponent.
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The choice of the critical value function, cp (n, δ), is important since it allows the inves-

tigator to relate the size and power of the selection procedure to the inferential problem in

classical statistics, with the modification that p (type I error) is now scaled by a function of

the number of covariates under consideration. As we shall see, the OCMT procedure applies

irrespective of whether n is small or large relative to T , so long as T = 	 (nκ1), for any finite

κ1 > 0. This follows from result (i) of Lemma 2, which establishes that c2
p (n, δ) = O [δ ln (n)].

It is also helpful to bear in mind that, using (ii) of Lemma 2,

exp

[
−
κc2

p (n, δ)

2

]
= 	

(
n−δκ

)
, (9)

and cp (n, δ) = o
(
TC0

)
, for all C0 > 0, assuming there exists κ1 > 0, such that T = 	 (nκ1).

If other deterministic terms, besides the constant, were considered they could be included in

the definition of the orthogonal projection matrixM (0) that filters out these effects. Similarly,

if some variables were a priori known to be signals, then they could also be included in the

definition of M (0). The multiple testing method can easily accommodate both possibilities,

while alternative approaches, such as Lasso, may not readily allow for such conditioning.

Covariates for which ̂I(1) (βi 6= 0) = 1 are selected as signals or pseudo-signals. Denote

the number of variables selected in the first stage by k̂on,T,(1), the index set of the selected

variables by So(1), and the T × k̂on,T,(1) observation matrix of the k̂
o
n,T,(1) selected variables by

Xo
(1). Further, let X(1) = (τ T ,X

o
(1)) = (x(1),1, ...,x(1),T )′, k̂n,T,(1) = k̂on,T,(1), S(1) = So(1) and

N(1) = {1, 2, ..., n} \ S(1). In stages j = 2, 3, ..., we consider the n − k̂n,T,(j−1) regressions of

yt on the variables in X(j−1) and, one at the time, xit for i ∈ N(j−1). We then compute the

following t-ratios

tφ̂T,i,(j) =
φ̂T,i,(j)

s.e.
(
φ̂T,i,(j)

) =
x′iM (j−1)y

σ̂i,(j)
√
x′iM (j−1)xi

, for i ∈ N(j−1), j = 2, 3, ..., (10)

where φ̂T,i,(j) = φ̂i,(j) =
(
x′iM (j−1)xi

)−1
x′iM (j−1)y, denotes the estimated conditional net ef-

fect of xit on yt in stage j, σ̂2
i,(j) = T−1e′i,(j)ei,(j),M (j−1) = IT−X(j−1)(X

′
(j−1)X(j−1))

−1X ′(j−1),

ei,(j) denotes the residual of the regression of y on X i,(j−1) =
(
xi,X(j−1)

)
. Regressors for

which ̂I(j) (βi 6= 0) = I
[∣∣∣tφ̂T,i,(j)∣∣∣ > cp (n, δ)

]
= 1, are then added to the set of already se-

lected signal variables from the previous stages. Denote the number of variables selected

in stage j by k̂on,T,(j), their index set by So(j), and the T × k̂on,T,(j) matrix of the k̂
o
n,T,(j) se-

lected variables in stage j by Xo
(j). Also let X(j) = (X(j−1),X

o
(j)) = (x(j),1,x(j),2, ...,x(j),T )′,

k̂n,T,(j) = k̂n,T,(j−1) + k̂on,T,(j), S(j) = S(j−1)∪So(j), and N(j) = {1, 2, ..., n}\S(j), and then proceed

to the next stage by increasing j by one. Note that k̂n,T,(j) is the total number of variables

selected up to and including stage j, φ̂T,i,(j) →p θi,(j)/σii, where θi,(j) is used in the remainder

of this paper to denote θi
(
x(j−1)

)
, introduced in (5), and note that θi,(1) is θi. The procedure
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stops when no regressors are selected at a given stage, say ̂n,T , in which case the final number

of selected variables will be given by k̂n,T = k̂n,T,(̂n,T−1).

It is important to characterise the number of stages needed for OCMT. To do this we

note that not all signal variables can be hidden and that once one conditions on the set of

signal variables that are not hidden, then there exists i such that θi(z) 6= 0, while θi = 0

and βi 6= 0, where z denotes the signal variables that are not hidden.2 This is proven in

Lemma 1. Using this lemma one can successively uncover all hidden signals. We denote by

P the number of stages that need to be considered to uncover all hidden signals. Its true

population value is denoted by P0. This is defined as the index of the last stage where OCMT

finds further signals (or pseudo-signals), assuming that Pr[|tφ̂i,(j)| > cp (n, δ) |θi,(j) 6= 0] = 1

and Pr[|tφ̂i,(j)| > cp (n, δ) |θi,(j) = 0] = 0, for all variables, indexed i and OCMT stages, indexed

j. Of course, these probabilities do not take the values 1 and 0 respectively, in small samples,

but we will handle this complication later on. Then, the following proposition, proven in

subsection A.1 of the Appendix, using Lemma 1, provides an upper limit for P0.

Proposition 1 Suppose that yt, t = 1, 2, ..., T , are generated according to (1), with βi 6= 0

for i = 1, 2, ..., k, and that Assumption 1 holds. Then, there exists j, 1 ≤ j ≤ k, for which

θi,(j) 6= 0, and the population value of the number of stages required to select all the signals,

denoted as P0, satisfies 1 ≤ P0 ≤ k.

Example 1 As an illustration of Proposition 1 consider the case where k = 2, x1t and x2t

are signal variables (hence β1 6= 0 and β2 6= 0) and the remaining n − 2 variables in xnt are

noise variables. Then θ1 = β1σ11 + β2σ12 and θ2 = β2σ22 + β1σ12, and θi = 0, for i > 2. Now

if θ1 = 0, then β1 = −β2σ12
σ11

and θ2 = β2

(
σ22 − σ212

σ11

)
which can only be zero if the two signals

are perfectly correlated. This is disallowed by Assumption 1. Furthermore, suppose that x2t

is selected in the first stage of OCMT, then it follows that once we condition on x2t the net

effect of x1t, denoted by θ1,(2) will be equal to β1σ11 which is non-zero by assumption.

In finite samples, when no variables are selected in stage j, then stage j−1 will be denoted

by P̂n,T , the estimator of P0. So

P̂n,T = min
j

{
j :

n∑
i=1

̂I(j) (βi 6= 0) = 0

}
− 1, and ̂I (βi 6= 0) =

∑P̂n,T
j=1

̂I(j) (βi 6= 0). (11)

In practice, P̂n,T is likely to be small, since the occurrence of hidden signals (zero signal net

effects) is less plausible, and all signals with nonzero θ will be picked up (with probability

tending to one) in the first stage. Stopping after the first stage tends to improve the small

sample performance of the OCMT approach, investigated in Section 5, only marginally when

2Note that z may contain principal components or other estimates of common effects as well as covariates
that investigator believes must be included.
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no hidden signals are present. Thus, allowing P̂n,T > 1, using the stopping rule defined above,

does not significantly deteriorate the small sample performance when hidden signal variables

are absent, while it picks-up all hidden signal variables with probability tending to one. Since

the possibility of hidden signal variables cannot be ruled out in practice, we focus on the

iterated version.

In a final step, the regression model is estimated by running the ordinary least squares

(OLS) regression of yt on all selected covariates, namely the regressors xit for which ̂I (βi 6= 0) =

1, over all i = 1, 2, ..., n. Accordingly, the OCMT estimator of βi, denoted by β̃i, is then given

by

β̃i =

{
β̂

(k̂n,T )
i , if ̂I (βi 6= 0) = 1

0, otherwise
, for i = 1, 2, ..., n, (12)

where β̂(k̂n,T )
i is the OLS estimator of the coeffi cient of the ith variable in a regression that

includes all the covariates for which ̂I (βi 6= 0) = 1, and a constant term.

Remark 1 It is important to emphasise the role played by the critical value exponent, δ, in
the OCMT procedure, as a means to ensure that noise variables are not selected. Its value

can differ in various OCMT stages and, in fact, we will analyse OCMT under such a setting

where one value of δ is used in the first stage, while another (denoted by δ∗) in subsequent

stages. In particular, while δ > 1 is a theoretically valid choice for the first stage of OCMT,

subsequent stages of the procedure require δ∗ > 2 for the full set of our theoretical results to

hold. Henceforth, we will assume that δ∗ > δ to simplify the analysis.

We investigate the asymptotic properties of the OCMT procedure and the associated

OCMT estimators, β̃i, for i = 1, 2, ..., n. To this end we consider support recovery statistics

used in the Lasso literature, namely the true positive rate, and the false positive rate, defined

by

TPRn,T =

∑n
i=1 I

[
̂I (βi 6= 0) = 1 and βi 6= 0

]
∑n

i=1 I(βi 6= 0)
, (13)

FPRn,T =

∑n
i=1 I

[
̂I (βi 6= 0) = 1, and βi = 0

]
∑n

i=1 I(βi = 0)
, (14)

and the false discovery rate (if
∑n

i=1
̂I (βi 6= 0) > 0 ) defined by3

FDRn,T =

∑n
i=1 I

[
̂I (βi 6= 0) = 1, and βi = 0

]
∑n

i=1
̂I (βi 6= 0)

. (15)

3In cases where
∑n

i=1
̂I (βi 6= 0) = 0, we set FDRn,T= 0. Alternatively, one could re-define FDRn,T by

replacing the denominator of (15) by 1+
∑n

i=1
̂I (βi 6= 0), without any material difference to the theoretical

results.
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We also consider the residual norm of the selected model, defined by

Fũ = T−1

T∑
t=1

ũ2
t , (16)

and the coeffi cient norm of the selected model, defined by

Fβ̃ = ||β̃n−βn || =
[∑n

i=1

(
β̃i − βi

)2
]1/2

, (17)

where ũt = yt − â − β̃′nxnt, β̃n = (β̃1, β̃2, ..., β̃n)′, β̃i, for i = 1, 2, ..., n are given by (12),

βn = (β1, β2, ..., βn)′, and â represents the OLS estimator of the constant term in the final

regression.

We consider the following assumptions:

Assumption 2 The error term, ut, in DGP (1) is a martingale difference process with respect
to Fut−1 = σ (ut−1, ut−2, ..., ), with zero mean and a constant variance, 0 < σ2 < C <∞. Each
of the n covariates considered by the researcher, collected in the set Snt = {x1t, x2t, ..., xnt}, is
independently distributed of the errors ut′ , for all t and t′.

Assumption 3 Let Fxit = σ (xit, xi,t−1, ....), where xit, for i = 1, 2, ..., n, is the i-th covariate

in the set Snt considered by the researcher. Define Fxnt = ∪nj=k+k∗+1Fxjt, Fxot = ∪k+k∗

i=1 Fxjt, and
Fxt = Fxnt ∪ Fxot . Then, xit, i = 1, 2, ..., n, are martingale difference processes with respect to

Fxt−1. xit is independent of xjt′ for i = 1, 2, ..., k+ k∗, j = k+ k∗ + 1, k+ k∗ + 2, ..., n, and for

all t and t′, and E
[
xitxjt − E (xitxjt)

∣∣Fxt−1

]
= 0, for i, j = 1, 2, ..., n, and all t.

Assumption 4 There exist suffi ciently large positive constants C0, C1, C2 and C3 and sx, su >

0 such that the covariates Snt = {x1t, x2t, ..., xnt} satisfy

sup
i,t

Pr (|xit| > α) ≤ C0 exp (−C1α
sx) , for all α > 0, (18)

and the errors, ut, in DGP (1) satisfy

sup
t

Pr (|ut| > α) ≤ C2 exp (−C3α
su) , for all α > 0. (19)

Assumption 5 Consider the pair {xt, q·t}, for t = 1, 2, ..., T , where q·t = (q1,t, q2,t, ..., qlT ,t)
′

is an lT × 1 vector containing a constant and a subset of Snt, and xt is a generic element of
Snt that does not belong to q·t. It is assumed that E (q·txt) and Σqq = E (q·tq

′
·t) exist and Σqq

is invertible. Define γqx,T = Σ−1
qq

[
T−1

∑T
t=1 E (q·txt)

]
and

ux,t,T =: ux,t = xt − γ ′qx,Tq·t. (20)

All elements of the vector of projection coeffi cients, γqx,T , are uniformly bounded and only a

finite number of the elements of γqx,T are different from zero.
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Assumption 6 The number of the true regressors in DGP (1), k, is finite, and their slope
coeffi cients could change with T , such that for i = 1, 2, ..., k, βi,T = 	

(
T−ϑ

)
, for some 0 ≤

ϑ < 1/2.

The above assumption allows for the possibility of weak signals whose coeffi cients, βi,T ,

for i = 1, 2, ..., k, decline with the sample size, T , at a suffi ciently slow rate. But to simplify

the notations subscript T is dropped subsequently, and it is understood that the slope and

net effect coeffi cients can change with the sample size according to Assumption 6. Given the

DGP (1), it is helpful to write the conditional net effect coeffi cient as

θi,(j) =
k∑
`=1

β`σi`
(
x(j−1)

)
= E

(
T−1x′iM (j−1)Xkβk

)
= E

(
T−1x′iM (j−1)y

)
. (21)

Under Assumption 6, and given that σi`
(
x(j−1)

)
is bounded, θi,(j) are, for a suitable j, either

bounded away from 0, or declining to 0 but not faster than the rate 	
(
T−ϑ

)
for some 0 ≤

ϑ < 1/2 introduced in Assumption 6. Using θi,(j), we can refine our concept of pseudo-signal

variables as variables with θi,(j) = 	
(
T−ϑ

)
for i = k + 1, k + 2, ..., k + k∗, some 0 ≤ ϑ < 1/2

and some 1 ≤ j ≤ P0.

Before presenting our theoretical results we provide some remarks on the pros and cons

of our assumptions as compared to the ones typically assumed in the penalised and boost-

ing literature. The signal and pure noise variables are allowed to be correlated amongst

themselves; namely, no restrictions are imposed on σij for i, j = 1, 2, ..., k, and on σij for

i, j = k + k∗ + 1, k + k∗ + 2, ..., n. Also, signal and pseudo-signal variables are allowed to

be correlated; namely, σij could be non-zero for i, j = 1, 2, ..., k + k∗. Therefore, signal and

pseudo-signal variables as well as pure noise variables can contain common factors. But under

Assumption 3, E [xit − E (xit) |xjt] = 0 for i = 1, 2, ..., k and j = k + k∗ + 1, k + k∗ + 2, ..., n.

This implies that, if there are common factors, they cannot be shared between signal/pseudo-

signal variables and noise variables, although one can condition on such factors, as we do in

our empirical illustration.4

The exponential bounds in Assumption 4 are suffi cient for the existence of all moments

of covariates, xit, and errors, ut. It is very common in the literature to assume some form of

exponentially declining bound for probability tails for ut and xit where appropriate. Such an

assumption can take the simplified form of assuming normality, as in, e.g., Zheng, Fan, and

Lv (2014).

4Note that our theory allows for conditioning on observed common factors. But when factors are unobserved
they need to be replaced by their estimates using, for example, principal components. A formal argument that
the associated estimation error is asymptotically negligible involves additional technical complications, and
requires deriving exponential inequalities for the quantities analysed in Theorem 1 of Bai and Ng (2002) and
Lemma A1 of Bai and Ng (2006), and then assuming that

√
T/n→ 0 as n, T →∞. While such a derivation

is clearly feasible under appropriate regularity conditions, a formal analysis is beyond the scope of the present
paper.
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Assumption 6 is a set of regularity conditions. It allows for small βi and θi,(j), for a suitable

j, as long as they are not too small - i.e. they can tend to zero but at a rate slower than T−1/2.

Remark 3 discusses further how this condition enters the theoretical results. Assumption 5 is

a technical condition that is required for some results derived in the Appendix, which consider

a more general multiple regression context where subsets of regressors in xnt are included in

the regression equation. If Q = (q·1, q·2, ..., q·T )′ = τ T = (1, 1, ..., 1)′, then Assumption 5 is

trivially satisfied given the rest of the assumptions. Then, γqx,T = µx,T = 1
T

∑T
t=1E(xt) and

ux,t,T = xt − µx,T .
It is important to place our assumptions in the context of the existing literature. In many

analyses of alternative methods, such as penalised regression, it is usual to assume that the

covariates, xnt, are either deterministic or stochastic but distributed as IID random variables.

(See, for example, Buhlmann and van de Geer (2011) or Zheng, Fan, and Lv (2014) for recent

contributions). Our martingale difference assumption relaxes the IID assumption somewhat.

Further relaxation of this assumption is discussed in Section 4.

Regarding our assumptions on the correlation between signal and pseudo-signal covariates,

we allow for noise variables to have a common factor, and do not require the covariance

matrix of xnt to be sparse. To identify the signal variables we do need to assume the sparsity

of correlation between the signal and non-signal variables as captured by the presence of

k∗ pseudo-signal variables. The OCMT approach can identify the k signal and up to k∗

pseudo-signal variables with a probability tending towards 1. The selected regressors are

then considered in a multiple regression and the relevant regression coeffi cients are estimated

consistently, under mild restrictions on k∗ such as k∗ = o(T 1/4). In contrast, a number of

crucial issues arise in the context of Lasso, or more generally when Lq penalty functions with

0 ≤ q ≤ 1 are used. Firstly, it is customary to assume a framework of fixed-design regressor

matrices, where in many cases a generalisation to stochastic regressors is not straightforward,

requiring conditions such as the spark condition of Donoho and Elad (2003) and Zheng, Fan,

and Lv (2014). Secondly, a frequent condition for Lasso to be a valid variable selection method

is the irrepresentable condition which bounds the maximum of all regression coeffi cients, in

regression of any noise or pseudo-signal variable on the signal variables, to be less than one

in the case of normalised regressor variables. See, for example, Section 7.5 of Buhlmann and

van de Geer (2011).

A further issue relates to the fact that most results for penalised regressions essentially

take as given the knowledge of the tuning parameter associated with the penalty function,

in order to obtain oracle results. In practice, cross-validation is recommended to determine

this parameter but theoretical results on the properties of such cross-validation schemes are

rare. Finally, it is worth commenting on the assumptions underlying boosting as presented

in Buhlmann (2006). There, it is assumed that the regressors are iid and bounded while few

restrictions are placed on their correlation structure. Nevertheless, it is important to note
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that the aim of boosting in that paper is to obtain a good approximation to the regression

function and not to select the true regressors.

4 Main Theoretical Results

We now present the main theoretical results using lemmas established in the Appendix. The

key is Lemma 10, which provides sharp bounds for Pr
[∣∣∣tφ̂i,(j)∣∣∣ > cp (n, δ) |θi,(j) 6= 0

]
. Since we

wish to allow for the possibility that θi = 0 if βi 6= 0, the results in the appendix are obtained

for t-ratios in multiple regression contexts where subsets of regressors in xnt are included in

the regression equation. It is instructive to initially consider the properties of the first step of

the iterative OCMT as it is simpler and covers the dominant case where θi 6= 0 if βi 6= 0. Our

results will consequently and formally be generalised for the full iterative method. We present

results for TPRn,T , FPRn,T , FDRn,T , the probability of selecting the pseudo-true model and

parameter estimate error and regression error norms. Below we sketch the results we obtain

using the first step of OCMT as a vehicle, for ease of exposition, while the formal analysis is

provided in Theorems 1 and 2 and proven in Section A.2 of the Appendix.

We first examine TPRn,T defined by (13), under the assumption that θi 6= 0 if βi 6= 0.

Note that

TPRn,T =

∑n
i=1 I

[
̂I (βi 6= 0) = 1 and βi 6= 0

]
∑n

i=1 I(βi 6= 0)
=

∑k
i=1 I

[
̂I (βi 6= 0) = 1 and βi 6= 0

]
k

.

Since the elements in the above summations are 0 or 1, then taking expectations we have∑k
i=1E

{
I
[

̂I(1) (βi 6= 0) = 1 and θi 6= 0
]}

k
=

∑k
i=1 Pr

[∣∣∣tφ̂i,(1)∣∣∣ > cp (n, δ) |θi 6= 0
]

k
.

Suppose there exists κ1 > 0 such that T = 	 (nκ1). Using (A.108) of Lemma 10, where the ma-

trix Q, referred to in the statement of the Lemma, is set equal to τ T , and noting that cp (n, δ)

is given by (8), 1−Pr
[∣∣∣tφ̂i,(1)∣∣∣ > cp (n, δ) |θi 6= 0

]
= O

[
exp

(
−C2T

C3
)]

= O
[
exp

(
−C2n

C3κ1
)]
,

for some C2, C3 > 0, where as defined by (21), θi = θi,(1) = E (x′iM τy/T ). Using P (A) =

1− P (Ac), where Ac denotes the complement of event A, we obtain

Pr
[∣∣∣tφ̂i,(1)∣∣∣ ≤ cp (n, δ) |θi 6= 0

]
= O

[
exp

(
−C2T

C3
)]
, (22)

and noting that θi 6= 0 for all signals i = 1, 2, ..., k, then under Assumption 6 we have

k−1

k∑
i=1

Pr
(∣∣∣tφ̂i,(1)∣∣∣ ≤ cp (n, δ) |βi 6= 0

)
= k−1

k∑
i=1

O
[
exp

(
−C2T

C3
)]
. (23)

Consider now FPRn,T defined by (14). Again, note that the elements of FPRn,T are

either 0 or 1 and hence |FPRn,T | = FPRn,T . Taking expectations of (14), and assuming
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θi = 	
(
T−ϑ

)
, for i = k + 1, k + 2, ..., k + k, and some 0 ≤ ϑ < 1/2, we have

∑n
i=k+1 Pr

[∣∣∣tφ̂i,(1)∣∣∣ > cp (n, δ) |βi = 0
]

n− k =

 ∑k+k∗

i=k+1 Pr
[∣∣∣tφ̂i,(1)∣∣∣ > cp (n, δ) |θi 6= 0

]
+∑n

i=k+k∗+1 Pr
[∣∣∣tφ̂i,(1)∣∣∣ > cp (n, δ) |θi = 0

] 
n− k ,

where, as before, θi = θi,(1) = E (x′iM τy/T ) (see (21)). Using (A.108) of Lemma 10 and as-

suming there exists κ1 > 0 such that T = 	 (nκ1), we have k∗−
∑k+k∗

i=k+1 Pr
[∣∣∣tφ̂i,(1)∣∣∣ > cp (n, δ) |θi 6= 0

]
=

O
[
exp

(
−C2T

C3
)]
, for some finite positive constants C2 and C3. Moreover, (A.107) of Lemma

10, which holds uniformly over i, given the uniformity of (18) and (19) of Assumption 4, implies

that for any 0 < κ < 1 there exist finite positive constants C0 and C1 such that

n∑
i=k+k∗+1

Pr
[∣∣∣tφ̂i,(1)∣∣∣ > cp (n, δ) |θi = 0

]
≤

n∑
i=k+k∗+1

{
exp

[−κc2
p (n, δ)

2

]
+ exp

(
−C0T

C1
)}
.

(24)

Using these results we obtain∑n
i=k+1 Pr

[∣∣∣tφ̂i,(1)∣∣∣ > cp (n, δ) |βi = 0
]

n− k =

(
k∗

n− k

)
+O

{
exp

[
−
κc2

p (n, δ)

2

]}
+O

[
exp(−C0T

C1)
]

+O
[
(n− k)−1 exp

(
−C2T

C3
)]
. (25)

Next, we consider the probability of choosing the pseudo-true model. We denote a selected

regression model as a pseudo-true model if it contains the (true) regressors xit, i = 1, 2, ..., k,

and none of the noise variables, xit, i = k + k∗ + 1, k + k∗ + 2, ..., n. The models in the set

may contain one or more of the pseudo-signal variables, xit, i = k + 1, k + 2, ..., k + k∗. We

refer to all such regressions as the set of pseudo-true models. So, the event of choosing the

pseudo-true model is given by

A0 =

{
k∑
i=1

̂I (βi 6= 0) = k

}
∩
{

n∑
i=k+k∗+1

̂I (βi 6= 0) = 0

}
. (26)

Theorem 1 states that, under certain conditions, Pr (A0)→ 1. The above discussion relates

mainly to the first step of OCMT. The results for the general case are given in the following

theorem, proven in Subsection A.2.1 of the Appendix. Given our relative n/T rate assumption,

all rate results in our analysis are reported in terms of n for presentational consistency and

ease of comprehension. They could, of course, be reported in terms of T instead.

Theorem 1 Consider the DGP (1) with k signal variables, k∗ pseudo-signal variables, and
n− k− k∗ noise variables, and suppose that Assumptions 1-4 and 6 hold, Assumption 5 holds
for all pairs (xit,X(j−1)), i ∈ N(j−1), j = 1, 2, ..., where j denotes the stage of the OCMT

procedure, and X(j−1), and N(j−1) are defined in Section 3. cp (n, δ) is given by (8) with
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0 < p < 1 and let f (n, δ) = cnδ, for the first stage of OCMT and f (n, δ∗) = cnδ
∗
, for

subsequent stages, for some c > 0, δ∗ > δ > 0. n, T → ∞, such that T = 	 (nκ1), for some

κ1 > 0, and k∗ = 	(nε) for some positive ε < min {1, κ1/3}. Then, for any 0 < κ < 1, and

for some constant C0 > 0,

(a) the probability that the number of stages in the OCMT procedure, P̂n,T , defined by (11),

exceeds k is given by

Pr
(
P̂n,T > k

)
= O

(
n1−κδ∗)+O

(
n1−κ1/3−κδ

)
+O

[
exp

(
−nC0κ1

)]
, (27)

(b) the probability of selecting the pseudo-true model, A0, defined by (26), is given by

Pr (A0) = 1 +O
(
n1−δκ)+O

(
n2−δ∗κ)+O

(
n1−κ1/3−κδ

)
+O

[
exp

(
−nC0κ1

)]
, (28)

(c) for the True Positive Rate, TPRn,T , defined by (13), we have

E |TPRn,T | = 1 +O
(
n1−κ1/3−κδ

)
+O

[
exp

(
−nC0κ1

)]
, (29)

and if δ > 1 − κ1/3, then TPRn,T →p 1; for the False Positive Rate, FPRn,T , defined

by (14), we have

E |FPRn,T | =
k∗

n− k+O
(
n−κδ

)
+O

(
n1−κ1/3−κδ

)
+O

(
n1−κδ∗)+O (nε−1

)
+O

[
exp

(
−nC0κ1

)]
,

(30)

and if δ > min {0, 1− κ1/3}, and δ∗ > 1, then FPRn,T →p 0. For the False Discovery

Rate, FDRn,T , defined in (15), we have

FDRn,T →p
k∗

k∗ + k
, (31)

if
∑n

i=1
̂I (βi 6= 0) > 0, δ > max {1, 2− κ1/3}, δ∗ > 2, and θi,(j) = 	

(
T−ϑ

)
for i =

k + 1, k + 2, ..., k + k∗, some 0 ≤ ϑ < 1/2 and some 1 ≤ j ≤ P0.

(d) For the residual norm of the selected model, Fũ, defined by (16), we have

E (Fũ)→ σ2, if δ > 1 and δ∗ > 2. (32)

Remark 2 Although our proof requires that 0 < κ < 1, in practice it suffi cient to set κ to
be arbitrarily close to, but less than, unity. Also, κ1 can be arbitrarily small which allows n

to rise much faster than T . The condition 0 ≤ ε < min {1, κ1/3} ensures that k∗/n → 0 and

k∗ = o(T 1/3). Finally, it is clear from (28) that if δ > 1 and δ∗ > 2, Pr (A0) → 1, as n and

T →∞.
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Remark 3 Assumption 6 allows for weak signals. In particular, we allow slope coeffi cients
of order 	

(
T−ϑ

)
, for some 0 ≤ ϑ < 1/2. Then, by (A.113) and (A.114) of Lemma 10, it

is seen that such weak signals can be picked up at no cost, in terms of rates, with respect to

the exponential inequalities that underlie all the theoretical results. In particular, the power of

the OCMT procedure in selecting the signal xit rises with
√
T
∣∣θi,(j)∣∣ /σei,(T )σxi,(T ), so long as

cp(n,δ)√
T |θi,(j)| → 0, as n and T →∞, where σei,(T ) and σxi,(T ) are defined by (A.105), replacing e,

x, and Q by ei, xi, andM (j−1), respectively. When this ratio is low, a large T will be required

for the OCMT approach to select the ith signal. This condition is similar to the so-called

‘beta-min’condition assumed in the penalised regression literature. (See, for example, Section

7.4 of Buhlmann and van de Geer (2011) for a discussion.)

Remark 4 OCMT selects signals as well as pseudo-signals with nonzero net effect coeffi cients,
hence the probability limit of FDRn,T can be nonzero when pseudo-signals are present (k∗ 6= 0).

If FDR per se was the main objective of the analysis, then, a post-OCMT selection, using, for

example, the Schwarz information criterion, could be considered to separate the signals from

the pseudo-signals. However, when the norm of slope coeffi cients or the in-sample fit of the

model is of main concern, then, under appropriate conditions on the rate at which k∗ expands

with n, the inclusion of pseudo-signals is asymptotically innocuous, as shown in Theorem 2

below.

Consider now the coeffi cient norm of the selected model, Fβ̃, defined in (17). We assume

the following additional regularity condition.

Assumption 7 Let S denote the T × lT observation matrix on the lT regressors selected at
any one of the P̂n,T stages of the OCMT procedure. Then,

1. Let Σss = E (S′S/T ) with eigenvalues denoted by µ1 ≤ µ2 ≤ ... ≤ µlT . Let µi = O (lT ),

i = lT −M + 1, lT −M + 2, ..., lT , for some finite M , and sup1≤i≤lT−M µi < C0 <∞, for
some C0 > 0. In addition, inf1≤i<lT µi > C1 > 0, for some C1 > 0.

2. E
[(

1− ‖Σ−1
ss ‖F

∥∥∥Σ̂ss −Σss

∥∥∥
F

)−4
]

= O (1), where Σ̂ss = S′S/T .

Theorem 2 Consider the DGP defined by (1), and the coeffi cient norm of the selected model,
Fβ̃ defined in (17). Suppose that Assumptions 1-4 and 6-7 hold, Assumption 5 holds for the

pairs (xit,X(j−1)), i ∈ N(j−1), j = 1, 2, ..., where j denotes the stage of the OCMT procedure,

and X(j−1), N(j−1) are defined in Section 3, and k∗ (the number of pseudo signals) is of order

	 (nε) for some positive ε. Let cp (n, δ) defined by (8), 0 < p < 1 and let f (n, δ) = cnδ, for the

first stage of OCMT and f (n, δ∗) = cnδ
∗
, for subsequent stages, for some c > 0, δ∗ > δ > 1

and δ∗ > 2. Denote the maximum number of selected regressors that is allowed to enter the
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final stage regression by lmax and suppose that lmax = 	 (nκ2), for some κ2 > 0. Let β̃n be

the estimator of βn = (β1, β2, ..., βn)′ in the final regression with at most lmax regressors. In

addition, T = 	 (nκ1), for some κ1 > 0. Assume that ε < min {κ2, κ1/3}. Then, for any
0 < κ < 1, and some constant C0 > 0, we have

E
(
Fβ̃
)

=O
(
n2ε−κ1/2

)
+O

(
n1−δκ)+O

(
n2−δ∗κ)+O

(
n1−δκ+2κ2−κ1/2

)
+O

(
n2−δ∗κ+2κ2−κ1/2

)
+O

[
exp

(
−nC0κ1

)]
. (33)

As can be seen from the above theorem, (33) requires stronger conditions than those

needed for the proof of the earlier results in Theorem 1. In particular, the two conditions

in Assumption 7 are needed for controlling the rate of convergence of the inverse of sample

covariance matrix of the selected regressors. The first condition relates to the eigenvalues of

the population covariance of the selected regressors, denoted by Σss, and aims to control the

rate at which ‖Σ−1
ss ‖F grows. The second condition bounds the expectation of

(1− ‖Σ−1
ss ‖F ||Σ̂ss −Σss||F )−4, which is needed for our derivations. Under our conditions on

the number of selected regressors, ‖Σ−1
ss ‖F E(||Σ̂ss −Σss||F ) = o(1), but this is not suffi cient

for E[(1−‖Σ−1
ss ‖F ||Σ̂ss−Σss||F )−4] = O (1), so an extra technical assumption is needed. Note

that E(Fβ̃) is related to, and has the same rate as, the RMSE of β̃n. It is possible to easily

obtain a rate for E(F 2
β̃
), i.e. the MSE of β̃n, which is the square of the rate given in (33). We

focus on E(Fβ̃) to avoid more complex regularity conditions than those given in Assumption

7.

It is important to provide intuition on why we can get a consistency result for the coeffi cient

norm of the selected model even though the selection process includes pseudo-signal variables.

There are two reasons for this. First, since OCMT procedure selects all the signals with

probability approaching one as n, T → ∞, then the coeffi cients of the additionally selected
regressors (whether pseudo-signal or noise) will tend to zero with T . Second, restricting

k∗ implies that the inclusion of pseudo-signal variables can be accommodated since their

estimated coeffi cients will tend to zero and the variance of these estimated coeffi cients will

be controlled. Some noise variables may also be selected, but we restrict the overall number

of regressors that enter the final regression by using a bound, lmax. This bound applies only

at the final regression stage after the OCMT selection procedure. In the unlikely event that

k̂n,T + 1 > lmax, k̂n,T − lmax − 1 variables are dropped ex post. The proof of Theorem 2 does

not depend on which of the variables are dropped. In practice, this could be done by dropping

selected regressors with the lowest t-statistics, in absolute value, over all OCMT stages. The

bound is assumed, to allow consideration of smaller values of δ. This follows if we note that κ2

can be set to 1 which would imply that the restriction is not binding but, then, larger values

of δ would be required for norm consistency. The Monte Carlo evidence in this paper suggests

that the number of noise variables selected is well controlled by multiple testing and there is

no need to impose a bound in small samples. It is also worth noting that the result (32) on
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the residual norm of the selected model does not require Assumption 7. This is because fitted

values are defined even if the sample covariance of the selected regressors is not invertible.

In the case when the net effect coeffi cients of signal variables in the first stage of OCMT

satisfy θi = 	
(
T−ϑ

)
, if βi 6= 0, for some 0 ≤ ϑ < 1/2 and for i = 1, 2, ..., k, then P0 = 1,

and further iterations (j > 1) of the OCMT will not be required. Consequently, the results

of Theorems 1 and 2 can be simplified and obtained under a less restrictive set of conditions.

Under P0 = 1, and assuming that the conditions of Theorem 1 hold, with the exception of the

condition on ε which could lie in [0, 1), we obtain the following results, established in Section

A.2.4 in the Appendix. The probability of selecting the pseudo-true model is given by

Pr (A0) = 1 +O
(
n1−δκ)+O

[
n exp

(
−nC0

)]
, (34)

and Pr (A0)→p 1, if δ > 1. For the support recovery statistics, we have

E |TPRn,T | = 1 +O
[
exp

(
−nC0

)]
, and (35)

E |FPRn,T | =
k∗

n− k +O
(
n−δκ

)
+O

(
nε−1

)
+O

[
exp(−nC0)

]
. (36)

Hence, if δ > 0, then TPRn,T →p 1, and FPRn,T →p 0. In addition, if
∑n

i=1
̂I (βi 6= 0) > 0,

δ > 1, and θi = 	
(
T−ϑ

)
, for i = k+ 1, k+ 2, ..., k+k∗, and some 0 ≤ ϑ < 1/2, then the result

on the false discovery rate, (31), hold. The result on the residual norm of the selected model,

(32), also hold, if δ > 1. Further, if the conditions of Theorem 2 hold with the exception of

the condition on ε, which now could lie in [0, 1), we have

E
∥∥Fβ̃∥∥ = O

(
n2ε−κ1/2

)
+O

(
n1+2κ2−κ1/2−κδ

)
+O

(
n1−κδ)+O

[
exp

(
−nC0

)]
. (37)

Theorems 1 and 2, and the rest of the results above relate to the first maintained assump-

tion about the pseudo-signal variables where at most k∗ of them have non-zero θi,(j) for some

j. This result can be extended to the case where potentially all variables have non-zero θi,

as long as θi’s are absolutely summable. Two leading cases considered in the literature are to

assume that there exists a (possibly unknown) ordering such that

θi = Ci%
i, for i = 1, 2, ..., n, and |%| < 1, (38)

for a given set of constants, Ci, with supi |Ci| <∞, or

θi = Cii
−γ, for i = 1, 2, ..., n, and for some γ > 0. (39)

The assumption that there is only a finite number of variables for which βi 6= 0, is retained.

The rationale for hidden signals is less clear for these cases, since rather than a discrete

separation between variables with zero and non-zero θi, we consider a form of continuum that

unites these two classes of variables. Essentially, we have no separation in terms of signal
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variables (or pseudo-signal variables) and noise variables, since there are no noise variables.

Therefore, the relevance of the iterative OCMT scheme is less clear. As a result, we focus on

the first stage of OCMT (j = 1) and provide some results for the settings implied by (38) and

(39).

Theorem 3 Consider the DGP defined by (1), suppose that Assumptions 1-4 and 6 hold,
Assumption 5 holds for the pairs (xit, 1), i = 1, 2, ..., n, and condition (38) holds. Moreover,

let cp (n, δ) be given by (8) with 0 < p < 1 and f (n, δ) = cnδ, for some c, δ > 0, and suppose

there exists κ1 > 0 such that T = 	 (nκ1). Consider the variables selected at the first stage of

the OCMT procedure. Then, for all ζ > 0, we have E |FPRn,T | = o(nζ−1) + O
[
exp(−nC0)

]
,

for some finite positive constant C0, where FPRn,T is defined by (14). If condition (39) holds

instead of condition (38), then, assuming γ > 1
2
κ2

1, we have FPRn,T →p 0.

An important assumption made so far is that noise variables are martingale difference

processes which could be quite restrictive in the case of time series applications. This assump-

tion can be relaxed. In particular, under the less restrictive assumption that noise variables are

exponentially mixing, it can be shown that all the theoretical results derived above hold. De-

tails are provided in Section B of the online theory Supplement. A further extension involves

relaxing the martingale difference assumption for the signal and pseudo-signal covariates. If we

are willing to assume that either ut is normally distributed or the covariates are deterministic,

then a number of results become available. The relevant lemmas for the deterministic case are

presented in Section D of the online theory Supplement. Alternatively, signal/pseudo-signal

regressors can be assumed to be exponentially mixing. In this general case, some results can

still be obtained. These are described in Section B of the online theory Supplement.

5 A Monte Carlo Study

We employ five different Monte Carlo (MC) designs that differ in the extent of correlation

across covariates, in the way θi,(j) and βi are related, and in the size of the βi coeffi cients.

5.1 Data-generating processes (DGPs)

In all five designs described below, we consider several options in generating the covariates.

We allow the covariates to be serially correlated and consider different degrees of correlations

across them. In addition, we also consider experiments with Gaussian and non-Gaussian

errors.
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5.1.1 Design I (zero correlations between signal and noise variables)

There are no pseudo-signal variables and all signal variables have θi 6= 0. yt is generated as:

yt = β1x1t + β2x2t + β3x3t + β4x4t + ςut, (40)

where ut ∼ IIDN (0, 1) in the Gaussian case, and ut = [χ2
t (2)− 2] /2 in the non-Gaussian

case, in which χ2
t (2) are independent draws from a χ2-distribution with 2 degrees of freedom,

for t = 1, 2, ..., T . We set β1 = β2 = β3 = β4 = 1 and consider the following alternatives ways

of generating xnt = (x1t, x2t, ..., xnt)
′:

DGP-I(a) Temporally uncorrelated and weakly collinear regressors: signal variables are
generated as xit = (εit + νgt) /

√
1 + ν2, for i = 1, 2, 3, 4, and noise variables are generated as

x5t = ε5t, xit = (εi−1,t + εit) /
√

2, for i > 5, where gt and εit are independent draws either

from N(0, 1) or from [χ2
t (2)− 2] /2, for t = 1, 2, ..., T, and i = 1, 2, ..., n. We set ν = 1, which

implies 50% pair-wise correlation among the signal variables.

DGP-I(b) Temporally correlated and weakly collinear regressors: Regressors are generated
as in DGP-I(a), but with εit = ρiεi,t−1 +

√
1− ρ2

i eit, in which eit ∼ IIDN (0, 1) or

IID [χ2
t (2)− 2] /2. We set ρi = 0.5 for all i.

DGP-I(c) Strongly collinear noise variables due to a persistent unobserved common factor:
signal variables are generated as xit = (εit + gt) /

√
2, for i = 1, 2, 3, 4, and noise variables are

generated as x5t = (ε5t + bift) /
√

3 and xit =
[
(εi−1,t + εit) /

√
2 + bift

]
/
√

3, for i > 5, where

bi ∼ IIDN (1, 1), ft = 0.95ft−1 +
√

1− 0.952vt, and vt, gt and εit are independent draws

from N (0, 1) or [χ2
t (2)− 2] /2.

DGP-I(d) Low or high pair-wise correlation of signal variables: Regressors are generated as
in DGP-I(a), but we set ν =

√
ω/ (1− ω), for ω = 0.2 (low pair-wise correlation) and 0.8

(high pair-wise correlation). This ensures that average correlation among the signal variables

is ω.

5.1.2 Design II (non-zero correlations between signal and noise variables)

We allow for pseudo-signal variables (k∗ > 0). The DGP is given by (40) and xnt is generated

as:

DGP-II(a) Two pseudo-signal variables: signal variables are generated as
xit = (εit + gt) /

√
2, for i = 1, 2, 3, 4, pseudo-signal are generated as x5t = ε5t + κx1t, and

x6t = ε6t + κx2t, and pure noise variables are generated as xit = (εi−1,t + εit) /
√

2, for i > 6,

where, as before, gt, and εit are independent draws from N (0, 1) or [χ2
t (2)− 2] /2. We set

κ = 1.33 (to achieve 80% correlation between the signal and the pseudo-signal variables).

DGP-II(b) All noise variables collinear with signals: xnt ∼ IID (0,Σx) with the elements

of Σx given by 0.5|i−j|, 1 ≤ i, j ≤ n. We generate xnt with Gaussian and non-Gaussian
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innovations. In particular, xnt = Σ1/2
x εt, where εt = (ε1t, ε2t, ..., εnT )′, and εit are generated

as independent draws from N (0, 1) or [χ2
t (2)− 2] /2.

5.1.3 Design III (zero net signal effects)

We consider designs that allow for some signal variables to have zero θ. yt is generated by

(40), xnt is generated as in DGP-I(a), and the slope coeffi cients for the signal variables in (40)

are selected so that θ4 = 0:

DGP-III The fourth signal variables has zero net effect: we set β1 = β2 = β3 = 1 and

β4 = −1.5 This implies θi 6= 0 for i = 1, 2, 3 and θi = 0 for i ≥ 4.

5.1.4 Design IV (zero net signal effects and pseudo-signal variables)

We allow for signal variables with zero θ as well as pseudo-signal variables with non-zero θ’s.

DGP-IV(a) We generate xnt in the same way as in DGP-II(a) which features two
pseudo-signal variables. We generate slope coeffi cients βi as in DGP-III to ensure θi 6= 0 for

i = 1, 2, 3, and θi = 0 for i = 4.

DGP-IV(b) We generate xnt in the same way as in DGP-II(b), where all noise variables
are collinear with signals. We set β1 = −0.875 and β2 = β3 = β4 = 1. This implies θi = 0 for

i = 1 and θi > 0 for all i > 1.

5.1.5 Design V (Many signal variables)

For this design the DGP (DGP-V) is given by

yt =
n∑
i=1

(
1

i

)2

xit + ςut, (41)

where xnt are generated as in design DGP-II(b), and ut is generated in the same way as

before. This design is inspired by the literature on approximately sparse models (Belloni,

Chernozhukov, and Hansen (2014b)).

Autoregressive processes are generated with zero starting values and 100 burn-in peri-

ods. ς is set so that R2 = 30%, 50% or 70% (on average). The sample combinations,

n = (100, 200, 300) and T = (100, 300, 500) are considered, and all experiments are carried

out using RMC = 2, 000 replications.

5.2 Variable selection methods

We consider six variable selection procedures, namely OCMT, Lasso, Adaptive Lasso (A-

Lasso), Hard thresholding, Sica, and boosting. The OCMTmethod is implemented as outlined

in Section 3, where cp (n, δ) is defined by (8) with f (n, δ) = nδ in the first stage and f (n, δ∗) =

nδ
∗
in the subsequent stages. We use p = 0.01, and in line with the theoretical derivations

21



we set δ = 1 and δ∗ = 2. An online Supplement provides results for other choices of p ∈
{0.01, 0.05, 0.1} and (δ, δ∗) ∈ {(1, 1.5) , (1, 2)}.5 It turns out that the choice of p is of second
order importance. Penalised regressions are implemented using the same set of possible values

for the penalisation parameter λ as in Zheng, Fan, and Lv (2014), and following the literature

λ is selected using 10-fold cross-validation. All methods are described in detail in an online

Supplement.

5.3 Monte Carlo results

Here we focus on the relative performance of Lasso, adaptive Lasso and OCMT methods, and

provide the full set of results for all experiments and all six variable selection procedures in an

online Supplement. We evaluate the small sample performance of individual methods, using

the true positive rate (TPR) defined by (13), the false positive rate (FPR) defined by (14),

the false discovery rate (FDR) defined by (15), the out-of-sample root mean square forecast

error (RMSFE), and the root mean square error of β̃ (RMSEβ̃).
6 We find that no method

uniformly outperforms in the set of experiments we consider. This is true for the full set of

methods (OCMT, Lasso, adaptive Lasso, Hard thresholding, Sica and Boosting) reported in

the Supplement. As a way of highlighting this point, in Table 1 we report results for DGP-I(d)

with ω = 0.2 and R2 = 30%, where Lasso clearly outperforms OCMT for T = 100 (the upper

left panel), and for DGP-III with R2 = 70%, where OCMT clearly dominates Lasso (the right

panel). For example, for n = T = 100, the RMSEβ̃ of OCMT is about 60% larger than that of

Lasso in the case of DGP-I(d), whereas for DGP-III the RMSEβ̃ of Lasso is about three times

as large as that of the OCMT. Adaptive Lasso has better FPR and FDR performance than

Lasso, but worse TPR, RMSFE and RMSEβ̃ performance. It is also interesting to point out

that the relative performance of the Lasso, adaptive Lasso and OCMTmethods could crucially

depend on the sample size, especially the time dimension. For example, when T is increased

from 100 in the upper panel of the table to T = 300 in the lower panel, RMSEβ̃ of OCMT

dominates the Lasso and adaptive Lasso in both DGPs. It is clear that the performance of

individual methods can be quite different for individual experiments, and an average relative

assessment of these methods seems to be in order.

Tables 2-4 report averaged summary statistics across the three choices of R2 (30%, 50%,

70%) for each of the DGPs. Lasso’s TPR is in the majority of experiments larger than

OCMT’s, but so is the FPR and FDR as Lasso tends to overestimate the number of signal

variables, which is well known the literature. Adaptive Lasso in turn achieves better FPR

and FDR outcomes compared with Lasso, but the performance of adaptive Lasso is worse

5Monte Carlo findings for the first stage of the OCMT procedure are available upon request.
6RMSEβ̃ is the square root of the trace of the MSE matrix of β̃. Additional summary statistics, including

the probabilities of selecting the true model, and the statistics summarizing the distribution of the number of
selected covariates are reported in the online Supplement.
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for TPR, RMSFE and RMSEβ̃ in these experiments. Lasso and adaptive Lasso are never

the best in all support recovery statistics (TPR, FPR and FDR) simultaneously in Tables

2-4, whereas OCMT outperforms in all three dimensions simultaneously in some instances

(when T > 100). The reported RMSFE averages of Lasso are outperformed by OCMT in all

instances in Tables 2-4, by about 0.7% to 5.3%. Findings for RMSEβ̃ are not uniform with

OCMT outperforming Lasso in 40 out of the 45 reported average RMSEβ̃’s. The reported

Lasso’s RMSEβ̃ averages are in the range 86% to 718% of the reported OCMT’s averages. As

mentioned in Remark 3, the power of the OCMT procedure rises with
√
T
∣∣θi,(j)∣∣ /σei,(T )σxi,(T ),

hence the magnitude of θi,(j), T and R2 are all important for the power of the OCMT. For

instance, an increase in the collinearity among signal variables, which results in a larger θi,(j),

will improve the performance of OCMT, but it will worsen the performance of Lasso, since a

higher collinearity of signals diminishes the marginal contribution of signals to the fit of the

model. The average number of stages in OCMT procedure, P̂n,T , is either close to one or close

to two, depending on whether zero net effect signals are present in the design.

It is also interesting to note that the relative performance of OCMT, Lasso and adaptive

Lasso methods tends to improve in OCMT’s favor with n. For example, for T = 100, the

relative performance of OCMT and Lasso, based on the average statistics reported in Table

2, increases in OCMT’s favor by about 0.8% to 1.9% in the case of RMSFE, and by about 7%

to 14% in the case of RMSEβ̃, when n is increased from 100 to 300.

Moving on to consider the relative performance of adaptive Lasso, we note that it improves

greatly upon the FPR and FDR performance of Lasso while still performing less well than

OCMT for these statistics, most of the time. The exception is DGP-II where it performs

better that both Lasso and OCMT for a considerable number of cases and especially when

T > 100. The downside to this improvement compared to Lasso, is that Adaptive Lasso

performs considerably worse that both Lasso and OCMT in terms of TPR, especially for

small T , DGP-I and DGP-II.

Overall, the small sample evidence suggests that the OCMT method is a valuable alter-

native to penalised regressions, since it can outperform the penalised regressions, that have

become the de facto benchmark in the literature, in some cases. Another advantage of the

OCMT procedure, which could be important in some applications, is that it is very fast to

compute, about 102 to 104 times faster than penalised regression methods.

The findings presented so far relate to experiments with Gaussian innovations and, with

the exception of DGP-I(b), serially uncorrelated covariates. The online supplement presents

additional experiments to investigate the robustness of the OCMT method to non-Gaussianity

and highly serially correlated covariates. The effects of allowing for non-Gaussian innovations

seem to be rather marginal. In contrast, the deterioration in performance due to serial corre-

lation of covariates is much larger. This is because longer time series observations are needed

to detect spurious correlation when the covariates are highly serially correlated.
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6 Empirical Illustration

In this section we present an empirical illustration that highlights the utility of OCMT. In

particular, we present a macroeconomic forecasting exercise for US GDP growth and CPI

inflation using a large set of macroeconomic variables. The dataset is quarterly and comes from

Stock and Watson (2012). We use the smaller dataset considered in Stock and Watson (2012),

which contains 109 series. The series are transformed by taking logarithms and/or differencing

following Stock and Watson (2012).7 The transformed series span 1960Q3 to 2008Q4 and are

collected in the vector zt. Our estimation period is from 1960Q3 to 1990Q2 (120 periods) while

the forecast evaluation period is 1990Q3 to 2008Q4. We produce one step ahead forecasts using

five different procedures: (a) AR(1) benchmark; (AR(1)), (b) AR(1) augmented with lagged

principal components; (factor-augmented AR(1)); (c-d) Lasso and adaptive Lasso regressions

of the target variable yt (either US GDP growth or differenced CPI inflation) on yt−1, lagged

principal components, and zt−1. For Lasso and adaptive Lasso regressions, both the target

variable and regressors are demeaned, and the regressors are normalised to have unit variances.

(e) OCMT procedure is applied to regressions of yt conditional on lagged principal components,

with yt−1, and elements of zt−1 considered one at a time. The procedure is then repeated to

convergence after P̂n,T stages defined in (11). Similarly to the MC section, we set p = 0.01,

and δ = 1 in the first stage of OCMT, and δ∗ = 2 in the subsequent stages.8 In all three

data-rich procedures (b) to (e), the principal components are selected in a rolling scheme by

the PCp1 Bai and Ng (2002) criterion (with the maximum number of PCs set to 5).

We then use each of the methods by applying a rolling forecasting scheme with a rolling

window of 120 observations. It is important to note that all features of our analysis (such as,

e.g., lag orders) can be considerably refined. However, our aim is simply to show the potential

of OCMT, and not to produce the best forecast for the dependent variables we consider.

We evaluate the forecasting performance of the methods using relative RMSFE where

the AR(1) forecast is the benchmark. Relative RMSFE statistics for the whole evaluation

period as well as for the pre-crisis subperiod (1990Q3-2007Q2) are reported in Table 5.9 In

the case of GDP growth forecasts, we note that factor-augmented AR, Lasso and OCMT

methods perform better than the AR(1) benchmark. OCMT performs the best in the full

evaluation sample, whereas Lasso leads in the pre-crisis subsample. Adaptive Lasso is the

worst performer. However, the performance of the best methods is very close, especially

during the pre-crisis subperiod. Interestingly, the inclusion frequency of lagged dependent

7For further details, see the online supplement of Stock and Watson (2012), in particular columns E and
T of their Table B.1.

8RMSFEs are reasonably robust to the choice of p. Results for p = 0.05, 0.1 are reported in the online
Supplement.

9Diebold-Mariano test statistics, for all pairwise method comparisons, and the variable selection frequencies
for both LASSO and OCMT can be found in the online supplement. The RMSFE differences among the
best performing methods are not generally statistically significant.
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variable using the full evaluation sample is 20% using OCMT, while it is 0% in the case of

Lasso. Results are different when inflation is considered. In this case, the inclusion frequency

of the lagged dependent variable is 100% in both OCMT and Lasso methods. The differences

in RMSFE in the case of inflation are relatively small. For the full evaluation period, OCMT

and factor-augmented AR(1) perform about 5% better than the benchmark AR(1) and the

Lasso, and about 14% better than the adaptive Lasso. Zooming in on the results for the pre-

crisis sub-sample, OCMT, Lasso, and adaptive Lasso underperform the AR(1) benchmark, but

the differences in relative performance of OCMT and Lasso methods continue to be rather

small. In summary, we see that there is no method that uniformly outperforms all competitor

methods and that OCMT is not far behind the best performing method.

7 Conclusion

Model specification and selection are recurring and fundamental topics in econometric analy-

sis. Both problems have become considerably more diffi cult for large-dimensional datasets

where the set of possible specifications rise exponentially with the number of available co-

variates. In the context of linear regression models, penalised regression has become the de

facto benchmark method of choice. However, issues such as the choice of penalty function

and tuning parameters remains contentious.

In this paper, we provide an alternative approach based on multiple testing that is compu-

tationally simple, fast, and effective for sparse regression functions. Extensive theoretical and

Monte Carlo results highlight these properties and provide support for adding this method

to the toolbox of the applied researcher. In particular, we find that, for moderate values of

the R2 of the true model, with the net effects for the signal variables above some minimum

threshold, our proposed method outperforms existing penalised regression methods, whilst at

the same time being computationally much faster by some orders of magnitude.

There are a number of avenues for future research. The extension of our set-up to models

with weakly exogenous and persistent regressors is clearly important for economic applications.

In addition, the possibility of weak and strong common factors affecting both the signal

and noise variables is also an important extension of the current set of assumptions. A

further possibility is to extend the idea of considering regressors individually to other testing

frameworks, such as tests of forecasting ability. It is hoped that the theoretical results and the

Monte Carlo evidence presented in this paper provide a basis for such further developments

and empirical applications.
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Table 1: Monte Carlo findings for two selected experiments

DGP-I(d) DGP-III
(ω = 0.2, R2 = 30%) (R2 = 70%)

Oracle Lasso A-Lasso OCMT Oracle Lasso A-Lasso OCMT
T = 100

n = 100
TPR 1.000 0.874 0.675 0.432 1.000 0.999 0.988 0.993
FPR 0.000 0.068 0.017 0.000 0.000 0.144 0.015 0.000
FDR 0.000 0.559 0.250 0.007 0.000 0.732 0.175 0.004
RMSFE 3.968 4.185 4.213 4.283 1.296 1.456 1.371 1.305
RMSEβ̃ 0.848 1.982 2.649 3.180 0.142 0.975 0.787 0.306

n = 200
TPR 1.000 0.844 0.662 0.372 1.000 0.998 0.989 0.989
FPR 0.000 0.050 0.016 0.000 0.000 0.103 0.019 0.000
FDR 0.000 0.649 0.368 0.010 0.000 0.797 0.313 0.004
RMSFE 3.968 4.231 4.275 4.318 1.301 1.503 1.396 1.312
RMSEβ̃ 0.848 2.342 3.366 3.445 0.141 1.185 0.807 0.366

n = 300
TPR 1.000 0.836 0.666 0.335 1.000 0.996 0.981 0.988
FPR 0.000 0.040 0.015 0.000 0.000 0.082 0.019 0.000
FDR 0.000 0.691 0.441 0.012 0.000 0.825 0.390 0.004
RMSFE 3.967 4.267 4.332 4.357 1.300 1.549 1.431 1.314
RMSEβ̃ 0.851 2.512 3.857 3.589 0.137 1.408 0.996 0.408

T = 300

n = 100
TPR 1.000 0.999 0.962 0.991 1.000 1.000 1.000 1.000
FPR 0.000 0.078 0.009 0.000 0.000 0.152 0.006 0.000
FDR 0.000 0.571 0.123 0.002 0.000 0.755 0.059 0.002
RMSFE 3.903 3.976 3.965 3.907 1.276 1.317 1.283 1.276
RMSEβ̃ 0.279 0.697 0.830 0.363 0.044 0.231 0.098 0.045

n = 200
TPR 1.000 0.998 0.963 0.987 1.000 1.000 1.000 1.000
FPR 0.000 0.050 0.009 0.000 0.000 0.099 0.011 0.000
FDR 0.000 0.629 0.203 0.003 0.000 0.801 0.130 0.002
RMSFE 3.897 3.984 3.963 3.903 1.276 1.331 1.291 1.276
RMSEβ̃ 0.275 0.785 0.885 0.398 0.046 0.303 0.132 0.046

n = 300
TPR 1.000 0.999 0.968 0.986 1.000 1.000 1.000 1.000
FPR 0.000 0.038 0.008 0.000 0.000 0.077 0.012 0.000
FDR 0.000 0.657 0.241 0.002 0.000 0.824 0.175 0.003
RMSFE 3.902 4.001 3.976 3.907 1.277 1.339 1.298 1.277
RMSEβ̃ 0.277 0.841 0.983 0.402 0.045 0.334 0.158 0.046

Notes: This table reports selected experiments using DGP-I(d) and DGP-III, given by (40), with Gaussian
innovations and serially uncorrelated covariates. There are k = 4 signal variables, and ω is the average pair-
wise correlation of the signal variables in DGP-I(d). See Section 5 for further details. TPR (FPR) is the true
(false) positive rate. FDR is the false discovery rate. RMSFE is the root mean square forecast error, RMSEβ̃
is the root mean square error of β̃. Oracle method assumes that the identity of signal variables is known.
Lasso is implemented using the same set of possible values for the penalisation parameter λ as in Zheng, Fan,
and Lv (2014), and λ is selected using 10-fold cross-validation. Adaptive Lasso method is implemented as
described in Section 2.8.4 of Buhlmann and van de Geer (2011) based on the implementation of the Lasso
method described above. OCMT results are based on p = 0.01, δ = 1 in the first stage, and δ∗ = 2 in the
subsequent stages of the OCMT procedure. The complete set of findings is reported in an online Supplement.
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Table 5: RMSFE performance of the AR, factor-augmented AR, Lasso and OCMT
methods

Evaluation sample: Full Pre-crisis
1990Q3-2008Q4 1990Q3-2007Q2
RMSFE Relative RMSFE Relative
(×100) RMSFE (×100) RMSFE

Real output growth
AR (1) benchmark 0.560 1.000 0.504 1.000
Factor-augmented AR (1) 0.488 0.870 0.467 0.927
Lasso 0.507 0.905 0.463 0.918
Adaptive Lasso 0.576 1.028 0.515 1.021
OCMT 0.487 0.869 0.464 0.920

Inflation
AR (1) benchmark 0.655 1.000 0.469 1.000
Factor-augmented AR (1) 0.621 0.949 0.452 0.965
Lasso 0.655 1.001 0.488 1.040
Adaptive Lasso 0.715 1.093 0.518 1.105
OCMT 0.626 0.957 0.477 1.017

Notes: RMSFE is computed using a rolling forecasting scheme with a rolling window of 120 observations.
We use the smaller dataset considered in Stock and Watson (2012) which contains 109 series. The series are
transformed by taking logarithms and/or differencing following Stock and Watson (2012). The transformed
series span 1960Q3 to 2008Q4 and are collected in the vector zt. Set of regressors in Lasso and adaptive-Lasso
contains yt−1 (lagged target variable), zt−1, and a lagged set of principal components obtained from the large
dataset given by (yt, z′t)

′. OCMT procedure is applied to regressions of yt conditional on lagged principal
components, with yt−1, and elements of zt−1 considered one at a time. OCMT is reported p = 0.01 and for
δ = 1 in the first stage, and δ∗ = 2 in the subsequent stages of the OCMT procedure, similarly to the MC
section. The number of principal components in the factor-augmented AR (1), Lasso, adaptive-Lasso, and
OCMT methods is determined in a rolling scheme by using criterion PCp1 of Bai and Ng (2002) (with the
maximum number of PCs set to 5). See Section 5 and the Supplement for further details.
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A Appendix

For further use throughout this appendix we define the following events. The event of choosing

the pseudo true model, A0 defined in (26), will be written as

A0 = H ∩ G, (A.1)

where

H =

{
k∑
i=1

̂I (βi 6= 0) = k

}
, (A.2)

is the event that all signals are selected, and

G =

{
n∑

i=k+k∗+1

̂I (βi 6= 0) = 0

}
, (A.3)

is the event that no noise variable is selected. We also denote the event that exactly j noise

variables are selected by Gj

Gj =

{
n∑

i=k+k∗+1

̂I (βi 6= 0) = j

}
, for j = 0, 1, ..., n− k − k∗, (A.4)

with G ≡ G0. For the analysis of different stages of OCMT, we also introduce the event Bi,s,
which is the event that variable i is selected at the sth stage of the OCMT procedure.

Li,s = ∪sh=1Bi,h, (A.5)

Li,s is the event that variable i is selected up to and including stage s, namely in any of the
stages j = 1, 2, ..., s of the OCMT procedure.

Ls = ∩ki=1Li,s, (A.6)

Ls is the event that all signal variables are selected up to and including stage s of the OCMT
procedure. Ts is the event that the OCMT procedure stops after s stages or less.

Ds,T =
{
k̂n,T,(j) ≤ lT , j = 1, 2, ..., s

}
, (A.7)

Ds,T is the event that the number of variables selected in the first s stages of OCMT (k̂n,T,(j),
j = 1, 2, ..., s) is smaller than or equal to lT , where lT = 	 (nν) and ν satisfies ε < ν < κ1/3.

Note that when T = 	 (nκ1) then, under this definition of lT , we have lT = 	
(
T ν/κ1

)
=

o
(
T 1/3

)
for ν < κ1/3.
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A.1 Proof of Proposition 1

We recall that P0 is a population quantity. This formally means that, to determine P0, OCMT

is carried out assuming Pr
[∣∣∣tφ̂i,(j)∣∣∣ > cp (n, δ) |θi,(j) 6= 0

]
= 1 and Pr

[∣∣∣tφ̂i,(j)∣∣∣ > cp (n, δ) |θi,(j) = 0
]

=

0 for all i, j. So, if θi,(1) 6= 0, for all i for which βi 6= 0, it obviously follows that P0 = 1. Next,

assume that the subset of signals in Xk, such that for each element of this subset, θi,(1) = 0, is

not empty. Then, these signals will not be selected in the first stage of OCMT. By Lemma 1,

it follows that the subset of signals for which θi,(1) = 0 is smaller than the set of signals and

therefore at least one signal will be picked up in the first OCMT stage. It then follows, by

Lemma 1, that in the second OCMT stage, at least one signal, for which θi,(1) = 0 will have

θi,(2) 6= 0. Therefore, such signal(s) will be picked up in the second stage. Proceeding recur-

sively using Lemma 1, then follows that all signals for which θi,(1) = 0, will satisfy θi,(j) 6= 0

for some j ≤ k, proving the proposition.10

A.2 Proofs of theorems and corollaries

This subsection contains the proofs of the main theorems and their corollaries. All theorems

are proven based on the set of lemmas presented and proven in Section A.3. In particular,

Lemmas 1-9 are auxiliary ones, mostly providing supporting results for the main lemma of

the paper which is Lemma 10. This provides the basic exponential inequalities that underlie

most of our results.

A.2.1 Proof of Theorem 1

Noting that Tk is the event that the OCMT procedure stops after k stages or less, we have

Pr
(
P̂n,T > k

)
= Pr (T ck ) = 1− Pr (Tk) ,

where P̂n,T is defined by (11). Substituting (A.120) of Lemma 12 for Pr (Tk), we obtain,

Pr
(
P̂n,T > k

)
= O

(
n1−ν−κδ)+O

(
n1−κδ∗)+O

[
n exp

(
−C0n

C1κ1
)]
,

for some C0, C1 > 0, any κ in 0 < κ < 1, and any ν in 0 ≤ ε < ν < κ1/3, where κ1 > 0 is

a positive constant that defines the rate for T = 	 (nκ1) and ε in 0 ≤ ε < min {1, κ1/3} is
a positive constant that defines the rate for k∗ = 	 (nε). But note that O

(
n1−ν−κδ) can be

written equivalently as O
(
n1−κ1/3−κδ

)
. This follows since 1− κ1/3− κδ = 1− (κ1/3− εδ)−

(κ + ε) δ = 1 − ν̃ − κ̃δ, where ν̃ = κ1/3 − εδ and κ̃ = κ + ε, for ε > 0 suffi ciently small.

10Note that in the proposition we have allowed for net effects that depend on T and can therefore be small,
in line with Assumption 6 as long as they are not exactly zero. This is possible since Lemma 1 also allows for
such net effects.
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Specifically, setting ε < min {1− κ, (κ1/3− ε) /δ}, it follows that κ̃ and ν̃ satisfy 0 < κ̃ < 1

and ε < ν̃ < κ1/3, respectively, as required. Hence

Pr
(
P̂n,T > k

)
= Pr (T ck ) = O

(
n1−κ1/3−κδ

)
+O

(
n1−κδ∗)+O

[
n exp

(
−C0n

C1κ1
)]
, (A.8)

for some C0, C1 > 0 and any κ in 0 < κ < 1. Noting that O
[
n exp

(
−C0n

C1κ1
)]

=

O
[
exp

(
−nC2κ1

)]
for any 0 < C2 < C1, we have

Pr
(
P̂n,T > k

)
= O

(
n1−κ1/3−κδ

)
+O

(
n1−κδ∗)+O

[
exp

(
−nC2κ1

)]
,

for some C2 > 0, which establishes (27). Similarly, by (A.123) and noting that n ≥ n1−ν for

ν ≥ 0, we also have (which is required subsequently)

Pr
(
Dck,T

)
= O

(
n1−κ1/3−κδ

)
+O

(
n1−κ1/3−κδ∗

)
+O

[
n exp

(
−C0T

C1κ1
)]
, (A.9)

for some C0, C1 > 0 and any κ in 0 < κ < 1.

Consider now (28), and note that

Pr(Ac0) = Pr(Ac0|Dk,T ) Pr(Dk,T ) + Pr(Ac0|Dck,T ) Pr(Dck,T ) ≤ Pr(Ac0|Dk,T ) + Pr(Dck,T ), (A.10)

where Pr(Dck,T ) is given by (A.9). Also using (A.1) we have Ac0 = Hc ∪ Gc, and hence

Pr(Ac0|Dk,T ) ≤ Pr (Hc| Dk,T ) + Pr (Gc| Dk,T )

= An,T +Bn,T , (A.11)

where H and G are given by (A.2) and (A.3), respectively. Therefore

Hc =

{
k∑
i=1

̂I (βi 6= 0) < k

}
, and Gc =

{
n∑

i=k+k∗+1

̂I (βi 6= 0) > 0

}
. (A.12)

Consider the terms An,T and Bn,T , in turn:

An,T = Pr (Hc| Dk,T ) ≤
k∑
i=1

Pr
(

̂I (βi 6= 0) = 0
∣∣∣Dk,T) . (A.13)

But, the event
{

̂I (βi 6= 0) = 0
∣∣∣Dk,T} can occur only if {∩kj=1Bci,j

∣∣Dk,T} occurs, while {∩kj=1Bci,j
∣∣Dk,T}

can occur without
{

̂I (βi 6= 0) = 0
∣∣∣Dk,T} occurring. Therefore,

Pr
(

̂I (βi 6= 0) = 0
∣∣∣Dk,T) ≤ Pr

(
∩kj=1Bci,j

∣∣Dk,T ) . (A.14)

Then,

Pr
(
∩kj=1Bci,j

∣∣Dk,T ) = Pr
(
Bci,1
∣∣Dk,T )× Pr

(
Bci,2
∣∣Bci,1,Dk,T )

× Pr
(
Bci,3
∣∣Bci,2 ∩ Bci,1,Dk,T )

× ...× Pr
(
Bci,k
∣∣Bci,k−1 ∩ ... ∩ Bci,1,Dk,T

)
. (A.15)
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But, by Proposition 1 we are guaranteed that for some j in 1 ≤ j ≤ k, θi,(j) 6= 0, i = 1, 2, ..., k.

Therefore, for some j in 1 ≤ j ≤ k

Pr
(
Bci,j
∣∣Bci,j−1 ∩ ... ∩ Bci,1,Dk,T

)
= Pr

(
Bci,j
∣∣Bci,j−1 ∩ ... ∩ Bci,1, θi,(j) 6= 0,Dk,T

)
,

and by (A.108) of Lemma 10,

Pr
(
Bci,j
∣∣Bci,j−1 ∩ ... ∩ Bci,1, θi,(j) 6= 0,Dk,T

)
= O

[
exp

(
−C0T

C1
)]
, for i = 1, 2, ..., k,

for some C0, C1 > 0. Therefore,

Pr
(

̂I (βi 6= 0) = 0
∣∣∣Dk,T) = O

[
exp

(
−C0T

C1
)]
, for i = 1, 2, ..., k. (A.16)

Substituting this result in (A.13), we have

An,T = Pr (Hc| Dk,T ) ≤ k exp
(
−C0T

C1
)
. (A.17)

Similarly, for Bn,T we first note that

Bn,T = Pr

(
n∑

i=k+k∗+1

̂I (βi 6= 0) > 0

∣∣∣∣∣Dk,T
)

= Pr
{
∪ni=k+k∗+1

[
̂I (βi 6= 0) > 0

]∣∣∣Dk,T}
≤

n∑
i=k+k∗+1

E
[
̂I (βi 6= 0) |Dk,T

]
. (A.18)

Also,

E
[
̂I (βi 6= 0) |Dk,T

]
= E

[
̂I (βi 6= 0) |Dk,T , Tk

]
Pr (Tk|Dk,T ) + E

[
̂I (βi 6= 0) |Dk,T , T ck

]
Pr (T ck |Dk,T )

≤E
[
̂I (βi 6= 0) |Dk,T , Tk

]
+ Pr (T ck |Dk,T ) ,

since E
[
̂I (βi 6= 0) |Dk,T , T ck

]
≤ 1. Hence

Bn,T ≤
n∑

i=k+k∗+1

E
[
̂I (βi 6= 0) |Dk,T , Tk

]
+ (n− k − k∗) Pr (T ck |Dk,T ) .

Consider now the first term of the above and note that

n∑
i=k+k∗+1

E
[
̂I (βi 6= 0) |Dk,T , Tk

]
=

n∑
i=k+k∗+1

Pr
[∣∣∣tφ̂i,(1)∣∣∣ > cp (n, δ)

∣∣θi,(1) = 0,Dk,T , Tk
]

+
n∑

i=k+k∗+1

k∑
j=2

Pr
[∣∣∣tφ̂i,(j)∣∣∣ > cp (n, δ∗)

∣∣θi,(j) = 0,Dk,T , Tk
]
,
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where we have made use of the fact that the net effect coeffi cients, θi,(j), of noise variables are

zero for i = k + k∗ + 1, k + k∗ + 2, ..., n and all j. Also by (A.107) of Lemma 10 and result

(ii) of Lemma 2, we have

n∑
i=k+k∗+1

Pr
[∣∣∣tφ̂i,(1)∣∣∣ > cp (n, δ)

∣∣θi,(1) = 0,Dk,T , Tk
]

+

n∑
i=k+k∗+1

k∑
s=2

Pr
[∣∣∣tφ̂i,(s)∣∣∣ > cp (n, δ∗)

∣∣θi,(s) = 0,Dk,T , Tk
]

≤ (n− k − k∗) exp

[−κc2
p(n, δ)

2

]
+ (k − 1)(n− k − k∗) exp

[−κc2
p(n, δ

∗)

2

]
+O

[
n exp

(
−C0T

C1
)]

= O
(
n1−κδ)+O

(
n1−κδ∗)+O

[
n exp

(
−C0T

C1
)]
.

Further, by (A.129),

nPr (T ck |Dk,T ) = O
(
n2−κδ∗)+O

[
n2 exp

(
−C0T

C1
)]
,

giving, overall,

Bn,T = O
(
n1−κδ)+O

(
n1−κδ∗)+O

[
n exp

(
−C0T

C1
)]

+O
(
n2−κδ∗)+O

[
n2 exp

(
−C0T

C1
)]

= O
(
n1−δκ)+O

(
n2−δ∗κ)+O

[
n2 exp

(
−C0T

C1
)]
, (A.19)

where the second equality follows by noting thatO
[
n exp

(
−C0T

C1
)]
is dominated byO

[
n2 exp

(
−C0T

C1
)]
,

and O
(
n1−κδ∗) is dominated by O (n1−κδ) for δ∗ > δ > 0. Substituting for An,T and Bn,T

from (A.17) and (A.19) in (A.11) and using (A.10) we obtain

Pr(Ac0) ≤ O
(
n1−δκ)+O

(
n2−δ∗κ)+O

[
n2 exp

(
−C0T

C1
)]

+ Pr(Dck,T ),

where Pr(Dck,T ) is already given by (A.9), and k exp
(
−C0T

C1
)
is dominated byO

[
n2 exp

(
−C0T

C1
)]
.

Hence, noting that Pr (A0) = 1− Pr(Ac0), then

Pr (A0) = 1 +O
(
n1−δκ)+O

(
n2−δ∗κ)+O

(
n1−κ1/3−κδ

)
+O

[
n2 exp

(
−C0T

C1
)]
, (A.20)

since O
[
n exp

(
−C0T

C1
)]
is dominated by O

[
n2 exp

(
−C0T

C1
)]
, and O

(
n1−κ1/3−κδ∗

)
is dom-

inated by O
(
n1−κ1/3−κδ

)
, for δ∗ > δ > 0. Result (28) now follows noting that T = 	 (nκ1) and

that O
[
n2 exp

(
−C0n

C1κ1
)]

= O
[
exp

(
−nC2κ1

)]
for some C2 in 0 < C2 < C1. If, in addition,

δ > 1, and δ∗ > 2, then Pr (A0)→ 1, as n,T →∞, for any κ1 > 0.

We establish result (30) next, before establishing results (29) and (31). Consider FPRn,T

defined by (14), and note that the probability of noise or pseudo-signal variable i being selected

in any stages of the OCMT procedure is given by Pr (Li,n), for i = k + 1, k + 2, ..., n. Then

E |FPRn,T | =
∑n

i=k+1 Pr (Li,n)

n− k

=

∑k+k∗

i=k+1 Pr (Li,n)

n− k +

∑n
i=k+k∗+1 Pr (Li,n)

n− k . (A.21)
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Since
∑k+k∗

i=k+1 Pr (Li,n) ≤ k∗ then

E |FPRn,T | ≤
k∗

n− k +

∑n
i=k+k∗+1 Pr (Li,n)

n− k . (A.22)

Note that ∑n
i=k+k∗+1 Pr (Li,n)

n− k =

∑n
i=k+k∗+1 Pr (Li,n|Dk,T )

n− k Pr (Dk,T )

+

∑n
i=k+k∗+1 Pr

(
Li,n|Dck,T

)
n− k Pr

(
Dck,T

)
≤
∑n

i=k+k∗+1 Pr (Li,n|Dk,T )

n− k + Pr
(
Dck,T

)
. (A.23)

Furthermore

Pr (Li,n|Dk,T ) = Pr (Li,n|Dk,T , Tk) Pr (Tk) + Pr (Li,n|Dk,T , T ck ) Pr (T ck )

≤Pr (Li,n|Dk,T , Tk) + Pr (T ck ) . (A.24)

An upper bound on Pr (T ck ) = Pr
(
P̂n,T > k

)
is established in the first part of this proof, see

(A.8). We focus on Pr (Li,n|Dk,T , Tk) next. Due to the conditioning on the event Tk, we have
Pr (Li,n|Dk,T , Tk) = Pr (Li,k|,Dk,T , Tk), and in view of (A.5) we obtain

Pr [Li,k|Dk,T , Tk] ≤
k∑
s=1

Pr
(
Bi,s|θi,(s) = 0,Dk,T , Tk

)
, for i > k + k∗, (A.25)

where we note that Pr (Bi,s|Dk,T , Tk) = Pr
(
Bi,s|θi,(s) = 0,Dk,T , Tk

)
, for i > k + k∗ since the

net effect coeffi cients of the noise variables at any stage of OCMT are zero. Further, using

(A.107) of Lemma 10, for i = k + k∗ + 1, k + k∗ + 2, ..., n, we have

Pr
(
Bi,s|θi,(s) = 0,Dk,T , Tk

)
=

 O
{

exp
[
−κc2p(n,δ)

2

]}
+O

[
exp(−C0T

C1)
]
, s = 1

O
{

exp
[
−κc2p(n,δ∗)

2

]}
+O

[
exp(−C0T

C1)
]
, s > 1

, (A.26)

where κ = [(1− π) / (1 + dT )]2. Clearly 0 < κ < 1, since 0 < π < 1, and dT is a bounded

positive sequence. Hence, given result (ii) of Lemma 2, for i = k+ k∗ + 1, k+ k∗ + 2, ..., n, we

have

k∑
s=1

Pr
(
Bi,s|θi,(s) = 0,Dk,T , Tk

)
= O

(
n−δκ

)
+O

(
n−δ

∗κ)+O
[
exp(−C0T

C1)
]
.

Using this result in (A.25) and averaging across i = k + k∗ + 1, k + k∗ + 2, ..., n, we obtain∑n
i=k+k∗+1 Pr (Li,k|Dk,T , Tk)

n− k = O
(
n−κδ

)
+O

(
n−κδ

∗)
+O

[
exp(−C0T

C1)
]
. (A.27)
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Overall, with δ∗ > δ, and using T = 	 (nκ1), k∗ = 	 (nε), (A.8),(A.9), (A.22)-(A.24) and

(A.27), we have

E |FPRn,T | =
k∗

n− k +O
(
n−κδ

)
+O

(
n−κδ

∗)
+O

(
n1−κ1/3−κδ

)
+O

(
n1−κ1/3−κδ∗

)
+O

(
n1−κδ∗)+O

[
exp(−C0n

C1κ1)
]

+O
(
nε−1

)
+O

[
n exp

(
−C0n

C1κ1
)]
.

But O
[
exp(−C0n

C1κ1)
]
and O

[
n exp

(
−C0n

C1κ1
)]
are dominated by

[
exp

(
−nC2κ1

)]
for some

0 < C2 < C1. In addition, since δ∗ > δ and κ is positive, the terms O
(
n−κδ

∗)
and

O
(
n1−κ1/3−κδ∗

)
are dominated by O

(
n−κδ

)
and O

(
n1−κ1/3−κδ

)
, respectively. Hence,

E |FPRn,T | =
k∗

n− k+O
(
n−κδ

)
+O

(
n1−κ1/3−κδ

)
+O

(
nε−1

)
+O

(
n1−κδ∗)+O

[
exp

(
−nC2κ1

)]
,

for some C2 > 0, which completes the proof of (30).

To establish (29) we note from (13) that

E |TPRn,T | =

∑k
i=1 Pr

[
̂I (βi 6= 0) = 1

]
k

. (A.28)

But

Pr
[
̂I (βi 6= 0) = 1

]
= 1− Pr

[
̂I (βi 6= 0) = 0

]
,

and

Pr
[
̂I (βi 6= 0) = 0

]
= Pr

[
̂I (βi 6= 0) = 0

∣∣∣Dk,T]Pr (Dk,T )

+ Pr
[
̂I (βi 6= 0) = 0

∣∣∣Dck,T]Pr
(
Dck,T

)
≤Pr

[
̂I (βi 6= 0) = 0

∣∣∣Dk,T]+ Pr
(
Dck,T

)
.

Using (A.16) and (A.9), and dropping the terms O
[
exp

(
−C0T

C1
)]
and O

(
n1−κ1/3−κδ∗

)
that

are dominated by O
[
n exp

(
−C0T

C1
)]
and O

(
n1−κ1/3−κδ

)
, respectively (noting that δ∗ > δ >

0) we obtain

Pr
[
̂I (βi 6= 0) = 0

]
= O

(
n1−κ1/3−κδ

)
+O

[
n exp

(
−C0T

C1
)]
, for i = 1, 2, ..., k. (A.29)

Hence,
k∑
i=1

Pr
[
̂I (βi 6= 0) = 1

]
= k +O

(
n1−κ1/3−κδ

)
+O

[
n exp

(
−C0T

C1
)]
,

which, after substituting this expression in (A.28) and noting that T = 	 (nκ1) andO
[
n exp

(
−C0n

C1κ1
)]

=

O
[
exp

(
−nC2κ1

)]
for some C2 in 0 < C2 < C1 yields

E |TPRn,T | = 1 +O
(
n1−κ1/3−κδ

)
+O

[
exp

(
−nC2κ1

)]
, (A.30)
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for some C2 > 0, as required.

To establish (31) we note from (15) that

FDRn,T =
(n− k)FPRn,T

(n− k)FPRn,T + kTPRn,T

, (A.31)

for
∑n

i=1
̂I (βi 6= 0) > 0. Using (A.30) and Markov’s inequality, we have

kTPRn,T →p k, (A.32)

if δ > 1− κ1/3. Using (A.21), we have

(n− k)E (FPRn,T ) =

k+k∗∑
i=k+1

Pr (Li,n) +
n∑

i=k+k∗+1

Pr (Li,n) . (A.33)

Using the same arguments as in the derivation of (A.17), we have

lim
n,T→∞

k+k∗∑
i=k+1

Pr (Li,n) = k∗.

Moreover, using (A.8),(A.9),(A.23), and (A.24), and noting T = 	 (nκ1), we also have

n∑
i=k+k∗+1

Pr (Li,n) = O
(
n1−κδ)+O

(
n1−κδ∗)+O

(
n2−κ1/3−κδ

)
+O

(
n2−κ1/3−κδ∗

)
+O

(
n2−κδ∗)+O

[
n exp(−C0n

C1κ1)
]

+O
[
n2 exp

(
−C0n

C1κ1
)]
,

for some C0, C1 > 0. Using the above results in (A.33), it then follows that,

lim
n,T→∞

(n− k)E (FPRn,T ) = k∗, (A.34)

if δ > max {1, 2− κ1/3}, δ∗ > 2, and so using again Markov’s inequality, we have

(n− k)FPRn,T →p k
∗. (A.35)

Using (A.32) and (A.35) we establish (31).

To prove (32), first note that regardless of the number of selected regressors, k̂n,T , 0 ≤
k̂n,T ≤ n, and the orthogonal projection theorem can be used to show that the following upper

bound applies

‖ũ‖2 ≤ ‖y‖2 ,

where y = (y1, y2, ..., yT )′. In particular, this is a direct implication of the fact that that for

any K ≥ 0, we have

min
βi,i=1,2,...,K

T∑
t=1

(
yt −

K∑
i=1

βixit

)2

≤
T∑
t=1

y2
t .
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We also note that if for two random variables x, y > 0 defined on a probability space, Ω,

sup
ω∈Ω

[y(ω)− x(ω)] ≥ 0,

then E(x) ≤ E(y). The above results imply that E ‖ũ‖2 ≤ E ‖y‖2. Also, by Assumptions 2

and 3, E (y2
t ) is bounded, and so we have E ‖y‖

2 = O (T ), and therefore E ‖ũ‖2 = O (T ).

Now letA0 be the set of pseudo-true models as defined in (26) and letAc0 be its complement.
Then

1

T
E ‖ũ‖2 = P (A0)

1

T
E
(
‖ũ‖2

∣∣A0

)
+ [1− P (A0)]

1

T
E
(
‖ũ‖2

∣∣Ac0) .
Noting that E

(
‖ũ‖2

∣∣Ac0) ≤ E ‖y‖2 = O (T ), we have

1

T
E ‖ũ‖2 ≤ P (A0)

1

T
E
(
‖ũ‖2

∣∣A0

)
+ [1− P (A0)]

E ‖y‖2

T

≤ P (A0)
1

T
E
(
‖ũ‖2

∣∣A0

)
+ [1− P (A0)]C0, (A.36)

where C0 is a finite constant that does not depend on n and/or T . Now, using that P (A0)→ 1

for δ > 1 and δ∗ > 2, and that

1

T
E
(
‖ũ‖2

∣∣A0

)
= σ2 +O

(
1√
T

)
,

in (A.36), we obtain

E

(
1

T

T∑
i=1

ũ2
t

)
→ σ2, (A.37)

as required. This completes the proof.

A.2.2 Proof of Theorem 2

Using (A.1) we have Ac0 = Hc ∪ Gc, where Hc and Gc are defined by (A.12). Further, since
Hc ∪ Gc = Hc ∪ Gc ∩ (Hc ∪H), then using the distributive law given by (A ∪ B) ∩ (A ∪ C) =

A ∪ (B ∩ C), for some events A, B, and C, we have Hc ∪ Gc = (Hc ∪ Gc) ∩ (Hc ∪ H) =

Hc∪ (Gc ∩H) = Hc∪ (H ∩ Gc). Therefore,

Ac0 =

{
k∑
i=1

̂I (βi 6= 0) < k

}
∪
{[

k∑
i=1

̂I (βi 6= 0) = k

]
∩
[

n∑
i=k+k∗+1

̂I (βi 6= 0) > 0

]}
= Hc∪ (H ∩ Gc) .

Further, Hc∪ (H ∩ Gc) = Hc∪
{
H∩

[
∪n−k−k∗j=1 Gj

]}
, where Gj is defined by (A.4). Moreover,

note that

H∩
[
∪n−k−k∗j=1 Gj

]
= ∪n−k−k∗j=1 (H ∩ Gj) =

[
∪lmax−k−k∗−1
j=1 (H ∩ Gj)

]
∪
[
H∩

(
∪n−k−k∗j=lmax−k−k∗Gj

)]
,
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and that the events A0, Hc, H ∩ G1,H ∩ G2, ...,H ∩ Glmax−k−k∗−1, and
[
H∩

(
∪n−k−k∗j=lmax−k−k∗Gj

)]
are mutually exclusive and exhaustive. Therefore,

E
(∥∥∥β̃n−βn∥∥∥) = Cn,T +Dn,T + En,T + Fn,T , (A.38)

where

Cn,T = E
(∥∥∥β̃n−βn∥∥∥∣∣∣A0

)
Pr (A0) , (A.39)

Dn,T = E
(∥∥∥β̃n−βn∥∥∥∣∣∣Hc

)
Pr (Hc) , (A.40)

En,T =
lmax−k−k∗−1∑

j=1

E
(∥∥∥β̃n−βn∥∥∥∣∣∣H ∩ Gj)Pr (H ∩ Gj) , (A.41)

and

Fn,T = E
[∥∥∥β̃n−βn∥∥∥∣∣∣H∩ (∪n−k−k∗j=lmax−k−k∗Gj

)]
Pr
[
H∩

(
∪n−k−k∗j=lmax−k−k∗Gj

)]
. (A.42)

We consider the terms Cn,T , Dn,T , En,T and Fn,T in turn, starting with Cn,T . By (A.20) we

have

Pr (A0) = 1 +O
(
n1−δκ)+O

(
n2−δ∗κ)+O

(
n1−κ1/3−κδ

)
+O

[
n2 exp

(
−C0T

C1
)]
.

Also, since A0 contains k signal variables, at most k∗ pseudo signal variables, and no noise

variables, then using (A.146) from Lemma 15, with lT = k + k∗ + 1, it follows that

E
(∥∥∥β̃n−βn∥∥∥∣∣∣A0

)
= O

(
(k + k∗ + 1)2

√
T

)
,

and hence

Cn,T = O

[
(k + k∗ + 1)2

√
T

]{
1 +O

(
n1−δκ)+O

(
n2−δ∗κ)+O

(
n1−κ1/3−κδ

)
+O

[
n2 exp

(
−C0T

C1
)]}

.

(A.43)

Next, consider Dn,T given by (A.40) and note that by applying (A.147) of Lemma 15 to the

regression of yt on the k̂n,T ≤ lmax − 1 selected variables and a constant term, for some finite

positive constant C0, we have

E
(∥∥∥β̃n−βn∥∥∥∣∣∣Hc

)
≤ C0

(
l2max√
T

+ lmax

)
.

where lmax denotes the imposed upper bound on the number of regressors including the con-

stant term (k̂n,T + 1). Further,

Pr(Hc) = Pr(Hc|Dk,T ) Pr(Dk,T ) + Pr(Hc|Dck,T ) Pr(Dck,T )

≤ Pr(Hc|Dk,T ) + Pr(Dck,T ),
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and using (A.9) and (A.17) we have

Pr (Hc) = O
(
n1−κ1/3−κδ

)
+O

(
n1−κ1/3−κδ∗

)
+O

[
n exp

(
−C0T

C1
)]

+O
[
exp

(
−C0T

C1
)]
,

for someC0, C1 > 0. Therefore, noting thatO
[
exp

(
−C0T

C1
)]
is dominated byO

[
n exp

(
−C0T

C1
)]
,

we have

Dn,T = O

(
l2max√
T

+ lmax

){
O
(
n1−κ1/3−κδ

)
+O

(
n1−κ1/3−κδ∗

)
+O

[
n exp

(
−C0T

C1
)]}

.

(A.44)

Consider En,T given by (A.41) next.

En,T =

lmax−k−k∗−1∑
j=1

E
(∥∥∥β̃n−βn∥∥∥∣∣∣H ∩ Gj)Pr (H ∩ Gj)

≤
[

max
j=1,2,...,lmax−k−k∗−1

E
(∥∥∥β̃n−βn∥∥∥∣∣∣H ∩ Gj)] lmax−k−k∗−1∑

j=1

Pr (H ∩ Gj) .

But, H ∩ Gj, for j = 1, 2, ..., lmax − k − k∗ − 1 are mutually exclusive, and therefore

lmax−k−k∗−1∑
j=1

Pr (H ∩ Gj) = Pr
[
H∩

(
∪lmax−k−k∗−1
j=1 Gj

)]
,

and

En,T ≤
[

max
j=1,2,...,lmax−k−k∗−1

E
(∥∥∥β̃n−βn∥∥∥∣∣∣H ∩ Gj)]Pr

[
H∩

(
∪lmax−k−k∗−1
j=1 Gj

)]
By (A.146) of Lemma 15, (with lT = k+k∗+j+1, since the event H ∩ Gj means that k signal
variables, at most k∗ pseudo signal variables and j noise variables are selected by OCMT)

E
[∥∥∥β̃n−βn∥∥∥∣∣∣H ∩ Gj] = O

(
(k + k∗ + j + 1)2

√
T

)
, for j = 1, 2, ..., lmax − k − k∗ − 1,

which leads to

max
j=1,2,...,lmax−k−k∗−1

E
(∥∥∥β̃n−βn∥∥∥∣∣∣H ∩ Gj) = O

(
l2max√
T

)
.

In addition,

Pr
[(
H∩

(
∪lmax−k−k∗−1
j=1 Gj

))]
≤ Pr

(
∪lmax−k−k∗−1
j=1 Gj

)
≤ Pr (Gc) ≤ Pr (Gc|Dk,T ) + Pr

(
Dck,T

)
,

and using (A.9), (A.18) and (A.19), we have

Pr
[
H∩

(
∪lmax−k−k∗−1
j=1 Gj

)]
=O

(
n1−δκ)+O

(
n2−δ∗κ)+O

(
n1−κ1/3−δκ

)
+O

(
n1−κ1/3−δ∗κ

)
+O

[
n exp

(
−C0T

C1
)]

+O
[
n2 exp

(
−C0T

C1
)]
.
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Since the terms O
(
n1−κ1/3−δκ

)
, O

(
n1−κ1/3−δ∗κ

)
and O

[
n exp

(
−C0T

C1
)]
, are dominated by

the terms O
(
n1−δκ), O (n2−δ∗κ) and O [n2 exp

(
−C0T

C1
)]
, respectively, we obtain

Pr
[
H∩

(
∪lmax−k−k∗−1
j=1 Gj

)]
= O

(
n1−δκ)+O

(
n2−δ∗κ)+O

[
n2 exp

(
−C0T

C1
)]
.

So overall,

En,T = O

(
l2max√
T

){
O
(
n1−δκ)+O

(
n2−δ∗κ)+O

[
n2 exp

(
−C0T

C1
)]}

. (A.45)

Consider the last term Fn,T given by (A.41) next. In the case of the eventH∩
(
∪n−k−k∗j=lmax−k−k∗Gj

)
the restriction on the number of regressors (≤ lmax) that are allowed to enter the final regression

for β̃n can be binding, and regardless how this restriction is implemented, result (A.147) of

Lemma 15 always applies, and therefore

E
[∥∥∥β̃n−βn∥∥∥∣∣∣H∩ (∪n−k−k∗j=lmax−k−k∗Gj

)]
= O

(
l2max√
T

)
+O (lmax) .

The event H∩
(
∪n−k−k∗j=lmax−k−k∗Gj

)
can only occur if k signal variables, j noise variables, for some

j ≥ lmax − k − k∗, and any subset of the pseudo-signal variables are selected. In other words,
the event Pr

[
H∩

(
∪n−k−k∗j=lmax−k−k∗Gj

)]
can only occur if, at least, j + k ≥ lmax − k∗ variables are

selected or, equivalently, if k̂n,T > lmax − k∗ − 1. Therefore,

Pr
{
H∩

[
∪n−k−k∗j=lmax−k−k∗Gj

]}
≤ Pr

(
k̂n,T > lmax − k∗ − 1

)
. (A.46)

Using (A.132), we have

Pr
(
k̂n,T > lmax − k∗ − 1

)
= Pr

(
k̂n,T − k − k∗ > lmax − k − 2k∗ − 1

)
=O

(
n1−δκ

lmax − k − 2k∗ − 1

)
+O

(
n2−δ∗κ

lmax − k − 2k∗ − 1

)
+O

(
n1−ν−δκ)

+O
(
n1−ν−δ∗κ)+O

[
n2

lmax − k − 2k∗ − 1
exp

(
−C0n

C1κ1
)]
.

Combining the above results gives

Fn,T =

[
O

(
l2max√
T

)
+O (lmax)

] O
(

n1−δκ

lmax−k−2k∗−1

)
+O

(
n2−δ

∗κ

lmax−k−2k∗−1

)
+O

(
n1−ν−δκ)

+O
(
n1−ν−δ∗κ)+O

[
n2

lmax−k−2k∗−1
exp

(
−C0n

C1κ1
)]

 .
(A.47)
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Using (A.43), (A.44), (A.45), and (A.47) in (A.38), we obtain

E
(∥∥∥β̃n−βn∥∥∥) =O

(
(k + k∗ + 1)2

√
T

){
1 +O

(
n1−δκ)+O

(
n2−δ∗κ)

+O
(
n1−κ1/3−κδ

)
+O

[
n2 exp

(
−C0T

C1
)] }

+O

(
l2max√
T

+ lmax

){
O
(
n1−κ1/3−κδ

)
+O

(
n1−κ1/3−κδ∗

)
+O

[
n exp

(
−C0T

C1
)]}

+O

(
l2max√
T

){
O
(
n1−δκ)+O

(
n2−δ∗κ)+O

[
n2 exp

(
−C0T

C1
)]}

+

[
O

(
l2max√
T

)
+O (lmax)

] O
(

n1−δκ

lmax−k−2k∗−1

)
+O

(
n2−δ

∗κ

lmax−k−2k∗−1

)
+O

(
n1−ν−δκ)

+O
(
n1−ν−δ∗κ)+O

[
n2

lmax−k−2k∗−1
exp

(
−C0n

C1κ1
)]

 .
This expression can be simplified by noting that k is finite, lmax = 	 (nκ2) with κ2 > 0,

k∗ = 	 (T ε) with κ2 > ε > 0, 0 < δ < δ∗, T = 	 (nκ1) with κ1 > 0. In addition, using

similar arguments as in the derivation of (A.8), the term O
(
n1−ν−δκ) and O (n1−ν−δ∗κ) can

be replaced with O
(
n1−κ1/3−κδ

)
and O

(
n1−κ1/3−κδ∗

)
, respectively. Hence, we have

E
(∥∥∥β̃n−βn∥∥∥) =O

(
n2ε−κ1/2

){ 1 +O
(
n1−δκ)+O

(
n2−δ∗κ)

+O
(
n1−κ1/3−κδ

)
+O

[
n2 exp

(
−C0n

κ1C1
)] }

+O
(
n2κ2−κ1/2 + nκ2

) {
O
(
n1−κ1/3−κδ

)
+O

(
n1−κ1/3−κδ∗

)
+O

[
n exp

(
−C0n

κ1C1
)]}

+O
(
n2κ2−κ1/2

) {
O
(
n1−δκ)+O

(
n2−δ∗κ)+O

[
n2 exp

(
−C0n

κ1C1
)]}

+
[
O
(
n2κ2−κ1/2

)
+O (nκ2)

] [ O (n1−κ2−δκ
)

+O
(
n2−κ2−δ∗κ

)
+O

(
n1−κ1/3−δκ

)
+O

(
n1−κ1/3−δ∗κ

)
+O

[
n2−κ2 exp

(
−C0n

C1κ1
)] ] .

The terms of the form O
[
na exp

(
−C0n

κ1C1
)]
for some a and some C0, C1 > 0 are dominated

by a single term O
[
exp

(
−nC2κ1

)]
for some C2 in 0 < C2 < C1. Simplifying the expression

above and removing some of the terms that are dominated, we obtain

E
(∥∥∥β̃n−βn∥∥∥) =O

(
n2ε−κ1/2

)
+O

(
n1−δκ)+O

(
n2−δ∗κ)+O

(
n1−δκ+2κ2−κ1/2

)
+O

(
n2−δ∗κ+2κ2−κ1/2

)
+O

[
exp

(
−nC2κ1

)]
,

for some C2 > 0, as required. This completes the proof.

A.2.3 Proof of Theorem 3

A proof of Theorem 3 is provided in Section A of the online theory supplement.

A.2.4 Proofs of the results for the case when P0 = 1

Result (35) follows from (23), and (36) follows from the analysis preceding Theorem 1, using

(24) and (25). Result on FDRn,T continues to hold using the same arguments as in the proof

of (31).
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To obtain Pr (A0) we follow the derivations in the proof of the multi-stage version of

OCMT provided in Section A.2.1, but note that we only need to consider the terms from the

first stage of OCMT. Similarly to (A.11) and without the need to condition on Dk,T , we have

Pr(Ac0) ≤ Pr

(
k∑
i=1

̂I (βi 6= 0) < k

)
+ Pr

(
n∑

i=k+k∗+1

̂I (βi 6= 0) > 0

)
= An,T +Bn,T .

noting that ̂I (βi 6= 0) = ̂I(1) (βi 6= 0). Also, as with (A.17) and (A.18), we have

An,T ≤ k exp
(
−C1T

C2
)
.

Similarly, for Bn,T we first note that

Bn,T ≤
n∑

i=k+k∗+1

E
[

̂I(1) (βi 6= 0) |βi = 0
]

=
n∑

i=k+k∗+1

Pr
[∣∣∣tφ̂i,(1)∣∣∣ > cp (n, δ) |θi = 0

]
,

which, by (A.107) of Lemma 10, yields

Bn,T ≤ (n− k − k∗) exp

[−κc2
p(n, δ)

2

]
+O

[
n exp

(
−C0T

C1
)]
.

or upon using result (ii) of Lemma 2,

Pr (Ac0) ≤ An,T +Bn,T ≤ O
(
n1−δκ)+O

[
n exp

(
−C0T

C1
)]
,

and hence

Pr (A0) = O
(
n1−δκ)+O

[
exp

(
−nC2

)]
.

for some C2 > 0. If, in addition, δ > 1, then Pr (A0)→ 1, as n,T →∞ such that T = O (nκ1)

for some κ1 > 0, as required. The result on the residual norm of the selected model (32)

continues to hold using the same arguments as in Section A.2.2 of the Appendix.

To establish (37), we recall (A.38), and noting that we do not need to condition on Dk,T
and can drop terms relating to any stage of OCMT after the first, we replace (A.43), (A.44),

(A.45), and (A.47) with

Cn,T = O

(
(k + k∗ + 1)2

√
T

){
1 +O

(
n1−δκ)+O

[
exp

(
−C0T

C1
)]}

, (A.48)

Dn,T = O

(
l2max√
T

+ lmax

){
O
[
exp

(
−C0T

C1
)]}

, (A.49)

En,T = O

(
l2max√
T

){
O
(
n1−δκ)+O

[
exp

(
−C0T

C1
)]}

. (A.50)
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and

Fn,T =

[
O

(
l2max√
T

)
+O (lmax)

] O
(

n1−δκ

lmax−k−2k∗−1

)
+

O
[

n2

lmax−k−2k∗−1
exp

(
−C0n

C1κ1
)]
 , (A.51)

respectively, where, for (A.51), we have used (A.130) in (A.46), rather than (A.132). Com-

bining the above results, we obtain

E
(∥∥∥β̃n−βn∥∥∥) = O

(
n2ε−κ1/2

)
+O

(
n1+2κ2−κ1/2−κδ

)
+O

(
n1−κδ)+O

[
exp

(
−nC2

)]
,

which completes the proof.

A.3 Lemmas

Lemma 1 Let yt, for t = 1, 2, ..., T , be given by DGP (1) and define xi = (xi1, xi2, ..., xiT )′,

for i = 1, 2, ..., k, and Xk = (x1,x2, ...,xk), and suppose that Assumption 1 holds. Moreover,

let qi = (qi1, qi2, ...., qiT )′ , for i = 1, 2, ..., lT , Q = (q1,q2, ...,qlT )′, and assume Mq = IT −
Q (Q′Q)−1 Q′ exists. Further, assume that the column vector τ T = (1, 1, ..., 1)′ belongs to Q,

0 ≤ a < k column vectors in Xk belong to Q, and the remaining b = k− 1 > 0 columns of Xk

that do not belong in Q are collected in T ×b matrix Xb. The slope coeffi cients that correspond

to regressors in Xb are collected in b× 1 vector βb,T . Define

θb,T = Ωb,Tβb,T ,

where Ωb,T = E (T−1X′bMqXb). If Ωb,T is nonsingular, and βk,T = (β1,T , β2,T , ..., βk,T )′ 6= 0,

then at least one element of the b× 1 vector θb,T is nonzero.

Proof. Since Ωb,T is nonsingular and βb,T 6= 0, it follows that θb,T 6= 0; otherwise βb,T =

Ω−1
b,Tθb,T = 0, which contradicts the assumption that βb,T 6= 0.

Lemma 2 Consider the critical value function cp (n, δ) defined by (8), with 0 < p < 1 and

f (n, δ) = cnδ, for some c, δ > 0. Moreover, let a > 0 and 0 < b ≤ 1. Then:

(i) cp (n, δ) = O
(

[δ ln (n)]1/2
)
,

(ii) na exp
[
−bc2

p (n, δ)
]

= 	
(
na−2bδ

)
.

Proof. Results follow from Lemma 3 of supplementary Appendix A of Bailey, Pesaran, and

Smith (2016).

Lemma 3 Let zt be a martingale difference sequence with respect to the filtration F zt−1 =

σ
(
{zs}t−1

s=1

)
, and suppose that there exist finite positive constants C0 and C1, and s > 0

such that supt Pr (|zt| > α) ≤ C0 exp (−C1α
s), for all α > 0. Let σ2

zt = E(z2
t

∣∣F zt−1 ) and
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σ2
z = 1

T

∑T
t=1 σ

2
zt. Suppose that ζT = 	(T λ), for some 0 < λ ≤ (s+ 1)/(s+ 2). Then, for any

π in the range 0 < π < 1, we have

Pr

(∣∣∣∣∣
T∑
t=1

zt

∣∣∣∣∣ > ζT

)
≤ exp

[
− (1− π)2 ζ2

T

2Tσ2
z

]
. (A.52)

If λ > (s+ 1)/(s+ 2), then for some finite positive constant C3,

Pr

(∣∣∣∣∣
T∑
t=1

zt

∣∣∣∣∣ > ζT

)
≤ exp

[
−C3ζ

s/(s+1)
T

]
. (A.53)

Proof. We proceed to prove (A.52) first and then prove (A.53). Decompose zt as zt = wt+vt,

where wt = ztI(|zt| ≤ DT ) and vt = ztI(|zt| > DT ), and note that

Pr

(∣∣∣∣∣
T∑
t=1

[zt − E(zt)]

∣∣∣∣∣ > ζT

)
≤Pr

(∣∣∣∣∣
T∑
t=1

[wt − E(wt)]

∣∣∣∣∣ > (1− π) ζT

)

+ Pr

(∣∣∣∣∣
T∑
t=1

[vt − E(vt)]

∣∣∣∣∣ > πζT

)
, (A.54)

for any 0 < π < 1.11 Further, it is easily verified that wt − E (wt) is a martingale difference

process, and since |wt| ≤ DT then by setting b = Tσ2
z and a = (1− π) ζT in Proposition 2.1

of Freedman (1975), for the first term on the RHS of (A.54) we obtain

Pr

(∣∣∣∣∣
T∑
t=1

[wt − E (wt)]

∣∣∣∣∣ > (1− π) ζT

)
≤ exp

[
− (1− π)2 ζ2

T

2 [Tσ2
z + (1− π)DT ζT ]

]
.

Consider now the second term on the RHS of (A.54) and first note that

Pr

(∣∣∣∣∣
T∑
t=1

[vt − E(vt)]

∣∣∣∣∣ > πζT

)
≤ Pr

[
T∑
t=1

|vt − E(vt)| > πζT

]
, (A.55)

and by Markov’s inequality,

Pr

(
T∑
t=1

|[vt − E(vt)]| > πζT

)
≤
(

1

πζT

) T∑
t=1

E |vt − E(vt)|

≤
(

2

πζT

) T∑
t=1

E |vt| . (A.56)

11Let AT =
∑T

t=1 [zt − E(zt)] = B1,T + B2,T , where B1,T =
∑T

t=1 [wt − E(wt)] and B2,T =∑T
t=1 [vt − E(vt)]. We have |AT | ≤ |B1,T |+ |B2,T | and, therefore, Pr (|AT | > ζT ) ≤ Pr (|B1,T |+ |B2,T | > ζT ).

Equation (A.54) now readily follows using the same steps as in the proof of (B.1).
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But by Holder’s inequality, for any finite p, q ≥ 1 such that p−1 + q−1 = 1 we have

E |vt| = E (|ztI [|zt| > DT ]|)
≤ (E |zt|p)1/p {E [|I (|zt| > DT )|q]}1/q

= (E |zt|p)1/p {E [I (|zt| > DT )]}1/q

= (E |zt|p)1/p
[Pr (|zt| > DT )]1/q . (A.57)

Also, for any finite p ≥ 1 there exists a finite positive constant C2 such that E |zt|p ≤ C2 <∞,
by Lemma A5. Further, by assumption

sup
t

Pr (|zt| > DT ) ≤ C0 exp (−C1D
s
T ) .

Using this upper bound in (A.57) together with the upper bound on E |zt|p, we have

sup
t
E |vt| ≤ C

1/p
2 C

1/q
0 [exp (−C1D

s
T )]1/q .

Therefore, using (A.55)-(A.56),

Pr

(∣∣∣∣∣
T∑
t=1

[vt − E(vt)]

∣∣∣∣∣ > πζT

)
≤ (2/π)C

1/p
2 C

1/q
0 ζ−1

T T [exp (−C1D
s
T )]1/q .

We need to determine DT such that

(2/π)C
1/p
2 C

1/q
0 ζ−1

T T [exp (−C1D
s
T )]1/q ≤ exp

[
− (1− π)2 ζ2

T

2 [Tσ2
z + (1− π)DT ζT ]

]
. (A.58)

Taking logs, we have

ln
[
(2/π)C

1/p
2 C

1/q
0

]
+ ln

(
ζ−1
T T

)
−
(
C1

q

)
Ds
T ≤

− (1− π)2 ζ2
T

2 [Tσ2
z + (1− π)DT ζT ]

,

or

C1q
−1Ds

T ≥ ln
[
(2/π)C

1/p
2 C

1/q
0

]
+ ln

(
ζ−1
T T

)
+

(1− π)2 ζ2
T

2 [Tσ2
z + (1− π)DT ζT ]

.

Post-multiplying by 2 [Tσ2
z + (1− π)DT ζT ] > 0 we have(

2σ2
zC1q

−1
)
TDs

T +
(
2C1q

−1
)

(1− π)Ds+1
T ζT − 2 (1− π)DT ζT ln

(
ζ−1
T T

)
−

2 (1− π)DT ζT ln
[
(2/π)C

1/p
2 C

1/q
0

]
≥ 2σ2

zT ln
[
(2/π)C

1/p
2 C

1/q
0

]
+ 2σ2

zT ln
(
ζ−1
T T

)
+ (1− π)2 ζ2

T . (A.59)

The above expression can now be simplified for values of T →∞, by dropping the constants
and terms that are asymptotically dominated by other terms on the same side of the inequal-

ity.12 Since ζT = 	
(
T λ
)
, for some 0 < λ ≤ (s+ 1)/(s+ 2), and considering values of DT such

12A term A is said to be asymptotically dominant compared to a term B if both tend to infinity and
A/B →∞.
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that DT = 	
(
Tψ
)
, for some ψ > 0, implies that the third and fourth term on the LHS of

(A.59), which have the orders 	
[
ln(T )T λ+ψ

]
and 	

(
T λ+ψ

)
, respectively, are dominated by

the second term on the LHS of (A.59) which is of order 	
(
T λ+ψ+sψ

)
. Further the first term

on the RHS of (A.59) is dominated by the second term. Note that for ζT = 	
(
T λ
)
, we have

T ln
(
ζ−1
T T

)
= 	 [T ln(T )], whilst the order of the first term on the RHS of (A.59) is 	 (T ).

Result (A.58) follows if we show that there exists DT such that(
C1q

−1
) [

2σ2
zTD

s
T + 2 (1− π)Ds+1

T ζT
]
≥ 2σ2

zT ln
(
ζ−1
T T

)
+ (1− π)2 ζ2

T . (A.60)

Set (
C1q

−1
)
Ds+1
T =

1

2
(1− π) ζT , or DT =

(
1

2
C−1

1 q (1− π) ζT

)1/(s+1)

and note that (A.60) can be written as

2σ2
z

(
C1q

−1
)
T

(
1

2
C−1

1 q (1− π) ζT

)s/(s+1)

+ (1− π)2 ζ2
T ≥ 2σ2

zT ln
(
ζ−1
T T

)
+ (1− π)2 ζ2

T .

Hence, the required condition is met if

lim
T→∞

[(
C1q

−1
)(1

2
C−1

1 q (1− π) ζT

)s/(s+1)

− ln
(
ζ−1
T T

)]
≥ 0.

This condition is clearly satisfied noting that for values of ζT = 	
(
T λ
)
, q > 0, C1 > 0 and

0 < π < 1(
C1q

−1
)(1

2
C−1

1 q (1− π) ζT

)s/(s+1)

− ln
(
ζ−1
T T

)
= 	

(
T

λs
1+s

)
−	 [ln (T )] ,

since s > 0 and λ > 0, the first term on the RHS, which is positive, dominates the second term.

Finally, we require that DT ζT = o(T ), since then the denominator of the fraction inside the

exponential on the RHS of (A.58) is dominated by T which takes us back to the Exponential

inequality with bounded random variables and proves (A.52). Consider

T−1DT ζT =

(
1

2
C−1

1 q (1− π)

)1/(s+1)

T−1ζ
2+s
1+s

T ,

and since ζT = 	(T λ) then DT ζT = o(T ), as long as λ < (s+ 1)/(s+ 2), as required.

If λ > (s+ 1)/(s+ 2), it follows that DT ζT dominates T in the denominator of the fraction

inside the exponential on the RHS of (A.58). So the bound takes the form exp
[
−(1−π)ζ2T
C4DT ζT

]
, for

some finite positive constant C4. Noting that DT = 	
(
ζ

1/(s+1)
T

)
, gives a bound of the form

exp
[
−C3ζ

s/(s+1)
T

]
proving (A.53).

Remark 5 We conclude that for all random variables that satisfy a probability exponential

tail with any positive rate, removing the bound in the Exponential inequality has no effect on

the relevant rate at least for the case under consideration.
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Lemma 4 Let xt and ut be sequences of random variables and suppose that there exist C0, C1 >

0, and s > 0 such that supt Pr (|xt| > α) ≤ C0 exp (−C1α
s) and supt Pr (|ut| > α) ≤ C0 exp (−C1α

s),

for all α > 0. Let F (1)
t−1 = σ

(
{us}t−1

s=1 , {xs}
t−1
s=1

)
and F (2)

t = σ
(
{us}t−1

s=1 , {xs}
t
s=1

)
. Then, as-

sume either that (i) E
(
ut|F (2)

t

)
= 0 or (ii) E

(
xtut − µt|F (1)

t−1

)
= 0, where µt = E(xtut). Let

ζT = 	
(
T λ
)
, for some λ such that 0 < λ ≤ (s/2 + 1)/(s/2 + 2). Then, for any π in the range

0 < π < 1 we have

Pr

(∣∣∣∣∣
T∑
t=1

(xtut − µt)
∣∣∣∣∣ > ζT

)
≤ exp

[
−(1− π)2ζ2

T

2Tσ2
(T )

]
, (A.61)

where σ2
(T ) = 1

T

∑T
t=1 σ

2
t and σ

2
t = E

[
(xtut − µt)2 |F (1)

t−1

]
. If λ > (s/2 + 1)/(s/2 + 2), then for

some finite positive constant C2,

Pr

(∣∣∣∣∣
T∑
t=1

(xtut − µt)
∣∣∣∣∣ > ζT

)
≤ exp

[
−C2ζ

s/(s+2)
T

]
. (A.62)

Proof. Let F̃t−1 = σ
(
{xsus}t−1

s=1

)
and note that under (i)

E(xtut|F̃t−1) = E
[
E
(
ut|F (2)

t

)
xt|F̃t−1

]
= 0.

Therefore, xtut is a martingale difference process. Under (ii) we simply note that xtut − µt
is a martingale difference process by assumption. Next, for any α > 0 we have (using (B.2)

with C0 set equal to α and C1 set equal to
√
α)

Pr [|xtut| > α] ≤ Pr
[
|xt| > α1/2

]
+ Pr

[
|ut|2 > α1/2

]
. (A.63)

But, under the assumptions of the lemma,

sup
t

Pr
[
|xt| > α1/2

]
≤ C0e

−C1αs/2 ,

and

sup
t

Pr
[
|ut| > α1/2

]
≤ C0e

−C1αs/2 .

Hence

sup
t

Pr [|xtut| > α] ≤ 2C0e
−C1αs/2 .

Therefore, the process xtut satisfies the conditions of Lemma 3 and the results of the lemma

apply.

Lemma 5 Let x = (x1, x2, ..., xT )′ and q·t = (q1,t, q2,t, ..., qlT ,t)
′ be sequences of random vari-

ables and suppose that there exist finite positive constants C0 and C1, and s > 0 such that
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supt Pr (|xt| > α) ≤ C0 exp (−C1α
s) and supi,t Pr (|qi,t| > α) ≤ C0 exp (−C1α

s), for all a > 0.

Consider the linear projection

xt =

lT∑
j=1

βjqjt + ux,t, (A.64)

and assume that only a finite number of slope coeffi cients β′s are nonzero and bounded, and

the remaining β’s are zero. Then, there exist finite positive constants C2 and C3, such that

sup
t

Pr (|ux,t| > α) ≤ C2 exp (−C3α
s) .

Proof. We assume without any loss of generality that the |βi| < C0 for i = 1, 2, ...,M , M is

a finite positive integer and βi = 0 for i = M + 1,M + 2, ..., lT . Note that for some 0 < π < 1,

sup
t

Pr (|ux,t| > α) ≤ sup
t

Pr

(∣∣∣∣∣xt −
M∑
j=1

βjqjt

∣∣∣∣∣ > α

)

≤ sup
t

Pr (|xt| > (1− π)α) + sup
t

Pr

(∣∣∣∣∣
M∑
j=1

βjqjt

∣∣∣∣∣ > πα

)

≤ sup
t

Pr (|xt| > (1− π)α) + sup
t

M∑
j=1

Pr
(
|βjqjt| >

πα

M

)
,

and since |βj| > 0, then

sup
t

Pr (|ux,t| > α) ≤ sup
t

Pr (|xt| > (1− π)α) +M sup
j,t

Pr

(
|qjt| >

πα

M |βj|

)
.

But supj,t Pr
(
|qjt| > πα

M |βj |

)
≤ supj,t Pr

(
|qjt| > πα

Mβmax

)
≤ C0 exp

[
−C1

(
πα

Mβmax

)s]
, and, for

fixed M , the probability bound condition is clearly met.

Lemma 6 Let xit, i = 1, 2, ..., n, t = 1, 2, ..., T , and ηt be martingale difference processes that

satisfy exponential tail probability bounds of the form (18) and (19), with tail exponents sx and

sη, where s = min(sx, sη) > 0. Let q·t = (q1,t, q2,t, ..., qlT ,t)
′ contain a constant and a subset

of xt = (x1t, x2t, ..., xnt)
′. Let Σqq = T−1

∑T
t=1 E (q·tq

′
·t) and Σ̂qq = Q′Q/T be both invertible,

where Q = (q1·, q2·, ..., qlT ·) and qi· = (qi1, qi2, ..., qiT )′, for i = 1, 2, ..., lT . Suppose that

Assumption 5 holds for all the pairs xit and q·t, and ηt and q·t, and denote the corresponding

projection residuals defined by (20) as uxi,t = xit−γ ′qxi,Tq·t and uη,t = ηt−γ ′qη,Tq·t, respectively.
Let ûxi = (ûxi,1, ûxi,2, ..., ûxi,T )′ = Mqxi, xi = (xi1, xi2, ..., xiT )′, ûη = (ûη,1, ûη,2, ..., ûη,T )′ =

Mqη, η = (η1, η2, ..., ηT )′, Mq = IT −Q (Q′Q)−1 Q, Ft = Fηt ∪Fxt , µxiη,t = E (uxi,tuη,t |Ft−1 ),

ω2
xiη,1,T

= 1
T

∑T
t=1E

[
(xitηt − E (xitηt |Ft−1 ))2], and ω2

xiη,T
= 1

T

∑T
t=1 E

[
(uxi,tuη,t − µxiη,t)

2].
Let ζT = 	(T λ). Then, for any π in the range 0 < π < 1, we have,

Pr

(∣∣∣∣∣
T∑
t=1

xitηt − E (xitηt |Ft−1 )

∣∣∣∣∣ > ζT

)
≤ exp

[
− (1− π)2 ζ2

T

2Tω2
xiη,1,T

]
, (A.65)
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if 0 < λ ≤ (s/2 + 1)/(s/2 + 2). Further, if λ > (s/2 + 1)/(s/2 + 2), we have,

Pr

(∣∣∣∣∣
T∑
t=1

xitηt − E (xitηt |Ft−1 )

∣∣∣∣∣ > ζT

)
≤ exp

[
−C0ζ

s/(s+2)
T

]
, (A.66)

for some finite positive constant C0. If it is further assumed that lT = 	
(
T d
)
, such that

0 ≤ d < 1/3, then, if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2),

Pr

(∣∣∣∣∣
T∑
t=1

(ûxi,tûη,t − µxiη,t)
∣∣∣∣∣ > ζT

)
≤ C0 exp

[
− (1− π)2 ζ2

T

2Tω2
xiη,T

]
+ exp

[
−C1T

C2
]
. (A.67)

for some finite positive constants C0, C1 and C2, and, if λ > (s/2 + 1)/(s/2 + 2) we have

Pr

(∣∣∣∣∣
T∑
t=1

(ûxi,tûη,t − µxiη,t)
∣∣∣∣∣ > ζT

)
≤ C0 exp

[
−C3ζ

s/(s+2)
T

]
+ exp

[
−C1T

C2
]
, (A.68)

for some finite positive constants C0, C1, C2 and C3.

Proof. Note that all the results in the proofs below hold both for sequences and for triangular
arrays of random variables. If q·t contains xit, all results follow trivially, so, without loss of

generality, we assume that, if this is the case, the relevant column of Q is removed. (A.65)

and (A.66) follow immediately given our assumptions and Lemma 4. We proceed to prove

the rest of the lemma. Let uxi = (uxi,1, uxi,2, ..., uxi,T )′ and uη = (uη,1, uη,2, ..., uη,T )′. We first

note that

T∑
t=1

(ûxi,tûη,t − µxiη,t) = û′xiûη −
T∑
t=1

µxiη,t = u′xiMquη−
T∑
t=1

µxiη,t

=
T∑
t=1

(uxi,tuη,t − µxiη,t)−
(
T−1u′xiQ

)
Σ̂−1
qq (Q′uη) , (A.69)

where Σ̂qq = T−1 (Q′Q). The second term of the above expression can now be decomposed as(
T−1u′xiQ

)
Σ̂−1
qq (Q′uη) =

(
T−1u′xiQ

) (
Σ̂−1
qq −Σ−1

qq

)
(Q′uη) +

(
T−1u′xiQ

)
Σ−1
qq (Q′uη) .

(A.70)

By (B.1) and for any 0 < π1, π2, π3 < 1 such that
∑3

i=1πi = 1, we have

Pr

(∣∣∣∣∣
T∑
t=1

(ûxi,tûη,t − µxiη,t)
∣∣∣∣∣ > ζT

)
≤Pr

(∣∣∣∣∣
T∑
t=1

(uxi,tuη,t − µxiη,t)
∣∣∣∣∣ > π1ζT

)
+ Pr

(∣∣∣(T−1u′xiQ
) (

Σ̂−1
qq −Σ−1

qq

)
(Q′uη)

∣∣∣ > π2ζT

)
+ Pr

(∣∣(T−1u′xiQ
)

Σ−1
qq (Q′uη)

∣∣ > π3ζT
)
.
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Also applying (B.2) to the last two terms of the above we obtain

Pr
(∣∣∣(T−1u′xiQ

) (
Σ̂−1
qq −Σ−1

qq

)
(Q′uη)

∣∣∣ > π2ζT

)
≤ Pr

(∥∥∥Σ̂−1
qq −Σ−1

qq

∥∥∥
F

∥∥T−1u′xiQ
∥∥
F
‖Q′uη‖F > π2ζT

)
≤ Pr

(∥∥∥Σ̂−1
qq −Σ−1

qq

∥∥∥
F
>
ζT
δT

)
+ Pr

(
T−1

∥∥u′xiQ∥∥F ‖Q′uη‖F > π2δT
)

≤ Pr

(∥∥∥Σ̂−1
qq −Σ−1

qq

∥∥∥
F
>
ζT
δT

)
+ Pr

(∥∥u′xiQ∥∥F > (π2δTT )1/2
)

+ Pr
(
‖Q′uη‖F > (π2δTT )1/2

)
,

where δT > 0 is a deterministic sequence. In what follows, we set δT = 	 (ζαT ), for some α > 0.

Similarly

Pr
(∣∣(T−1u′xiQ

)
Σ−1
qq (Q′uη)

∣∣ > π3ζT
)

≤ Pr
(∥∥Σ−1

qq

∥∥
F

∥∥T−1u′xiQ
∥∥
F
‖Q′uη‖F > π3ζT

)
≤ Pr

(∥∥u′xiQ∥∥F ‖Q′uη‖F > π3ζTT∥∥Σ−1
qq

∥∥
F

)

≤ Pr

(∥∥u′xiQ∥∥F > π
1/2
3 ζ

1/2
T T 1/2∥∥Σ−1
qq

∥∥1/2

F

)
+ Pr

(
‖Q′uη‖F >

π
1/2
3 ζ

1/2
T T 1/2∥∥Σ−1
qq

∥∥1/2

F

)
.

Overall

Pr

(∣∣∣∣∣
T∑
t=1

(ûx,tûη,t − µxη,t)
∣∣∣∣∣ > ζT

)

≤ Pr

(∣∣∣∣∣
T∑
t=1

(ux,tuη,t − µxη,t)
∣∣∣∣∣ > π1ζT

)
+ Pr

(∥∥∥Σ̂−1
qq −Σ−1

qq

∥∥∥
F
>
ζT
δT

)
+ Pr

(
‖Q′uη‖F > (π2δTT )1/2

)
+ Pr

(
‖u′xQ‖F > (π2δTT )1/2

)
,

+ Pr

(
‖u′xQ‖F >

π
1/2
3 ζ

1/2
T T 1/2∥∥Σ−1
qq

∥∥1/2

F

)
+ Pr

(
‖Q′uη‖F >

π
1/2
3 ζ

1/2
T T 1/2∥∥Σ−1
qq

∥∥1/2

F

)
. (A.71)

First, since ux,tuη,t−µxη,t is a martingale difference process with respect to σ
(
{ηs}t−1

s=1 , {xs}
t−1
s=1 , {qs}

t−1
s=1

)
,

by Lemma 4, we have, for any π in the range 0 < π < 1,

Pr

(∣∣∣∣∣
T∑
t=1

(uxi,tuη,t − µxiη,t)
∣∣∣∣∣ > π1ζT

)
≤ exp

[
−(1− π)2ζ2

T

2Tω2
xη,T

]
, (A.72)

if 0 < λ ≤ (s/2 + 1)/(s/2 + 2), and

Pr

(∣∣∣∣∣
T∑
t=1

(uxi,tuη,t − µxiη,t)
∣∣∣∣∣ > π1ζT

)
≤ exp

[
−C0ζ

s/(s+1)
T

]
, (A.73)
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if λ > (s/2 + 1)/(s/2 + 2), for some finite positive constant C0. We now show that the last

five terms on the RHS of (A.71) are of order exp
[
−C1T

C2
]
, for some finite positive constants

C1 and C2. We will make use of Lemma 4 since by assumption {qituη,t} and {qituxi,t} are
martingale difference sequences. We note that some of the bounds of the last five terms

exceed, in order, T 1/2. Since we do not know the value of s, we need to consider the possibility

that either (A.61) or (A.62) of Lemma 4, apply. We start with (A.61). Then, for some finite

positive constant C0, we have13

sup
i

Pr
(
‖q′iuη‖ > (π2δTT )1/2

)
≤ exp (−C0δT ) . (A.74)

Also, using ‖Q′uη‖2
F =

∑lT
j=1

(∑T
t=1 qjtut

)2

and (B.1),

Pr
(
‖Q′uη‖F > (π2δTT )1/2

)
= Pr

(
‖Q′uη‖2

F > π2δTT
)

≤
lT∑
j=1

Pr

( T∑
t=1

qjtuη,t

)2

>
π2δTT

lT


=

lT∑
j=1

Pr

[∣∣∣∣∣
T∑
t=1

qjtuη,t

∣∣∣∣∣ >
(
π2δTT

lT

)1/2
]
,

which upon using (A.74) yields (for some finite positive constant C0)

Pr
(
‖Q′uη‖F > (π2δTT )1/2

)
≤ lT exp

(
−C0δT

lT

)
, Pr

(
‖Q′ux‖ > (π2δTT )1/2

)
≤ lT exp

(
−C0δT

lT

)
.

(A.75)

Similarly,

Pr

(
‖Q′uη‖F >

π
1/2
3 ζ

1/2
T T 1/2∥∥Σ−1
qq

∥∥1/2

F

)
≤ lT exp

(
−C0ζT∥∥Σ−1
qq

∥∥
F
lT

)
, (A.76)

Pr

(
‖Q′ux‖ >

π
1/2
3 ζ

1/2
T T 1/2∥∥Σ−1
qq

∥∥1/2

F

)
≤ lT exp

(
−C0ζT∥∥Σ−1
qq

∥∥
F
lT

)
.

Turning to the second term of (A.71), since for all i and j, {qitqjt − E(qitqjt)} is a martingale
difference process and qit satisfy the required probability bound then

sup
ij

Pr

(∣∣∣∣∣ 1

T

T∑
t=1

[qitqjt − E(qitqjt)]

∣∣∣∣∣ > π2ζT
δT

)
≤ exp(

−C0Tζ
2
T

δ2
T

). (A.77)

13The required probability bound on uxt follows from the probability bound assumptions on xt and on qit,
for i = 1, 2, ..., lT , even if lT →∞. See also Lemma 5.
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Therefore, by Lemma A6, for some finite positive constant C0, we have

Pr

(∥∥∥Σ̂−1
qq −Σ−1

qq

∥∥∥ > ζT
δT

)
≤ l2T exp

 −C0Tζ
2
T

δ2
T l

2
T

∥∥Σ−1
qq

∥∥2

F

(∥∥Σ−1
qq

∥∥
F

+ δ−1
T ζT

)2

+ (A.78)

l2T exp

(
−C0T∥∥Σ−1
qq

∥∥2

F
l2T

)
.

Further by Lemma A4,
∥∥Σ−1

qq

∥∥
F

= 	
(
l
1/2
T

)
, and

Tζ2
T

δ2
T l

2
T

∥∥Σ−1
qq

∥∥2

F

(∥∥Σ−1
qq

∥∥
F

+ δ−1
T ζT

)2 =
Tζ2

T

δ−2
T ζ2

T δ
2
T l

2
T

∥∥Σ−1
qq

∥∥2

F

(
δT ζ

−1
T

∥∥Σ−1
qq

∥∥
F

+ 1
)2

=
T

l2T
∥∥Σ−1

qq

∥∥2

F

(
δT ζ

−1
T

∥∥Σ−1
qq

∥∥
F

+ 1
)2

Consider now the different terms in the above expression and let

P11 =
δT
lT
, P12 =

ζT∥∥Σ−1
qq

∥∥
F
lT
,

P13 =
T

l2T
∥∥Σ−1

qq

∥∥2

F

[
δT ζ

−1
T

∥∥Σ−1
qq

∥∥
F

+ 1
]2 , and P14 =

T∥∥Σ−1
qq

∥∥2

F
l2T
.

Under δT = 	 (ζαT ), lT = 	(T d), and ζT = 	(T λ), we have

P11 =
δT
lT

= 	
(
Tα−d

)
, (A.79)

P12 =
ζT∥∥Σ−1
qq

∥∥
F
lT

= 	
(
T λ−3d/2

)
, (A.80)

P13 =
T

l2T
∥∥Σ−1

qq

∥∥2

F

[
δT ζ

−1
T

∥∥Σ−1
qq

∥∥
F

+ 1
]2 =	

(
Tmax{1−3d−(2α−2λ+d),1−3d−(α−λ+d/2),1−3d})

=	
(
Tmax{1+2λ−4d−2α,1+λ−7d/2−α,1−3d}) , (A.81)

and

P14 =
T∥∥Σ−1

qq

∥∥2

F
l2T

= 	
(
T 1−3d

)
. (A.82)

Suppose that d < 1/3, and by (A.80) note that λ ≥ 3d/2. Then, setting α = 1/3, ensures that

all the above four terms tend to infinity polynomially with T . Therefore, it also follows that

they can be represented as terms of order exp
[
−C1T

C2
]
, for some finite positive constants
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C1 and C2, and (A.67) follows. The same analysis can be repeated under (A.62). In this case,

(A.75), (A.76), (A.77) and (A.78) are replaced by

Pr
(
‖Q′uη‖F > (π2δTT )1/2

)
≤ lT exp

(
−C0δ

s/2(s+2)
T T s/2(s+2)

l
s/2(s+2)
T

)
= lT exp

[
−C0

(
δTT

lT

)s/2(s+2)
]
,

Pr
(
‖Q′ux‖ > (π2δTT )1/2

)
≤ lT exp

(
−C0δ

s/2(s+2)
T T s/2(s+2)

l
s/2(s+2)
T

)
= lT exp

[
−C0

(
δTT

lT

)s/2(s+2)
]
,

Pr

(
‖Q′uη‖F >

π
1/2
3 ζ

1/2
T T 1/2∥∥Σ−1
qq

∥∥1/2

F

)
≤ lT exp

(
−C0ζ

s/2(s+2)
T T s/2(s+2)∥∥Σ−1

qq

∥∥s/2(s+2)

F
l
s/2(s+2)
T

)
= lT exp

−C0

(
ζTT∥∥Σ−1
qq

∥∥
F
lT

)s/2(s+2)
 ,

Pr

(
‖Q′ux‖ >

π
1/2
3 ζ

1/2
T T 1/2∥∥Σ−1
qq

∥∥1/2

F

)
≤ lT exp

(
−C0ζ

s/2(s+2)
T T s/2(s+2)∥∥Σ−1

qq

∥∥s/2(s+2)

F
l
s/2(s+2)
T

)
= lT exp

−C0

(
ζTT∥∥Σ−1
qq

∥∥
F
lT

)s/2(s+2)
 ,

sup
ij

Pr

(∣∣∣∣∣ 1

T

T∑
t=1

[qitqjt − E(qitqjt)]

∣∣∣∣∣ > π2ζT
δT

)
≤ exp

[
−C0T

s/(s+2)ζ
s/(s+2)
T

δ
s/(s+2)
T

]
,

and, using Lemma A7,

Pr

(∥∥∥(Σ̂−1
qq −Σ−1

qq

)∥∥∥ > π2ζT
δT

)
≤ l2T exp

 −C0T
s/(s+2)ζ

s/(s+2)
T

δ
s/(s+2)
T l

s/(s+2)
T

∥∥Σ−1
qq

∥∥s/(s+2)

F

(∥∥Σ−1
qq

∥∥
F

+ δ−1
T ζT

)s/(s+2)

+

l2T exp

[
−C0T

s/(s+2)∥∥Σ−1
qq

∥∥s/(s+2)

F
l
s/(s+2)
T

]
=

l2T exp

−C0

 TζT

δT lT
∥∥Σ−1

qq

∥∥
F

(∥∥Σ−1
qq

∥∥
F

+ δ−1
T ζT

)
s/(s+2)

+

l2T exp

−C0

(
T∥∥Σ−1

qq

∥∥
F
lT

)s/(s+2)
 .

respectively. Once again, we need to derive conditions that imply that P21 = δTT
lT
, P22 =

ζTT

‖Σ−1qq ‖
F
lT
, P23 = TζT

δT lT‖Σ−1qq ‖
F
(‖Σ−1qq ‖

F
+δ−1T ζT )

and P24 = T

‖Σ−1qq ‖
F
lT
are terms that tend to infinity

polynomially with T . If that is the case then, as before, the relevant terms are of order

exp
[
−C1T

C2
]
, for some finite positive constants C1 and C2, and (A.68) follows, completing

the proof of the lemma. P22 dominates P23 so we focus on P21, P23 and P24. We have

δTT

lT
= 	

(
T 1+α−d/2) ,

T ζT

δT lT
∥∥Σ−1

qq

∥∥
F

(∥∥Σ−1
qq

∥∥
F

+ δ−1
T ζT

) = 	
[
Tmax(1+λ−α−2d,1−3d/2)

]
,
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and
T∥∥Σ−1

qq

∥∥
F
lT

= 	
(
T 1−3d/2

)
It immediately follows that under the conditions set when using (A.61), which were that

α = 1/3, d < 1/3 and λ > 3d/2, and as long as s > 0, P21 to P24 tend to infinity polynomially

with T , proving the lemma.14

Lemma 7 Let xit, i = 1, 2, ..., n, be martingale difference processes that satisfy exponential tail

probability bounds of the form (18), with positive tail exponent s. Let q·t = (q1,t, q2,t, ..., qlT ,t)
′

contain a constant and a subset of xnt = (x1t, x2t, ..., xnt)
′. Suppose that Assumption 5 holds

for all the pairs xit and q·t, and denote the corresponding projection residuals defined by

(20) as uxit = xit − γ ′qxi,Tq·t. Let Σqq = T−1
∑T

t=1 E (q·tq
′
·t) and Σ̂qq = Q′Q/T be both

invertible, where Q = (q1·, q2·, ..., qlT ·) and qi· = (qi1, qi2, .., qiT )′, for i = 1, 2, ..., lT . Let ûxi =

(ûxi,1, ûxi,2, ..., ûxi,T )′ = Mqxi·, where xi· = (xi1, xi2, ..., xiT )′ and Mq = IT − Q (Q′Q)−1 Q.

Moreover, suppose that E
(
u2
xi,t
− σ2

xit
|Ft−1

)
= 0, where Ft = Fxt and σ2

xit
= E(u2

xi,t
). Let

ζT = 	(T λ). Then, if 0 < λ ≤ (s/2 + 1)/(s/2 + 2), for any π in the range 0 < π < 1, and

some finite positive constant C0, we have,

Pr

[∣∣∣∣∣
T∑
t=1

(
x2
it − σ2

xit

)∣∣∣∣∣ > ζT

]
≤ C0 exp

[
− (1− π)2 ζ2

T

2Tω2
i,1,T

]
. (A.83)

Otherwise, if λ > (s/2 + 1)/(s/2 + 2), for some finite positive constant C0, we have

Pr

[∣∣∣∣∣
T∑
t=1

(
x2
it − σ2

xit

)∣∣∣∣∣ > ζT

]
≤ exp

[
−C0ζ

s/(s+2)
T

]
. (A.84)

If it is further assumed that lT = 	
(
T d
)
, such that 0 ≤ d < 1/3, then, if 3d/2 < λ ≤

(s/2 + 1)/(s/2 + 2),

Pr

[∣∣∣∣∣
T∑
t=1

(
û2
xi,t
− σ2

xit

)∣∣∣∣∣ > ζT

]
≤ C0 exp

[
− (1− π)2 ζ2

T

2Tω2
i,T

]
+ exp

[
−C1T

C2
]
, (A.85)

for some finite positive constants C0, C1 and C2, and, if λ > (s/2 + 1)/(s/2 + 2),

Pr

[∣∣∣∣∣
T∑
t=1

(
û2
xi,t
− σ2

xit

)∣∣∣∣∣ > ζT

]
≤ C0 exp

[
−C3ζ

s/(s+2)
T

]
+ exp

[
−C1T

C2
]
, (A.86)

14It is important to highlight one particular feature of the above proof. In (A.75), qitux,t needs to be a
martingale difference process. Note that if qit is a martingale difference process distributed independently of
ux,t, then qitux,t is also a martingale difference process irrespective of the nature of ux,t. This implies that one
may not need to impose a martingale difference assumption on ux,t if xit is a noise variable. Unfortunately,
a leading case for which this lemma is used is one where qit = 1. It is then clear that one needs to impose
a martingale difference assumption on ux,t, to deal with covariates that cannot be represented as martingale
difference processes. We relax this assumption in Section 4, where we allow noise variables to be mixing
processes.
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for some finite positive constants C0, C1, C2 and C3, where ω2
i,1,T = 1

T

∑T
t=1E

[(
x2
it − σ2

xit

)2
]

and ω2
i,T = 1

T

∑T
t=1 E

[(
u2
xi,t
− σ2

xit

)2
]
.

Proof. If q·t contains xit, all results follow trivially, so, without loss of generality, we assume
that, if this is the case, the relevant column ofQ is removed. (A.83) and (A.84) follow similarly

to (A.65) and (A.66). For (A.85) and (A.86), we first note that∣∣∣∣∣
T∑
t=1

(
û2
xi,t
− σ2

xit

)∣∣∣∣∣ ≤
∣∣∣∣∣
T∑
t=1

(
u2
xi,t
− σ2

xit

)∣∣∣∣∣+
∣∣∣(T−1u′xiQ

) (
T−1Q′Q

)−1
(Q′uxi)

∣∣∣ .
Since

{
u2
xi,t
− σ2

xit

}
is a martingale difference process and for α > 0 and s > 0

sup
t

Pr
(∣∣u2

xi,t

∣∣ > α2
)

= sup
t

Pr (|uxi,t| > α) ≤ C0 exp (−C1α
s) ,

by Lemma 5, then the conditions of Lemma 3 are met and we have

Pr

[∣∣∣∣∣
T∑
t=1

(
u2
xi,t
− σ2

xit

)∣∣∣∣∣ > ζT

]
≤ exp

[
− (1− π)2 ζ2

T

2Tω2
i,T

]
. (A.87)

if 0 < λ ≤ (s/2 + 1)/(s/2 + 2) and

Pr

[∣∣∣∣∣
T∑
t=1

(
u2
xi,t
− σ2

xit

)∣∣∣∣∣ > ζT

]
≤ exp

[
−C0ζ

s/(s+2)
T

]
,

if λ > (s/2 + 1)/(s/2 + 2). Then, using the same line of reasoning as in the proof of Lemma

6 we establish the desired result.

Lemma 8 Let yt, for t = 1, 2, ..., T , be given by the data generating process (1) and suppose

that ut and xt = (x1t, x2t, ..., xnt)
′ satisfy Assumptions 2-3, with s = min(sx, su) > 0. Let

q·t = (q1,t, q2,t, ..., qlT ,t)
′ contain a constant and a subset of xt = (x1t, x2t, ..., xnt)

′. Assume that

Σqq = 1
T

∑T
t=1 E (q·tq

′
·t) and Σ̂qq = Q′Q/T are both invertible, where Q = (q1·, q2·, ..., qlT ·)

and qi· = (qi1, qi2, ..., qiT )′, for i = 1, 2, ..., lT . Moreover, suppose that Assumption 5 holds for

all the pairs xt and q·t, and yt and (q′·t, xt)
′, where xt is a generic element of {x1t, x2t, ..., xnt}

that does not belong to q·t, and denote the corresponding projection residuals defined by (20)

as ux,t = xt − γ ′qx,Tq·t and et = yt − γ ′yqx,T (q′·t, xt)
′. Define x = (x1, x2, ..., xT )′, and Mq =

IT −Q(Q′Q)−1Q′, and let aT = 	
(
T λ−1

)
. Then, for any π in the range 0 < π < 1, and as

long as lT = 	
(
T d
)
, such that 0 ≤ d < 1/3, we have, that, if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2),

Pr
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, (A.88)
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and

Pr
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, (A.89)

where

σ2
x,(T ) =

1

T

T∑
t=1

E
(
u2
x,t

)
, ω2

x,(T ) =
1

T

T∑
t=1

E
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u2
x,t − σ2

xt

)2
]
. (A.90)

If λ > (s/2 + 1)/(s/2 + 2),

Pr

(∣∣∣∣∣T−1x′Mqx
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)
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]
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, (A.91)

and
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. (A.92)

Also, if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2),

Pr
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, (A.93)

and
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where e = (e1, e2, ..., eT )′

σ2
u,(T ) =

1

T

T∑
t=1

σ2
t , and ω

2
u,T =

1

T
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E
[(
u2
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t

)2
]
. (A.95)

If λ > (s/2 + 1)/(s/2 + 2),

Pr
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, (A.96)

and
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Proof. First note that

x′Mqx
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− σ2
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T∑
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(
û2
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)
,

where ûx,t, for t = 1, 2, ..., T ,. is the t-th element of ûx = Mqx. Now applying Lemma 7 to∑T
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û2
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)
with ζT = TaT we have
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,

if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2), and
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]
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]
,

if λ > (s/2 + 1)/(s/2 + 2), where ω2
x,(T ) is defined by (A.90). Also
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if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2), and
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,

if λ > (s/2 + 1)/(s/2 + 2). Therefore, setting aT = ζT/Tσ
2
x,(T ) = 	
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)
, we have

Pr

(∣∣∣∣∣x′Mqx

Tσ2
x,(T )

− 1

∣∣∣∣∣ > aT

)
≤ exp

[
−σ4

x,(T ) (1− π)2 Ta2
T

2ω2
x,(T )

]
+ exp

[
−C0T

C1
]
, (A.98)

if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2), and

Pr

(∣∣∣∣∣x′Mqx

Tσ2
x,(T )

− 1

∣∣∣∣∣ > aT

)
≤ exp

[
−C0ζ

s/(s+2)
T

]
+ exp

[
−C1T

C2
]
,

if λ > (s/2 + 1)/(s/2 + 2), as required. Now setting ωT = x′Mqx

Tσ2
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, and using Lemma A3, we

have
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, (A.99)
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if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2), and
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if λ > (s/2 + 1)/(s/2 + 2). Furthermore
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and using Lemma A1 for some finite positive constant C, we have
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Let C = 1, and note that for this choice of C
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and using (A.98),
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if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2), and
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where W = (Q,x). As before, applying Lemma 7 to
∑T

t=1 (e2
t − σ2

t ), and following similar

lines of reasoning we have
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if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2), and
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,

if λ > (s/2 + 1)/(s/2 + 2), which yield (A.93) and (A.96). Result (A.94) also follows along

similar lines as used above to prove (A.89).

Lemma 9 Let yt, for t = 1, 2, ..., T , be given by the data generating process (1) and suppose

that ut and xt = (x1t, x2t, ..., xnt)
′ satisfy Assumptions 2-3. Let q·t = (q1,t, q2,t, ..., qlT ,t)

′ contain

a constant and a subset of xt = (x1t, x2t, ..., xnt)
′, and lT = o(T 1/3). Assume that Σqq =

1
T

∑T
t=1 E (q·tq

′
·t) and Σ̂qq = Q′Q/T are both invertible, where Q = (q1·, q2·, ..., qlT ·) and

qi· = (qi1, qi2, .., qiT )′, for i = 1, 2, ..., lT . Suppose that Assumption 5 holds for the pair yt
and (q′·t, xt)

′, where xt is a generic element of {x1t, x2t, ..., xnt} that does not belong to q·t,
and denote the corresponding projection residuals defined by (20) as et = yt − γ ′yqx,T (q′·t, xt)

′.

Define x = (x1, x2, ..., xT )′, e = (e1, e2, ..., eT )′, and Mq = IT −Q(Q′Q)−1Q′. Moreover, let
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(A.101)

+ exp
[
−C0T

C1
]

for any random variable aT , some finite positive constants C0 and C1, and some bounded

sequence dT > 0, where cp (n, δ) is defined in (8). Similarly,

Pr
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(A.102)

+ exp
[
−C0T

C1
]
.

Proof. We prove (A.101). (A.102) follows similarly. Define
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Using results in Lemma A1, note that for any dT > 0 bounded in T ,
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Using (A.89), (A.92), (A.94) and (A.97),
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for some finite positive constants C0 and C1. Using the above results, for some finite positive

constants C0 and C1, we have,
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[
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,

which establishes the desired the result.

Lemma 10 Let yt, for t = 1, 2, ..., T , be given by the data generating process (1) and suppose

that ut and xnt = (x1t, x2t, ..., xnt)
′ satisfy Assumptions 2-3, with s = min(sx, su) > 0. Let

q·t = (q1,t, q2,t, ..., qlT ,t)
′ contain a constant and a subset of xnt, and let ηt = x′b,tβb + ut,

where xb,t is kb × 1 dimensional vector of signal variables that do not belong to q·t, with the

associated coeffi cients, βb. Assume that Σqq = 1
T

∑T
t=1 E (q·tq

′
·t) and Σ̂qq = Q′Q/T are both

invertible, where Q = (q1·, q2·, ..., qlT ·) and qi· = (qi1, qi2, ..., qiT )′, for i = 1, 2, ..., lT . Moreover,

let lT = o(T 1/3) and suppose that Assumption 5 holds for all the pairs xit and q·t, and yt and

(q′·t, xt)
′, where xt is a generic element of {x1t, x2t, ..., xnt} that does not belong to q·t, and

denote the corresponding projection residuals defined by (20) as ux,t = xt − γ ′qx,Tq·t and et =

yt − γ ′yqx,T (q′·t, xt)
′. Define x = (x1, x2, ..., xT )′, y = (y1, y2, ..., yT )′, e = (e1, e2, ..., eT )′, Mq =

IT −Q(Q′Q)−1Q′, and θT = E (T−1x′MqXb)βb, where Xb is T ×kb matrix of observations
on xb,t. Finally, cp (n, δ) is given by (8) with 0 < p < 1 and f (n, δ) = cnδ, for some c, δ > 0,
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and there exists κ1 > 0 such that T = 	 (nκ1). Then, for any π in the range 0 < π < 1, any

dT > 0 and bounded in T , and for some finite positive constants C0 and C1,

Pr [|tx| > cp (n, δ) |θT = 0] ≤ exp

[
− (1− π)2 σ2

e,(T )σ
2
x,(T )c

2
p (n, δ)

2 (1 + dT )2 ω2
xe,T

]
(A.103)

+ exp
[
−C0T

C1
]
,

where

tx =
T−1/2x′Mqy√

(e′e/T )
(

x′Mqx

T

) , (A.104)

σ2
e,(T ) = E

(
T−1e′e

)
, σ2

x,(T ) = E
(
T−1x′Mqx

)
, (A.105)

and

ω2
xe,T =

1

T

T∑
t=1

E
[
(ux,tηt)

2] . (A.106)

Under σ2
t = σ2 and/or E

(
u2
x,t

)
= σ2

xt = σ2
x, for all t = 1, 2, ..., T ,

Pr [|tx| > cp (n, δ) |θT = 0] ≤ exp

[
− (1− π)2 c2

p (n, δ)

2 (1 + dT )2

]
+ exp

(
−C0T

C1
)
. (A.107)

In the case where θT 6= 0, let θT = 	
(
T−ϑ

)
, for some 0 ≤ ϑ < 1/2, where cp (n, δ) =

O
(
T 1/2−ϑ−C8

)
, for some positive C8. Then, for some bounded positive sequence dT , and for

some C2, C3 > 0, we have

Pr [|tx| > cp (n, δ) |θT 6= 0] > 1− exp
(
−C2T

C3
)
. (A.108)

Proof. The DGP, given by (2), can be written as

y = aτ T + Xβ + u = aτ T + Xaβa + Xbβb + u

where Xa is a subset of Q. Let Qx = (Q,x), Mq = IT − Q(Q′Q)−1Q′, Mqx = IT −
Qx(Q

′
xQx)

−1Q′x. Then, MqXa = 0, and let MqXb = (xbq,1,xbq,2, ...,xbq,T )′. Then,

tx =
T−1/2x′Mqy√

(e′e/T )
(

x′Mqx

T

) =
T−1/2x′MqXbβb√
(e′e/T )

(
x′Mqx

T

) +
T−1/2x′Mqu√

(e′e/T )
(

x′Mqx

T

) . (A.109)

Let θT = E (T−1x′MqXb)βb, η = Xbβb + u, η = (η1, η2, ..., ηT )′ , and write (A.109) as

tx =

√
TθT√

(e′e/T )
(

x′Mqx

T

) +
T 1/2

(
x′Mqη

T
− θT

)
√

(e′e/T )
(

x′Mqx

T

) . (A.110)
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First, consider the case where θT = 0 and note that in this case

tx =

(
x′Mqx

T

)−1/2
x′Mqη√

T√
(e′e/T )

.

Now by Lemma 9, we have

Pr [|tx| > cp (n, δ) |θT = 0] = Pr


∣∣∣∣∣∣∣
(

x′Mqx

T

)−1/2
x′Mqη√

T√
(e′e/T )

∣∣∣∣∣∣∣ > cp (n, δ) |θT = 0


≤Pr

(∣∣∣∣T−1/2x′Mqη

σe,(T )σx,(T )

∣∣∣∣ > cp (n, δ)

1 + dT

)
+ exp

(
−C0T

C1
)
.

where σ2
e,(T ) and σ

2
x,(T ) are defined by (A.105). Hence, noting that cp (n, δ) = o(TC0), for all

C0 > 0, under Assumption 3, and by Lemma 6, we have

Pr [|tx| > cp (n, δ) |θT = 0] ≤ exp

[
− (1− π)2 σ2

e,(T )σ
2
x,(T )c

2
p (n, δ)

2 (1 + dT )2 ω2
xe,T

]
+ exp

(
−C0T

C1
)
,

where

ω2
xe,T =

1

T

T∑
t=1

E
[
(ux,tηt)

2] =
1

T

T∑
t=1

E
[
u2
x,t

(
x′b,tβb + ut

)2
]
,

and ux,t, being the error in the regression of xt on Q, is defined by (20). Since by assumption

ut are distributed independently of ux,t and xb,t, then

ω2
xe,T =

1

T

T∑
t=1

E
[
u2
x,t

(
x′bq,tβb

)2
]

+
1

T

T∑
t=1

E
(
u2
xt

)
E
(
u2
t

)
,

where x′bq,tβb is the t-th element ofMqXbβb. Furthermore, E
[
u2
x,t

(
x′bq,tβb

)2
]

= E
(
u2
x,t

)
E
(
x′bq,tβb

)2
=

E
(
u2
x,t

)
β′bE

(
xbq,tx

′
bq,t

)
βb, noting that under θ = 0, ux,t and xb,t are independently distrib-

uted. Hence

ω2
xe,T =

1

T

T∑
t=1

E
(
u2
x,t

)
β′bE

(
xbq,tx

′
bq,t

)
βb +

1

T

T∑
t=1

E
(
u2
xt

)
E
(
u2
t

)
. (A.111)

Similarly

σ2
e,(T ) = E

(
T−1e′e

)
= E

(
T−1η′Mqxη

)
= E

[
T−1 (Xbβb + u)′Mqx (Xbβb + u)

]
= β′bE

(
T−1X′bMqxXb

)
βb + T−1

T∑
t=1

E
(
u2
t

)
,
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and since under θ = 0, x being a pure noise variable will be distributed independently of Xb,

then E (T−1X′bMqxXb) = E (T−1X′bMqXb), and we have

σ2
e,(T ) = β′bE

(
T−1X′bMqXb

)
βb + T−1

T∑
t=1

E
(
u2
t

)
=

1

T

T∑
t=1

β′bE
(
xbq,tx

′
bq,t

)
βb + T−1

T∑
t=1

E
(
u2
t

)
. (A.112)

Using (A.111) and (A.112), it is now easily seen that if either E
(
u2
x,t

)
= σ2

ux or E (u2
t ) = σ2,

for all t, then we have ω2
xe,T = σ2

e,(T )σ
2
x,(T ), and hence

Pr [|tx| > cp (n, δ) |θT = 0] ≤ exp

[
− (1− π)2 c2

p (n, δ)

2 (1 + dT )2

]
+ exp

(
−C0T

C1
)
,

giving a rate that does not depend on error variances. Next, we consider θT 6= 0. By (A.101)

of Lemma 9, for dT > 0 and bounded in T ,

Pr


∣∣∣∣∣∣∣∣

T−1/2x′Mqy√
(e′e/T )

(
x′Mqx

T

)
∣∣∣∣∣∣∣∣ > cp (n, δ)

 ≤ Pr

(∣∣∣∣T−1/2x′Mqy

σe,(T )σx,(T )

∣∣∣∣ > cp (n, δ)

1 + dT

)
+ exp

(
−C0T

C1
)
.

We then have

T−1/2x′Mqy

σe,(T )σx,(T )

=
T 1/2

(
x′MqXbβb

T
− θT

)
σe,(T )σx,(T )

+
T−1/2x′Mqu

σe,(T )σx,(T )

+
T 1/2θT

σe,(T )σx,(T )

=
T 1/2

(
x′Mqη

T
− θT

)
σe,(T )σx,(T )

+
T 1/2θT

σe,(T )σx,(T )

.

Then

Pr

∣∣∣∣∣∣
T 1/2

(
x′Mqη

T
− θT

)
σe,(T )σx,(T )

+
T 1/2θT

σe,(T )σx,(T )

∣∣∣∣∣∣ > cp (n, δ)

1 + dT


= 1− Pr

∣∣∣∣∣∣
T 1/2

(
x′Mqη

T
− θT

)
σe,(T )σx,(T )

+
T 1/2θT

σe,(T )σx,(T )

∣∣∣∣∣∣ ≤ cp (n, δ)

1 + dT

 .
Note that since cp (n, δ) is given by (8), then, T 1/2|θT |

σe,(T )σx,(T )
− cp(n,δ)

1+dT
> 0. Then by Lemma A2,

Pr

∣∣∣∣∣∣
T 1/2

(
x′Mqη

T
− θT

)
σe,(T )σx,(T )

+
T 1/2θT

σe,(T )σx,(T )

∣∣∣∣∣∣ ≤ cp (n, δ)

1 + dT


≤ Pr

∣∣∣∣∣∣
T 1/2

(
x′Mqη

T
− θT

)
σe,(T )σx,(T )

∣∣∣∣∣∣ > T 1/2 |θT |
σe,(T )σx,(T )

− cp (n, δ)

1 + dT

 .
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But, setting ζT = T 1/2
[

T 1/2|θT |
σe,(T )σx,(T )

− cp(n,δ)

1+dT

]
and noting that θT = O(T−ϑ), 0 ≤ ϑ < 1/2,

implies that this choice of ζT satisfies ζT = 	
(
T λ
)
with λ = 1−ϑ, (A.68) of Lemma 6 applies

regardless of s > 0, which gives us

Pr

∣∣∣∣∣∣
T 1/2

(
x′Mqη

T
− θT

)
σe,(T )σx,(T )

∣∣∣∣∣∣ > T 1/2 |θT |
σe,(T )σx,(T )

− cp (n, δ)

1 + dT

 (A.113)

≤ C4 exp

{
−C5

[
T 1/2

(
T 1/2 |θT |
σe,(T )σx,(T )

− cp (n, δ)

1 + dT

)]s/(s+2)
}

+ exp
(
−C6T

C7
)
,

for someC4, C5, C6 andC7 > 0. Hence, as long as the assumption that cp (n, δ) = O
(
T 1/2−ϑ−C8

)
holds, for some positive C8, there must exist positive finite constants C2 and C3, such that

Pr

∣∣∣∣∣∣
T 1/2

(
x′Mqη

T
− θ
)

σe,(T )σx,(T )

∣∣∣∣∣∣ > T 1/2 |θT |
σe,(T )σx,(T )

− cp (n, δ)

1 + dT

 ≤ exp
(
−C2T

C3
)

(A.114)

for any s > 0. So overall

Pr


∣∣∣∣∣∣∣∣

T−1/2x′Mqy√
(e′e/T )

(
x′Mqx

T

)
∣∣∣∣∣∣∣∣ > cp (n, δ)

 > 1− exp
(
−C2T

C3
)
.

Lemma 11 Let Sa and Sb, respectively, be T × la,T and T × lb,T matrices of observations

on sa,it, and sb,it, for i = 1, 2, ..., lT , t = 1, 2, ..., T , and suppose that {sa,it, sb,it} are either
non-stochastic and bounded, or random with finite 8th order moments. Consider the sample

covariance matrix Σ̂ab = T−1S′aSb and denote its expectations by Σab = T−1E (S′aSb). Let

zij,t = sa,itsb,jt − E (sa,itsb,jt) ,

and suppose that

sup
i,j

[
T∑
t=1

T∑
t′=1

E(zij,tzij,t′)

]
= O (T ) . (A.115)

Then,

E
∥∥∥Σ̂ab −Σab

∥∥∥2

F
= O

(
la,T lb,T
T

)
. (A.116)

If, in addition,

sup
i,j,i′,j′

[
T∑
t=1

T∑
t′=1

T∑
s=1

T∑
s′=1

E(zij,tzij,t′zi′j′,szi′j′,s′)

]
= O

(
T 2
)
, (A.117)
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then

E
∥∥∥Σ̂ab −Σab

∥∥∥4

F
= O

(
l2a,T l

2
b,T

T 2

)
. (A.118)

Proof. We first note that E(zij,tzij,t′) and E (zij,tzij,t′zi′j′,szi′j′,s′) exist since by assumption

{sa,it, sb,it} have finite 8th order moments. The (i, j) element of Σ̂ab −Σab is given by

aij,T = T−1

T∑
t=1

zij,t, (A.119)

and hence

E
∥∥∥Σ̂ab −Σab

∥∥∥2

F
=

la,T∑
i=1

lb,T∑
j=1

E
(
a2
ij,T

)
= T−2

la,T∑
i=1

lb,T∑
j=1

T∑
t=1

T∑
t′=1

E (zij,tzij,t′)

≤ la,T lb,T
T 2

sup
i,j

[
T∑
t=1

T∑
t′=1

E(zij,tzij,t′)

]
,

and (A.116) follows from (A.115). Similarly,

∥∥∥Σ̂ab −Σab

∥∥∥4

F
=

 la,T∑
i=1

lb,T∑
j=1

a2
ij,T

2

=

la,T∑
i=1

lb,T∑
j=1

la,T∑
i′=1

lb,T∑
j′=1

a2
ij,Ta

2
i′j′,T .

But using (A.119) we have

a2
ij,Ta

2
i′j′,T = T−4

(
T∑
t=1

T∑
t′=1

zij,tzij,t′

)(
T∑
s=1

T∑
s′=1

zi′j′,szi′j′,s′

)

= T−4

T∑
t=1

T∑
t′=1

T∑
s=1

T∑
s′=1

zij,tzij,t′zi′j′,szi′j′,s′ ,

and

E
∥∥∥Σ̂ab −Σab

∥∥∥4

F
= T−4

la,T∑
i=1

lb,T∑
j=1

la,T∑
i′=1

lb,T∑
j′=1

T∑
t=1

T∑
t′=1

T∑
s=1

T∑
s′=1

E (zij,tzij,t′zi′j′,szi′j′,s′)

≤
l2a,T l

2
b,T

T 4
sup
i,j,i′,j′

[
T∑
t=1

T∑
t′=1

T∑
s=1

T∑
s′=1

E (zij,tzij,t′zi′j′,szi′j′,s′)

]
.

Result (A.118) now follows from (A.117).

Remark 6 It is clear that conditions (A.115) and (A.117) are met under Assumption 3 that
requires zit to be a martingale difference process. But it is easily seen that condition (A.115)
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also follows if we assume that sa,it and sb,jt are stationary processes with finite 8-th moments,

since the product of stationary processes is also a stationary process under a certain additional

cross-moment conditions (Wecker (1978)). The results of the lemma also follow readily if we

assume that sa,it and sb,jt′ are independently distributed for all i 6= j and all t and t′.

Lemma 12 Consider the data generating process (1) with k signal, k∗ pseudo-signal, and
n − k − k∗ noise variables. Let Tk be the event that the OCMT procedure stops after k

stages or less, and suppose that conditions of Lemma 10 hold. Let k∗ = 	 (nε) for some

0 ≤ ε < min {1, κ1/3}, where κ1 is the positive constant that defines the rate for T = 	 (nκ1)

in Lemma 10. Moreover, let δ > 0 and δ∗ > 0 denote the critical value exponents for stage 1

and subsequent stages of the OCMT procedure, respectively. Then,

Pr (Tk) = 1 +O
(
n1−ν−κδ)+O

(
n1−κδ∗)+O

[
n exp

(
−C0n

C1κ1
)]
, (A.120)

for some C0, C1 > 0, any κ in 0 < κ < 1, and any ν in ε < ν < κ1/3.

Proof. Consider the event Dk,T , defined in (A.7), for s = k ≥ 1, which is the event that

the number of variables selected in the first k stages of OCMT is smaller than or equal to

lT = 	 (nν), where ν lies in the interval ε < ν < κ1/3. Such a ν exists since by assumption

0 ≤ ε < min {1, κ1/3}. We have Pr (Tk) = 1− Pr (T ck ), and

Pr (T ck ) = Pr (T ck |Dk,T ) Pr (Dk,T ) + Pr
(
T ck |Dck,T

)
Pr
(
Dck,T

)
≤ Pr (T ck |Dk,T ) + Pr

(
Dck,T

)
,

Therefore,

Pr (Tk) ≥ 1− Pr (T ck |Dk,T )− Pr
(
Dck,T

)
. (A.121)

We note that

Pr (Dk,T ) ≥ Pr

[(
k̂on,T,(1) ≤

lT
k

)
∩
(
k̂on,T,(2) ≤

lT
k

∣∣∣∣D1,T

)
∩ ... ∩

(
k̂on,T,(k) ≤

lT
k

∣∣∣∣Dk−1,T

)]
,

where k̂on,T,(s) is the number of variables selected in the s-th stage of OCMT and Ds,T for
s = 1, 2, ..., k is defined in (A.7). Hence

Pr
(
Dck,T

)
≤ Pr


 (k̂on,T,(1) ≤

lT
k

)
∩
(
k̂on,T,(2) ≤

lT
k

∣∣∣D1,T

)
∩ ...

∩
(
k̂on,T,(k) ≤

lT
k

∣∣∣Dk−1,T

) c .
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Furthermore

Pr


 (k̂on,T,(1) ≤

lT
k

)
∩
(
k̂on,T,(2) ≤

lT
k

∣∣∣D1,T

)
∩ ...

∩
(
k̂on,T,(k) ≤

lT
k

∣∣∣Dk−1,T

) c
= Pr


 (k̂on,T,(1) >

lT
k

)
∪
(
k̂on,T,(2) >

lT
k

∣∣∣D1,T

)
∪ ...

∪
(
k̂on,T,(k) >

lT
k

∣∣∣Dk−1,T

) 
≤ Pr

(
k̂on,T,(1) >

lT
k

)
+

k∑
s=2

Pr

(
k̂on,T,(s) >

lT
k

∣∣∣∣Ds−1,T

)
.

Since k is finite and 0 ≤ ε < ν, there exists T0 such that for all T > T0 we have lT/k > k+ k∗,

and we can apply (A.130) of Lemma 13 (for j = lT/k − k − k∗ > 0), to obtain

Pr

(
k̂on,T,(1) >

lT
k

)
= Pr

(
k̂on,T,(1) − k − k∗ >

lT
k
− k − k∗

)
≤ n− k − k∗

lT
k
− k − k∗

{
exp

[
−
κc2

p (n, δ)

2

]
+ exp(−C0T

C1)

}
,

for some C0, C1 > 0 and any 0 < κ < 1. Noting that for 0 ≤ ε < ν,

n− k − k∗
lT
k
− k − k∗

= 	
(
n1−ν) , (A.122)

and using also result (ii) of Lemma 2, we obtain

Pr

(
k̂on,T,(1) >

lT
k

)
= O

(
n1−ν−κδ)+O

[
n1−ν exp

(
−C0T

C1
)]
.

Similarly,

Pr

(
k̂on,T,(s) >

lT
k

∣∣∣∣Ds−1,T

)
= Pr

(
k̂on,T,(s) − k − k∗ >

lT
k
− k − k∗

∣∣∣∣Ds−1,T

)
≤ n− k − k∗

lT
k
− k − k∗

{
exp

[
−
κc2

p (n, δ∗)

2

]
+ exp(−C0T

C1)

}
= O

(
n1−ν−κδ∗)+O

[
n1−ν exp

(
−C0T

C1
)]
,

where the critical value exponent in the higher stages (s > 1) of OCMT (δ∗) could differ from

the one in the first stage (δ). So, overall

Pr
(
Dck,T

)
≤ Pr

(
k̂on,T,(1) >

lT
k

)
+

k∑
s=2

Pr

(
k̂on,T,(s) >

lT
k

∣∣∣∣Ds−1,T

)
= O

(
n1−ν−κδ)+O

(
n1−ν−κδ∗)+O

[
n1−ν exp

(
−C0T

C1
)]
, (A.123)
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for some C0, C1 > 0, any κ in 0 < κ < 1, and any ν in ε < ν < κ1/3. Next, consider

Pr (T ck |Dk,T ), and note that

Pr (T ck |Dk,T ) = Pr (T ck |Dk,T ,Lk) Pr(Lk|Dk,T ) + Pr (T ck |Dk,T ,Lck) Pr(Lck|Dk,T )

≤ Pr (T ck |Dk,T ,Lk) + Pr(Lck|Dk,T ), (A.124)

where Pr (T ck |Dk,T ,Lk) is the probability that a noise variable will be selected in a stage of
OCMT that includes as regressors all signals, conditional on the event that fewer than lT
variables are selected in the first k steps of OCMT. Note that the event T ck |Dk,T ,Lk can
only occur if OCMT selects some pseudo signals and/or some noise variables in stage k + 1.

But the net effect coeffi cient of pseudo signal variables in stage k + 1 must be zero when

all signal variables were selected in earlier stages (s = 1, 2, ..., k), namely θi,(k+1) = 0 for

i = k+ 1, k+ 2, ..., k+ k∗. Moreover, θi,(k+1) = 0 also for i = k+ k∗+ 1, k+ k∗+ 2, ..., n, since

the net effect coeffi cient of noise variables is always zero (in any stage). Therefore, we have

Pr (T ck |Dk,T ,Lk) ≤
n∑

i=k+1

Pr
[∣∣∣tφ̂i,(k+1)∣∣∣ > cp (n, δ∗) |θi,(k+1) = 0,Dk,T

]
.

Note that the number of regressors in the regressions involving the t statistics tθ̂i,(k+1), does

not exceed lT = 	 (nν), for ν in the interval 0 ≤ ε < ν < κ1/3 and hence lT = o(T 1/3) as

required by the conditions of Lemma 10. Using (A.107) of Lemma 10, we have

Pr (T ck |Dk,T ,Lk) ≤ (n− k) exp

[−κc2
p(n, δ

∗)

2

]
+ (n− k) exp

(
−C0T

C1
)
. (A.125)

for some C0, C1 > 0 and any 0 < κ < 1. By Lemma 2, exp
[
−κc2

p(n, δ
∗)/2

]
= 	

(
n−κδ

∗)
, for

any 0 < κ < 1, and noting that n− k ≤ n we obtain

Pr (T ck |Dk,T ,Lk) = O
(
n1−κδ∗)+O

[
n exp

(
−C0T

C1
)]
. (A.126)

Consider next the second term of (A.124), Pr(Lck|Dk,T ), and recall from (A.6) that Lk =

∩ki=1Li,k where Li,k, defined by (A.5), is Li,k = ∪kj=1Bi,j, i = 1, 2, ..., k. Hence Lci,k = ∩kj=1Bci,j,
and

Pr
(
Lci,k
∣∣ Tk,Dk,T ) = Pr

(
∩kj=1Bci,j

∣∣ Tk,Dk,T ) =

Pr
(
Bci,1
∣∣ Tk,Dk,T )Pr

(
Bci,2
∣∣Bci,1, Tk,Dk,T )

Pr
(
Bci,3
∣∣Bci,2 ∩ Bci,1, Tk,Dk,T )× ...×

Pr
(
Bci,k
∣∣Bci,k−1 ∩ ... ∩ Bci,1, Tk,Dk,T

)
.

But by Proposition 1 we are guaranteed that for some 1 ≤ j ≤ k, θi,(j) 6= 0. Therefore,

Pr
(
Bci,j
∣∣Bci,j−1 ∩ ... ∩ Bci,1, Tk,Dk,T

)
= Pr

(
Bci,j
∣∣Bci,j−1 ∩ ... ∩ Bci,1, θi,(j) 6= 0, Tk,Dk,T

)
,
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and by (A.108) of Lemma 10,

Pr
(
Bci,j
∣∣Bci,j−1 ∩ ... ∩ Bci,1, θi,(j) 6= 0, Tk,Dk,T

)
= O

[
exp

(
−C0T

C1
)]
,

for some C0, C1 > 0. Therefore, for some j ∈ {1, 2, ..., k} and C0, C1 > 0,

Pr
(
Lci,k
∣∣ Tk,Dk,T ) ≤ Pr

(
Bci,j
∣∣Bci,j−1 ∩ ... ∩ Bci,1, θi,(j) 6= 0, Tk,Dk,T

)
= O

[
exp

(
−C0T

C1
)]
. (A.127)

Noting that k is finite and

Pr (Lck| Tk,Dk,T ) = Pr
(
∪ki=1Lcik

∣∣ Tk,Dk,T )
≤

k∑
i=1

Pr (Lcik| Tk,Dk,T ) ,

it follows, using (A.127), that

Pr (Lck| Tk,Dk,T ) = O
[
exp

(
−C0T

C1
)]
, (A.128)

for some C0, C1 > 0. Using (A.126) and (A.128) in (A.124) now gives15

Pr (T ck |Dk,T ) = O
(
n1−κδ∗)+O

[
n exp

(
−C0T

C1
)]
. (A.129)

Using (A.123) and (A.129) in (A.121), yields

Pr (Tk) =1 +O
(
n1−ν−κδ)+O

(
n1−ν−κδ∗)+O

[
n1−ν exp

(
−C0T

C1
)]

+O
(
n1−κδ∗)+O

[
n exp

(
−C2T

C3
)]
,

for some C0, C1, C2, C3 > 0 and any κ in 0 < κ < 1, and any ν in ε < ν < κ1/3.

But O
(
n1−ν−κδ∗) is dominated by O (n1−κδ∗), and O [n1−ν exp

(
−C0T

C1
)]
is dominated by

O
[
n exp

(
−C2T

C3
)]
, since ν > ε ≥ 0. Hence,

Pr (Tk) = 1 +O
(
n1−ν−κδ)+O

(
n1−κδ∗)+O

[
n exp

(
−C0T

C1
)]
,

for some C0, C1 > 0, any κ in 0 < κ < 1, and any ν in ε < ν < κ1/3. This result in turn

establishes (A.120), noting that T = 	 (nκ1).

Lemma 13 Consider the data generating process (1) with k signal variables, k∗ pseudo-signal
variables, and n − k − k∗ noise variables. Let k̂on,T,(s) be the number of variables selected at
the stage s of the OCMT procedure and suppose that conditions of Lemma 10 hold. Let

k∗ = 	 (nε) for some 0 ≤ ε < min {1, κ1/3}, where κ1 is the positive constant that defines

the rate for T = 	 (nκ1) in Lemma 10. Let Ds,T , be the event that the number of variables
15We have dropped the term O

[
exp

(
−C0TC1

)]
, which is dominated by O

[
n exp

(
−C0TC1

)]
.

71



selected in the first s stages of OCMT is smaller than or equal to lT , where lT = 	 (nν) and

ν satisfies ε < ν < κ1/3. Then there exist constants C0, C1 > 0 such that for any 0 < κ < 1,

any δs > 0, and any j > 0, it follows that

Pr
(
k̂on,T,(s) − k − k∗ > j|Ds−1,T

)
≤ n− k − k∗

j

{
exp

[
−
κc2

p (n, δs)

2

]
+ exp(−C0T

C1)

}
,

(A.130)

for s = 1, 2, ..., k.

Proof. By convention, the number of variables selected at the stage zero of OCMT is zero.
Conditioning on Ds−1,T allows the application of Lemma 10. We drop the conditioning nota-

tion in the rest of the proof to simplify notations. Then, by Markov’s inequality

Pr
(
k̂on,T,(s) − k − k∗ > j

)
≤
E
(
k̂on,T,(s) − k − k∗

)
j

. (A.131)

But

E
(
k̂on,T,(s)

)
=

n∑
i=1

E
[

̂I(s) (βi 6= 0)
]

=
k+k∗∑
i=1

E
[

̂I(s) (βi 6= 0)
]

+
n∑

i=k+k∗+1

E
[

̂I(s) (βi 6= 0)
∣∣θi,(s) = 0

]
.

≤ k + k∗ +
n∑

i=k+k∗+1

E
[

̂I(s) (βi 6= 0)
∣∣θi,(s) = 0

]
,

where we have used ̂I(s) (βi 6= 0) ≤ 1. Moreover,

E
[

̂I(s) (βi 6= 0)
∣∣θi,(s) = 0

]
= Pr

(∣∣∣tφ̂T,i,(s)∣∣∣ > cp (n, δs) |θi,(s) = 0
)
,

for i = k+k∗+1, k+k∗+2, ..., n, and using (A.107) of Lemma 10, we have (for some 0 < κ < 1

and C0, C1 > 0)

sup
i>k+k∗

Pr
(∣∣∣tφ̂T,i,(s)∣∣∣ > cp (n, δs) |θi,(s) = 0

)
≤ exp

[
−
κc2

p (n, δs)

2

]
+ exp(−C0T

C1).

Hence,

E
(
k̂on,T,(s)

)
− k − k∗ ≤ (n− k − k∗)

{
exp

[
−
κc2

p (n, δs)

2

]
+ exp(−C0T

C1)

}
,

and therefore (using this result in (A.131))

Pr
(
k̂on,T,(s) − k − k∗ > j

)
≤ n− k − k∗

j

{
exp

[
−
κc2

p (n, δs)

2

]
+ exp(−C0T

C1)

}
,

as desired.
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Lemma 14 Consider the data generating process (1) with k signal, k∗ pseudo-signal, and n−
k−k∗ noise variables. Let k̂n,T be the number of variables selected by the OCMT procedure, and
suppose that conditions of Lemma 10 hold. Let k∗ = 	 (nε) for some 0 ≤ ε < min {1, κ1/3},
where κ1 > 0 is the positive constant that defines the rate for T = 	 (nκ1) in Lemma 10.

Moreover, let δ > 0 and δ∗ > 0 denote the critical value exponents for stage 1 and subsequent

stages of OCMT, respectively. Then for some C0,C1 > 0, any κ in 0 < κ < 1, and any ν in

ε < ν < κ1/3, we have

Pr
(
k̂n,T − k − k∗ > j

)
= O

(
j−1n1−κδ)+O

(
j−1n2−κδ∗)+O

[
n2

j
exp

(
−C0n

C1κ1
)]

+O
(
n1−ν−κδ)+O

(
n1−ν−κδ∗) , (A.132)

for j = 1, 2, ..., n− k − k∗.

Proof. Consider the event Dk,T , defined in (A.7), for s = k ≥ 1, and recall that this is

the event that the number of variables selected in the first k stages of OCMT is smaller

than or equal to lT = 	 (nν), where ν satisfies ε < ν < κ1/3, noting that by assumption

0 ≤ ε < min {1, κ1/3}. We have

Pr
(
k̂n,T − k − k∗ > j

)
= Pr

(
k̂n,T − k − k∗ > j|Dk,T

)
Pr (Dk,T )

+ Pr
(
k̂n,T − k − k∗ > j|Dck,T

)
Pr
(
Dck,T

)
≤Pr

(
k̂n,T − k − k∗ > j|Dk,T

)
+ Pr

(
Dck,T

)
. (A.133)

An upper bound to Pr
(
Dck,T

)
is established in (A.123). For the rest of the proof we focus on

Pr
(
k̂n,T − k − k∗ > j|Dk,T

)
. We first note that by Markov’s inequality

Pr
(
k̂n,T − k − k∗ > j|Dk,T

)
≤
E
(
k̂n,T − k − k∗|Dk,T

)
j

. (A.134)

But,

E
(
k̂n,T |Dk,T

)
= E

(
k̂n,T

∣∣∣ Tk,Dk,T)Pr (Tk|Dk,T ) + E
(
k̂n,T

∣∣∣ T ck ,Dk,T)Pr (T ck |Dk,T )

≤ E
(
k̂n,T

∣∣∣ Tk,Dk,T)+ E
(
k̂n,T

∣∣∣ T ck ,Dk,T)Pr (T ck |Dk,T ) . (A.135)

An upper bound on Pr (T ck |Dk,T ) is derived in (A.129). We consider E
(
k̂n,T

∣∣∣ Tk,Dk,T) next,
and note that

E
(
k̂n,T

∣∣∣ Tk,Dk,T) =

k∑
i=1

Pr (Li,k| Tk,Dk,T ) +

k+k∗∑
i=k+1

Pr (Li,k| Tk,Dk,T )

+
n∑

i=k+k∗+1

Pr (Li,k| Tk,Dk,T ) , (A.136)

73



and it must also be that

E
(
k̂n,T

∣∣∣ T ck ,Dk,T) ≤ n. (A.137)

(A.137) is a very loose upper bound (since k̂n,T cannot exceed n by definition), but this bound

will be suffi cient for the purpose of this proof. Note that by (A.127) Pr
(
Lci,k
∣∣ Tk,Dk,T ) =

O
[
exp

(
−C0T

C1
)]
for i = 1, 2, ..., k, and it follows that

k∑
i=1

Pr (Li,k| Tk,Dk,T ) =

k∑
i=1

[
1− Pr

(
Lci,k
∣∣ Tk,Dk,T )] = k +O

[
exp

(
−C0T

C1
)]
, (A.138)

for some C0, C1 > 0. Next, we have

k+k∗∑
i=k+1

Pr (Li,k| Tk,Dk,T ) ≤ k∗, (A.139)

since 0 ≤ Pr (Li,k| Tk,Dk,T ) ≤ 1. Now consider the last term on the right side of (A.136).

Recalling that Li,k = ∪ks=1Bi,s, then, given that θi,(s) = 0 for all i = k+ k∗+ 1, k+ k∗+ 2, ..., n

and all s = 1, 2, ..., k, we have

Pr [Li,k|Tk,Dk,T ] ≤
k∑
s=1

Pr
(
Bi,s|θi,(s) = 0, Tk,Dk,T

)
, for i > k + k∗ + 1,

and hence

n∑
i=k+k∗+1

Pr (Li,k| Tk,Dk,T ) ≤
n∑

i=k+k∗+1

Pr
(
Bi,1| θi,(1) = 0, Tk,Dk,T

)
+

n∑
i=k+k∗+1

k∑
s=2

Pr
(
Bi,s| θi,(s) = 0, Tk,Dk,T

)
.

Now using (A.26) for Pr
(
Bi,s| θi,(s) = 0, Tk,Dk,T

)
, i = k+k∗+1, k+k∗+2, ..., n, s = 1, 2, ..., k,

it readily follows that (noting k is fixed and n− k − k∗ < n)

n∑
i=k+k∗+1

Pr (Li,k| Tk,Dk,T ) =O

{
n exp

[
−
κc2

p(n, δ)

2

]}
+O

{
n exp

[
−
κc2

p(n, δ
∗)

2

]}
+O

[
n exp

(
−C0T

C1
)]
. (A.140)

Using (A.138)-(A.140) in (A.136), we obtain

E
(
k̂n,T

∣∣∣ Tk,Dk,T) ≤ k + k∗ + C0 exp
(
−C1T

C2
)

+ C3n exp

[
−
κc2

p(n, δ)

2

]
+ C4n exp

[
−
κc2

p(n, δ
∗)

2

]
+ C5n exp

(
−C6T

C7
)
, (A.141)
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for some C0, C1, ..., C7 > 0. (A.141) provides an upper bound on the first term on the right

side of (A.135). Consider next the second term on the right side of (A.135). Using (A.129)

for Pr (T ck |Dk,T ) and (A.137) for E
(
k̂n,T

∣∣∣ T ck ,Dk,T) yields,
E
(
k̂n,T

∣∣∣ T ck ,Dk,T)Pr (T ck |Dk,T ) = O
(
n2−κδ∗)+O

[
n2 exp

(
−C0T

C1
)]
. (A.142)

Using (A.141) and (A.142) gives an upper bound for E
(
k̂n,T − k − k∗|Dk,T

)
, which when used

in (A.134) yields the following bound on Pr
(
k̂n,T − k − k∗ > j|Dk,T

)
,

Pr
(
k̂n,T − k − k∗ > j|Dk,T

)
= O

[
j−1 exp

(
−C0T

C1
)]

+O

{
n

j
exp

[
−
κc2

p(n, δ)

2

]}
+O

{
n

j
exp

[
−
κc2

p(n, δ
∗)

2

]}
+O

[
n

j
exp

(
−C2T

C3
)]

+O
(
j−1n2−κδ∗)+O

[
n2

j
exp

(
−C4T

C5
)]
,

for some C0, C1, ..., C5 > 0. Noting that O
[
j−1 exp

(
−C0T

C1
)]
and O

[
nj−1 exp

(
−C2T

C3
)]

are both dominated by O
[
n2j−1 exp

(
−C4T

C5
)]
, and using result (ii) of Lemma 2 for the

terms involving c2
p(n, δ) and c

2
p(n, δ

∗), we obtain

Pr
(
k̂n,T − k − k∗ > j|Dk,T

)
= O

(
j−1n1−κδ)+O

(
j−1n1−κδ∗)

+O
(
j−1n2−κδ∗)+O

[
n2

j
exp

(
−C0T

C1
)]
.

But O
(
j−1n1−κδ∗) is dominated by O (j−1n2−κδ∗), hence

Pr
(
k̂n,T − k − k∗ > j|Dk,T

)
= O

(
j−1n1−κδ)+O

(
j−1n2−κδ∗)

+O

[
n2

j
exp

(
−C0T

C1
)]
. (A.143)

Finally using (A.123) and (A.143) in (A.133), we have

Pr
(
k̂n,T − k − k∗ > j

)
=O

(
j−1n1−κδ)+O

(
j−1n2−κδ∗)+O

[
n2

j
exp

(
−C0T

C1
)]

+O
(
n1−ν−κδ)+O

(
n1−ν−κδ∗)+O

[
n1−ν exp

(
−C2T

C3
)]
,

for some C0, C1, C2, C3 > 0. Recalling that 0 ≤ ε < ν < κ1/3 and j < n, the term

O
[
n1−ν exp

(
−C2T

C3
)]
is always dominated by O

[
n2

j
exp

(
−C0T

C1
)]
, and noting that T =

	(nκ1), establishes (A.132).

Lemma 15 Suppose that the data generating process (DGP) is given by

y
T×1

= X
T×k+1

· β
k+1×1

+ u
T×1
, (A.144)
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where X = (τ T ,Xk) includes a column of ones, τ T , and consider the regression model

y
T×1

= S
T×lT
· δ
lT×1

+ ε
T×1
. (A.145)

where u = (u1, u2, ..., uT )′ is independently distributed of X and S, E (u) = 0, E (uu′) = σ2IT ,

0 < σ2 <∞, IT is a T × T identity matrix, and elements of β are bounded. In addition, it is
assumed that the following conditions hold:

i. Let Σss = E (S′S/T ) with eigenvalues denoted by µ1 ≤ µ2 ≤ ... ≤ µlT . Let µi = O (lT ),

i = lT −M + 1, lT −M + 2, ..., lT , for some finite M , and sup1≤i≤lT−M µi < C0 < ∞,
for some C0 > 0. In addition, inf1≤i<lT µi > C1 > 0, for some C1 > 0.

ii. E
[(

1− ‖Σ−1
ss ‖F

∥∥∥Σ̂ss −Σss

∥∥∥
F

)−4
]

= O (1), where Σ̂ss = T−1S′S.

iii. Regressors in S = (sit) have finite 8th moments and zij,t = sitsjt−E (sitsjt) satisfies con-

ditions (A.115) and (A.117) of Lemma 11. Moreover, z∗ij,t = sitxjt − E (sitxjt) satisfies

condition (A.115) of Lemma 11, and ‖Σsx‖F = ‖E (T−1S′X)‖F = O (1).

Then, if S = (X,W) for some T × kw matrix W,

E
∥∥∥δ̂ − β0

∥∥∥ = O

(
l2T√
T

)
, (A.146)

where δ̂ is the least square estimator of δ in the regression model (A.145) and β0 =
(
β′,0′kw

)′
.

Further, if some column vectors of X are not contained in S, then

E
∥∥∥δ̂ − β0

∥∥∥ = O (lT ) +O

(
l2T√
T

)
. (A.147)

Proof. The least squares estimator of δ is

δ̂ = (S′S)
−1

S′y = (S′S)
−1

S′ (Xβ + u) .

In addition to Σ̂ss = S′S/T , Σss = E (S′S/T ) and Σsx = E (S′X/T ), define

Σ̂sx =
S′X

T
, δ∗ = Σ−1

ss Σsxβ,

and

δ = E
(
δ̂
)

= E
[
(S′S)

−1
S′Xβ

]
.

Note that

(S′S)
−1

S′X = ∆̂ss∆̂sx + ∆̂ssΣsx + Σ−1
ss ∆̂sx + Σ−1

ss Σsx,

where

∆̂ss = Σ̂−1
ss −Σ−1

ss , ∆̂sx = Σ̂sx −Σsx.
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Hence

δ̂−δ∗ = ∆̂ss∆̂sxβ + ∆̂ssΣsxβ + Σ−1
ss ∆̂sxβ + Σ̂

−1

ss

(
S′u

T

)
.

Using (2.15) of Berk (1974),

∥∥∥∆̂ss

∥∥∥
F
≤

‖Σ−1
ss ‖

2
F

∥∥∥Σ̂ss −Σss

∥∥∥
F

1− ‖Σ−1
ss ‖F

∥∥∥Σ̂ss −Σss

∥∥∥
F

,

and using Cauchy-Schwarz inequality,

E
∥∥∥∆̂ss

∥∥∥
F
≤
∥∥Σ−1

ss

∥∥2

F

[
E

(∥∥∥Σ̂ss −Σss

∥∥∥2

F

)]1/2

·

E
 1(

1− ‖Σ−1
ss ‖F

∥∥∥Σ̂ss −Σss

∥∥∥
F

)2




1/2

. (A.148)

We focus on the individual terms on the right side of (A.148) to establish an upper bound for

E
∥∥∥∆̂ss

∥∥∥
F
. The assumptions on eigenvalues ofΣss in this lemma are the same as in Lemma A4

with the only exception that O (.) terms are used instead of 	 (.). Using the same arguments

as in the proof of Lemma A4, it readily follows that

‖Σss‖F = O (lT ) ,

and ∥∥Σ−1
ss

∥∥
F

= O
(√

lT

)
. (A.149)

Moreover, note that (i, j)-th element of
(
Σ̂ss −Σss

)
, zijt = sitsjt − E (sitsjt), satisfies the

conditions of Lemma 11, which establishes

E

(∥∥∥Σ̂ss −Σss

∥∥∥2

F

)
= O

(
l2T
T

)
. (A.150)

Noting that E (a2) ≤
√
E (a4), Assumption (ii) of this lemma implies that the last term on

the right side of (A.148) is bounded, namely

E

 1(
1− ‖Σ−1

ss ‖F
∥∥∥Σ̂ss −Σss

∥∥∥
F

)2

 = O (1) , (A.151)

Using (A.149), (A.150), and (A.151) in (A.148),

E
∥∥∥∆̂ss

∥∥∥
F

= O (lT )

√
O

(
l2T
T

)
O (1) = O

(
l2T√
T

)
. (A.152)
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It is also possible to derive an upper bound for E
(∥∥∥∆̂ss

∥∥∥2

F

)
, using similar arguments. In

particular, we have ∥∥∥∆̂ss

∥∥∥2

F
≤

‖Σ−1
ss ‖

4
F

∥∥∥Σ̂ss −Σss

∥∥∥2

F(
1− ‖Σ−1

ss ‖F
∥∥∥Σ̂ss −Σss

∥∥∥
F

)2 ,

and using Cauchy-Schwarz inequality yields

E
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F
≤
∥∥Σ−1

ss

∥∥4

F

[
E

(∥∥∥Σ̂ss −Σss
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·
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∥∥∥Σ̂ss −Σss

∥∥∥
F

)4




1/2

,

where ‖Σ−1
ss ‖

4
F = O (l2T ) by (A.149), E

(∥∥∥Σ̂ss −Σss

∥∥∥4

F

)
= O (l4T/T

2) by (A.118) of Lemma

11, and E
[(

1− ‖Σ−1
ss ‖F

∥∥∥Σ̂ss −Σss

∥∥∥
F

)−4
]

= O (1) by Assumption ii of this lemma. Hence,

E
∥∥∥∆̂ss

∥∥∥2

F
= O

(
l2T
)√

O

(
l4T
T 2

)
O (1) = O

(
l4T
T

)
. (A.153)

Using Lemma 11 by setting Sa = S (la,T = lT ) and Sb = X (lb,T = k < ∞), we have, by
(A.116),

E

(∥∥∥Σ̂sx −Σsx

∥∥∥2

F

)
= O

(
lT
T

)
. (A.154)

We use the above results to derive an upper bound for

E
∥∥∥δ̂ − δ∗∥∥∥ ≤ E

[∥∥∥∆̂ss

∥∥∥
F

∥∥∥∆̂sx

∥∥∥
F

]
‖β‖

+ E
∥∥∥∆̂ss

∥∥∥
F
‖Σsx‖F ‖β‖

+
∥∥Σ−1

ss

∥∥
F
E
∥∥∥∆̂sx

∥∥∥
F
‖β‖

+ E

∥∥∥∥Σ̂−1
ss

(
S′u

T

)∥∥∥∥
F

. (A.155)

First, note that ‖β‖ = O (1), and (using Cauchy-Schwarz inequality)

E
[∥∥∥∆̂ss

∥∥∥
F

∥∥∥∆̂sx

∥∥∥
F

]
‖β‖ ≤

(
E
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F

)1/2(
E
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F

)1/2

‖β‖ .
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But E
∥∥∥∆̂ss

∥∥∥2

F
= O (l4T/T ) by (A.153), and E

∥∥∥∆̂sx

∥∥∥2

F
= O (lT/T ) by (A.154), and therefore

E
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F
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)
. (A.156)

Next, note that E
∥∥∥∆̂ss

∥∥∥
F

= O
(
l2T/
√
T
)
by (A.153), ‖Σsx‖F = O (1) by Assumption iii of

this lemma (and ‖β‖ = O (1)), and we obtain

E
∥∥∥∆̂ss
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F
‖Σsx‖F ‖β‖ = O

(
l2T√
T

)
. (A.157)

Moreover, using (A.149), and noting that E
∥∥∥∆̂sx

∥∥∥
F

= O
(√

lT/T
)
by (A.154),16
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,
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F
‖β‖ = O
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Finally, consider

E
∥∥∥(S′S)
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T
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,

where E (uu′/T ) = σ2IT , and we have also used the independence of S and u. Hence

E
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.

But Tr (Σ−1
ss ) = O (lT ), and using (A.152), we have

E
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It follows that,

E
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Overall, using (A.156), (A.157), (A.158), and (A.159) in (A.155),

E
∥∥∥δ̂ − δ∗∥∥∥ = O

(
l
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Therefore

E ‖δ − δ∗‖ → 0 when l4T/T → 0,

regardless whether X is included in S or not. Consider now

E
∥∥∥δ̂ − β0

∥∥∥ = E ‖δ − δ∗ + δ∗ − β0‖

≤ E ‖δ − δ∗‖+ E ‖δ∗ − β0‖ .

But when S = (X,W), then

Σss =
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Σxx Σxw

Σwx Σww

)
, Σsx =
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Σxx

Σwx

)
,

and therefore Σ−1
ss Σss = IlT . This implies Σ−1

ss Σsx = (Ik,0k×kw) and δ∗ = Σ−1
ss Σsxβ = β0

when S = (X,W). Result (A.146) now readily follows. When at least one of the columns of

X does not belong to S, then δ∗ 6=β0. But

‖δ∗ − β0‖ ≤ ‖δ∗‖+ ‖β0‖ ,

where ‖β0‖ = O (1), since β0 contains finite (k) number of bounded nonzero elements, and

‖δ∗‖ =
∥∥Σ−1

ss Σsx

∥∥
F

≤
∥∥Σ−1

ss
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F
‖Σsx‖F .

‖Σ−1
ss ‖F = O

(√
lT
)
by (A.149), and ‖Σsx‖F = O (1) by Assumption iii of this lemma. Hence,

when at least one of the columns of X does not belong to S,

‖δ∗ − β0‖ = O (lT ) ,

which completes the proof of (A.147).
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