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Abstract

This paper introduces the idea of self-instrumenting endogenous regressors in settings
when the correlation between these regressors and the errors can be derived and used to
bias-correct the moment conditions. The resulting bias-corrected moment conditions are
less likely to be subject to the weak instrument problem and can be used on their own or
in conjunction with other available moment conditions to obtain more efficient estimators.
This approach can be applied to estimation of a variety of models such as spatial and
dynamic panel data models. This paper focuses on the latter, and proposes a new
estimator for short T dynamic panels by augmenting Anderson and Hsiao (AAH) estimator
with bias-corrected quadratic moment conditions in first differences which substantially
improve the small sample performance of the AH estimator without sacrificing on the
generality of its underlying assumptions regarding the fixed effects, initial values, and
heteroskedasticity of error terms. Using Monte Carlo experiments it is shown that AAH
estimator represents a substantial improvement over the AH estimator and more
importantly it perfforms well even when compared to Arellano and Bond and Blundell and
Bond (BB) estimators that are based on more restrictive assumptions, and continues to
have satisfactory performance in cases where the standard GMM estimators are
inconsistent. Finally, to decide between AAH and BB estimators we also propose a
Hausman type test which is shown to work well when T is small and n sufficiently large.
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1 Introduction

Analysis of linear dynamic panel data models where the time dimension (7°) is short relative to
the cross section dimension (n), plays an important role in applied research. The estimation of
such panels is carried out predominantly by the application of the Generalized Method of Moments
(GMM) after first-differencing.! This approach utilizes instruments that are uncorrelated with the
errors but are potentially correlated with the target variables (the included regressors). A num-
ber of well-known GMM estimation methods have been advanced in the literature.>? The GMM
methods apply to autoregressive (AR) panels as well as to AR panels augmented with strictly or
weakly exogenous regressors and are developed under fairly general moment conditions, which is
important for applied work. However, the GMM methods are subject to a number of well-known
drawbacks. Anderson and Hsiao (1981 and 1982)’s estimator of AR(1) panels has poor small sam-
ple performance due to weak correlations between the regressors and the instruments when the
autoregressive coefficient is moderately large (see, e.g. Arellano, 1989). Subsequently proposed
GMM estimators have better small sample performance but at the cost of more restricted assump-
tions. The popular first-difference GMM estimator due to Arellano and Bond (1991) uses lagged
levels rather than first-differences as instruments, and the system GMM approach by Blundell and
Bond (1998) considers additional moment conditions that help identification but impose stronger
requirements on the initialization of the dynamic processes. In particular, as discussed in Section
2, the system GMM approach does not allow for the initial values to differ systematically from the
long-run means.

This paper proposes a novel idea of self-instrumenting the endogenous regressors in settings
where the correlation between the regressors and the errors can be derived instead of searching
for instruments that are uncorrelated with the error terms. The resulting ‘bias-corrected’ moment
conditions are less likely to be subject to the weak instrument problem and can be used on their own
and/or augmented with other available moment conditions to obtain more efficient estimators. Our
idea differs from the wide variety of the bias-corrected estimation methods in the literature, which

correct a first-stage estimator for small-T bias and tend to be applicable under more restrictive

YOther approaches in the literature include the likelihood-based methods (Hsiao et al., 2002, Lancaster, 2002,
Moral-Benito, 2013, Hayakawa and Pesaran, 2015, and Dhaene and Jochmans, 2016), X-differencing method (Han
et al., 2014), factor-analytical method (Bai, 2013), and bias-correction methods mentioned below.

2 Anderson and Hsiao (1981 and 1982), Holtz-Eakin et al. (1988), Arcllano and Bond (1991), Ahn and Schmidt
(1995), Arellano and Bover (1995), Blundell and Bond (1998), and Hayakawa (2012), among others. A recent
contribution by Breitung, Hayakawa, and Kripfganz (2019) is also an interesting addition to the GMM literature.
Their bias-corrected methods of moments estimator requires homoskedastic errors over time.



assumptions.® Instead of correcting the bias of standard GMM estimators, we consider correcting
the ‘bias’ of the moment conditions before estimation. The idea of self-instrumenting has wide-
ranging applications for robust estimation and inference in settings where the correlation between
the regressors and the errors can be derived. This paper focuses on dynamic panels. Another
application is the estimation of spatial panel data models which is pursued in Pesaran and Yang
(2021).

By self-instrumenting lagged differences, we develop a simple bias-corrected methods of moment
(BMM) estimator under general conditions on initialization of the underlying dynamics, individual
effects, with (possibly) heteroskedastic error variances over time as well as cross-sectionally. The
resultant moment conditions turn out to be quadratic, and only reduce to linear moment conditions
if the underlying AR processes are stationary. In this special case we show the BMM estimator to
be identical to the first difference least square estimator proposed by Han and Phillips (2010). We
establish consistency and asymptotic normality of the BMM estimator under general conditions
and discuss its relation to a variety of GMM estimators proposed in the literature. These results
help illustrate the important role played by the initialization of the AR processes in the case of
short T panels.

We also consider augmenting the bias-corrected moment conditions with other moment condi-
tions available in the literature, and for maximum robustness to assumptions regarding individual
effects and initial values we focus on Anderson and Hsiao type moment conditions obtained from us-
ing appropriately lagged first differences as instruments. Accordingly, we propose a new augmented
Anderson and Hsiao (AAH) estimator which substantially improve the small sample performance
of the AH estimator without sacrificing on the generality of its underlying assumptions. The AAH
estimator holds under less restrictive conditions imposed by other prevalent GMM estimators pro-
posed by Arellano and Bond (AB), and Blundell and Bond (BB) in the literature, and is more
generally applicable. To test the validity of the BB moment conditions, we propose a Hausman

type test based on the difference between BB and AAH estimators, not previously considered in

3See, for example, methods based on exact analytical bias formula or its approximation, Bruno (2005), Bun (2003),
Bun and Carree (2005, 2006), Bun and Kiviet (2003), Hahn and Kuersteiner (2002), Hahn and Moon (2006), Juodis
(2013), and Kiviet (1995, 1999); simulation-based bias-correction methods by Everaert and Ponzi (2007), and Phillips
and Sul (2003, 2007); the jackknife bias corrections by Dhaene and Jochmans (2015), and Chudik, Pesaran, and Yang
(2018); or the recursive mean adjustment correction procedures, Choi et al. (2010)). Most of these bias-correction
techniques do not apply to short-T' type panels where the error variances are heteroskedastic (over ¢ and t), with
the exception of Juodis (2013), and the simulation-based bias-correction method of Everaert and Ponzi (2007). A
comparative analysis of GMM estimators considered in this paper and bias correction estimators is a welcome addition
to the literature but lies beyond the scope of the present paper.



the literature.

Monte Carlo (MC) experiments document AAH’s good small sample performance in comparison
with a number of GMM estimators. Perhaps not surprisingly the AAH estimator represents a sub-
stantial improvement over the AH estimator across all designs considered. When compared to AB
and BB estimators, the AAH is less efficient in designs that satisfy the more restrictive assumption
that underlie BB estimators, but continues to perform well uniformly across the various designs
including in cases where the system-GMM type estimators are not consistent. The robustness of
the AAH estimator is an important advantage since in practice it is not known if the additional
restrictions of the AB and BB estimators are met.

The remainder of this paper is organized as follows. Section 2 sets up the baseline panel AR(1)
model and discusses AH and subsequent GMM moment conditions. Section 3 introduces the main
idea and presents a simple BMM estimator. Section 4 introduces the AAH estimator and discusses
the related literature, in particular Ahn and Schmidt (1995, 1997). Section 5 discusses extensions
of AAH estimator to ARX and VAR short-T' panel data models. Section 6 discusses the problem
of moment proliferation and adopts the One Covariate at the time Multiple Testing approach by
Chudik, Kapetanios, and Pesaran (2018) for selection of relevant subset of AAH moments for
estimation and inference. Section 7 presents MC evidence, and the last section concludes and
discusses avenues for future research. Further results and discussions are provided in an Appendix,
including additional Monte Carlo evidence for panel ARX designs, and an empirical application to

earning dynamics using Panel Study of Income Dynamics dataset of Meghir and Pistaferri (2004).

2 Panel AR(1) model

We begin with a simple panel AR(1) model to set out the main idea. Specifically, consider the

following dynamic panel data model
Yit = Q; + ¢yi,t71 + Ui, for i = 17 2> ey T, (1)

where {a;,1 <i < n} are unobserved unit-specific effects, u;; is the idiosyncratic error term, and

yi¢ are generated from the initial values, y; —p,, for m; > 0, and t = —m; +1,-m; +2...,1,2,..., T



Using (1) to solve for the initial observations y;g, we obtain

mi—

Yio = " Yi,—m, + ( ¢ l) Z ¢ ui . (2)

It is assumed that available observations for estimation and inference are y;, for ¢ = 1,2,...,n,
and t = 0,1,2,...,T (a total 7"+ 1 observations on y). For the implementation of the proposed
estimator we require T > 3, although under mean and variance stationarity identification of ¢ could

be achieved even if T' = 2, namely if the panel covers three time periods.

ASSUMPTION 1 (Parameter of interest) The true value of ¢, denoted by ¢, is the parameter

of interest, and it is assumed that ¢ € ©, where © C (—1,1] is a compact set.*

In the case where |p| < 1, and m; — oo, then FE (yi;) = E(a;) /(1 — ¢) for all t. We set
w; = o/ (1 —¢) and refer to p; as the long-run mean of y;;, even if m; is finite. However ,in the

1; is not defined and to avoid incidental linear trends we set o; = 0 when

unit-root case (¢ = 1), y,

b=1. .
Taking first differences of (1), we have

Ayis = ¢Ay; 11 + Augy, (3)

fort=2,3,....,T,and i = 1,2,...,n; but Ay;; is given by

m;—1
Ayzl—bzmz‘i‘uzl_ 1_ Z ¢u1 2 (4)
where
bim; = =™ (L — &) (Yi—ms — 113) - (5)

The relations (4) and (5) show how the deviations of starting values from the long-run means,
given by (yi—m, — 1;), affect Ay;1. The initialization effect is given by b;,,, and tends to zero if
lo| <1, Eyi—m; — 1] < C, and m; — oo. We aim for a minimal set of assumptions on the starting
values and individual effects, since in practice such assumptions are difficult to ascertain and, as
our Monte Carlo results show, can have important consequences for estimation and inference when

m; and T are both small.

4Our theory applies for all finite values of ¢ so long as T and m; are fixed as n — co. We focus on —1 < ¢ < 1,
since we believe these values are most relevant in empirical applications.



We assume m; is finite and consider the following assumptions on the errors, u;, and the starting

values, ¥; —m,-

ASSUMPTION 2 (Idiosyncratic errors) For each i = 1,2,...,n, the process {uy, t = —m; + 1,
-m;+2, ..., 1,2,...,T} is distributed with mean 0, E (uft) = a?t, and there exist positive constants

¢ and C such that 0 < ¢ < 0% < C. Moreover, 63, = n" !> " 0% — &7 asn — oo, and

|4+6

sup;; E |ug < C for some € > 0. For each t, u; is independently distributed over i. For each 1,

w; 18 sertally uncorrelated over t.

ASSUMPTION 3 (Initialization and indwidual effects) Let b;pm, = —¢™ [(1 — &) Yi,—m,; — ]
and ¢? = E (bim) Then 2 =n '3 2 — 2 as n — oo, and sup; E b m, |7 < C for some
e > 0. In addition, b; ;, is independently distributed of (bj,mj,ujt)/ foralli #4,1,7=1,2,...,n,

andt =—mj+1,—-m; +2,...,1,2,...,T, and the following conditions hold:
E (Auithim;) =0, fori=1,2,...,n, and t =2,3,...,T. (6)

Remark 1 Assumption 2 does not allow the errors, u;, to be cross-sectionally dependent, as is
customary in the GMM short-T panel data literature, and together with Assumption 8 ensures also
that Ay; is cross-sectionally independent. When errors are weakly cross-sectionally correlated, in
the sense defined in Chudik, Pesaran, and Tosetti (2011), then the BMM estimators proposed in

this paper remain consistent, but the inference based on them will no longer be valid.

Remark 2 Assumption 2 allows errors to be unconditionally heteroskedastic over time t and across

units v.

Remark 3 Assumption 3 allows for E (b;m,) to vary across i, and therefore, in view of (3)-(4),

E (Ay;t) can vary across both i and t.

2.1 Assumptions underlying GMM estimators

It is important to compare our assumptions on the individual effects and the starting values with
those maintained in the GMM literature. Under Assumptions 2 and 3, initial first-differences, Ay;1,
given by (4) have fourth-order moments and the following moment conditions, which are key to our

estimation method, hold

E (AyisAuy) =0, fori=1,2,...,n,s=1,2,...,t —2,and t = 3,4, ..., T. (7)



Anderson and Hsiao (1981, 1982) have been the first to utilize this type of moment conditions.
In particular, they consider instrumenting Agy;;—1 with Ay;;—o and obtain a simple estimator by
averaging moments F (Ay;_2Auy) =0 over t = 3,4,...,T.

The subsequent GMM estimators advanced by Arellano and Bond (1991), Arellano and Bover
(1995), and Blundell and Bond (1998) require stronger conditions on the initial values and the
individual effects as compared to (7). In addition, the subsequent GMM literature does not average
individual moment conditions over time, but combine them efficiently. The first-difference GMM

approach considered by Arellano and Bond (1991) assumes
E (yisAuy) =0, for i =1,2,...,n,s =0,1,2,....t — 2, and t = 2,3, ..., T, (8)

which imply (7) but are not required for the moment conditions in (7) to hold. It is clear that
the estimator based on (8) will depend on the distributional assumptions regarding the individual
effects, whereas an estimator based on (7) need not depend on the distributional assumptions
regarding the individual effects.5

In addition to (8), the system GMM approach proposed by Arellano and Bover (1995) and
Blundell and Bond (1998) also requires that”

EAyit—1 (i +ui)] =0, fori=1,2,...,n; and t =2,3,...,T. (9)

These additional restrictions impose further requirements on the errors and the initial values. To

see this, first note that iterating (3) from ¢ = 1 and using (4) we have

m;—1

t—2
Ayir = ¢ bim, +uin — (1= 0) > ¢lui_o| + > ¢ Auigy. (10)
£=0 £=0

5In adition to Ayit—2 Anderson and Hsiao (1981, 1982) also considered using y;:—2 as instrument.

5Suppose that |¢| < 1, and consider the case where m; is finite, namely, 0 < m; < K, and consider the following
initial values y;,—m; = p; + vi, where E (v;) = 0, and E (v;Aus) = 0, for i« = 1,2,...,n, and t = 3,4,....,T. v;
measures the extent to which the initial values y;, —m,; deviate from the long-run means, p;. Under this specification
of initial values, Ay;, for t = 0,1,...,T and all ¢ does not depend on y,;, and estimator based on (7) will not depend
on the distributional assumptions about p,.

"The complete set of moment conditions is E [Ay;s (i +ui)] = 0, for i = 1,2,...,n, s = 1,2,...,t — 1, and
t=2,3,...,T. The set of conditions in (9) contains the T'— 2 moment conditions in the system GMM approach that
are not redundant.



Since for all 4, u;’s are assumed to be serially uncorrelated, then condition (9) is met if

m;—1 t—3
&2 E [bim, (i + wit)|+¢' 2 F (unoi)+(6 — 1) ¢ Y "B (i o)+ Y 6"E (iduiy—¢-1) =0,
=0 =0

fori=1,2,...n; and t = 2,3,...,7. In the case where m; — o0, the first term vanishes and the
moment conditions (9) will be satisfied if E (u;tc;;) = 0, for all ¢ and ¢ < T — 1. If m; is finite it is
further required that E [b; m, (a; + ui¢)] = 0, unless ¢ = 0. Now using (5) and noting that |¢| < 1,

we have®

E[bim; (i +uit)] = —¢™ (1= ¢) E[(Yi,—m; — #1;) (i + ust)]

= —¢" (1= ) E((Yi,—m; — 1;) ] -

Therefore, when m; is finite for the moment conditions (9) to hold we must have

E [p; (Yi—m; — )] =0, for i =1,2,...,n. (11)

This condition requires that for each i, individual effects are uncorrelated with the deviations of
initial values from their long-run means, ;. These restrictions might not hold in practice. For
example, condition (11) is violated when p; # 0 and y; —m, = 0.

It is true that by imposing additional restrictions on individual effects and starting values it
might be possible to obtain a more efficient estimator of ¢. However, it is also desirable to seek
estimators of ¢ that are consistent under reasonably robust set of assumptions on starting values,
individual effects, and error variances. Seen from this perspective, Assumption 3 is less restrictive
than the assumptions that underlie the moment conditions used in the existing GMM literature.

When comparing GMM estimators, it is also worth noting from (10) that if |¢| < 1 and {y;; } are
initialized in a distant past (with m; — c0), then Ay;; will no longer depend on «; and renders the
BMM and Anderson-Hsiao estimators invariant to the individual effects. However, this is not the
case for the GMM estimators that make use of lagged values of y;; in construction of their moment
conditions. As a result, the performance of such GMM estimators can be affected by the ratio
Yoy Var (o) />0y Var (uit). See Blundell and Bond (1998) and Binder et al. (2005) for further

discussions. Of course, if it can be assumed that m; is large for all ¢, then many of the issues raised

®Note that by assumption F (ujz;) = 0 = E (witls,—m, ), for t = 2,3, ...



surrounding the validity of the GMM moments discussed above might not arise. However, in most
empirical micro applications where there are entry and exit of firms/households, the assumption
that m; is large across all 7 could still be highly restrictive. In the case of the earnings dynamics
regressions presented in Section A6 of the Appendix, BB restrictions are far from innocuous, and
the Hausman test, which we propose in Subsection 4.1 below, strongly rejects the validity of the

BB restrictions.

3 BMM estimation of short-7" AR(1) panels

We consider the first-differenced version of the panel AR model (3), but instead of using instru-
ments for Ayi,t,l that are uncorrelated with the error terms, Awu;;, we propose a self-instrumenting
procedure whereby Ay; ;1 is ‘instrumented’ for itself, but the population bias due to the non-zero
correlation between Ay; ;1 and Aw; is corrected accordingly. The advantage of using Ay; ;1 as an
instrument lies in the fact that by construction it has maximum correlation with the target variable
(itself), so long as we are able to correct for the bias that arises due to Cov (Ay; ¢+—1, Auir) # 0. To
summarize, GMM searches for instruments that are uncorrelated with the errors but are sufficiently
correlated with the target variables. Instead, we propose using the target variables as instruments
but correct the moment conditions for the non-zero correlations between the errors and the in-
struments. Both approaches employ method of moments, but differ in the way the moments are
derived.

Using Ay;;—1 as an instrument, under Assumptions 2 and 3, we have
E (AuiAyip—1) + 07, =0, fori=1,2,...,n, and t =2,3,...,T — 1. (12)

Also E(Auit)2 = 0?’1‘/71 + O'?t, where E (Au;t11Ay) = _01215- Hence, 0?’#1 = E(Auit)z +

E (Au;++1Ay4t), which if used in (12) yields the following quadratic moment (QM) condition:

E (AuipAyis 1) + E (Auir)® + E (Aug 1 Ayi) = 0, (13)

fore = 1,2,...,n, and t = 2,3,...,T — 1. It is useful to note that the expression for a%t_l =

E (Auit)2 + E (Au;41Ay;) depends on the set of assumptions considered, and different solutions

could be obtained under different (stricter) conditions. In this paper, we focus on the general set



of conditions summarized by Assumptions 2 and 3, although additional moment conditions can
be obtained if one is prepared to make stronger assumptions such as time series homoskedasticity
o*izt = Uf,tfl = 012. Another possibility is to assume y;; is covariance stationary, which will lead to
a linear moment condition solution, further discussed in Remark 5 below.

Initially, we use the QM condition (13) alone to obtain an estimator of ¢, and propose averaging
(13) over i and ¢, which will deliver a simple exactly identified moment estimator. In Section 4, we
consider optimally weighting the moment conditions in (13), and augmenting them with Anderson-
Hsiao type moment conditions.

Averaging moment condition (13) over ¢, and substituting (3) for Au; and Aw; 441, we obtain

E[M;r(¢)] =0, fori=1,2,...,n, (14)
where
T,
Mir (¢) = T_9 [(Ayit — OAY; 1) Ayiz—1 + (Ayi — ¢Ayz‘,t—1)2 + (Ayigt1 — PAY) Ayt | -
t=2
(15)

The BMM estimator is then given by

\ o 13z 16
¢nT arg glelél H nT (¢) H ) ( )
where ||.|| denotes the Euclidean norm, © C (—1,1] is a compact set for the admissible values of ¢
defined by Assumption 1, and
_ 1 &
Myr (9) =~ Mir (6). (17)
i=1

The following theorem summarizes the results for the BMM estimator of ¢.

Theorem 1 Suppose y;z, fori=1,2,....n, andt = —m;+1,—m;+2,....,1,2, ..., T, are generated by
(1) with starting values y; —pm,, and the true value of the parameter of interest ¢y. Let Assumptions
1-8 hold, and suppose By # 0 and n~" i E (VZQT) — St > 0, where Br is given by
1 n
Br = JLHQOE (Bur) s Bur = - Z (Qir + Qi + 2H;r) , (18)
i=1
Qr = 755 Y0 AvZ 1, Qi = 75 505 AV, Hir = 755 215 AuyAyip 1, and Vip =

ﬁ tT;; (AuitAyivt_l + Au?t + Au@tHAyit). Consider the BMM estimator <}§nT given by (16).



Let T > 3 be fized and n — oo. Then, the unique \/n-consistent estimator (AﬁnT satisfies

Vn <<}5nT - ¢0) —a N (0, ZT) ,

where

Yr = B:2Sr. (19)

A \/n-consistent estimator of ¢ exits if By # 0, where By = lim, oo n™ ' Y1 | E (B;r), and

~
L

BiT = m (Ay?’t_l + Aygt + 2AuitAyi,t71) . (20)
t

[|
¥

It is now easily seen that condition By # 0 is satisfied when Ay is a stationary process (for

m; — 00, ot = 02 and || < 1). In this case

B._o(l79) 2
BT2<1+¢>U > 0,

where 62 = lim,, 0o 1 Y 1, 02. In the non-stationary case (with m; finite) By # 0 even if ¢ = 1
so long as oy is sufficiently variable over ¢. As a simple example consider the case where T' = 3,

and note that (see Section A.1 of the Appendix)

By=53—a1+(1—9)°51+ (1+6) (1 — ¢) Y. (21)

-2 1: —1 n 2
where 6} = lim, .oon™ " ) ;" 03, and

1 — 1 —
Yo =(1-9) nh_{go - ZlE (yio — p1;)° — 2 lim - ;E [wit (Yio — 1)) - (22)

n—oo

If = 1, then B3 = 53 — 67, and B3 # 0, if and only if 62 # &3. When |¢| < 1, B3 # 0 even if

&3 = 53, except for when (1 — ¢) (1 + ¢®) ¥y = ¢(2 — )57 — 73. Therefore, time variations in the

average error variances, 52, can help identification under the BMM quadratic moment condition.

Remark 4 When By =0, from (A.13) we have,
<(AbnT - ¢0>2 QnT = VnT + (EbnT - ¢O> O’p <TL71/2) ’ (23)

where Vor = n Y0 Vir, Qur = n 230 Qir. Note that Qur — Qr > 0 as n — oo.

10



1/4

Therefore, there exists a unique n'/*-consistent estimator ¢, . As noted earlier a leading case

when B = 0, is the unit root case (¢ = 1) under error variance homogeneity over t.

>, can be estimated consistently by

~ ~=2 (1 L
Ynr = Byr <n Z Vi?nT) ) (24)

where

§nT _1 Qir + Qi+ 2H; 1) (25)
n

=1

Hipr = (T —2) "SS5 Ay Ay g1, Aty = Ayip — b Ayie—1,” and
(A Ay; -1 + AGZ, + Ady 1 Ayse) - (26)

Consistency of 3,7 is established in Proposition 1 in the appendix.

Remark 5 In the case of covariance stationary panels (|¢| < 1 and m; — o0), we have Ay; =
Yo ¢€Aui7t_g, where E(uft) = U?. Then E (Ay?t) = 20?/ (1+ @) is time-invariant. Under
covariance stationarity o = (1 + ¢) E (Ayth) /2, E (AuitAy;—1) = E (Aui+1Ayi), and using

(12) the quadratic moment condition, (13), simplifies to the following linear moment condition:
1 2
E (AyuAyi—1) + B 1-9)E (Ayi,tq) =0,

which yields the associated BMM estimator given by

- S, <2AyitAyi,t71 + Ayzz,tfl) 27
" > Zthz Ayz‘z,t—l .

In this case ¢ is identified even when T = 2. Interestingly enough, the above linear BMM estima-
tor is identical to the first-difference least square (FDLS) estimator proposed by Han and Phillips
(2010),'° who show that ¢, has standard Gaussian asymptotics for all values of ¢ € (—1,1] and
does not suffer from the weak instrument problem. However, when T is fixed the covariance station-

arity assumption is rather restrictive for most empirical applications in economics, where typically

9 Adi;; depends on n and T, but we omit subscripts n, T to simplify the notations.
'"We are grateful to Kazuhiko Hayakawa for drawing our attention to this fact.
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not much is known about the initialization of the dynamic processes over i, and it is not possible to

rule out the heteroskedasticity of error variances over t.

4 Augmented Anderson Hsiao (AAH) estimator

The BMM estimator above is useful for illustrative purposes, but it is not asymptotically efficient
partly due to averaging of moment conditions over ¢, and more importantly due to not exploring
additional readily available moment conditions that hold under the same set of assumptions. An-
other reason for augmenting the quadratic BMM moments with additional moment conditions is
because the global identification for BMM is not guaranteed.

As noted above, amongst the moment conditions proposed in the literature, only the ones
proposed by AH are sufficiently general, and accordingly, we propose to augment the T'—2 quadratic
moment conditions in (13) with the (7" — 2) (T" — 1) /2 AH moment conditions in (7). Together, they
provide (T'—2)(T'—1) /2+ T — 2 AAH moment conditions. As usual, we can obtain first, second

and continuous-updating GMM estimators based on these quadratic-linear moment conditions.

Remark 6 [t is worth noting that conditions (7) and (13) do not imply conditions (8) and/or
(9), since (7) and (13) rely only on first differences, whereas (8) and (9) also rely on levels. Hence,
it is possible that (7) and (13) can hold whilst (8) and/or (9) might not hold. An example of this

case is considered in the Monte Carlo section below.

The set of AAH moment conditions (7) and (13) is a subset of the conditions in Ahn and
Schmidt (1995, 1997), who enumerated a complete set of moment conditions under a stronger set
of assumptions than are necessary for AAH alone; see their Assumptions SA1-SA3. Sufficient set

of assumptions that give rise to AAH are the following ‘basic’ assumptions:

(BA1) For all i, the u; are mutually uncorrelated.

(BA2) E [(yio — p;) Auy) =0 for all 4 and t = 2,3,..., T,

where p; = a;/ (1 — ¢). Assumption BA1 on its own has been considered as Case H of Ahn and
Schmidt (1997), which implies T' (T — 3) /3 moment conditions. Assumption BA2 is implied by
Assumptions SA1-SA2 of Ahn and Schmidt (1995), but not wice versa. The full set of moment

conditions based on BA1l and BA2 is the union of AH moment conditions given by (7) and QM
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moment conditions given by (13). Derivation of the asymptotic distribution and conducting in-
ference requires additional standard high-level regularity conditions routinely used in the GMM
literature.'!

It is of interest to consider the efficiency loss that arises when using AAH moment conditions,
whilst in fact the more restrictive system GMM conditions (8)-(9) hold. To shed light on this,
we report the ratios of asymptotic variances of the AH, first-difference GMM and system GMM
estimators, all relative to that of the AAH estimator. We illustrate the asymptotic efficiency
gains and losses in Table 1 in the same way as in Ahn and Schmidt (1995). We are interested
in two questions: (i) How much is gained by adding QM conditions to AH, and (i) how much
is lost by not utilizing the additional moment conditions assuming that the DGP satisfies all of
the restrictions in (8) and (9). Following Ahn and Schmidt (1995), we tabulate the asymptotic
variance ratios for the stationary homoskedastic case for different values of ¢, and different ratios
of E (af) /E (u) = 02 /o2, for all i and ¢.

The results, computed by simulations, are summarized in Table 1. As can be seen, augmenting
AH moment conditions with the quadratic moment conditions (13) results in substantial efficiency
gains for all values of ¢, 02 /02 and the three choices of T = 3,6 and 10, in Table 1. The efficiency
gains are particularly pronounced for values of ¢ close to unity. Also as to be expected the two
estimators perform equally well for all values of 02 /o2 since both use first-differences as instruments
and hence are not affected by 02. The efficiency gain of AAH over AH reduces somewhat when T

is increased.

"'These are listed, for example, in Pesaran (2015). In particular, assumptions for consistency are given by Assump-
tions A1l and A2 in Chapter 10 of Pesaran (2015) and the additional assumptions for asymptotic normality are given
by Assumptions A3-A5 of the same chapter. See also Assumptions 1-3 for a set of low-level assumptions required for
consistency and asymptotic normality.
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Table 1: Asymptotic efficiency of AH, AB and BB estimators relative to the AAH

estimator under stationarity

var (AH) /var (AAH) var (AB) /var (AAH) var (BB) Jvar (AAH)
/o2 o2 /o2 o2 /o2
o} 0.5 1 4 0.5 1 4 0.5 1 4
T=3
-0.9 1.5 1.5 1.5 1.0 1.0 1.1 0.9 1.0 1.0
-0.8 1.7 1.7 1.7 1.0 1.1 1.2 0.9 1.0 1.0
-0.5 2.3 2.3 2.3 1.1 1.2 1.6 0.9 0.9 1.0
-0.3 2.9 2.9 2.9 1.2 1.3 1.9 0.9 0.9 1.0
0 4.0 4.0 4.0 1.2 1.5 24 0.8 0.9 0.9
0.3 5.3 5.3 5.3 1.2 1.7 3.0 0.6 0.7 0.9
0.5 6.4 6.4 6.4 1.2 1.7 3.4 0.4 0.5 0.7
0.8 8.2 8.2 8.2 1.2 1.7 4.1 0.1 0.1 0.3
0.9 9.2 9.2 9.2 1.9 2.6 3.8 0.05 0.05 0.06
T=6
-0.9 1.3 1.3 1.3 1.0 1.0 1.1 1.0 1.0 1.0
-0.8 1.3 1.3 1.3 1.1 1.1 1.1 1.0 1.0 1.0
-0.5 1.6 1.6 1.6 1.2 1.2 14 1.0 1.0 1.0
-0.3 1.8 1.8 1.8 1.3 1.4 1.6 1.0 1.0 1.0
0 2.2 2.2 2.2 1.5 1.6 2.0 1.0 1.0 1.0
0.3 3.0 3.0 3.0 1.7 2.0 2.6 0.9 1.0 1.0
0.5 3.9 3.9 3.9 2.0 2.4 3.3 0.9 0.9 1.0
0.8 6.1 6.1 6.1 2.5 3.5 5.1 0.5 0.6 0.8
0.9 7.6 7.6 7.6 2.5 4.0 6.3 0.2 0.3 0.5
T =10
-0.9 1.2 1.2 1.2 1.0 1.0 1.1 1.0 1.0 1.0
-0.8 1.2 1.2 1.2 1.1 1.1 1.1 1.0 1.0 1.0
-0.5 1.3 1.3 1.3 1.1 1.2 1.2 1.0 1.0 1.0
-0.3 1.5 1.5 1.5 1.2 1.3 1.4 1.0 1.0 1.0
0 1.7 1.7 1.7 14 1.5 1.6 1.0 1.0 1.0
0.3 2.2 2.2 2.2 1.6 1.8 2.0 1.0 1.0 1.0
0.5 2.7 2.7 2.7 1.9 2.2 2.5 1.0 1.0 1.0
0.8 4.8 4.8 4.8 2.9 3.6 4.3 0.8 0.9 0.9
0.9 6.5 6.5 6.5 3.6 4.6 5.8 0.5 0.6 0.8

Notes: This table reports ratios of asymptotic variance of the Anderson and Hsiao (AH), Arellano and Bond (AB)
and Blundell and Bond (BB) estimators relative to the asymptotic variance of the augmented AH (AAH) estimator
in a stationary design with F (0412) =02 and E (uft) = 02, and for different values of the AR coefficient, ¢.

Asymptotic variances are computed by simulations using n = 107. T = 3 requires Yi,0, Yi,1, Yi,2, and y; 3 are
observed.

Turning now to the second issue, namely efficiency loss of AAH relative to AB and BB esti-
mators, we first note that interestingly enough, the expected efficiency gain of AB over AAH does
not materialize and AAH is in fact generally more efficient than the AB estimator, with efficiency
gain of AAH increasing substantially as larger values of ¢ and o2 /0?2 are considered. Increasing
T does not seem to have much effect on the relative efficiency of the AB estimator. The results

in Table 1 also confirm the sensitivity of the AB estimator to the ratio, 02/02. In contrast, the
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BB estimator performs favorably relative to the AAH estimator (and by implication relative to the
AB estimator) particularly, for values of ¢ close to unity. However, this efficiency gain is achieved
assuming that E [p; (yi,—m; — ;)] = 0, for ¢ = 1,2,...,n, which might not hold in practice. (see
(11) and the related discussions). The cost of using BB estimator is inconsistency if condition (11)

is not met. Further evidence on this is provided in the Monte Carlo section.

4.1 Hausman test for the validity of moment conditions

The above simulations suggest that AAH estimator cannot be more efficient than BB estimator
when all BB moment conditions are met. This can be seen formally by investigating more closely
the relation between the BB condition (9) and the QM moment condition (12), or equivalently

(13). Using wir + a; = Auit + (0 + ui¢—1) in (9) we have
EAyit—1 (i +uir)] = E(Ayip—1A8ui) + E [Ayip—1 (o + wig—1)],
and since Ay; 11 = ¢Ay; 1o + Au; i1, then

E[Ay; -1 (a; + uit)] = E (Ayi -1 A1) +OF [Ays i—2 (o + wig—1)]+E (Auip—104)+E (A —1ui—1) -
(28)

But under BB moment conditions E (Au;+—10;) = 0 and
E [Ayw_g (CYZ‘ + uiﬂg_l)] =0. (29)
Using these results in (28) we have

EAyii—1 (a; +uip)] = E(Ayi—1Aui) + E(Auji—1u 1)

= E(Ayii—1Auy) + Gf’t_l =0,

which is the same as the QM condition given by (12). Namely, the QM condition is implied by the
BB moment conditions, but not vice versa. Hence, under BB moment conditions the AAH estimator
cannot be more efficient than the BB estimator. Note that (29) is the same as (9) and it is satisfied
if E(Aujt—104) = 0 and E'[p; (Yi—m; — i;)] = 0, as discussed in Section 2. However, when the

BB conditions (8) and/or (9) are not met the BB estimator becomes inconsistent contrary to the
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AAH estimator that continues to be consistent. Therefore, the main two conditions underlying

the Hausman test (Hausman, 1978) are met and the validity of BB moment conditions can be
~aah ~bb

tested using the Hausman procedure. Denoting the AAH and BB estimators by gbzaT and ¢, 1,

respectively, the Hausman test statistic is defined by

-1

i, = (bt — o) [Var (85 — Var (80)] (30)

— /~aah — /~bb — /~aah — /~bb

assuming that Var (q&f:;) — Var (qbnT) > 0, where Var (gf)%«) and Var (¢nT> are consistent
~aah ~bb

estimators of the asymptotic variances of gzbZaT , and ¢, 7, respectively. Under the null hypothesis

that the BB conditions are met, H, is asymptotically distributed as x2 (1), for a fixed 7" and as

n — OoQ.

5 Extensions to panel VARs and to models with covariates

There are two important extensions of model (1). The first extension is to a panel VAR model
zZig =0; + Pz 1 +uy, t=0,1,2,...,7T; and i =1,2,...,n, (31)

where z; = (?/it,X;t), is the k x 1 vector of endogenous variables, a; = (aiy,a;x)/ is the k x 1

!/
vector of individual effects, @ is the k£ x k matrix of slope coefficients, and u;; = (uwt, u ) is the

/
x,it
k x 1 vector of idiosyncratic errors. Similarly, to the univariate case, the set of linear AH moment
conditions is given by:

E (AzisAujy) = Opxp, for i =1,2,...,mn, s =1,2,...,t — 2, and ¢t = 3,4, ..., T, (32)
to be augmented with the following QM moment conditions:

E (AuyAz), ) + E (AuyAuj) + E (Aug11Az5) = Opi, (33)

for i = 1,2,....,n, and t = 2,3,...,T — 1. AAH estimation of the panel VAR model can proceed
based on (32) and (33), which replace (7) and (13), respectively.

The second extension is to augment (1) with the additional k — 1 regressors in x;, as the
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conditioning variables, to obtain the ARX model

Vit = @ + OYir—1 + B'xit +u, for i = 1,2, .. ,n, t =1,2,..,T. (34)

The regressors in x;; can be strictly or weakly exogenous. AAH moment conditions (7) and (13)
can be augmented by the standard orthogonality for the regressors x;;, as is standard in the GMM
literature. This paper does not have anything new to add regarding instrumenting the regressors
X;¢+. But in the case of weakly exogenous regressors, where there are feedbacks from lagged values
of y;; onto x;, the validity of the ARX specification and the strength of the instruments used for
Ax;; will depend on the nature and the quantitative importance of such feedbacks. For a general
discussion see Chudik, Pesaran, and Yang (2018).

In the case where (34) is derived from an underlying VAR model such as (31), additional
restrictions on error variance heteroskedasticity are required. To see this write down the individual

equations for y;; and x;; in (31) as

Yit = Oy + G11¥it—1 + PpXip1 + Uy, (35)
Xit = Qg+ Gpylit—1 + PraXip—1 + Uait, (36)
where ® is partitioned as:
H — d)ll ¢;x
¢J:y (I)I$

Suppose that the errors, u;, are heteroskedastic over ¢ and ¢, and let

!
Wyyit W -
! Yy, zy,it
FE (uituit) = Q= ,

Wy, it Qxx,it

for all ¢ and ¢. Using linear projection of u, ;; on u, ;;, we have
Uy,it = 040 it + 1t (37)

where 0;; = Q!

TX,

Way.it, and cov (0, Uz 5¢) = 0. Then using (37) and (36) in (35), we have

Yit = Qiy + O11¥it—1 + PpeXip—1 + 0 (Xit — iz — Puy¥it—1 — PaaXip—1) + 0y,
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where cov (n;;,%xis) = 0 for all i,¢ and s, and recall that n;, is serially uncorrelated. Therefore, for

(34) to be compatible with the underlying panel VAR (31) we must have
Q= aiy - egjtai:m ¢ = (;Sll - egtqbzy’ /3 = Oitv and ¢ym = (I)‘{p;pezt

which is possible only if 8;; = Q;;itwmy,it = 3, for all ¢ and t. When this condition is met, the
restriction ¢, = ®,,,.0; = ®/,,8 can be relaxed by considered the autoregressive-distributed lag

(ARDL) specification

Vit = a; + Qyir—1 + BoXir + B1Xi—1 + Mg (38)

where

—1 —1
Qj = Qjy — 66a1I7 ¢ = o1 — w;yﬂxz‘ d)xyv BO = Qxxwmy7 and 161 - ¢yax - (I)/szBO'

The above derivations also show that when x;; is weakly exogenous, it is best to use ARDL specifica-

tions to ensure that the conditional model being considered and its underlying VAR are compatible.

6 Problem of many moment conditions

As it is well known, the number of moment conditions that underlie any of the GMM based
estimation techniques discussed above (AH, AAH, AB, or BB) grow at the quadratic rate in 7.
Consequently, the number of moments can get quite large even for moderate values of T. Under
their respective set of assumptions, these are all valid moments and their relevance (strength) varies,
some of which could be weakly identifying. Unless the number of cross-section dimension, n, is
sufficiently large, as compared to the number of moment conditions, h = h (T'), the proliferation of
moments will have adverse effects for estimation and inference in finite samples. See, for instance,
Anderson and Sorenson (1996), Clark (1996), and Hansen, Heaton, and Yaron (1996). The many
moment problem often occurs together with the weak moment problem, but they are not necessarily
the same. Han and Phillips (2006) provide a number of asymptotic theoretical results for GMM
estimation that allow for the number of moments to increase with the sample size, whilst moment
conditions may only be weakly identifying, encompassing earlier contributions by Bekker (1994),
Staiger and Stock (1997), Stock and Wright (2000), and Chao and Swanson (2003), among others.

GMM estimators utilizing many weak moment conditions may not be consistent and the rate of
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convergence could depend not only on the sample size, but also on the number and quality of the
moment conditions.

Hsiao and Zhang (2015) show that the AB estimator is asymptotically biased if T'/n — ¢, for
some 0 < ¢ < 00, as n,T — oo. This bias can be reduced using jackknife instrumental variables
estimation (JIVE), which has been considered in a general GMM framework by Angrist, Imbens,
and Krueger (1999), Chao, Swanson, Hausman, Newey, and Woutersen (2012), Hansen and Kozbur
(2014), Lee, Moon, and Zhou (2017), Phillips and Hale (1977) and Zhang and Zhou (2020).2
Koenker and Machado (1999) and Donald, Imbens, and Newey (2003) consider GMM estimation
under a large number of strong moments, and provide conditions on the number of moments that
permits the usual asymptotic theory and inference. In particular, Koenker and Machado (1999)
show h®/n — 0 is sufficient for validity of conventional GMM asymptotic inference.

There are two approaches to dealing with a large number of valid moments. One is to use them
all, but combine them in such a way that allows for the number of moments to be large relative to the
sample size so that consistency and valid inference are achieved. The second approach is to select
and use only a subset of available moments. Contributions to this strand of the literature includes
Donald and Newey (2001), Kuersteiner (2002), Hall and Peixe (2003), Inoue (2006), Hall, Inoue,
Jana, and Shin (2007), and Donald, Imbens, and Newey (2009).!3 In what follows we propose a new
sub-set selection procedure by adapting the One Covariate at the time Multiple Testing (OCMT)
recently developed by Chudik, Kapetanios, and Pesaran (2018) for variable selection to the problem

of moment selection in the case of the AAH estimator.

6.1 Moment selection using OCMT approach

In the case of AH moments listed in (7), there are ¢ — 2instruments for Ay; 1, for t = 3,4,...,T.
We collect them in the set S; ;-2 = {Ay;.1, Ayi 2, ..., Ay;r—2}. In general, it is not possible to derive
analytical expressions for the correlation of the target variable Ay; ;1 and individual instruments

in §;;—2 in the case where the underlying dynamic processes are initialized from finite pasts, and

Monte Carlo findings reported in Zhang and Zhou (2020) suggest very good size performance of JIVE corrected
AB GMM estimator. However, the size reported in Zhang and Zhou (2020) is computed using standard deviation of
the estimated slope coefficients across Monte Carlo replications, which is not feasible in practice where only one set
of realizations is available. Hence, the findings in Zhang and Zhou (2020) are not indicative of inference that can be
conducted in empirical applications.

131n addition to the literature on selecting relevant moments from a set of valid moments, there is a vast literature
on moment validity, and the selection of valid moments, including Andrews (1999), Andrews and Lu (2001), Chatelain
(2007), and Liao (2013). The problem of selecting valid as well as relevant moments has been consideed by Cheng
and Liao (2015).
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there is little known about the data generating processes for the initial values. It is, nevertheless,
possible to show that corr (Ay;—1,Ayi+—¢) declines in ¢ at an exponential rate in the case of

stationary initial values. This is illustrated in the following example.

Example 1 Let yir = a; + ¢yit—1 + uit, fort =...,—1,0,1,....,T and i = 1,2, ...,n, where |¢p| < 1.

Then yir = p; + Y020 ¢ uip—e, and
[e.¢]
Ayir =ui — (1= ¢) Y 6" uigy,
=1

where p; = a;/ (1 — ¢). Provided E (uyuy) = 0 for t # t' and E (u3) is bounded, it follows that

|corr (Ayi—1, Ayir—r)| < Coplt1l,

Hence, it could be the case that some of the ¢ — 2 instruments in S;;_2 are rather weak and
consequently not very useful in improving the asymptotic variance of the resulting GMM estimator.
Our suggestion is to apply OCMT method to select the relevant instruments from the set S;;_o,
for t = 4,5,...,T. It is desirable to always include Ay; 2, which is likely to have the largest
correlation with the target variable Ay;;_1, as a conditioning (or pre-selected) variable in the

OCMT procedure, as described below.
OCMT algorithm for selecting AH instruments for a given ¢t (= 4,5,...,T) is as follows:
1. Estimate the (¢ — 3) individual first stage regressions

Ayit—1 = ar+ BAYit—2 + 00Ay; g, for L =13, —4,...,1 (39)

by least squares and compute the associated t-ratios for the coefficients 0, in the above
regression, denoted as téz(s) = 94/5.6. (t%) for stage s = 1. The first stage OCMT selection

indicator is given by
Tery = Ttg, 0y > cp (t = 1,8)], for £=1,2,...,¢ =3, (40)
where ¢,(t,0) is a critical value function defined by

cp(t,0) = &1 (1 - 2%) , (41)
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®~1(.) is the inverse of standard normal distribution function, 0 < p < 1, and § > 0.
Following Chudik, Kapetanios, and Pesaran (2018), we set p = 0.05 and § = 1 in the first
stage, while another value, §* = 2, is used in subsequent stages of OCMT described below.
Variables with ji,(l) = 1 are selected as instruments in the first stage. If no variables are

selected in the first stage, then OCMT procedure stops. Otherwise, increase s by one.

2. The next stage (s > 1) is computed by regressing Ay;;—1 on a constant, Ay, +_o, all instru-
ments selected from the previous stages, and, one-at-time, the remaining instruments not yet
selected. Let téé,(s) denote the corresponding t-ratio of the instruments considered for selec-
tion in the stage s > 1. Then the instruments are added to the selected set if the indicator

t-/7\f,(s) = I[

té“ )] > ¢, (t—1,0%)] is one. If no instruments are selected in stage s, then the

OCMT procedure stops. Otherwise s is increased by one.

3. Step 2 is repeated until no further instruments are selected.

The outcome of this data-dependent selection of moments is hor selected AH moments, T —2 <
b < (T —2) (T —1) /2.1
7 Monte Carlo Evidence

We now provide some evidence on the small sample performance of the AAH estimator as compared
to AH, and the two popular AB and BB estimators (also known as first-difference and the system
GMM estimators). In addition, we also investigate the small sample performance of the AAH
estimator using the subset of AAH moments selected by the OCMT procedure.

7.1 Data generating process (DGP)

The dependent variable is generated as

Yit = & + QYig—1 + Uit (42)

This idea can be applied to any of the GMM estimators considered in this paper. Our focus is on the AAH
estimator.
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fori=1,2,...,n,and t =1,2,...,T. We consider ¢ = 0.4,0.6,0.8,0.9 and report results for ¢ = 0.4

and 0.8 in the body of the paper.'® Individual effects are generated as

T
;=Y puir +ei, e~ IIDN (1,1). (43)

=1

We consider two values for p = 0 or 0.8. When p # 0 then the individual effects are correlated
with errors u;;, and AB and BB restrictions implicit in (8)-(9), respectively, are not satisfied. The

processes are initialized as
Yi,0 = M + KE; + Uy, Uy NIIDN(O,l), (44)

where p; = a;/ (1 — ¢). We consider two values for k = 0 or 1. When « # 0 the individual effects
are correlated with the deviations of initial values from their long-run means pu,;, and BB restrictions
implicit in (9) are not satisfied. But setting x # 0 on its own does not invalidate the AB restrictions
implicit in (8). We also need p # 0.

Restriction k = 0 rules out any systematic deviations of initial values from their long-run means.
It is less likely to hold in empirical applications, where individual dynamic processes over ¢ might
have been initialized from a recent past and possibly from non-stationary initial value distributions.
In contrast, the restriction p = 0 appears much less restrictive, since it would be satisfied whenever
fixed effects are uncorrelated with innovations.

The idiosyncratic errors, u;, are generated as non-Gaussian processes with heteroskedastic
error variances over ¢ and ¢, namely u;; = (e — 2) 044/2 for t < [T/2], and uy = (eyr — 2) /2

for t > [T'/2], with o2, ~ IIDU (0.25,0.75), 0% ~ IIDU (1,2), and e; ~ IIDx?(2), where [T/2]

2

is the integer part of 7'/2. o7, and a?b are generated independently of e;. This ensures that the
errors have zero means, and heteroskedastic both conditionally and unconditionally, in particular,
V (uit| 0iq) = 02, for t < [T/2], and V (ui| o) = o2 for t > [T'//2]. We consider a comprehensive
set of choices of T' = 3,4,5,6,8,10,12,14,16, 18,20 and n = 100, 200, 500, 1000, 2000, 4000, 8000.
Findings for selected sample choices are reported below, whilst the full set of results is available
from authors upon request. 2,000 replications were carried out for each experiment.

Besides the parameter of interest ¢, the key parameters of the MC design are x and p. AH

and AAH estimators are valid for all values of x and p. AB estimators require p = 0, and the

5 PFindings for the remaining values of ¢ are available from authors upon request.
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BB estimator requires p = 0 and x = 0. Consequently, we consider the following three sets
of experiments, based on values of p and k: (i) experiments with p = 0 and x = 0 labeled as
experiments where both AB and BB restrictions are met; (47) experiments with p = 0 and k # 0
labeled as experiments where BB restrictions are not met whilst AB restrictions are met, and (i)
experiments with p # 0 and k # 0 labeled as experiments where neither AB nor BB restrictions

are met.

7.2 Estimation methods

We consider 2-step GMM estimators based on the AH moment conditions given by (7), the AAH mo-
ment conditions given by (7) and (13), the Arellano and Bond’s first-difference moment conditions
given by (8), and the Arellano and Bover’s and Blundell and Bond’s system moment conditions given
by (8)-(9).1% These estimators are labeled below as AH, AAH, AB, and BB, respectively. Inference
is conducted using the conventional standard errors. In addition to two-step GMM estimator based
on AAH moments, we also consider using OCMT to select relevant AAH moments, as discussed in
Subsection 6.1. We denote this estimator by AAH-O. In particular, the AAH-O estimator is based
on the union of 7' — 2 quadratic moments in (13) and hyr selected subset of AH moments using the
OCMT procedure described in Subsection 6.1. Also since T—2 < hy,p < (T — 2) (T’ — 1) /2, then the

number of moments for the AAH-O estimator lies between 2 (7' — 2) and (T'—2) (T'— 1) /2+T —2.

7.3 Monte Carlo findings
7.3.1 Comparison of AH and AAH estimators

We first focus on the comparison of AH and AAH estimators in experiments where both AB and
BB restrictions are met (p = 0 & x = 0).17 Results for bias and RMSE (both x100) of estimating
¢ are reported in Table 2, and size and power of the tests at the 5% nominal level are reported
in Table 3 and Figure Al in the Appendix. Table 2 shows very large RMSE values for the AH
estimator, especially when 7" = 4. Once the set of AH moment conditions (7) is augmented by the
quadratic moment conditions in (13), we see a substantial drop in the reported RMSE values. The

small sample improvements in RMSE are about four to five-fold for T = 4, and smaller but still

'5We found that continious-updating (CU) GMM estimators exhibit often worse performance than the 2-step
estimators in our experiments. A comparison of two-step and CU GMM estimators is available in an earlier version
of this paper, Chudik and Pesaran (2017).

"Findings for the relative performance of AH and AAH estimators are similar for other experiments, available
from authors upon request.
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substantial for larger values of T, all regardless of n. The relative RMSE differences are somewhat
more pronounced when ¢ = 0.8, as compared to the ones obtained for ¢ = 0.4. Compared to the
AH estimator, the AAH estimator is less biased in almost all reported cases, and has a smaller
RMSE even for T' = 14. This suggests that correcting for bias will be unimportant for the reported
sample choices.

In line with the bias and RMSE findings, we see in Table 3 that there are substantial gains
in power from the augmentation of the AH moments with the new quadratic moment conditions
in (13). These differences can be seen more clearly in Figure Al in the Appendix, shown for the
sample combinations, n = 1000, T' = 4 and 6. The empirical power functions of the AH estimator
are rather flat when ¢ = 0.8, and T' = 4. As to be expected, the results for the AH estimator
improve with a decrease in ¢ (as AH instruments become stronger), and/or a rise in T'. In contrast,
the empirical power function of the AAH estimator is much more satisfactory. The size of the AH
and AAH estimators reported in Table 3 are close to their nominal value of 0.05, in cases where T'/n
is sufficiently small. For T' = 4, size is close to 5 per cent for all n > 500, but it deteriorates when
the number of moments is large relative to the number of cross-section units, which is a well-known

problem in the GMM literature.

7.3.2 Comparison of AAH and AAH-O estimators

As noted earlier, with an increase in 7T, the number of moments becomes large, many of which
could be relatively weak. In such a case, using a well chosen sub-set of moments could improve
the small sample performance. We investigate the small sample benefits and drawbacks of using
OCMT procedure described in Section 6.1 to select a subset or relevant AH moments. The AAH-O
estimator is based on the union of 7' — 2 quadratic moments (13) and the selected subset of AH
moments. We expect that for a fixed T and as n — oo, all relevant moments will be selected
by OCMT procedure and therefore asymptotically AAH, and AAH-O achieve the same variance
(for a fixed T'), although AAH-O could have lower or higher RMSE compared with AAH in finite
samples. These expectations are in line with the reported findings in Tables 4-5 and Figure A2
in the Appendix. First, the average number of moments (reported in the last columns of Table
4) increases in n for a fixed T, since all of the AAH moments are relevant albeit with a varying
degree of strength. The differences in RMSE values between AAH and AAH-O estimators are

negligible for large values of n, as expected. Second, AAH-O outperforms AAH in cases where T'/n
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is relatively large. For example, when n = 100, and 7" > 10. However, for intermediate cases with
more moderate T'/n ratio, AAH-O tends to perform less well as compared to the AAH estimator
in terms of RMSEs. The size distortion of AAH-O is not as serious as the size distortions of AAH,

but still quite substantial in the case of experiments where 7" > 10 and n < 2000.

7.3.3 Comparison of AAH with AB and BB estimators

We now turn to the small sample performance of AAH relative to the AB and BB estimators.
Comparisons for experiments where both AB and BB restrictions are met are reported in Tables
6-7 and Figure A3 in the Appendix. In these experiments AAH is asymptotically less efficient than
BB, and this is reflected in the lower values of RMSEs obtained for the BB estimator; although
it is interesting to note that these differences are not large in many cases. This result is also in
line with the asymptotic relative efficiency of the BB estimator reported in Table 1. The situation
is very different when the AAH estimator is compared to the AB estimator. As can be seen from
Table 6, in all cases the AAH estimator performs better (in many cases substantially so) than the
AB estimator. Size of the tests based on the individual estimators is close to 5 per cent when n
is sufficiently large relative to T', otherwise when T is large relative to n inference could be unsafe
with substantial over-rejections.!®

To investigate the factors behind the better performance of the BB estimator, we now consider
experiments where individual effects are correlated with the deviations of initial values y;0 — p;, by
setting x = 1. In these experiments, reported in Tables 8-9 and Figure A4 in the Appendix, the
restrictions underlying the BB estimator are not met. Hence, BB is estimator is no longer consistent,
which shows the BB estimator having large biases and close to 100 per cent size rejections. The
remaining two estimators (AAH and AB) are consistent and their relative performance is very
similar to the previous experiments reported in Tables 6-7, with the proposed AAH estimator
generally dominating the AB estimator.

In the last set of experiments, reported in Tables 10-11, we also allow for correlation of errors
and fixed effects (by setting the parameter p = 0.8), in addition to x = 1. In these experiments
AAH continues to be valid, but the moment conditions of AB and BB are both violated. As a

result both of these estimators perform very poorly, and exhibit large biases and substantial size

8The size performance can be improved upon by considering alternative estimates of standard errors, such as
Windmeijer (2005) finite sample corrections for the standard errors of two-step GMM estimators, or Newey and
Windmeijer (2009) standard errors for the CU-GMM estimators. These or other alternative estimators of standard
errors are not pursued in this paper.
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distortions even when 7" = 4. In contrast, the MC findings for the AAH estimator perform well,
and in fact are numerically identical to those reported in Tables 8-9, since due to first-differencing
the AAH estimator is not affected by the values of p and x.!

Overall, the MC findings show that the AAH estimator is robust and outperform its ‘cousin’, the
AH estimator by a wide margin. The AB and BB estimators are not robust to p # 0, and BB is also
not robust to x # 0. In the case of experiments with p =0 & k = 0, the AAH estimator continues
to outperform the AB estimator, but performs less well when compared to the BB estimator, which
is obtained under a much stronger set of restrictions (given by (11)). In practice it is not known
whether these additional restrictions on the initialization of dynamic processes are satisfied, and

violation of these conditions renders the BB estimator inconsistent.

7.3.4 Hausman test for a comparison of AAH and BB estimators

We now consider the small sample performance of the Hausman test proposed in Subsection 4.1.
This test compares AAH and BB estimators. As already noted, under the null hypothesis of BB
conditions holding, we have Var (AAH) < Var (BB), whereas BB estimator will be inconsistent if
BB conditions are not met. Table 12 shows the rejection rates of Hausman test (defined by ( 30))
at 5 per cent nominal level under the null that BB conditions are met (namely Hy : p = k = 0),
as well as the rejection rates under the alternative hypothesis H; : p = 0 and x = 1, under which
the BB conditions do not hold. Our findings suggest that the Hausman test has relatively good
size for n sufficiently large. However, rejection rates increase well beyond the 5 per cent nominal
level as T increases and n is not sufficiently large. These distortions can be observed in sample
sizes where Var (AAH) and Var (BB) are not well estimated due to large number of moments
and n not being sufficiently large. Under the null hypothesis we also observe a large incidence of
cases (reported in the right part of Table 2) where Var (AAH) < Var (BB) and Hausman test is
therefore not applicable. A large number of these cases are reported due to very small differences
in RMSE values reported earlier in Table 6, in particular for larger values of T'.

Rejection rates under the alternative hypothesis (H; : p = 0 and x = 1) are quite large and
quickly approach unity as n increases, suggesting relatively good power of the Hausman test for
this design. Overall, Hausman test seems to work well when T is small relative to n, but as T is

increased we observe size distortions very similar to the ones reported in Table 7.

9To make the results in Tables 10 & 11 and Tables 8 & 9 comparable we have used the same seed for generating
the random numbers.
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8 Concluding remarks

Instead of focusing on instruments that are uncorrelated with the errors, this paper proposes to
use the regressors themselves in cases where the non-zero correlation between the regressors and
the errors can be derived. This approach will lead to possibly nonlinear bias-corrected moment
conditions. In this paper this idea is applied to the estimation of short-7" dynamic panel data mod-
els, and a new augmented Anderson-Hsiao (AAH) estimator is proposed without making additional
restrictions. The basic idea has potential applications in other settings, including spatial panel data
models. An application is provided by Pesaran and Yang (2021). The idea can also be exploited
to estimate unknown parameters of a known distributional functional form of slope coefficients in
short-T" autoregressive or vector autoregressive panels with heterogenous slope coefficients, which
we leave for future research.

The proposed AAH estimator is applicable under less restrictive conditions on the initialization
of the dynamic processes and the individual effects as compared to the leading first-difference
and system-GMM methods advanced in the literature. It is, however, acknowledged that AAH
estimator can be less efficient asymptotically when the stricter requirements of the system GMM
estimator proposed by Blundell and Bond hold. The robustness of the AAH estimators is likely
to be an advantage in practice where it is not possible to know if the stronger requirements of the
system-GMM estimators are met, and thus avoid possible estimation bias and incorrect inference.

To decide between AAH and BB estimators in empirical applications we also propose a Hausman
type test which is shown to work well when T is small and n sufficiently large.

This paper only considered panels with a fixed T. In panels with n,7 — oo jointly, there is
an important issue that pertains to the GMM approach, namely the problem of combining a large
number of moment conditions. We have briefly discussed this topic and proposed using OCMT to
select a subset of relevant moment conditions as a simple way to mitigate the adverse effects of

moments proliferation.
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Table 2: Bias and RMSE of AH and AAH estimators when both Arellano and Bond
(AB) and Blundell and Bond (BB) restrictions are met

Bias (x100) RMSE(x100)
bo =04 b0 = 0.8 $o =04 b0 = 0.8
T n AH AAH AH AAH AH  AAH AH  AAH
4 100 1118 1.22 -39.91 022 51.22  12.05 94.44 1456
4 200 370 0.36 2455 021 34.55  7.44 7582 10.65
4 500 243 -0.01 -10.60  -0.01 19.97 4.0 41.66  6.40
41000 -0.83 0.3 378 013 13.78  2.88 26.43  4.33
4 2000 -0.71  -0.10 221 -0.10 9.78  2.03 17.50  3.04
4 8000 -0.08  -0.01 015  -0.01 4.65 1.06 8.40 1.53
6 100 -5.01 1.08 2359 0.14 1729 9.86 3813  9.27
6 200 242 0.24 -12.94  -0.06 11.74  6.08 25.62  6.51
6 500 -1.05  -0.14 520 -0.39 713 2.64 1430 3.70
6 1000 -0.37  -0.01 242 -0.14 5.09 1.83 9.91 2.49
6 2000 2019 -0.07 2128 -0.14 3.51 1.32 6.71 1.75
6 8000 -0.03  -0.02 020  -0.05 175 0.63 323 0.86
10 100 -3.40 048 -14.08  0.22 8.84  5.66 19.59  6.38
10 200 -1.49 017 -7.05  -0.01 559  3.03 11.61  3.92
10 500 -0.60  -0.03 254 -0.04 3.37 1.82 6.05  2.32
10 1000 -0.22  -0.03 2120 -0.12 2.36 1.25 3.97 146
10 2000 -0.16  -0.03 20.60  -0.07 1.65  0.84 274 098
10 8000 -0.04  -0.01 014  -0.03 0.79 041 130 0.49

Notes: "AH" is the 2-step GMM estimator based on the (T" — 2) (T — 1) /2 Anderson and Hsiao’s moment conditions (7), "AAH"
is the augmented Anderson and Hsiao 2-step GMM estimator based on the (T'— 2) (T — 1) /2 4+ T — 2 moment conditions (7)
and (13). The DGP is given by i+ = a; + ¢yit—1 + use, for i =1,2,...,n, and t = 1,2,..., T, with y; o = p; + K&; + v;, where
w =i/ (1—¢), o = ZT:1 ptuit + €5, €; ~ IIDN (1,1), and v; ~ IIDN (0,1). This table reports findings for experiments
where k = p = 0, namely AB and BB restrictions are met. BB restrictions are not satisfied when k # 0, and AB restrictions are
not satisfied when p # 0. Errors u;¢ are generated to be cross-sectionally heteroskedastic and non-normal, u;; = (€1 — 2) 044/2
for t < [T/2], and uy = (e — 2) 045/2 for t > [T/2], with o2, ~ IIDU (0.25,0.75), 62 ~ IIDU (1,2), e;; ~ IIDx?(2), and
[T'/2] is the integer part of T//2. See Section 7 for a full description of the MC experiments. The number of datapoints required
is T+ 1, namely yi0,Yi1, ..., yiT, for i = 1,2, ... . n.

Table 3: Size and Power of AH and AAH estimators when both Arellano and Bond
(AB) and Blundell and Bond (BB) restrictions are met

Size (5% level, x100) Power (5% level, x100, Hy : ¢ = ¢+ 0.1)
by =04 b = 0.8 by =04 P = 0.8
T n AH AAH AH AAH AH AAH AH AAH
4 100 11.0 10.2 19.2 12.7 16.0 35.0 23.2 30.6
4 200 7.5 7.4 13.0 9.5 12.3 45.6 17.3 34.0
4 500 6.3 6.1 7.9 6.6 13.9 71.7 12.8 47.6
4 1000 5.2 5.3 5.8 5.9 16.6 91.7 11.9 65.9
4 2000 6.3 5.3 5.3 5.8 23.5 99.5 13.2 88.1
4 8000 5.0 5.6 4.9 5.8 56.8 100.0 23.3 100.0
6 100 18.3 20.5 31.1 20.3 33.9 58.0 43.4 53.9
6 200 11.2 12.0 19.1 13.7 31.4 76.1 31.8 61.8
6 500 7.4 8.0 9.5 9.5 40.0 96.9 26.8 84.7
6 1000 6.5 6.1 7.5 6.5 57.4 100.0 30.5 96.4
6 2000 4.8 5.5 5.5 6.3 82.1 100.0 42.3 100.0
6 8000 4.6 4.1 4.5 5.2 100.0 100.0 87.2 100.0
10 100 40.5 47.3 58.9 49.3 76.6 88.4 83.3 85.4
10 200 20.5 24.1 32.6 27.9 77.9 97.2 74.6 93.4
10 500 10.4 12.1 14.4 15.3 93.7 100.0 75.8 99.8
10 1000 8.3 9.6 8.8 11.3 99.4 100.0 88.8 100.0
10 2000 7.1 6.2 7.4 7.3 100.0 100.0 98.5 100.0
10 8000 5.3 5.2 5.0 5.9 100.0 100.0 100.0 100.0

See the notes to Table 2
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Table 4: Bias and RMSE of AAH and AAH-O estimators when both Arellano and
Bond (AB) and Blundell and Bond (BB) restrictions are met

Average number

Bias (x100) RMSE(x100) of moments
6o =04 6o = 0.8 b0 =04 b0 = 0.8 AAH-O
T n AAH AAH-O AAH AAH-O AAH AAH-O AAH AAH-O AAH ¢3=04 ¢y =0.38
10 100 0.48 0.12 0.22 -0.39 5.66 5.53 6.38 7.21 44 20 17
10 200 0.17 -0.05 -0.01 -0.56 3.03 3.12 3.92 4.29 44 23 18
10 500 -0.03 -0.07 -0.04 -0.25 1.82 1.90 2.32 2.57 44 28 22
10 1000 -0.03 -0.05 -0.12 -0.26 1.25 1.28 1.46 1.55 44 33 25
10 2000 -0.03 -0.05 -0.07 -0.14 0.84 0.85 0.98 1.02 44 39 29
10 8000 -0.01 -0.01 -0.03 -0.03 0.41 0.41 0.49 0.49 44 43 44
16 100 0.73 0.09 -0.59 -0.11 7.93 4.16 9.24 6.02 119 35 30
16 200 0.22 -0.12 0.42 -0.57 2.92 2.63 3.69 4.00 119 41 32
16 500 0.06 -0.02 0.04 -0.32 1.44 1.45 1.58 1.83 119 56 39
16 1000 0.03 0.00 -0.01 -0.20 0.93 0.97 0.96 1.15 119 71 51
16 2000 -0.03 -0.04 -0.05 -0.16 0.62 0.64 0.63 0.70 119 86 65
16 8000 0.00 0.00 0.00 -0.01 0.31 0.31 0.31 0.31 119 112 103
20 100 -1.73 -0.06 -9.91 -0.34 8.22 3.73 14.22 5.72 189 45 39
20 200 0.55 -0.09 1.07 -0.67 4.63 2.39 5.32 3.51 189 53 41
20 500 0.07 -0.04 0.08 -0.36 1.38 1.33 1.46 1.86 189 72 49
20 1000 0.02 -0.01 0.00 -0.22 0.84 0.86 0.82 1.04 189 96 64
20 2000 0.00 -0.02 0.00 -0.12 0.55 0.57 0.53 0.60 189 121 92
20 8000 0.00 0.00 0.00 -0.02 0.27 0.27 0.25 0.26 189 171 139

Notes: See the notes to Table 2. "AAH-O" estimator is the two-step GMM estimator based on 7" — 2 quadratic moment
conditions (13) and a subset of (T'—2) (T —1) /2 AAH moment conditions (7) selected by OCMT. See section 7 for a full
description of the MC experiments.

Table 5: Size and power of AAH and AAH-O estimators when both Arellano and
Bond (AB) and Blundell and Bond (BB) restrictions are met

Size (5% level, x100) Power (5% level, x100, H; : ¢ = ¢y + 0.02)
bo =04 b0 =08 bo =04 by =08
T n AAH AAH-O AAH AAH-O AAH AAH-O AAH AAH-O
10 100 47.3 25.6 49.3 29.6 49.5 32.6 52.3 36.3
10 200 24.1 15.4 27.9 18.7 31.6 25.0 36.4 28.5
10 500 12.1 10.7 15.3 14.6 34.8 30.5 34.2 33.0
10 1000 9.6 9.5 11.3 12.4 46.2 44.1 42.4 44.7
10 2000 6.2 7.0 7.3 8.8 71.0 71.2 61.4 64.9
10 8000 5.2 5.3 5.9 6.1 99.8 99.9 98.0 98.1
16 100 85.9 34.6 85.4 41.9 86.7 41.1 86.3 48.1
16 200 59.4 22.3 61.9 28.5 63.4 36.3 66.6 43.3
16 500 22.0 12.9 27.7 18.8 56.6 44.6 59.3 47.0
16 1000 13.8 10.8 16.1 16.0 71.8 66.3 74.7 69.5
16 2000 8.6 7.9 10.0 11.1 93.1 91.8 93.4 92.8
16 8000 5.7 5.8 6.2 7.2 100.0 100.0 100.0 100.0
20 100 66.8 38.9 78.2 46.1 70.1 48.2 82.8 53.8
20 200 93.1 24.8 92.0 32.3 92.8 41.6 92.7 49.1
20 500 33.4 15.1 39.1 20.3 69.6 54.2 72.0 54.7
20 1000 18.7 11.2 20.8 15.9 82.5 75.7 87.0 75.7
20 2000 10.4 9.0 11.9 11.7 96.5 95.4 98.4 96.7
20 8000 7.3 6.8 6.4 7.5 100.0 100.0 100.0 100.0

See the notes to Tables 2 and 4.
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Table 6: Bias and RMSE of AAH, AB and BB estimators when both Arellano and
Bond (AB) and Blundell and Bond (BB) restrictions are met

Bias (x100) RMSE(x100)
¢o = 0.4 $o = 0.8 $o = 0.4 $o = 0.8
T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
4100 122 492 201 022 -45.29 2.44 12.05 20.08 9.84 1456 73.89 11.16
4 200 036 -2.18 0.9 021 -29.61 1.10 744 1384 657  10.65 55.67 7.64
4 500  -0.01 -0.85 0.40 0.01  -14.09 0.25 4.05 865 4.07 6.40 3295 4.55
41000 013 -0.41 0.32 013 -6.41 0.21 288 6.13 285 433 2154  3.26
4 2000  -0.10 -0.26 0.01 0.10  -3.46  -0.07 203 436 2.01 3.04 1481 240
4 8000  -0.01 -0.03 0.02 0.0 -0.55  -0.02 1.06 213 1.03 153 725 116
6 100 1.08 -4.36 1.00 014 -25.52 2.72 9.86 1277 6.92 9.27 37.03 7.99
6 200 0.24 -2.00 0.44 0.06 -15.32 1.31 6.08 856 4.44 6.51 2524 5.49
6 500  -0.14 -0.83 0.04 039 -6.53  0.26 264 516 2.68 3.70 1421 3.24
6 1000  -0.01 -0.26 0.08 0.14  -3.03  0.13 1.83  3.63 1.84 249 943  2.23
6 2000  -0.07 -0.16 -0.03  -0.14 -1.61 -0.03 132 247 131 175 6.25 154
6 8000  -0.02 -0.06 -0.01  -0.05 -0.36 -0.03 0.63 124 0.63 086 3.00 0.77
10 100 048 -3.14 0.65 0.22 -14.73 2.53 566 824 523 6.38 1991  6.00
10 200 017 -1.44 0.32 0.0 -7.79  1.40 3.03  5.02 3.04 392 1192 3.84
10 500  -0.03 -0.62 0.03 0.04 297  0.33 1.82  3.04 183 232 611 216
10 1000 -0.03 -0.22 0.0 012 -1.38  0.07 125 2,07 1.26 146 3.92 144
10 2000  -0.03 -0.14 -0.02  -0.07 -0.70  0.01 084 142 0.84 098 266 0.95
10 8000  -0.01 -0.04 -0.01  -0.03 -0.17 -0.01 041 070 0.41 049 126 0.46

Notes: See the notes to Table 2. "AB" is the 2-step GMM estimator based on the Arellano and Bond’s first-difference moment
conditions (8), and "BB" is the 2-step GMM estimator based on the Arellano and Bover’s and Blundell and Bond’s system
moment conditions (8)-(9).

Table 7: Size and power of AAH, AB and BB estimators when both Arellano and
Bond (AB) and Blundell and Bond (BB) restrictions are met

Size (5% level, x100) Power (5% level, x100, Hi : ¢ = ¢y + 0.1)
o =04 o =08 , =04 ) = 0.8

T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
4 100 10.2  12.0 15.9 12.7  30.1 28.7 35.0 21.4 32.5 30.6 36.5 32.4
4 200 7.4 9.0 10.3 9.5 21.0 19.8 45.6 21.5 43.5 34.0 27.3 39.0
4 500 6.1 6.5 7.0 6.6 12.0 10.9 71.7 27.9 71.1 47.6 19.8 65.1
4 1000 5.3 6.2 6.0 5.9 8.1 8.5 91.7 41.9 92.7 65.9 16.7 88.7
4 2000 5.3 5.9 5.1 5.8 6.5 7.6 99.5 67.2 99.6 88.1 18.8 99.5
4 8000 5.6 4.7 5.7 5.8 5.8 5.2 100.0 99.8 100.0 100.0 32.6 100.0
6 100 20.5 21.1 278 20.3 41.2 46.1 58.0 45.9 61.8 53.9 56.2 56.3
6 200 12.0 14.0 16.5 13.7 259 30.1 76.1 44.8 76.5 61.8 43.8 68.2
6 500 8.0 7.9 9.2 9.5 134 14.8 96.9 62.6 96.9 84.7 35.3 94.6
6 1000 6.1 7.1 6.2 6.5 8.8 9.0 100.0 83.4 100.0 96.4 37.9 99.8
6 2000 5.5 5.2 6.0 6.3 5.8 7.5 100.0 97.7 100.0 100.0 50.1 100.0
6 8000 4.1 4.6 4.6 5.2 4.6 5.4 100.0 100.0 100.0 100.0 92.6 100.0
10 100 47.3  48.0 56.9 49.3 67.8 728 88.4 82.7 90.2 85.4 88.6 86.0
10 200 24.1  23.0 26.2 279 399 45.1 97.2 87.3 98.1 93.4 81.1 95.1
10 500 12.1 11.9 14.0 15.3 16.8 229 100.0 97.1 100.0 99.8 82.4  100.0
10 1000 9.6 85 10.3 11.3 10.2 13.7 100.0 100.0 100.0 100.0 91.5 100.0
10 2000 6.2 6.8 6.8 7.3 7.5 9.1 100.0 100.0 100.0 100.0 99.1 100.0
10 8000 5.2 5.3 5.2 5.9 5.3 5.4 100.0 100.0 100.0 100.0 100.0 100.0

See the notes to Tables 2 and 6.
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Table 8: Bias and RMSE of AAH, AB and BB estimators when Arellano and Bond

(AB) restrictions are met and Blundell and Bond (BB) restrictions are not met

Bias (x100) RMSE(x100)
$o = 0.4 ¢y = 0.8 $o = 0.4 by = 0.8
T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
4100 120 -0.80 23.34 054 -7.56 18.94 1170 8.62 24.96 1423 2342 20.44
4 200 031 -0.33 23.96 032 -3.21 20.34 6.95 6.15 24.80  10.33 15.30 20.93
4500  -0.02 -0.12 2475  -0.02 -1.24 21.41 3.30  3.84 25.10 589 9.46  21.60
41000 0.06 -0.07 24.88 0.09 -0.75 21.82 236 2.76  25.05 403 681 21.91
4 2000  -0.08 -0.03 24.96  -0.10 -0.31 22.03 1.65 1.97 25.05 284 478 22,07
4 8000  -0.02 0.00 2508  -0.02 -0.04 22.11 0.85 0.96 25.10 144 235 22.12
6 100 0.75 -1.41 1291 0.50 -7.39 15.90 812  6.78 14.62 9.35 1546 16.80
6 200 0.23 -0.57 13.12 010 -3.44 17.71 541 4.58 14.03 6.33 973 18.18
6 500  -0.08 -0.21 1344  -0.36 -1.31 19.18 224 278 13.83 337 5.65 19.36
6 1000 0.02 -0.02 1378  -0.11 -0.51 19.87 158 2.00 13.98 230 393 19.95
6 2000  -0.05 -0.04 13.76  -0.12 -0.29 20.14 112 1.35 13.86 1.63  2.66 20.18
6 8000  -0.02 -0.02 13.89  -0.05 -0.11 20.33 0.55 0.69 13.91 081 136 20.34
10 100 048 -1.68 6.17 054 -6.44 10.01 482 5.68 7.92 622 10.79 11.13
10 200 016 -0.72 6.11 0.08 -2.99 11.15 272 346 6.95 373 619 11.80
10 500  -0.02 -0.30 6.21 20.07 -1.10 12.27 1.67 211  6.57 201 333 1257
10 1000  -0.01 -0.09 6.30 2012 -0.49 12.54 113 144  6.49 136 227 12.71
10 2000  -0.02 -0.06 6.36 20.07 -0.24 12.78 0.77 1.00 6.45 092 158 1287
10 8000  -0.01 -0.02 6.46 -0.02 -0.06 12.94 038 049 6.48 045 076 12.96

See the notes to Tables 2 and 6.

Table 9: Size and power of AAH, AB and BB estimators in experiments when
Arellano and Bond (AB) restrictions are met and Blundell and Bond (BB)

restrictions are not met

Size (5% level, x100) Power (5% level, x100, Hi : ¢ = ¢y + 0.1)
b =04 by =08 by =04 by = 0.8
T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
4 100 9.3 9.4 95.3 12.1 11.9 929 40.7 33.3 82.6 30.8 21.4 73.4
4 200 6.9 8.7 99.6 8.8 8.4 98.1 56.0 45.4 91.7 35.7 20.0 90.4
4 500 6.3 6.4 100.0 6.3 6.0 100.0 84.8 76.7 99.5 50.7 23.8 99.3
4 1000 5.2 5.4 100.0 5.3 5.8 100.0 98.0 96.1  100.0 69.7 38.0 100.0
4 2000 4.8 6.1  100.0 5.6 5.9 100.0 100.0 100.0 100.0 91.4 58.9  100.0
4 8000 5.6 5.1 100.0 5.5 4.8 100.0 100.0 100.0 100.0 100.0 98.7 100.0
6 100 17.5  16.8 90.0 199 23.2  96.6 67.4 60.4 61.4 55.3 47.0 78.8
6 200 10.4 10.0 97.5 12.8 12.6  99.0 84.5 73.9 59.0 64.3 44.6 90.4
6 500 7.1 6.3 100.0 8.4 6.4 100.0 99.5 97.3 68.4 87.2 57.3 98.6
6 1000 6.4 6.0 100.0 5.9 5.6  100.0 100.0  99.8 81.9 98.2 78.5 100.0
6 2000 5.4 4.5 100.0 5.8 4.3 100.0 100.0 100.0 93.9 100.0 96.6 100.0
6 8000 4.1 4.6  100.0 4.9 5.1  100.0 100.0 100.0 100.0 100.0 100.0 100.0
10 100 46.1 44.1 84.8 48.1  53.3 953 90.4 90.5 77.6 85.0 87.5 7.7
10 200 221 214 894 26.4 26.5 98.8 98.8 97.5 76.7 95.3 88.9 72.1
10 500 12.9 10.7 98.6 14.0 10.9 100.0 100.0 100.0 86.6 99.7 97.8 72.8
10 1000 8.9 8.3 99.9 10.3 7.6  100.0 100.0 100.0 95.6 100.0  99.9 81.5
10 2000 6.7 6.6 100.0 7.1 6.3 100.0 100.0 100.0  99.5 100.0 100.0 91.9
10 8000 5.0 5.0 100.0 5.2 5.7 100.0 100.0 100.0 100.0 100.0 100.0 99.9

See the notes to Tables 2 and 6.
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Table 10: Bias and RMSE of AAH, AB and BB estimators in experiments when AB

and BB restrictions are not met

Bias (x100) RMSE(x100)
) =04 ) =0.8 o =04 ) =0.8

T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
4 100 120 -1332 14.81 0.54 -49.05 12.90 1170 16.12 16.92 1423 56.54 16.03
4 200 031 -11.97 14.90 0.32  -40.60 14.06 6.95 13.77 15.99  10.33 44.93 15.38
4 500  -0.02 -11.00 15.29 -0.02  -34.86 15.01 3.30  11.83 15.75 589  36.98 15.52
41000 0.06 -10.57 15.32 0.09 -32.28 15.43 236 11.07 15.55 4.03  33.64 15.66
4 2000  -0.08 -10.24 15.33 -0.10  -30.79 15.76 1.65 10.53 15.45 284 31.56 15.88
4 8000  -0.02 -9.99 15.42 -0.02  -29.56 15.93 0.85 10.07 15.45 144 2978 15.95
6 100 0.75 -7.79  9.94 0.50 -24.23 12.63 8.12  10.26 11.87 9.35 27.95 13.92
6 200 023 -6.59 10.05 0.10 -19.63 13.64 541 8.05 11.09 6.33  21.65 14.42
6 500  -0.08 -589 1027  -0.36 -16.82 14.47 224 656 10.71 3.37  17.70  14.80
6 1000 002 -549 10.55 0.11  -15.52  14.93 158 589 10.78 2.30  16.02 15.10
6 2000  -0.05 -542 10.54  -0.12 -15.08 15.08 112 5.63 10.65 1.63 1535 15.16
6 8000  -0.02 -524 10.64  -0.05 -14.53 15.20 0.55 530 10.67 0.81 14.61 1522
10 100 048 -3.18 553 0.54 -9.76  9.00 482 6.28  7.42 6.22 13.10 10.21
10 200 016 -228 5.52 0.08 -6.46 9.78 272 407  6.41 3.73 844  10.48
10 500  -0.02 -1.85 5.3 20.07  -4.51  10.57 1.67 277  6.02 201 548 10.89
10 1000  -0.01 -1.62 5.74 -0.12  -3.88  10.69 113 215 594 136 443  10.87
10 2000  -0.02 -1.58 5.80 20.07 -3.63 10.84 0.77 1.86  5.90 0.92 393 10.93
10 8000  -0.01 -1.53 5.91 0.02  -3.44  10.93 0.38 1.60 5.93 0.45 3.52  10.96

See the notes to Tables 2 and 6.

Table 11: Size and power of AAH, AB and BB estimators in experiments when AB

and BB restrictions are not met

Size (5% level, x100) Power (5% level, x100, Hy : ¢ = ¢+ 0.1)
$o = 04 $o =08 $o = 04 G0 =03

T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
4 100 9.3 36.0 84.6 12.1 59.3 81.2 40.7 75.3 55.1 30.8 73.0 50.8
4 200 6.9 46.4 93.8 8.8 63.5 89.3 56.0 89.4 58.3 35.7 79.5 58.7
4 500 6.3 71.5 99.7 6.3 80.7 97.9 84.8 99.7 73.9 50.7 94.3 70.7
4 1000 5.2 90.8  100.0 5.3 93.8  100.0 98.0 100.0 87.0 69.7 98.8 86.4
4 2000 4.8 99.2  100.0 5.6 99.3  100.0 100.0 100.0 96.7 91.4 100.0 96.0
4 8000 5.6 100.0  100.0 5.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
6 100 17.5 34.9 83.0 19.9 60.8 91.5 67.4 87.3 53.9 55.3 85.6 66.0
6 200 10.4 37.3 91.4 12.8 62.6 95.3 84.5 96.6 49.6 64.3 92.3 71.3
6 500 7.1 53.7 99.4 8.4 82.8 99.5 99.5 100.0 45.5 87.2 99.6 81.4
6 1000 6.4 74.8  100.0 5.9 95.2  100.0 100.0 100.0 46.1 98.2 100.0 91.2
6 2000 5.4 94.0  100.0 5.8 99.6  100.0 100.0 100.0 45.5 100.0 100.0 97.7
6 8000 4.1 100.0  100.0 4.9 100.0  100.0 100.0 100.0 56.3 100.0 100.0 100.0
10 100 46.1 47.2 83.0 48.1 63.8 93.6 90.4 94.7 78.8 85.0 93.8 77.3
10 200 22.1 27.1 87.1 26.4 44.5 98.0 98.8 99.6 80.8 95.3 97.0 68.4
10 500 12.9 22.8 97.3 14.0 37.5  100.0 100.0 100.0 91.1 99.7 100.0 64.3
10 1000 8.9 24.8 99.9 10.3 46.4  100.0 100.0 100.0 98.0 100.0 100.0 65.1
10 2000 6.7 36.8  100.0 7.1 66.2  100.0 100.0 100.0  99.9 100.0 100.0 67.9
10 8000 5.0 86.9  100.0 5.2 99.6  100.0 100.0 100.0 100.0 100.0 100.0 79.8

See the notes to Tables 2 and 6.
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Table 12: Empirical size and power of Hausman test applied to the difference
between BB and AAH estimators at the 5% nominal level

Fraction of replications (x100)

where Hausman test was not applicable

Rejection rates (x100) due to Var ((}baah> —Var ((%bb> <0
under Hg under H; under Hg under H;
T n ¢pg =04 ¢y5=08 ¢g =04 ¢3=038 ¢g =04 ¢$y=08 ¢ =04 ¢g=038
4 100 15.27 17.60 93.54 54.08 28.60 11.65 0.10 2.65
4 200 9.92 13.08 99.65 70.67 28.95 11.70 0.00 0.95
4 500 9.41 8.91 100.00 93.25 27.20 9.05 0.00 0.05
4 1000 7.26 8.34 100.00 99.45 26.30 4.65 0.00 0.00
4 2000 8.88 7.28 100.00 100.00 22.30 2.45 0.00 0.00
4 8000 8.41 5.50 100.00 100.00 9.05 0.05 0.00 0.00
6 100 23.32 33.62 88.25 77.15 25.40 6.30 0.00 0.45
6 200 18.06 23.41 98.70 92.80 30.80 7.95 0.00 0.00
6 500 9.90 15.79 100.00 99.85 36.90 9.75 0.00 0.00
6 1000 6.60 14.47 100.00 100.00 39.40 8.45 0.00 0.00
6 2000 6.38 9.78 100.00 100.00 36.55 3.35 0.00 0.00
6 8000 5.97 7.07 100.00 100.00 30.50 0.30 0.00 0.00
10 100 44.92 58.80 79.58 86.42 20.20 4.50 0.10 0.25
10 200 21.62 41.71 91.05 97.10 34.10 9.25 0.00 0.00
10 500 9.29 25.83 99.55 99.95 39.20 18.70 0.00 0.00
10 1000 5.65 20.95 100.00 100.00 45.10 22.90 0.00 0.00
10 2000 4.29 13.21 100.00 100.00 42.95 21.65 0.00 0.00
10 8000 3.63 11.40 100.00 100.00 44.90 14.45 0.00 0.00

Notes: Reported rejection rates under the null correspond to DGP with p = 0 and x = 0, i.e. both AB and BB conditions
are met. Reported rejection rate under alternative correspond to DGP with p = 0 and s # 0, i.e. BB conditions are not met,
whilst AB conditions still hold. See also the notes to Tables 2 and 4.
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A Appendix

This appendix is organized as follows. Section A.1 derives Bs given by (21) and (22). Section A.2
states and proves a number of lemmas used in the rest of this appendix. Additional propositions and
proofs are given in Section A.3. Section A.4 presents rejection frequencies for selected estimators
considered in the Monte Carlo experiments in Section 7. Section A.5 presents additional Monte
Carlo results for the panel ARX(1).model featuring a strictly exogenous covariate. Section A.6
presents an empirical application to earning dynamics using PSID dataset originally analyzed by

Meghir and Pistaferri (2004).

A.1 Derivation of Bs

Using (20), it readily follows that Bs = lim,,.on ™1 Y1 | E (B;3), where

Also recall that Ay;1 = uin — (1 — @) (yio — 1), and Ayo = dAy;1 + Auia. Hence E (AujpAy;) =
-0 2217

E (A%‘21) = 0?1 + (1 — ¢)2 E (yio — Mz‘)Q —2(1 = 9¢) Euir (yio — p13)] »

and

E (Ayh) = E(8° Ayl + Audy + 20AuipAyin) = ¢°E (Ay) + (1 - 20) 0fy + 0%, (A2)
Using the above results in (A.1) now yields:
E (Big) = (05 — 0121)+(1 —¢)? 0121+(1 + ¢2) {(1 — $)° B (yio — 11;)° — 2 (1 — ¢) E [uiz (yio — :U’z)]} .
Hence, as required, we have

By =03 — o1+ (1-0)" a1 + (1+¢°) (1= ) vy, (A-3)
where 7 = limy, 0on 1> 1 | 0%, for t = 1,2, and
vo=(1-6) i 25" B lga ) —2 lim 137 B fua (o - ).
i=1 i=1
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A.2 Lemmas

Lemma A.1 Suppose yi, fori=1,2,...,n, andt = —m;+1,—m; +2,...,1,2,.... T, are generated

by (1) with starting values y; —pm,. Let Assumptions 1-3 hold. Consider

~ 1 _ 1 —
Qnr = - ;Qm, and Bor = — Z (Qir + Qi + 2H;r)

=1

where Qir = (T —2) " 05 Ay?, 1, Qfr = (T —2)7 " S5 A2, and Hip = (T'— 2) 7 S5 A Ay

Suppose that T is fired. Then, we have
Qur = E (Qur) + 0, (n712), (A4)

Bur = E (Bur) + Oy (n72). (A.5)

Proof. Under Assumptions 1-3, the fourth moments of u;; and b; ,,,; are bounded, and hence, using

Loéve’s inequality,?® for each i the fourth moment of Ay;; :

m;—1

Ayit:¢t_1 zml‘i‘uzl_ 1_ Z d)euz -/ +Z¢Auzt 2

is also bounded, for all values of |¢| < 1 and m; > 0. Since T is fixed, it follows that the second
moment of Q;7 = (T — 2)71 23:21 Ayztfl must be bounded, and hence there must exist C such
that £ [Qir — E (QZ-T)]2 < C. Consider next the cross-sectional average of Q;7 — F (Q;r). We have
E[Qir — E (Q;7)] = 0 by construction, and also Q;7 — F (Q;r) is independently distributed across

1, since, under Assumptions 1-3, Ay;; is independently distributed across i. Hence,

Var {n_l Z Qir — E(Qir)] } <n 2 Z EQir — QzT)] %’

=1

and therefore n ™' 3" | Qir —n 13" E(Qir) = Op (n/2). This completes the proof of (A.4).

Result (A.5) is established similarly. Note that

_ 1 < 1 ¢
BnT:n;QiT+n§;Qi +2- ZHZT—QnT‘FQ + 2H,7.
1= 1=

20See equation (9.62) of Davidson (1994).
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The order of Q, 7 — E (QRT) is given by (A.4). Using the same arguments as in the proof of (A.4),
we have

i —E(Qfr) =0y (n_1/2> , and H,p — E (Hyr) = O, (n—1/2) )

Hence, BnT - F (BnT) = QnT - FE (QnT) + Q;{T ) (Q;LFT) + 2 [FlnT —F (ﬁnT)] = Op (n_1/2),

and result (A.5) follows. This completes the proof. m

Lemma A.2 Suppose y;, fori=1,2,...,n, andt = —m; +1,—m; +2,...,1,2,.... T, are generated

by (1) with starting values y; —m,. Let Assumptions 1-3 hold. Consider

_ 1<
Vor = nZ;VT
1=

where Vip = ﬁ ?:31 (AuitAyijt_l + Au?t + Aui7t+1Ay,~t). Suppose that T is fived. Then, we

have

Vir = O, <n*1/2) . (A.6)

If, in addition, Sp = lim, e ' Y1 | E (V3), and T is fived as n — oo, then
VnVur —a N (0, 57) . (A7)

Proof. Under Assumptions 2 and 3, V7 is independently distributed of Vjr for all i # j, i,j =

1,2,...,n. In addition, (using (13))

1 T-1

E(Vir) = 7 > E(AuiAyig-1 + Audy + Augg1 Ayiy) = 0. (A.8)
t=

4+€ 4+e€

Also, by Assumptions 2 and 3, sup, , F'[uy|""° < C, and sup; E [b; | < C, for some € > 0, and

hence, using Loeve’s inequality,?! we have sup; ; £ \Ay¢t|4+6 < C. Using Loéve’s inequality again,

we have

2+€/2

24¢€/2 € €
E | AuigAyip 1 + AuZ + Aug o Ay |7 < € <E |AuagAyi 12 4 B AT 4 B Au o Ay /2) .

2+€/2

But sup;, E |Au?| = sup;, E |Auy [T < C, as well as sup; ; I |AuitAyi7t_1|2+6/2 < C, and

2+€/2

sup; ; F¥ |Aui7t+1Ayit|2+E/2 < C. Hence, sup; £ ‘AuitAyi,tq + A, + AumHAyit‘ < C, and

2LSee equation (9.62) of Davidson (1994).
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using Loéve’s inequality again, we have
sup E (mT\2+€/2) <C. (A.9)
i

It follows also that sup, Ef (VfT) < (), and given that V;7 is independently distributed over i, we

have

_ 3 n n B n C
B (V) =7 32 B(VirVir) =n7 3 B (Vir) < -
1=1 9= 1=

and result (A.6) follows. To establish (A.7), we note that (A.9) holds, and therefore the Lyapunov
condition holds (see Theorem 23.12 of Davidson, 1994). Hence, noting also that n™* > | E (V3) —

St by assumption, we obtain /nV, 7 —q N (0, S7), as required. =

A.3 Propositions and Proofs

First we establish Theorem 1.
Proof of Theorem 1. To derive the asymptotic properties of <2>nT, let ¢y denote the true value
of ¢, assumed to lie inside ©, and note that under ¢ = ¢, (3) yields Ay; = oAy, ¢—1 + Auyy, and

(15) can be written as

[Auis — (¢ — ¢g) Ayii—1] Ayi—1

T-1
1
M (¢) = T Z + [Auit — (¢ — ) Ayig—1]®
=2
+ [Aui 1 — (¢ — do) Ayit] Ay
= N + Vi, (A.10)
where
L Tl
Vir = ﬁ (AUZ‘tAyi,t—l + A'szt + Aui,t—l—lAyit) ’ (All)
t=2

and Air = (¢ — ¢9)° Qir — (¢ — ¢) (Qir + Qfy + 2Hr), in which

~
L

T—1 T—-1
1 1 1
QiT = m Z Ay’i%t—l7 ;’i'v = m Z Ay?b and HZT = m A'U,itAyi’t_l. (A12)
t=2 t=2 t

I
I\

We have one unknown parameter ¢ and one moment condition (14). Suppose there exists (AﬁnT such
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that M, (&nT) = 0. Then (A.10) evaluated at ¢ = ¢,,p yields
(ébnT - ¢0> [(&nT - ¢0) Qnt — BnT} = —Var, (A.13)

where Vo =n 1 Y0 Vir, Qur =n"130 | Qir, and

SR E N + .
Bur = ; (Qir + Qi + 2Hir) . (A.14)

Using results (A.4)-(A.5) of Lemma A.l in the appendix, under Assumptions 1-3, we have (for a

fixed T')
Qur = E (Qur) + Oy (n*1/2> , and Bpp = E (Bypr) + Op (nil/Z) , (A.15)
where
_ 1<
E (Qur) =~ Zl E(Qir) > 0. (A.16)

In addition, using result (A.6) of Lemma A.2 in the appendix, we have
VnT = Op (’I’L_l/2) . (A]_7)

We now use (A.13) to show that there exists a unique /n-consistent estimator of ¢. Suppose that
énT is a y/n-consistent estimator of ¢. Then we establish that such an estimator is in fact unique.

Using (A.13), we have
Vit (b = 60) Qur Vi1 (dur — 60) Bur = —VVir. (A.15)
But, if there exists a /n-consistent estimator, then /n ((AﬁnT — q§0)2 Qnr = O, (n*1/2), and hence
Bur /i (B — 60) = VitViur + Oy (n71/2). (A.19)
Also, using (A.15) the above can be written as

E (Bnr) vn (éSnT - ¢0) = VnVar + O, (n_l/2> .
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where by (A.17), /nV,r = O, (1). If

Br = lim E (Bnr) #0, (A.20)

n—oo

it then follows that the y/n-consistent estimator, g?)nT, must be unique. It also follows that
Vit (b — o)  Br'VaVur.

Finally, using result (A.7) of Lemma A.2 in the appendix, we have /nV,r —q N (0, S7), where
Sp = limy oon ' 320, E (V2), and it follows that v/n (&snT _¢0) —q N(0,%7) with Oy =
B;st. |

We present next propositions for the consistency of f]nT.

Proposition 1 Suppose conditions of Theorem 1 hold, and consider St defined by (24), namely

where Bpr = n~13°0 (QiT + Qi + Qﬁi,nT>; Higr = (T-2)"" 50 Ay Ay 1, Aty =

Ayt — (EsnTAyi,t—la

T-1

. 1 . A N

VimT = A E (At Ayi—1 + AGZ + A1 Ayit)
t—2

and éﬁnT is the \/n-consistent BMM estimator given by (16). Let T be fized as n — oo. Then,

XnT —p X7, (A.21)

where Y is defined in (19)

Proof. Using Theorem 1, we have ¢, = ¢y + 0O, (n_1/2), and therefore At = Ay — g?)nTAyi,tq
is consistent, namely Aw; — Auyy = — (qAﬁnT — d)o) Ayir—1 = Op (nfl/z). This implies I:Iz‘,nT is
consistent, which in turn implies EnT — Byt —p 0. But, using result (A.5) of Lemma A.1, we have
Bt —p B (BnT), and F (BnT) — Brp. Therefore §nT —p Br. Since By > 0 by assumption, it
follows that

B,r —p B2 (A.22)



Next consider n~1 7" f/i?nT’ and note that
. . 5 A ) ) 2
= [ ¥0) ] (10 2 ) 1

where Vi = (T — 2)71 tT:}l (AuitAyi7t_1 + Au%t + Aui7t+1Ayit). Using Aty jt—Atp it = Op (n_l/Q),

we have VMT —Vir =0, (n_1/2). Noting also that Vi = O, (1), we then have
n . 2 n .
nt Z (V;mT - ViT) —, 0, and n~* Z <Vi,nT _ Vz‘T) Vir — 0. (A.23)
=1 i=1

Finally, to obtain the limiting property of n=! Sy VZQT, note that by assumption V;r is indepen-
dently distributed over i. Also, as established in (A.9), we have sup; E |Vir|*t/? < C for some € > 0.
It follows that n=' " | [Vi3 — E (Vi3)] —p 0, and therefore (noting that n=* Y7 | E (V3) — Sr
by assumption) we have

n 'y Vi =y St (A.24)
i=1

Result (A.21) now follows from (A.22), (A.23), and (A.24). m

A.4 Rejection frequencies for selected estimators in Monte Carlo experiments

This section presents rejection frequencies for selected estimators considered in the Monte Carlo
experiments in Section 7, and selected sample combinations. Figure A1l compares rejection fre-
quencies of AH and AAH estimators in experiments where both AB and BB restrictions are met
(p =0 & Kk = 0), for the sample combinations, n = 1000, 7' = 4 and 6. Figure A2 compares rejec-
tion frequencies of AAH and AAH-O estimators using the same data generating process (p =0 &
k = 0), but plotting rejection frequencies for sample sizes with smaller value of n = 200 and larger
values of T' = 10 and 20, where the number of moments is a very important small sample issue.
Figure A3 shows the rejection frequencies for AAH, AB, and BB estimators using the same data
generating process (p = 0 & k = 0), using sample combinations n = 1000, 7' = 4 and 6. The last
figure (Figure A4) compares rejection frequencies of AAH and AB estimators in the experiments
where AB restrictions are met but BB restrictions are not met (p = 0, and x = 1), and using the

sample combinations, n = 1000, T' = 4 and 6.
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Figure A1l: Rejection frequencies (at 5% nominal level) for AH and AAH estimators
when both Arellano and Bond (AB) and Blundell and Bond (BB) restrictions are

met
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See the notes to Table 2.
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Figure A2: Rejection frequencies (at 5% nominal level) for AAH and AAH-O
estimators when both Arellano and Bond (AB) and Blundell and Bond (BB)
restrictions are met
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See the notes to Tables 2 and 4.
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Figure A3: Rejection frequencies (at 5% nominal level) for AAH, AB, and BB
estimators when AB and BB restrictions are met
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Figure A4: Rejection frequencies (at 5% nominal level) for AAH and AB estimators
when AB restrictions are met and BB restrictions are not met
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A.5 Monte Carlo experiments for panel ARX(1) model

This section presents Monte Carlo evidence on the relative performance of AAH, AB and BB
estimators for the panel ARX(1) model.?

A.5.1 ARX Monte Carlo Design

We augment the AR(1) DGP in Section 7 with a strictly exogenous regressor:

Yit = 0 + QYit—1 + Bxi + Wi, (A.25)

fori=1,2,...n, and t = 1,2,...,T. Individual effects, «;, are generated in the same way as in

Section 7, see (43). Similarly, the starting values, y; o, are generated as in (44), namely
Yi0 = i + Kke; + v, v; ~ IIDN (0,1), (A.26)

but unlike in Section 7, where p; = «a;/(1 — ¢), the long-run means are generated as p; =
(i + piy) / (1 — ¢). The idiosyncratic errors, u;, are generated in the same way as in Section

7. Regressors, x;, are generated as

Tit = fg; (L —0) + 0zig1 + €ir, (A.27)

fori =1,2,..,n, and t = 1,2,...,T, with starting values ;o = u, ; + IIDN (0,1), where pu, ; ~
IIDN(1,1), and €; ~ IIDN (0,1 — 6?).

We set ¢ = 0.8, 5 =0.5 and 6§ = 0.6, and consider the same two values for p, namely p = 0 and
0.8, and the same two values for x,namely x = 0 and 1, as in Section 7. Under this design, the
covariates x4 are strictly exogenous.

Available observations for estimation are (x,y;) for t =0,1,2,...,T. We consider T' = 4,6, 10

and n = 100, 200, 500, 1000, 2000, 8000. R = 2000 replications were carried out for each experiment.

A.5.2 AB, BB and AAH Estimators for ARX panel

The AB estimator is implemented as a two-step GMM estimator based on "DIF1" set of mo-

ment conditions outlined in Hayakawa and Pesaran (2015), comprising the following 7' (T — 1) /2 +

22We are grateful to an anonymous referee for suggesting these Monte Carlo experiments.
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(T'+1)T/2 — 1 moment conditions:

E (yisAuy) =0, for s =0,1,..,t —2,t=2,3,...,T, (A.28)

and

E (zisAuy) =0, for s =1,2,...,t, t =2,3,...,T. (A.29)

The BB estimator is a two-step GMM estimator based on "SYS1" set of moment conditions
outlined in Hayakawa and Pesaran (2015), comprising the moment conditions in (A.28)-(A.29) plus

the following additional 2 (7" — 1) moment conditions:

EAyit—1 (a; +uiy)] =0, for t =2,3,...,T, (A.30)

and

E Az (o +uir)] =0, for t =2,3,...,T. (A.31)

Detailed descriptions of these AB and BB estimators are provided in Sections 4 and 5 of Hayakawa
and Pesaran (2015).

In addition to AB and BB estimators, we also implement a two-step AAH estimator. This
estimator is based on the moment conditions (7) and (13) augmented with additional moment
conditions for instrumenting the regressor, x; for ¢ = 1,2,...,n. As we noted in Section 5, this
paper has nothing new to add regarding the moment conditions for the exogenous regressors, and
standard moment conditions used in the literature can be considered. In the experiments presented
here we consider the same subset of available moment conditions for the regressor z;; as chosen for
the AB estimator described above. This will make the comparisons between AH and AB methods
straightforward and fair. The set of moment conditions for the AAH estimator implemented below
is given by the (T'—2) (T'— 1) /2+ T+ (T + 1) T'/2 — 3 moment conditions in (7), (13) and (A.29).

For the choices of T' = 4,6, 10, we respectively have 15, 35, 99 moment conditions for the AB
estimator, 21, 45, 117 moment conditions for the BB estimator, and 14, 34, 98 moment conditions

for the AAH estimator.
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A.5.3 Results

We consider three sets of experiments, for different values of p and x. Table Al reports Bias and
RMSE (both x100) of the three estimators in the baseline case where both Arellano and Bond (AB)
and Blundell and Bond (BB) restrictions are met, namely p = x = 0. The reported values for bias
are overall relatively small for estimation of both parameters, ¢ and 5, and the bias is reduced quite
rapidly with an increase in n. For most experiments RMSEs of estimating 3 are larger compared
to the RMSE obtained for estimating ¢. This could be due to relatively low variability of Az;; over
1 and t. For all sample sizes considered, BB estimator has the lowest RMSE values, reflecting that
the set of moment conditions underpinning the BB estimator encompasses the moment conditions
that underlie the other two estimators. Comparison of RMSE values reported for AAH and AB
estimator reveals that AAH has lower RMSE for majority of sample sizes when estimating ¢, but
somewhat larger RMSE when estimating 8. Size and power of AAH, AB and BB estimators for
the baseline experiments (with p = x = 0) are reported in Table A2. As in Section 5, we observe
large size distortions when the number of moment conditions is relatively large compared with the
sample sizes, which can be seen most clearly when n = 100 or 200, with the size distortions quickly
worsening with as T is increased. For T' = 10, we need at least n = 2000 for the size distortion to
be relatively small.

Findings for experiments when AB restrictions are met and but some of the BB restrictions are
not met (namely when p = 0, and x = 1) are summarized in Table A3 (for the bias and RMSE)
and in Table A4 (for the size and power). We see that BB estimator is subject to bias, which
does not decrease with an increase in n, in line with expectation that BB estimator is no longer
consistent in these experiments, since some of the BB moment conditions are no longer valid when
k # 1. Consequently, the reported size distortions of the BB estimator in Table A4 are very large
and deteriorate rapidly with an increase in n. Comparison of AAH and AB estimators in terms
of RMSE (reported in Table A3) reveals that AAH has lower RMSE for all sample sizes with the
exception of one sample size (n = 100, T' = 4) when estimating ¢, whilst the comparisons are more
mixed for the estimation of 8, where the AAH estimator still outperforms in majority of sample
sizes considered.

Last but not least, Tables A5-A6 report Monte Carlo findings for panel ARX(1) experiments
when some of AB and BB restrictions are not met (p = 0.8, and k = 1). In the case, not surprisingly,

AB and BB estimators being based on invalid moment conditions are biased (Table A5) for most
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of the sample sizes. It is interesting to note that the bias is quite small for the AB estimator
and values of T" = 10, when parameter 3 is estimated. Bias distortions of AB and BB estimators
manifest in large size distortions that rise in n (Table A8). In contrast, the AAH estimator shows
qualitatively similar performance compared with the previous experiments. In particular, there are
no serious size distortions when n is sufficiently large relative to T. For example, for T' = 4 the
AAH estimator does not show any size distortions for values of n > 200, irrespective of whether we
consider estimating ¢ and 8. But to avoid size distortions when T' = 6 then we need n > 500, and

so on. The AAH continues to have satisfactory power which rise with n.
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Table Al: Bias and RMSE of AAH, AB and BB estimators in panel ARX(1)
experiments when both Arellano and Bond (AB) and Blundell and Bond (BB)

restrictions are met

p=0,and Kk =0

Bias (x100) RMSE(x100)
b0 =08 By =05 b = 0.8 By =05

T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
4 100 151  -024 047 0.03 044 -1.17 739 824 276 871  8.19 8.07
4 200 0.79 -0.16 0.21 0.20 005 -0.75 471 5.69  1.88 574 548  5.36
4 500 0.34  0.02 0.03 0.00 0.10 -0.23 279 358 115 354 349  3.34
4 1000 0.24  0.03 0.05 0.05 -0.01 -0.20 2.01 256 0.81 257 254 2.40
4 2000 0.10  0.06 0.00 0.03  0.06 -0.05 1.36  1.77  0.57 1.78  1.78  1.69
4 8000 0.0l  0.00 0.00 20.02  -0.02 -0.03 0.68  0.90 0.28 0.90  0.90 0.84
6 100 1.65  0.13  0.88 042  0.02 0.88 510 563  2.78 768 648  7.01
6 200 1.03 032 048 20.02 017  0.48 3.07  3.67 171 451 419 421
6 500 047 027 0.20 -0.05 0.00 0.20 1.78 221 1.00 272 2.68  2.62
6 1000 0.25  0.06 0.07 0.06 0.08 0.07 119 1.50  0.70 1.89  1.87 1.76
6 2000 0.11  0.04 0.03 20.02  -0.01  0.03 0.82  1.09  0.48 1.28  1.29  1.22
6 8000 0.0l  0.00 0.01 20.01  -0.01 0.01 041 055 0.24 0.64  0.64  0.60
10 100 384 036 - 149 1.14 - 10.98 18.90 - 1613 26.23 -
10 200 126 071 0.88 0.08 015 0.88 2.63 276 1.89 413 3.63 377
10 500 0.58 0.35 0.37 0.09 017  0.37 127 1.39  0.89 2,08 1.99 1.94
10 1000 0.31 020 0.20 0.05  0.08 0.20 0.80  0.94  0.59 134 1.34  1.27
10 2000 0.16 0.10 0.10 0.05 0.06 0.10 053 0.66  0.40 095  0.96 0.89
10 8000 0.03  0.02 0.02 0.00  0.00 0.02 025 032 0.19 047 047  0.44

Notes: “AAH” is the augmented Anderson and Hsiao 2-step GMM estimator based on the (7' —2) (T'— 1) /2+T+(T + 1) T/2-3
moment conditions in (7), (13), and (A.29), “AB” is 2-step GMM estimator based on the T (T — 1) /2+ (T + 1) T/2—1 moment
conditions in (A.28)-(A.29), and “BB” is 2-step GMM estimator based on the T'(T' — 1) /2+ (T + 1) T/2—1+2 (T — 1) moment
conditions in (A.28)-(A.31). See Subsection A.5.2 in Appendix for further details. The DGP is given by yiz = o + ¢y e—1 +
Bxir + uig, for i = 1,2,...,n, and t = 1,2,...,T, with initial values given by vy; 0 = p; + ke; + vi, Ti0 = py; + IIDN (0,1),
where p; = (o 4 p1y;) / (L = @), pp; ~ IIDN(1,1), a; = Z?:l pluit +ei, i ~ IIDN (1,1), and v; ~ IIDN (0,1). This table
reports findings for experiments where kK = p = 0, namely AB and BB restrictions are met. BB restrictions are not satisfied
when k # 0, and AB restrictions are not satisfied when p # 0. Errors u;; are generated to be cross-sectionally heteroskedastic
and non-normal, ujz = (ejx — 2) 04a/2 for t < [T/2], and us = (e — 2) 04/2 for t > [T'/2], with o2, ~ IIDU (0.25,0.75),
02 ~ IIDU (1,2), e; ~ IIDx?(2), and [T/2] is the integer part of T/2. Errors e;; are generated as e, ~ IIDN (0,1 — 6?).
See Subsection A.5.1 for a full description of the MC experiments. The number of time periods available for estimation is 7'+ 1,
namely (%0, yi0), (Ti1,Yi1) s --s (TiTYiT), is available for ¢ = 1,2, ..., n.
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Table A2: Size and Power of AAH, AB and BB estimators in panel ARX(1)
experiments when both Arellano and Bond (AB) and Blundell and Bond (BB)

restrictions are met

p=0,and Kk =0

Size (5% level, x100)

Power (5% level, x100)

$o = 0.8 By = 0.5 Hy:¢=dy+01 Hy: By =fo+01

T n AAH AB BB AAH AB BB AAH  AB BB AAH AB BB
4100  10.60 11.35 17.90 8.75 11.70 17.40 1140 1255 20.60  10.20 12.55 19.55
4 200 6.95 7.75 10.95 585  7.35 10.10 8.65 1055  23.60 785  9.05 12.80
4 500 540 645  7.60 480 585  6.20 10.65  9.10  43.40 810  9.85 12.65
41000 6.05 625 6.25 565 625  6.75 1755 13.25 7155 1335 13.90 16.70
42000 485 445  5.20 520 590  5.60 28.90 1930 94.80  19.60 20.20 25.10
48000 510 5.00  5.00 530 540  5.50 8250  60.35 100.00  62.55 62.40 67.35
6 100  25.60 24.30 39.00  27.60 25.75 37.50 2410 2645  40.90  30.20 26.80 42.50
6 200  13.65 1345 19.95  11.55 11.45 16.40 14.95 1645 3320 1585 1550 25.65
6 500 850 840  9.95 740 7.90 11.00 2080 1640  54.90 1540 16.55 24.60
6 1000 6.60 560 6.90 6.45 575  6.70 3545 25.85  83.60  20.20 20.85 28.00
6 2000 590 550  6.05 410 470 575 64.05  43.90  98.95  34.90 3450 43.25
6 8000 510 565  5.80 480  4.80 445 99.60  95.60 100.00  86.45 87.05 92.30
10 100  94.90 97.25 - 9440 9735 - 95.50  96.80 - 9545 96.80 -
10 200 4420 3825 5540  40.50 36.65 47.25 40.10  41.65 57.85  44.60 40.35 57.00
10 500  18.90 13.40 1895 1430 13.10 17.10 4250 3755  73.55  30.25 28.95 43.35
10 1000  10.80 8.70 12.55 870 7.80 885 72.30 5840 9435 3785 36.85 51.90
10 2000 765 670  7.80 6.45 6.60 7.00 96.45 8550  99.85  59.95 5835 70.65
10 8000 565 560 5.35 535 520 5.35 100.00  100.00 100.00  99.35 99.20 99.65

See the notes to Table A1l
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Table A3: Bias and RMSE of AAH, AB and BB estimators in panel ARX(1)
experiments when Arellano Bond (AB) restrictions are met and Blundell and Bond

(BB) restrictions are not met

p=0,and k=1

Bias (x100) RMSE (x100)
b0 = 0.8 Bo =05 b =038 Bo=05
T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
4 100 150 -0.17 3.12 0.04 044 -0.04 736 7.35 3.7 876  8.17 8.08
4200 0.77 -0.09 3.19 2019 0.08  0.45 462  5.08 3.52 573 548  5.40
4 500 032  0.02 325 0.00 0.0 1.10 273 319 3.38 3.54 349 3.58
41000 0.23 0.02 332 -0.05 0.00 1.16 195 227 338 256 254 2.70
42000 0.10  0.05 3.32 0.03 006 1.33 133 158 3.35 178 178 2.8
4 8000 0.01 001 335 -0.02  -0.01  1.37 0.66 0.80 3.36 0.90 089 1.62
6 100 158 0.1 3.08 -0.39  0.04  3.08 4.95  5.09 3.74 771 650 6.81
6 200 1.00 026 3.03 0.00 020 3.03 3.00 3.31 3.31 453 421 420
6 500 047 024 3.05 -0.04 0.0l  3.05 174 199 3.16 2.73 268 284
6 1000 0.24 004 3.05 0.06 0.09 3.05 116 1.36  3.11 189 1.87 234
6 2000 011  0.03 3.09 20.02  -0.01  3.09 0.81 098 3.12 128 129 203
6 8000 0.01 000 3.11 0.0l -0.01 3.1 040 050 3.12 0.64 065 1.84
10 100 3.82  0.35 - -1.69  0.78 - 1072 18.94 - 16.14  27.32 -
10 200 124 061 2.74 0.04 019 2.74 260 252  3.07 414 3.66 3.69
10 500 057 029 255 011 020 2.55 125 1.28 265 2.09 201 228
10 1000 0.30  0.18 255 0.06 0.10  2.55 0.78  0.86 2.60 135 135 2.00
10 2000 0.16  0.09 255 0.06  0.07  2.55 0.52  0.60 2.57 0.95  0.96 1.97
10 8000 0.03 0.02 255 0.00 0.00 2.55 0.24 029 2.56 047 047 1.92

Notes: See notes to Table Al.
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Table A4: Size and Power of AAH, AB and BB estimators in panel ARX(1)
experiments when Arellano Bond (AB) restrictions are met and Blundell and Bond

(BB) restrictions are not met

p=0,and k=1

Size (5% level, x100) Power (5% level, x100)
by = 0.8 By =05 1=y +01 Hy By = Po + 01

T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
4 100 10.00 11.80 56.20 8.65 11.60 16.35 11.20 13.55 25.15 10.15 12.60 18.20
4 200 6.50 8.40 71.75 5.45 7.50 9.40 9.20 10.95 26.10 7.75 9.15 11.05
4 500 5.45 6.15 95.75 4.80 5.80 8.05 10.70 10.55 38.05 8.10 9.70 7.85
4 1000 5.95 6.00 99.95 5.70 6.30 8.60 17.55 15.50 61.45 13.10 13.80 7.60
4 2000 5.10 5.00 100.00 5.10 5.90 13.70 30.10 23.25 87.15 19.55 19.95 7.35
4 8000 5.05 4.75 100.00 5.25 5.25 37.30 83.95 70.15 100.00 62.65 62.40 12.00
6 100 24.90 24.65 74.20 27.20 25.35 34.70 24.35 26.45 43.85 29.45 26.55 37.65
6 200 13.75 14.10 82.10 11.50 11.30 16.25 15.10 17.50 34.35 15.20 16.00 18.85
6 500 8.40 8.55 97.85 7.35 7.85 12.30 20.90 18.20 40.65 15.10 16.30 11.35
6 1000 6.85 5.65 100.00 6.55 5.55  16.35 36.40 31.70 59.20 19.95 20.85 7.30
6 2000 5.75 5.10 100.00 4.00 4.55 26.55 65.75 52.20 85.90 34.30  34.25 6.95
6 8000 4.80 5.15 100.00 4.85 4.85 79.45 99.70 97.85 100.00 86.55 86.50 6.85
10 100 95.95 97.25 - 93.95 97.35 - 94.70 97.00 - 94.70  97.05 -
10 200 45.55 38.55 89.95 40.00 35.85 44.95 40.00 43.95 58.50 44.85 40.55 49.70
10 500 18.65 13.85 98.70 14.75 13.25 24.25 43.75 43.85 36.35 29.80 27.95 19.30
10 1000 11.00 9.15 100.00 8.15 7.70 32.15 73.50 67.25 40.00 37.40 36.10 10.55
10 2000 7.90 6.95 100.00 6.40 6.80 55.75 97.25 91.45 53.60 59.00 57.60 8.00
10 8000 5.65 5.55 100.00 5.10 5.20  98.95 100.00  100.00 94.20 99.20 99.10 6.85

See the notes to Table A1l
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Table A5: Bias and RMSE of AAH, AB and BB estimators in panel ARX(1)
experiments when Arellano Bond (AB) restrictions and Blundell and Bond (BB)

p=08and k=1

restrictions are not met

Bias (x100) RMSE(x100)
b0 = 0.8 Bo =05 b =038 Bo=05
T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
4 100 148 -4.16 186 0.00 046 -0.26 737 922 288 8.78  8.83 8.36
4200 0.77 -3.56 1.86 021 027 0.5 462  6.86 2.41 573 587 549
4 500 032 -2.80 193 0.00 043 059 273 466 215 354 376  3.55
41000 023 -258 201 20.05 035 058 195 381 212 256 272 2.55
4 2000 010 -239 203 0.03  0.39  0.69 133 3.09 209 178 198 194
4 8000 001 -231 209 -0.02 036 0.76 0.66 2.53  2.10 0.90 1.06 1.20
6 100 158 -1.44 249 2040 020 249 4.95 558  3.25 771 6.64  6.96
6 200 1.00  -1.05  2.40 0.00 045 2.40 3.00 362 275 453 437 4.30
6 500 0.47  -0.97 242 -0.04 030 242 174 234 256 2.73 276  2.73
6 1000 024 -1.04 244 0.06 041 244 116 179 251 189 197 208
6 2000 011 -1.03 248 0.02 033 248 0.81 149 251 128 140 1.70
6 8000 001 -1.03 251 20.01 033 251 0.40  1.17  2.52 0.64 075 1.35
10 100 382 -0.01 - 169 069 - 1072 1821 - 16.14 2594 -
10 200 124 025 256 0.04 0.8 256 259 250 291 414 369  3.70
10 500 057 -0.07 2.38 0.11 021 238 125 125 2.8 2.09 202 219
10 1000 030 -0.20 238 0.06 0.1 238 0.78  0.87 2.3 135 136 1.84
10 2000 016 -0.29 2.38 0.06 0.10 2.38 0.52  0.66 2.41 0.95 097 1.76
10 8000 0.03 -0.36 2.38 0.00 0.04 238 0.24 047  2.39 047 048  1.68

Notes: See notes to Table Al.
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Table A6: Size and Power of AAH, AB and BB estimators in panel ARX(1)
experiments when Arellano Bond (AB) restrictions and Blundell and Bond (BB)

restrictions are not met

p=08and k=1

Size (5% level, x100)

Power (5% level, x100)

$o = 0.8 By = 0.5 Hy:¢=dy+01 Hy:By=fo+01

T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
4 100  10.05 17.00 35.15 8.65 1535 17.20 1125 2220 19.30  10.15 16.70 18.35
4 200 6.50 1520  40.10 545  9.90 10.25 9.25 23.85 13.15 7.75 12,05 12.10
4 500 545 14.85  64.30 480 895  7.90 10.70  31.30  9.70 810 12.10 10.00
41000 595 2115 89.10 570 970 7.60 1755  48.25 935  13.10 14.35 11.40
42000 510 30.80  99.15 510 9.95  9.30 30.10  69.50 890  19.55 18.60 14.10
48000 505 7155 100.00 525 10.85 16.95 83.95 99.15 11.55  62.65 4840 32.60
6 100 2495 2585 63.85  27.15 26.55 36.70 2440 3390 39.90 2940 26.85 39.25
6 200  13.75 15.00 69.80  11.50 13.50 17.00 15.10  26.30 2285 1520 16.30 20.35
6 500 8.40 10.60  92.10 7.35 940 10.10 20.90 3640 18.25 1510 15.65 15.35
6 1000 6.85 12.65 99.55 6.55 7.80 11.35 36.40  59.35 21.50  19.95 17.50 11.50
6 2000 575 19.70  100.00 400 730 16.10 65.75  83.80 3220 3430 28.05 12.60
6 8000 480 52.35 100.00 485 945 49.40 99.70  99.90 80.35  86.55 72.35 25.90
10 100 95.90 97.40 - 9395 96.40 - 94.70  96.90 - 9470 97.40 -
10 200 4555 37.20 8850  39.95 35.90 45.35 40.00  47.65 55.15  44.85 40.45 50.05
10 500 1865 11.70 9825 1475 13.50 21.75 43.75 5545 29.95  29.80 27.45 20.55
10 1000  11.00 875 100.00 815 810 26.60 73.50  80.35 30.00  37.40 35.75 13.35
10 2000 7.90  9.65 100.00 6.40  6.80 45.30 97.25  97.85 36.00  59.00 56.15 11.50
10 8000 5.65 23.55 100.00 510  6.15 95.65 100.00 100.00 73.60  99.20 98.85 15.30

See the notes to Table A1l

60



A.6 Empirical Application: AR(1) model of earning dynamics

This section presents the results of estimating a panel AR(1) model for earnings dynamics using
the Panel Study of Income Dynamics (PISD) dataset, originally studied by Meghir and Pistaferri
(2004), and more recently by Hospido (2012) and Hayakawa and Pesaran (2015).%* Hospido argues
it is important to account for individual unobserved heterogeneity and dynamics in conditional
variance of errors, which can change over time. We note that the AAH estimator of AR(1) panel
is robust to any time series and cross section heteroskedasticity of errors, and therefore it is valid
for estimation and inference in the presence of such effects. Application by Hayakawa and Pesaran
(hereafter HP) compares the estimates of panel AR and panel ARX models of PISD earnings
across different GMM estimators and the transformed MLE (TMLE) estimator proposed by Hsiao,
Pesaran, and Tahmiscioglu (2002) and further extended by Hayakawa and Pesaran (2015).2* We
build on the application by HP and compare their panel AR(1) estimates with ones obtained using
the AAH estimator proposed in this paper.

We estimate panel AR(1) model of earning;:

Yit = G + QYit—1 + ui, for i = 1,2, ..., n, (A.32)

which is identical to our model (1) extensively discussed in Section 2, where y;; is log(earnings;;/price;).
The annual data is unbalanced with Ty, = 9 and Tax = 26 and n = 2069 individuals for the
period 1967-1992. Similarly to HP, we consider estimating ¢ using the full panel, as well as sub-
samples. In particular, we consider dividing the individuals into three groups, based on the years
of education: HSD (high school dropouts with less than 12 years of education), HSG (high school
graduates with at least 12, but less than 16 years of education), and CLG (college graduates with at
least 16 years of education). In addition, we consider three different subperiods: 1977-1987 (I =5
after first-differencing), 1977-1987 (T" = 10), and 1977-1992 (T" = 15). We estimate (A.32) using
the 2-step AAH estimator based on the moment conditions given by (7) and (13), and compare

the AAH estimates with the ones obtained using the AB and BB two-step GMM estimators de-

23We have downloaded data from the supplementary materials posted for the Hayakawa and Pesaran (2015)
using this link: http://www.econ.cam.ac.uk/people-files/emeritus/mhpl/wpl2/Matlab-code-and-data-for-TransML-
Hayakawa-and-Pesaran-2012.zip. We are grateful to Kazuhiko Hayakawa for making these codes and data publicly
available.

24This application is not part of the published paper, but it is available in the supplementary materi-
als available at http://www.econ.cam.ac.uk/people-files/emeritus/mhp1l/wp12/Matlab-code-and-data-for-TransML-
Hayakawa-and-Pesaran-2012.zip.
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scribed in Section 7.2. These estimators are the same ones as the two-step GMM estimators based
on “DIF1” and “SYS1” moment conditions considered in HP. In addition, we also compare the
GMM estimates of ¢ with the ones obtained using the TMLE approach of Hsiao, Pesaran, and

Tahmiscioglu (2002), using the robust standard errors derived in Hayakawa and Pesaran (2015).

A.6.1 Estimation results

Estimation results are reported in Table A7. The left panel of this table reports findings for the
sample covering 1977-1982 (T' = 5 after first differencing), middle panel reports results for 1977-
1987 (T' = 10), and the right panel reports findings for 1977-1992 (T" = 15). The number of moment
conditions depends on T' and it is reported in the last row. Each of the three samples is further
divided based on the education achievement. The top part show results for all individuals with
available data, followed by the high school dropouts (HSD), high school graduates (HSG), and
college graduates (CLG). One common theme emerges from these results: persistence of earnings
is higher for college graduates compared with high school dropouts and high school graduates.
This is generally true for all estimators and samples considered with two notable exception: the
TMLE estimator when T' = 5, where the estimate of ¢ is actually lowest for the college graduates;
and the second exception is the unusually large (explosive) value of ¢ = 1.0375 obtained when
using the BB estimator for HSG sample with 7' = 5. These results therefore suggest that there is
some heterogeneity in persistence of earnings based on the educational achievement, and therefore
assuming homogeneity of ¢ in the full sample (sample ALL reported in the top panel of Table A7)
is probably not warranted. Second interesting observation from the estimates in Table A7 is the
very large disparities that exist across the different estimators. Sample with T = 15 reported in the
right part of the table A7 is subject to many moments problem (in the case of the GMM estimators)
with reported number of moments between 104 and 135 compared with the sample sizes ranging
from n = 72 to n = 507. It is clear that TMLE is more reliable for 7' = 15, with the estimated
values 0.4236 (HSD), 0.5488 (HSG) and 0.7352 (CLG), reported in the last column of Table A7.
We focus next on the estimates with 7' = 5 and 17" = 10, where the number of moments will be of
less consequence compared with 7' = 15 in the case of the GMM estimators (AAH, AB and BB).
BB estimates of ¢ range between 0.9292 to 1.0375 in all cases with very tight standard errors. AB
estimates range between 0.0910 to 0.8779. TMLE and AAH estimates lie in the narrower range of

0.3610 to 0.7091. It is difficult to reconcile such large heterogeneity of estimates across methods
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particularly given that all these estimates are rather precisely estimated with small standard errors.

Differences among the requirements for the initial values and fixed effects, discussed in depth
in this paper, could be one of the contributing factors explaining such large differences across the
estimation methods. Hausman test applied to the difference between BB and AAH estimators
(reported in Table A8) show very strong rejection rates for all samples considered. This is a strong
indication that the BB restrictions are not met. Other factors could also play a role in such a large
differences across individual estimators, such as heterogeneity of slope coefficients, cross-sectional
error dependence, and higher order dynamics. It is important that the analysis of this paper is
extended along the lines of AAH estimator in search of new estimators that are also robust to slope

heterogeneity and cross-sectional error dependence.
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Table A7: Estimation results for panel AR(1) model of real earnings using PISD

dataset
1977-1982, T =5 1977-1987, T = 10 1977-1992, T = 15
AAH AB BB TMLE AAH AB BB TMLE AAH AB BB TMLE
All n =994 n="712 n = 507

¢ 0.4056 0.0910 0.9417 0.6251 0.4457 0.4636 0.9501  0.5045 0.4321 0.4739 0.9487 0.5899
s.e. 0.0424 0.0811 0.0044 0.1026 0.0264 0.0292 0.0007  0.0294 0.0120 0.0133 0.0005 0.0254

HSD n =237 n =134 n="72
$é 0.4698 0.3084 1.0375 0.6553 0.4631 0.2537 0.9460 0.4055 - - - 0.4236
s.e. 0.0578 0.0938 0.0116 0.2015 0.0106 0.0145 0.0005 0.0459 - - - 0.0558

HSG n =514 n = 382 n = 285

¢ 0.4010 0.1231 0.9292 0.6376 0.3610 0.3241 0.9561  0.4449 0.4335 0.4017 0.9449 0.5488
s.e. 0.0684 0.0993 0.0066 0.1084 0.0217 0.0283 0.0011 0.0344 0.0115 0.0161 0.0004 0.0274

CLG n = 243 n = 196 n = 150
¢ 0.4657 0.6012 0.9949 0.5084 0.5988 0.8779 0.9881 0.7091 0.5561 0.8398 0.9897 0.7352
s.e. 0.0680 0.0913 0.0023 0.1263 0.0191 0.0184 0.0006 0.0784 0.0045 0.0047 0.0001 0.0507

h 9 15 20 44 55 65 104 120 135

Notes: This table reports estimation of coefficient ¢ in panel AR(1) specification y;; = o; + ¢yi¢—1 + wit, where y;; is
log(earnings;i/price;t) using the PISD dataset. “HSD” refers to high school dropouts with less than 12 years of education,
“HSG” refers to high school graduates with at least 12, but less than 16 years of education, and “CLG” refers to college
graduates with at least 16 years of education. The last row reports the number of moment conditions (k). AAH is the 2-step
GMM estimator based on the moment conditions given by (7) and (13), AB and BB are two-step GMM estimators based on
“DIF1” and “SYS1” moment conditions outlined in Hayakawa and Pesaran (2015). DIF1 moment conditions are given by
(A.28). SYS1 moment conditions are given by (A.28) and (A.30). Conventional standard errors are reported. TMLE is the

transformed ML estimator of Hsiao, Pesaran, and Tahmiscioglu (2002) and Hayakawa and Pesaran (2015). “-” indicates the
number of moments (h) exceeds the sample size (n). Reported time dimension T refers to the available time periods after

first-differencing.
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Table A8: Hausman test applied to AAH and BB estimators in the panel AR(1)

model of real earnings using PISD dataset

1977-1982, 1977-1987, 1977-1992,
All n = 994 n="712 n = 507
Hausman test 161.7 366.0 1866.1
p-value 0.000 0.000 0.000
HSD n = 237 n =134 n="T2
Hausman test 100.4 2076.5
p-value 0.000 0.000 -
HSG n =514 n = 382 n = 285
Hausman test 60.2 753.6 1976.7
p-value 0.000 0.000 0.000
CLG n = 243 n = 196 n = 150
Hausman test 60.6 416.2 9234.4
p-value 0.000 0.000 0.000

Notes: This table reports Hausman test applied to applied to the AAH and BB estimators. See Section 4.1 for details. Under
the null hypothesis that the BB conditions are met, the Hausman test is asymptotically distributed as x2 (1), for a fixed T and
as n — o0o. Results in this table suggest that the BB restrictions are not met.
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