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Abstract

We present a theory of targeted search, where people with a fi-
nite information processing capacity search for a match. Our theory
explicitly accounts for both the quantity and the quality of matches.
It delivers a unique equilibrium that resides in between the random
matching and the directed search outcomes. The equilibrium that
emerges from this middle ground is inefficient relative to the con-
strained Pareto allocation. Our theory encompasses the outcomes of
the random matching and the directed search literature as limiting
cases.
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1 Introduction

Searching for a match – be it for a spouse, an employer, a college or a
restaurant – involves distinguishing among various alternatives. Identifying
suitable candidates is a costly and time-consuming process. When the welfare
of both sides of the market relies on distinguishing among available options, it
is important to understand whether the sides are coordinating search efforts
in an efficient manner, i.e. to produce a sufficient number of high quality
matches.

The literature on search and matching does not consider agents’ ability
to distinguish among options; nor does it take into account the associated
costs. Instead, existing models either postulate that matching is a result of
luck of the draw,1 or that all agents are able to identify their best partners.2

These built-in structures are the reason why the literature has little to say
about the determinants of the quantity and the quality of matches.

In this paper, we propose a model that accounts for both the quantity
and the quality of matches. It does so by incorporating two key assumptions.
First, we model the costs associated with the process of distinguishing among
potential matches. Second, we allow for two-sided heterogeneity, which mo-
tivates both sides of the market to actively search.

The outcome of our model is a unique equilibrium that resides in be-
tween the outcomes of random matching and optimal assignment and is in-
efficient relative to the constrained Pareto allocation. Moreover, our model
encompasses the outcomes of the random matching and the directed search
literature as limiting cases.

Building on rational inattention theory put forward by Sims (2003), we
identify costly information processing as the modeling device that can ra-
tionalize both the quantity and the quality of matches. When information
processing is costly, people can identify their best matches only partially;
they optimally target those prospective matches that are expected to render
a higher payoff. This is why we call it a theory of targeted search: agents
cannot identify their best match because it is costly, so they target their more

1Random matching models postulate that if there are two workers looking for a job,
each one has equal chances of getting it, irrespective of their characteristics.

2Directed search models postulate a process of competitive search, introduced by Moen
(1997), which allows each agent to perfectly identify her best match. Since the outcomes of
directed search models typically allow agents to pair with their best matches in equilibrium,
we broadly refer to the outcomes of directed search models as the optimal assignment.
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promising matches. In the extreme, if information processing costs tend to
infinity, then no information is processed and we obtain the random matching
outcome. If processing information costs nothing, then the outcome is that
of the optimal assignment model. Although the outcomes are constrained
efficient in both limiting cases, the equilibria that emerge from the middle
ground are inefficient.

Even though our theory applies to many different markets, we focus on the
labor market throughout the paper. We first present a two-sided search model
where workers and firms are subject to information processing constraints.
In this model agents can send or process only one application. Then, we relax
this assumption and allow workers and firms to send and process multiple
applications. In this latter case, the cost function does not depend only on
the cost of processing information, but also on the physical cost of sending an
application. In both cases, a match is formed if it is mutually beneficial and
the surplus from the match is split between the two parties through ex-post
Nash bargaining.

For each case, our analysis consists of two parts. First, we construct a
matching market equilibrium and find the conditions for its existence and
uniqueness. We provide the necessary and sufficient conditions that charac-
terize the equilibrium strategies in a closed form. Second, we compare the
equilibria of the decentralized economy to the constrained efficient allocation.

The role of information-processing constraints in our model is three-
fold. First, they generate endogenous delays in matching, as the search in-
volves balancing the cost and the precision of information about prospective
matches. As a result, some participants will not find partners immediately.

Second, costly information processing can produce a partially targeted
distribution of attention. This distribution places a greater probability on
the matches that promise a higher return.

Third, information-processing constraints are crucial to obtaining a unique
equilibrium. The rationale behind this finding lies in the presence of com-
plementarities among the search strategies of market participants. The com-
plementarities in our model are different from search externalities studied by
Diamond (1982) where an increase in the number of participants makes it
easier for one side of the market and more difficult for the other side to find
a match. In our model, complementarity arises because if one person targets
another, the other has an incentive to reciprocate.

In the optimal assignment model, complementarities between search strate-
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gies are strong and lead to a multiplicity of equilibria;3 whereas complemen-
tarities are absent in random matching models. We show that an increase
in information costs makes the search strategies of market participants less
complementary and eliminates the multiplicity of equilibria.

As for efficiency, we show that both physical costs of sending an appli-
cation and information-processing costs imply a lower equilibrium number
of matches than is socially optimal. However, while physical costs can only
affect the quantity of matches, information-processing costs coupled with the
heterogeneity of market participants are essential for the inefficient quality
of matches that our model generates.

The intuition behind the inefficiency is as follows: When an agent de-
cides to process more information, she is choosing a more targeted strategy.
This increases the probability of ending up with a more promising match
and lowers the probability of being paired with a bad match. Because of the
complementarities in our model, high types are more likely to assign a greater
probability to other high types. Low types would then invest less time and ef-
fort processing information about this participant and target somebody else.
Market participants are unable to fully internalize this positive externality.
Agents on both sides of the market fail to appropriate all social benefits of
their actions, and, as a result, in equilibrium the quantity and the quality of
matches are both inefficiently low.

With endogenous information choice as the driving force of matching pat-
terns, our model is well suited to study a host of real-life matching markets
where people typically have limited time and cognitive ability to process
information. Roth and Sotomayor (1990) and Sönmez and Ünver (2010)
provide examples of such markets. Moreover, for many markets equilibrium
outcomes are neither pure random matching nor optimal assignment, as doc-
umented in the empirical literature.4 Our model can be a useful tool for
analyzing these markets.

From a theoretical standpoint, the paper contributes to the search and
matching literature by providing a framework that produces equilibrium out-
comes between random matching and directed search, as opposed to nesting
them. Examples of models that nest directed search and random matching
are Menzio (2007) and Lester (2011).

3Many models of directed search, e.g. Shimer (2005), introduce additional assumptions
in order to select one of those equilibria.

4An extensive, albeit necessarily non-exhaustive, list of examples from the empirical
literature is presented in Section 3.
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Finally, the paper contributes to the literature on directed search and
coordination frictions. The directed search paradigm generally predicts ef-
ficient static equilibrium outcomes.5 In contrast, our targeted search model
does not appear to possess a market mechanism that can implement the
constrained efficient allocation.

The paper proceeds as follows: Section 2 outlines the theoretical frame-
work. We first discuss a one-shot version of the two-sided search model and
then we move to a model of two-sided search with endogenous search in-
tensity. For each model we first find conditions under which there exists a
unique equilibrium, and then establish that equilibria in both models are so-
cially suboptimal. Section 3 discusses available extensions of the model and
its applicability to different markets. Section 4 provides a conclusion. Proofs
and extensions in the Appendix.

2 Theoretical Framework

We consider an environment where a number of heterogeneous participants
are searching for a match. We model the search process building on elements
of information theory and the rational inattention literature. We assume
that each agent can choose how much information to gather about potential
matches. Given that information processing is costly, agents optimally choose
a search strategy: a distribution of attention over all possible matches.6

When agents have infinite information processing capacity, i.e. costs of ac-
quiring information are zero, they can perfectly identify mutual best matches,
and the outcome of the model is that of the classical assignment model. In
this case, each agent focuses her attention on a single counter-party, and the
optimal strategy is infinitely precise. Likewise, when agents have no infor-
mation processing capacity, i.e. costs of acquiring information are infinite,
their attention is distributed uniformly over all possible matches, and the

5This paradigm was developed by Moen (1997) and has been extended in many di-
rections. Among others, Shi (2002) considers the case of heterogeneity, Shimer (2005)
accommodates for coordination failures, and Kircher (2009) incorporates simultaneous
search. In these models of directed search, the decentralized equilibrium is constrained
efficient. There are a few exceptions, such as Guerrieri (2008) and Anderson and Smith
(2010), that do generate inefficient outcomes in dynamic settings.

6Equivalently, we could describe agents as receiving costly signals about potential
matches and choosing not only the precision of these signals, but the whole probability
distribution.
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equilibrium outcome is random matching.
Our framework represents the middle ground connecting these two polar

cases. When information processing capacity is finite, i.e. we assume that
agents have finite costs of acquiring information, agents choose how to op-
timally distribute their attention. Our specification implies that it is costly
to divert attention both towards a particular agent as well as away from a
particular agent, which together form the notion of targeted search.

To gain intuition on how the information technology works, we start by
considering a case where both sides of the market search actively, each worker
can send one application and each firm can process one application. In
Section 2.2 we relax this assumption and allow workers and firms to send and
process multiple applications. In each case we show conditions for existence
and uniqueness of the equilibrium, characterize the equilibrium in closed
form, and check for efficiency of the equilibrium. We find that the equilibrium
is generally inefficient because two sides of the market cannot simultaneously
appropriate the whole surplus of the match.7

2.1 Two-sided one shot model

There are N workers indexed by x ∈ {1, ..., N}, who are actively applying to
firms, and M firms indexed by y ∈ {1, ...,M}, which are actively searching
for applicants. A match between worker x and firm y generates a surplus
f (x, y). If a firm and a worker match, the surplus is split between them
by ex-post unilateral bargaining and we normalize the outside option of the
worker and firm to zero. We denote the wage that the worker receives by
wx (y) and the profit that the firm gets by πy (x) . The surplus, wage and
profit generated by any potential (x, y) match are known ex-ante to worker
x and firm y.8

7In the appendix we analyze the case where participants on one side of the market
actively search, while participants on the other side are passively waiting. We show that
in that case a social planner can restore efficiency if she is willing to allocate the whole
surplus of each match to the party that actively searches.

8The meeting process can be thought of as having two stages. In the first stage, links
between workers and firms are formed. In the second stage they bargain over the surplus.
Furthermore, we are not placing any restrictions on the surplus function. One could think
of the special case where workers and firms are of high and low types, and the combinations
of types determine the surplus.
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Figure 1. Strategies of workers and firms

Each worker chooses an application strategy which we denote px (y). This
strategy is the probability that worker x applies to firm y, and it represents
the worker’s distribution of attention. Each worker rationally chooses his
strategy (i.e. the probability of sending an application to firm y) while fac-
ing a trade-off between a higher payoff and a higher cost of processing infor-
mation. Likewise we denote the strategy of the a firm qy (x). It represents
the probability of firm y considering an application of worker x, and it is
the firm’s distribution of attention. Similarly to workers, we assume that
firms can rationally choose these strategies given potential gains and costs of
search.

Figure 1 illustrates the strategies of firms and workers. Consider worker
x = 1. The solid arrows show how she assigns a probability of sending
an application to each firm y (p1 (y)). Similarly, dashed arrows show the
probability that firm y = 1 assigns to processing an application from each
worker x. As mentioned earlier, these probabilities constitute the distribution
of attention px (y) for workers and the distribution of attention qy (x) for
firms. Once these are selected, each worker and each firm will make one
draw from their respective distribution to determine which firm they will
send an application to in the case of the workers and which application to
look at in the case of the firms. A match is formed between worker x and
firm y if and only if: 1) according to the worker’s draw from px (y), worker x
applies to firm y; 2) according to the firm’s draw from qy (x), firm y accepts
applications from worker x; and 3) their payoffs are non-negative.
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Since negative payoffs lead to de facto zero payoffs due to absence of a
match, we can assume that all payoffs are non-negative:

f (x, y) ≥ 0, πy (x) ≥ 0, wx (y) ≥ 0.

The worker’s cost of searching is denoted by cx (κx). This cost is a function
of the amount of information processed by worker x measured in bits, κx.
Likewise, we denote a firm’s cost of searching by cy (κy), where the cost is a
function of the firm’s information capacity, denoted κy.

Since information is freely available but costly to process, both workers
and firms optimally choose how much effort they want to exercise in searching
for their counterparts. We can think about these optimal strategies as a way
of partitioning the set of potential matches into subsets and assigning to each
subset a probability that reflects the likelihood of choosing somebody within
that subset. Firms and workers simultaneously turn their attention to subsets
that, according to the information processed, have greater probabilities of
providing them with a better match. The choice of a subset is reflected in the
choice of a distribution px (y) for a worker and qy (x) for a firm. A random
draw from the optimal strategy px (y) determines the firm that worker x
sends the application to. Similarly, a random draw from qy (x) determines
the worker whose application firm y processes.

We denote mw (x, y) the equilibrium matching rate faced by worker x
when applying to firm y. It represents the worker’s perception of the prob-
ability that firm y is interested in worker x. Similarly, we denote mf (y, x)
the equilibrium matching rate faced by firm y when considering worker x.
As matching rates are equilibrium objects, they are assumed to be common
knowledge to participating parties, and equal to the distribution of attention
of the counter-party.

Each worker x chooses a strategy px (y) to maximize his expected net
income flow:

Yx =
M∑
y=1

wx (y)mw (x, y) px (y)− cx (κx)→ max
px(y)

.

The worker gets his expected wage from a match with firm y conditional
on matching with that firm. The probability of a match between worker x
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and firm y is the product of the probability that worker x sends an application
to firm y and the probability that firm y is interested in worker x.

The worker incurs a search cost, cx (κx), which depends on the amount
of information he processed, defined as follows:

κx =
M∑
y=1

px (y) log2

px (y)

1/M
, (1)

where the worker’s strategy must satisfy
M∑
y=1

px (y) = 1 and px (y) ≥ 0 for all

y.
Our definition of information, κx, represents the relative entropy between

a uniform prior {1/M} over firms and the posterior strategy, px (y). Shan-
non’s relative entropy can be interpreted as the reduction in the uncertainty
of finding a job that the worker can achieve by choosing his distribution of at-
tention. This definition is a special case of Shannon’s channel capacity where
information structure is the only choice variable.9 Thus, our assumption is a
special case of a uniformly accepted definition of information tailored to our
problem.

Similarly, firm y chooses her strategy qy (x) to maximize her expected
income flow:

Yy =
N∑
x=1

πy (x)mf (y, x) qy (x)− cy (κy)→ max
qy(x)

.

The firm profits from a match with worker x conditional on matching
with that worker and pays the cost of search. The search cost on the firm’s
side also depends on the amount of information processed:

κy =
N∑
x=1

qy (x) log2

qy (x)

1/N
, (2)

where the firm’s strategy must satisfy
N∑
x=1

qy (x) = 1 and qy (x) ≥ 0 for all x.

9See Thomas and Cover (1991), Chapter 2.
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Definition 1. A matching equilibrium is a set of strategies of workers,
{px (y)}Nx=1, and firms, {qy (x)}My=1, and matching rates {mw (x, y)}N,Mx,y=1 and

{mf (y, x)}N,Mx,y=1 such that:
1) strategies solve problems of the workers and the firms;
2) matching rates satisfy equilibrium conditions:

mf (y, x) = px (y) , mw (x, y) = qy (x) . (3)

Theorem 1. A matching equilibrium exists.

Proof. Note that if we substitute the matching rates (3) into the payoffs of
workers and firms we can express the model as a normal-form game. The
equilibrium of the matching model can be interpreted as a Nash equilibrium
of this game. The set of distributions mapping compact sets into compact
sets is a lattice under the natural ordering. Hence, all the results for lattices
described by Vives (1990) apply to it. Since cross-derivatives of objective
functions in our case are all non-negative, this game is super-modular. Hence
there exists a Nash equilibrium.

Theorem 2. The matching equilibrium is unique, if
a) cost functions are non-decreasing and convex;

b) ∂cx(κx)
∂κx

∣∣∣
p∗x(y)

> wx (y) p∗x (y);

c) ∂cy(κy)

∂κy

∣∣∣
q∗y(x)

> πy (x) q∗y (x).

Proof. The payoffs of all firms and workers are continuous in their strategies.
They are also concave in these strategies when cost functions are (weakly)
increasing and convex in information capacities. “Diagonal dominance” con-
ditions (b) and (c) guarantee that the Hessian of the game is negative def-
inite along the equilibrium path. Then, by the generalized Poincare-Hopf
index theorem of Simsek, Ozdaglar and Acemoglu (2007), the equilibrium is
unique.

Note that the assumptions we make to prove uniqueness are by no means
restrictive. The assumption that cost functions are non-decreasing and con-
vex is a natural one. The additional “diagonal dominance” conditions in our
case can be interpreted as implying that the marginal cost of information
processing should be sufficiently high for the equilibrium to be unique. If
these conditions don’t hold, then there can be multiple equilibria. This is a
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well-known outcome of the assignment model, which is a special case of our
model under zero marginal information costs.

The result of Theorem 2 is intuitive. There are two motives for worker
x to target firm y. The first motive is that firm y may pay a higher wage
compared with other firms. The second motive is that firm y may have a
greater probability to reciprocate. The payoff of the worker depends on the
product of the wage and the probability of reciprocation. While the wage
(profit) motive does not depend on equilibrium strategies, the reciprocation
motive does. When costs of information are very low, firms (and workers)
are able to place a high probability of contacting one counter-party and
exclude all others. As a result, when informaiton costs are extremely low,
the reciprocation motive dominates. It does not matter what wage worker x
will get from a match with firm y if the firm chooses not to consider worker
x. When the reciprocation motive dominates, multiplicity of equilibria is a
natural outcome. In the extreme, any pairing of agents is an equilibrium
since nobody has an incentive to deviate from any mutual reciprocation.

As information costs increase, distributions of attention become less pre-
cise as it is increasingly costly to target a particular counter-party. That
is, information processing constraints dampen the reciprocation motive and
the wage motive starts playing a bigger role. At some threshold level of in-
formation costs each agent will be exactly indifferent between following the
reciprocation motive and seeking a better match. This level of costs is pre-
cisely characterized by the “diagonal dominance” conditions of Theorem 2.
They require the reciprocation motive, characterized by the off-diagonal ele-
ment of the Hessian of the game, to be lower than the wage (profit) motive,
captured by the diagonal element. Above the threshold the unique equilib-
rium has the property that each agent places a greater probability on the
counter-party that promises a higher payoff, i.e. the wage (profit) motive
dominates.

When cost functions are non-decreasing and convex, it is easy to verify
that first-order conditions are necessary and sufficient conditions for equilib-
rium. Rearranging the first order conditions for the worker and the firm, we
obtain:

p∗x (y) = exp

wx (y) q∗y (x)

1
ln 2

∂cx(κx)
∂κx

∣∣∣
p∗x

 /

M∑
y′=1

exp

wx (y′) q∗y′ (x)

1
ln 2

∂cx(κx)
∂κx

∣∣∣
p∗x

 ,
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q∗y (x) = exp

 πy (x) p∗x (y)

1
ln 2

∂cy(κy)

∂κy

∣∣∣
q∗y

 /

N∑
x′=1

exp

πy (x′) p∗x′ (y)

1
ln 2

∂cy(κy)

∂κy

∣∣∣
q∗y

 . (4)

These necessary and sufficient conditions for equilibrium cast the optimal
strategy of worker x and firm y in the form of a best response to optimal
strategies of firms and workers respectively.

Equilibrium conditions (4) have an intuitive interpretation. They pre-
dict that the higher the worker’s private gain from matching with a firm,
the greater the probability of applying to that firm. Similarly, the greater
the probability that a firm considers a particular worker, the greater the
probability that that worker applies to the firm. Overall, workers target
better firms, i.e. firms that promise higher expected private gains, by plac-
ing greater probabilities on those firms. Firms are naturally sorted in each
worker’s strategy by the probability of applying to each firm. The strategies
of firms have the same properties due to the symmetry of the problem.

In equilibrium, a firm’s strategy is a best response to the strategies of
workers, and a worker’s strategy is a best response to the strategies of firms.
Theorem 2 predicts that an increase in information costs reduces the com-
plementarities between search strategies of workers and firms. Once costs of
information are sufficiently high, the intersection of best responses leads to
a unique equilibrium. Note that, by the nature of the index theorem used in
the proof of uniquness, it is enough to check diagonal dominance conditions
locally in the neighborhood of the equilibrium. There is no requirement for
them to hold globally. This suggests a simple way of finding equilibria of our
model in most interesting cases. We first need to find one solution to the
first-order conditions (4) and then check that diagonal dominance conditions
are satisfied.

Now, consider the properties of equilibria for two limiting cases. First,
as the marginal costs of processing information go to zero, application and
consideration strategies become more and more precise. In the limit, in
every equilibrium each worker places a unit probability on a particular firm,
and that firm responds with a unit probability of considering that worker.
Each equilibrium of this kind implements a stable matching of the classical
assignment problem.

Second, consider the opposite case when marginal costs go to infinity. In
this case, optimal strategies of firms and workers approach a uniform distri-
bution. This unique equilibrium implements the standard uniform random
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matching assumption extensively used in the literature. Thus, the assign-
ment model and the random matching model are special cases of our model,
when costs of information are either very low or very high.

Efficiency In order to evaluate the efficiency of the equilibrium we compare
the solution of the decentralized problem to a social planner’s solution. We
assume that the social planner maximizes the total surplus of the economy,
which is a utilitarian welfare function. In order to achieve a social optimum,
the planner can choose the strategies of workers and firms. If no costs of
processing information were present, the planner would always choose to
match each worker with the job that produces the highest surplus. The
socially optimal strategies of workers would be infinitely precise.

To study the constrained efficient allocation we impose upon the social
planner the same information processing constraints that we place on workers
and firms. Thus, the social planner maximizes the following welfare function:

W =
N∑
x=1

M∑
y=1

f (x, y) px (y) qy (x)−
N∑
x=1

cx (κx)−
M∑
y=1

cy (κy)

subject to information constraints (1-2) and to the constraints that px (y)
and qy (x) are well-defined probability distributions.

Under the assumption of increasing convex cost functions, the social
welfare function is concave in the strategies of workers and firms. Hence,
first-order conditions are necessary and sufficient conditions for a maximum.
Rearranging and substituting out Lagrange multipliers, we arrive at the fol-
lowing characterization of the social planner’s allocation:

pox (y) = exp

f (x, y) qoy (x)

1
ln 2

∂cx(κx)
∂κx

∣∣∣
pox

 /
M∑
y′=1

exp

f (x, y′) qoy′ (x)

1
ln 2

∂cx(κx)
∂κx

∣∣∣
pox

 ,

qoy (x) = exp

f (x, y) pox (y)

1
ln 2

∂cy(κy)

∂κy

∣∣∣
qoy

 /

N∑
x′=1

exp

f (x′, y) pox′ (y)

1
ln 2

∂cy(κy)

∂κy

∣∣∣
qoy

 . (5)

The structure of the social planner’s solution is very similar to the struc-
ture of the decentralized equilibrium given by (4). From the workers’ per-
spective, the only difference between the two strategies is that the probability
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of applying to a firm depends on the social gain from a match rather than on
her private gain. Notice that the same difference holds from the perspective
of the firm. Thus, it is socially optimal for both firms and workers to consider
the total surplus, while in the decentralized equilibrium they only consider
their private gains.

This result is reminiscent of goods with positive externalities where the
producer undersupplies the good if she is not fully compensated by the
marginal social benefits that an additional unit of the good would provide to
society. As we shall see in greater detail in the following subsections, in our
model, additional search effort exerted by an individual worker or firm has a
positive externality on the whole matching market.

For instance, when a worker chooses to increase her search effort, she
can better identify her preferable matches. As a consequence, the firms
she targets will benefit (through an increase in the personal matching rate),
and the firms that she does not target, will also be better off as her more
targeted strategy will help them exclude her from their search (through a
decrease in the personal matching rate). Nevertheless, in this environment
the worker can not appropriate all the social benefits (the surplus of a match)
she provides to society when increasing her search effort. The worker only
gets her bargained share of the surplus. The same statement is true for the
firms. This failure of the market to fully compensate both firms and workers
with their social marginal products leads to under-supply of search effort by
both sides in the decentralized equilibrium.

Because the social gain is always the sum of private gains, there is no
feasible way of splitting the surplus such that it implements the social op-
timum. When information costs are finite and positive, a socially optimal
equilibrium has to satisfy the following conditions simultaneously:

πy (x) = f (x, y) , wx (y) = f (x, y) .

In the presence of heterogeneity, these optimality conditions can only hold
in equilibrium if the surplus is zero, as private gains have to add up to the
total surplus, πy (x) + wx (y) = f (x, y). Therefore, we have just proven the
following theorem:

Theorem 3. The matching equilibrium is socially inefficient for any split of
the surplus if all of the following hold:

1) cost functions are increasing and convex;
2) f (x, y) > 0 for some (x, y);
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3) f (x, y) 6= f (x, y′) for some x, y and y′;
4) f (x, y) 6= f (x′, y) for some y, x and x′;

5) 0 < ∂cx(κx)
∂κx

∣∣∣
p∗x

<∞;

6) 0 < ∂cy(κy)

∂κy

∣∣∣
q∗y

<∞.

Proof. See Appendix A.

The first two conditions are self-explanatory; the case when all potential
matches yield zero surplus is a trivial case of no gains from matching. Con-
ditions 5 and 6 state that marginal costs of information have to be finite and
positive in the neighborhood of the equilibrium. When costs of information
are zero, the best equilibrium of the assignment model is socially optimal.
When costs of information are very high, the random matching outcome is
the best possible outcome. For all intermediate values of costs the decentral-
ized equilibrium is socially inefficient.

Conditions 3 and 4 together require heterogeneity to be two-sided. If
heterogeneity is one-sided, i.e. condition 3 or condition 4 is violated, then
the allocation of attention towards the homogeneous side of the market will be
uniform. In this case, search becomes one-sided and equilibrium allocations
are efficient contingent on one side having all the bargaining power.

One notable property of the equilibrium is that, by considering only frac-
tions of the total surplus in choosing their strategies, workers and firms place
lower probabilities on applying to their best matches. This implies that in
equilibrium, attention of workers and firms is more dispersed and the number
of matches is lower than is socially optimal.

Another way of thinking about the inefficient quantity of matches is to
consider the reduction in strategic complementarities. To illustrate these
complementarities consider the case of a firm that chooses its strategy un-
der the assumption that all workers implement socially optimal application
strategies. Because the firm only considers its private gains from matching
with a worker, the firm’s optimal response would be to pay less attention
to (target less accurately) the best workers than it is socially optimal. In
a second step, taking as given these strategies of firms, workers will be dis-
incentivized not only by the fact that they consider fractions of the total
gains from a match, but also by the fact that firms pay less attention to
them than it is socially optimal. These complementary dis-incentives will
lower the probabilities of workers applying to their best match. Iterating in
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this way on strategies of workers and firms, at each step we get a reduction
in the probability of applying to the best matches. As a result, agents will
target their more promising matches instead of the best possible matches.

The multiplied effects of considering only private gains by workers and
firms reinforce each other through strategic best responses of workers to firms
and firms to workers. Thus, we have uncovered a major source of inefficiency
in the matching process. Information processing constraints weaken strategic
complementarities between strategies of workers and firms. By the same
token they reduce synergies from cooperation and lead to an under-supply
of search effort. As a consequence, firms and workers fail to fully internalize
the gains from coordination.

The inefficiency that arises in the two-sided model can in principle be
corrected by a central planner. This can be done by promising both workers
and firms that they will get the whole surplus of each match and then col-
lecting lump-sum taxes from both sides of the market to cover the costs of
the program. Nevertheless, in order to do so, the planner himself would need
to acquire extensive knowledge about the distribution of the surplus, which
is costly. We leave this direction of research for future work.

2.2 Two-sided model with endogenous search intensity

In this subsection, we consider an extension of our two-sided search model
where firms and workers can simultaneously choose their distribution of at-
tention and search intensity. Through this extension we want to characterize
the role that information processing constraints play in determining the ef-
ficiency of the quantity and the quality of matches. As we shall see, while
a model where search is costly generates an inefficiency in the quantity of
matches irrespective of the source of search costs, a model with information-
processing constraints can rationalize the inefficiency in both quality and
quantity.

By optimally choosing a search intensity, workers decide how many appli-
cations to submit per unit of time, and firms choose how many applications
to process per unit of time. Here, we consider a period of time comparable
in length to the time period allotted for the decision of whether to accept
or reject an offer of employment. We choose a sufficiently short period of
time such that firms’ and workers’ choices of search intensity capture their
decisions concerning the frequency of sending an application in the case of
workers, and of processing an application in the case of firms. This assump-
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tion helps us abstract from issues of multilateral bargaining10 by making it
highly unlikely for a firm to receive more than one application in a period of
time.

To account for the endogenous choice of search intensity by workers, we
extend the strategy of each worker px (y) to allow for the additional event of
not sending an application. We denote the extended strategy of a worker of
type x by p̂x (y) on y = {0, 1, ...,M}, where y = {1, ...,M} denotes events in
which the worker sends an application to a firm of type y and y = 0 denotes
the event in which the worker does not send an application. As before, the
elements of the strategy must be non-negative and sum up to one. Each
element of the strategy p̂x (y) with a positive index denotes the probability
of worker x sending an application to firm y. The complementary probability

p̂x (0) = 1 −
M∑
y=1

p̂x (y) is the probability that the worker does not send an

application. We denote the partial sum
M∑
y=1

p̂x (y) = αx and refer to it as the

search intensity since it refers to the probability of sending an application.
Thus, search intensity αx is a deterministic function of the strategy p̂x (y).
We denote the normalized probability distribution px (y) = p̂x (y) /αx.

As in the previous subsection, worker x chooses his strategy p̂x (y) to
maximize his expected income flow:

Yx =
M∑
y=1

wx (y)mw (x, y) p̂x (y)− cx (αx, κx)→ max
p̂x(y)

.

Now, we assume that the cost of search cx (αx, κx) has two components:

cx (αx, κx) = αx
χx

φx + 1
(αx)

φx + αxθxκx, (6)

10In a recent paper Gautier and Holzner (2013) study ex-post wage competition on
a network where firms and workers form multiple links in the first stage and negotiate
wages subject to coordination frictions in the second stage. They show that conditional
on a network, a simple ex-post wage mechanism can implement the efficient matching
pattern. Our paper describes a specific network formation game that uses but does not
place any restrictions on the outcome of ex-post negotiations. Thus, our main results
should naturally extend to a framework where ex-post multilateral bargaining is efficient,
as described by Gautier and Holzner (2013).
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where χx, φx, θx are non-negative parameters. The first component of (6)
represents the physical cost of sending an application as it is an increasing
function of search intensity, αx. We assume that increasing the frequency of
sending applications implies a weak increase in the physical cost per applica-
tion. The second component of (6) is the linear cost of processing κx bits of
information conditional on choosing to send an application, αx. The amount
of information, κx, is defined as follows:

κx =
M∑
y=1

px (y) log2

px (y)

1/M
. (7)

As before, our definition of information, κx, represents the relative entropy
between a uniform prior {1/M} over all firms and the posterior normalized
distribution of attention, px (y).

Similarly to the worker, firm y chooses her strategy q̂y (x) = γyqy (x),
where γy is the firm’s search intensity, to maximize her expected income
flow:

Yy =
N∑
x=1

πy (x)mf (y, x) q̂y (x)− cy (γy, κy)→ max
q̂y(x)

.

Like the worker, the firm’s cost includes a physical cost of considering
applications and an information cost:

cy (γy, κy) = γy
χy

φy + 1
(γy)

φy + γyθyκy (8)

where χy, φy, θy are non-negative parameters. The amount of information,
κy, processed by firm y is defined as follows:

κy =
N∑
x=1

qy (x) log2

qy (x)

1/M
. (9)

Definition 2. A matching equilibrium is a set of strategies of workers,
{p̂x (y)}Nx=1, and firms, {q̂y (x)}My=1, and matching rates {mw (x, y)}N,Mx,y=1 and

{mf (y, x)}N,Mx,y=1 such that:
1) strategies solve problems of the workers and the firms;
2) matching rates satisfy equilibrium conditions:

mf (y, x) = p̂x (y) , mw (x, y) = q̂y (x) . (10)
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Theorem 4. A matching equilibrium exists.

Proof. Note that if we substitute the matching rates (10) into the payoffs of
workers and firms we can express the model as a normal-form game. The
equilibrium of the matching model can be interpreted as a Nash equilibrium
of this game. The set of distributions mapping compact sets into compact
sets is a lattice under the natural ordering. Hence, all the results for lattices
described by Vives (1990) apply to it. Since cross-derivatives of objective
functions in our case are all non-negative, this game is super-modular.

∂2Yx (p̂x, q̂y)

∂p̂x∂q̂y
= wx (y) ≥ 0

∂2Yy (q̂y, p̂x)

∂q̂y∂p̂x
= πy (x) ≥ 0

Hence there exists a Nash equilibrium.

When cost functions are non-decreasing and convex, it is easy to verify
that first-order conditions are necessary and sufficient conditions for equilib-
rium. Rearranging the first order conditions for the worker and the firm, we
obtain:

p∗x (y) = exp

(
wx (y) q∗y (x) γ∗y

θx/ ln 2

)
/
M∑
y′=1

exp

(
wx (y′) q∗y′ (x) γ∗y′

θx/ ln 2

)
,

(α∗x)
φx =

θx/ ln 2

χx
ln

(
M∑
y=1

exp

(
wx (y) q∗y (x) γ∗y

θx/ ln 2

)
/M

)
,

q∗y (x) = exp

(
πy (x) p∗x (y)α∗x

θy/ ln 2

)
/

N∑
x′=1

exp

(
πy (x′) p∗x′ (y)α∗x′

θy/ ln 2

)
,

(
γ∗y
)φy

=
θy/ ln 2

χy
ln

(
N∑
x=1

exp

(
πy (x) p∗x (y)α∗x

θy/ ln 2

)
/N

)
. (11)

These sufficient conditions for equilibrium cast the optimal strategy of
worker x and firm y in the form of a best response to optimal strategies of
firms and workers respectively.

Theorem 5. The matching equilibrium is unique, if
a) costs parameters θx, θy, χx, χy are non-negative, costs of applications

are convex: φx ≥ 0, φy ≥ 0.
b) ”Diagonal dominance” conditions are satisfied along the equilibrium

path:
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∣∣∣∣∂2Yx (p̂x, q̂y)

∂p̂x∂p̂x

∣∣∣∣
p̂∗x,q̂

∗
y

>

∣∣∣∣∂2Yx (p̂x, q̂y)

∂p̂x∂q̂y

∣∣∣∣
p̂∗x,q̂

∗
y∣∣∣∣∂2Yy (q̂y, p̂x)

∂q̂y∂q̂y

∣∣∣∣
p̂∗x,q̂

∗
y

>

∣∣∣∣∂2Yy (q̂y, p̂x)

∂q̂y∂p̂x

∣∣∣∣
p̂∗x,q̂

∗
y

Proof. The payoffs of all firms and workers are continuous in their strategies.
They are also concave in these strategies when cost functions are (weakly)
increasing and convex in information capacities. ”Diagonal dominance” con-
ditions guarantee that the Hessian of the game is negative definite along the
equilibrium path. Then, by the generalized Poincare-Hopf index theorem of
Simsek, Ozdaglar and Acemoglu (2007), the equilibrium is unique.

As before, the assumptions we make to prove uniqueness are not restric-
tive. The assumption that cost functions are non-decreasing and convex is
a natural one. Diagonal dominance conditions require costs of search to be
high enough for equilibrium to be unique. More specifically, the diagonal
dominance conditions can be rewritten as follows:

θx
ln 2

α∗x
p∗x (y)

(1− p∗x (y)) + χxφx (α∗x)
φx−1 > wx (y) ,

θy
ln 2

γ∗y
q∗y (x)

(
1− q∗y (x)

)
+ χyφy

(
γ∗y
)φy−1

> πy (x) .

In the general case, high information costs, or high physical costs, or
a combinaiton of the two guarantees uniqueness of equilibrium. If these
conditions are violated, then there can be multiple equilibria. As in Section
2.1, by the nature of the index theorem used in the proof, it is enough
to check diagonal dominance conditions locally in the neighborhood of the
equilibrium. Hence, to find the equilibrium of the model we need to solve the
first-order conditions (11) and then check that diagonal dominance conditions
are satisfied for this solution.

Like in the one-shot model, equilibrium conditions (11) have an intu-
itive interpretation. They predict that the higher the worker’s private gain
from matching with a firm, the greater the probability of applying to that
firm. Similarly, the greater the probability that a firm considers a particu-
lar worker, the greater the probability that that worker applies to the firm.
As workers target better firms, firms are naturally sorted in each worker’s
strategy by the probability of applying to each firm.
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Efficiency In order to evaluate the efficiency of the equilibrium we com-
pare the solution of the decentralized problem to a social planner’s solution.
In order to achieve a social optimum, the planner can choose strategies of
workers and firms. We assume that the social planner maximizes the total
surplus of the economy. The social planner takes into account the costs of
search borne by workers and firms. Thus, the social planner maximizes the
following welfare function:

W =
N∑
x=1

M∑
y=1

f (x, y) p̂x (y) q̂y (x)−
N∑
x=1

cx (αx, κx)−
M∑
y=1

cy (γy, κy) ,

subject to cost functions (6,8).
Under the assumption of increasing convex cost functions, the social wel-

fare function is concave in the strategies of workers and firms. Hence, first-
order conditions are necessary and sufficient conditions for a maximum. Re-
arranging, we arrive at the following characterization of the social planner’s
allocation:

pox (y) = exp

(
f (x, y) qoy (x) γoy

θx/ ln 2

)
/
M∑
y′=1

exp

(
f (x, y′) qoy′ (x) γoy′

θx/ ln 2

)
,

(αox)
φx =

θx/ ln 2

χx
ln

(
M∑
y=1

exp

(
f (x, y) qoy (x) γoy

θx/ ln 2

)
/M

)
,

qoy (x) = exp

(
f (x, y) pox (y)αox

θy/ ln 2

)
/

N∑
x′=1

exp

(
f (x′, y) pox′ (y)αox′

θy/ ln 2

)
,

(
γoy
)φy

=
θy/ ln 2

χy
ln

(
N∑
x=1

exp

(
f (x, y) pox (y)αox

θy/ ln 2

)
/N

)
. (12)

Like in the one-shot model, the structure of the social planner’s solution
is very similar to the structure of the decentralized equilibrium given by (11).
From the workers’ perspective, the only difference between the two strategies
is that the probability of applying to a firm depends on the social gain from
a match rather than on her private gain. The same difference holds from
the perspective of the firm. Thus, it is socially optimal for both firms and
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workers to consider the total surplus, while in the decentralized equilibrium
they only consider their private gains.

The positive externality now works along both the intensive and extensive
margins of search. When a worker chooses to target more accurately a type
of firm that is a better match for him, this benefits the firms he targets but
does not affect anybody else. A more targeted strategy requires both more
information to be processed and more applications to be filled out. Thus, a
more targeted strategy implies an increase in both physical and information
costs. But the matching market does not compensate the worker with all
the social benefits she provides to society by increasing her search effort.
The matching market compensates the worker with only a fraction of those
benefits (the bargained share of the surplus). This failure of the market to
fully compensate the worker with his social marginal product leads to under-
supply of search effort both along the intensive and the extensive margins.

Our main qualitative result can be stated as follows. When search is
two-sided, and search is costly, in a decentralized equilibrium, both sides of
the market supply an insufficient amount of search effort compared with the
social optimum. As we illustrate with our numerical example, this applies to
both margins of search.

2.3 Quantity, quality and efficiency of matches

In the one-shot model of Section 2.1, the cost function of the agents depends
only on the costs of processing information. When we introduce search in-
tensity in Section 2.2, the cost function has two components; the physical
cost of sending an application and the cost of processing information to de-
cide where to send it. In this Section, we illustrate the differential effect of
these two types of costs on the quantity and quality of matches. First, we
demonstrate that a model with physical costs of sending an application also
generates an inefficient equilibrium, but it only generates an inefficiency in
the quantity of matches and not in their quality. Second, we illustrate what
happens when there are only information costs.

Consider the case where only physical costs are present, but there are no
information costs (θ → 0). In this case, nothing restricts the agents from
identifying their best matches but they choose not to contact them frequently
enough, as a result of physical costs. This leads to a suboptimal equilibrium
matching rate. Thus, physical costs of search imply an inefficiently low quan-
tity of matches without a loss in their quality.
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To see this more clearly, we consider the model presented in Section 2.2,
and constrain the number of participants to a single worker and a single firm.
In this case the problem of the worker and the firm are the following:

wγα− χw
φw + 1

αφw+1 → max
α
,

παγ − χf
φf + 1

γφf+1 → max
γ

.

These problems illustrate the positive externality that agents have on
each other when choosing their search intensities. If a firm were to increase
γ, it would directly increase the expected income of the worker. In turn,
if the worker were to increase α, it would benefit the firm. The first-order
conditions of the worker and the firm, by equalizing the marginal private
gains and losses from an additional unit of search intensity, lead to a unique
solution:

α∗ =

(
π

χf

(
w

χw

)φf) 1
φwφf−1

,

γ∗ =

((
π

χf

)φw w

χw

) 1
φwφf−1

.

In contrast, the planner’s problem takes into account the overall welfare
by maximizing:

fαγ − χw
φw + 1

αφw+1 − χf
φf + 1

γφf+1 → max
α,γ

,

and implies the following optimal levels of search effort:

αo =

(
f

χf

(
f

χw

)φf) 1
φwφf−1

,

γo =

((
f

χf

)φw f

χw

) 1
φwφf−1

.

The planner’s problem equalizes the marginal costs of search with the
marginal social gains, which include both the private gains and the external
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effects of agents’ actions. The consequence of this is a higher level of search
intensity for both workes and firms, and a higher aggregate matching rate.
More precisely, since the social gain, f , is always greater than private gains,
w and π, when cost functions are sufficiently convex, φw > 1, φf > 1, the
number of matches in equilibrium, α∗γ∗, is suboptimal, i.e. lower than αoγo.
As we just saw from the problem of the worker and the firm, the inefficiency
comes from the fact that an increase in α benefits the firm, and an increase in
γ benefits the worker. However, the firm does not internalize the externality
that it generates on the worker’s welfare and vice versa. As a result, both
the worker and the firm supply an inefficiently low amount of search effort,
but once the match is formed its quality is unaffected.

To illustrate this more generally, and to compare with the model presented
in Section 2.1 (where only information processing is costly), we next assume
that there are two types of workers and two types of firms; one worker and
one firm of each type. For illustrative purposes, we envision that skill sets
of workers and firms are complementary, such that type 1 worker better fits
type 1 firm and type 2 worker better fits type 2 firm. This is captured by
the following surplus matrix:

f =

[
1 0.1

0.1 1

]
We assume that if a worker and a firm meet, they split the surplus in

equal proportions. We use the first-order conditions of the model to compute
the decentralized equilibria and social optimum for different values of the
information cost parameter, θ, and for different values of the convexity of
the cost function, φ. We assume that both physical and information costs
are identical across workers and firms. Note that when condition (b) of
Theorem 5 is violated, the decentralized model displays multiple equilibria.
However, in this simple numerical example we can bound the equilibria by
computing the best and worst outcomes.

For each case, we compute the welfare function, W , defined earlier, the
expected number of matches, EM , the average match quality, Q, the average
information capacity, Eκ, and the average search intensity, Eα (note that
firms and workers are symmetric), defined as follows:

EM =
N∑
x=1

M∑
y=1

p̂x (y) q̂y (x) ,
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Q =
N∑
x=1

M∑
y=1

f (x, y) p̂x (y) q̂y (x)

/
N∑
x=1

M∑
y=1

p̂x (y) q̂y (x) ,

Eκ =

(
N∑
x=1

κx +
M∑
y=1

κy

)/
(N +M) .

Eα =

(
N∑
x=1

αx +
M∑
y=1

γy

)/
(N +M) .

Figures 2 and 3 show the results for the competitive equilibrium (CE)
and the social optimum (PO) for the case where there are only physical costs
of sending an application (Figure 2) and for the case where there are only
information processing costs (Figure 3).

Figure 2 illustrates the case where there are only physical costs of send-
ing an application (θ → 0). In this case, the best competitive equilibrium
matches type 1 worker with type 1 firm, and type 2 worker with type 2 firm.
The choice of search intensity by each worker and each firm imposes a pos-
itive externality on their best matches. This leads to an inefficient choice
of contact rates by both firms and workers. However, only the quantity of
matches is affected, as only best matches are contacted in equilibrium.

Figure 3 shows that the complementarity between search strategies of
workers and firms leads to multiple competitive equilibria when the costs of
processing information are low enough so as to violate the diagonal dom-
inance condition. Below the threshold of θ = 0.14, the worst equilibrium
matches type 1 worker with type 2 firm, while the best equilibrium matches
type 1 worker with type 1 firm. All equilibria except the best one vanish
above the cost threshold. Figure 3 also shows that an increase in informa-
tion costs leads to a decline in both quantity and quality of matches in all
equilibria and in the socially optimal allocation. The positive externalities
imposed by search strategies of workers and firms play a key role in the
constrained inefficiency of equilibria and in the decline of the matching rate.
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Figure 2. Two-sided Model with Information Costs Absent, (θ → 0)
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Figure 3. Two-sided Model with Maximum Intensity, (φ→∞)
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3 Extensions and applications

In this section we start by describing possible extensions of the model. Then
we discuss how different markets can be modeled using the different versions
of our framework. We point out the relationship between different properties
of markets and the corresponding choice of model.

3.1 Extensions

The model presented in Section 2 is revealing but parsimonious. In the Ap-
pendix we extend our model to a continuous-time framework with a contin-
uum of workers and firms, multiple applications and a more realistic meeting
protocol. The general model allows market participants to choose how many
counter-parties to contact and accounts for the possibility of repeated interac-
tions. The meeting protocol modulates congestion and can lead to constant
returns to scale. We show the assumptions that are necessary to derive a
constant-returns-to-scale matching function and to solve the model in close
form. All the qualitative results from Section 2 carry through to this richer
environment. We show that under similar conditions the equilibrium of the
general model is unique and conjecture that it is generally inefficient.

In addition, we consider a one-sided search model, where one side actively
searches, and the other idly awaits to be contacted. In the one-sided model,
the number of matches is unaffected by changes in costs of information,
because each worker sends a single application which is accepted with a
constant probability. For all values of information costs, the competitive
equilibrium is unique, but constrained inefficient. Because workers get only
a fraction of the surplus, they put a socially suboptimal amount of effort into
search. As a consequence, they do not target their best matches well enough.

Although this does not lead to a reduction in the number of matches, av-
erage match quality suffers. As processing information becomes more costly,
the quality of matches falls, which leads to a decline in welfare. The ineffi-
ciency in the model can be solved if the actively searching side of the market
appropriates the whole surplus of the match.

3.2 Applications

Modeling search frictions with information-processing constraints might be
a useful representation of many types of markets where the equilibrium out-
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come is neither random matching nor mutual best matches as predicted by
the classical assignment model. We can categorize these markets according
to the interaction of six main factors.

The first factor is the number of participants on each side of the market.
The larger the number of participants is the higher is the effective cost of
information. An asymmetry in the number of participants will determine if
search is one-sided or two-sided. For instance, if the number of participants
on one side of the market is restricted to one or two, then the cost of search
for the other side is relatively low, and search is one-sided. One example of
a one-sided search effort is grocery shopping, while search in the commercial
loans market is an example of two-sided search.

The second factor is the degree of heterogeneity among participants. If
participants on one side of the market are equally valuable to participants on
the other side, then all matches are equally beneficial. In this case, only the
homogeneous side of the market will actively search. However, if agents on
both sides of the market are heterogeneous, search is two-sided. An example
of a homogeneous good leading to one-sided search is the consumer electricity
market.

The third factor is whether both demand per buyer and supply per seller
are limited. If a product can be produced by the same supplier in unrestricted
quantities, then it can satisfy any demand and has no incentive to actively
search for customers. In this case, search is one-sided. Credit cards are
an example of unlimited supply, while the marriage market has symmetric
limitations. Restaurants can accommodate a finite number of eaters which
places them in the middle of the spectrum.

The fourth factor that affects search is the period of time for which a
potential match remains beneficial, i.e. the durability of the surplus. Dura-
bility effectively lowers the costs of information processing by making search
less urgent. The housing rental market is an example of durable surplus.
The typical search period is long enough to find out all the possible options.
While the market for human organs is a case where a delay makes a match
obsolete.11

The fifth factor is the structure of information flow. Our model applies to
markets where information flow is unrestricted on either side of the market.
The only restriction posed is on the capacity of participants to process infor-
mation about the other side. This assumption is compatible with markets

11See Roth, Sönmez and Ünver(2007) for the case of kidney exchange.
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where participants on one side of the market endogenously choose to pro-
cess more information than on the other. For instance, a student applying
for public school in the U.S. may choose to process more information about
under-chosen schools in his district than his peers to increase the odds of be-
ing selected.12 This endogenously chosen information advantage agrees with
the set-up of our model.

In contrast, our assumption of unrestricted information flow makes our
model not directly applicable to markets where asymmetric information arises
from ex-ante restrictions on information flow on either side of the market. For
instance, markets for used goods and mortgage loans13 are better captured
by models of private information. However, our model can be nested into
models of search with asymmetric information.14

The sixth factor is the degree of centralization in the market. By central-
ization we mean a situation when an organization or a platform facilitates
search by structuring the information flow and setting the rules for inter-
action. Our model describes markets where the degree of centralization is
fairly low. This structure encompasses a number of markets ranging from
labor markets to education and health care.15 In contrast, our model does
not directly apply to markets where the degree of centralization is fairly high
as in the case of football bowls, college admissions, market for physicians,
and two-sided platform markets.16 Specifically, in two-sided market mod-
els the platform acts both as a coordination device and as a mechanism of
surplus transfers. Our model can be used to study the optimal degree of
centralization and the social efficiency of pricing schemes in these markets.
We leave the study of the optimal design of centralization in two-sided search
environments for future research.

12See Schneider, Teske and Marschall (2000).
13Used goods markets are described in, e.g. Lewis (2011), while mortgage loans are

documented in Woodward and Hall (2010).
14Such as the work of Guerrieri, Shimer and Wright (2010) and Guerrieri and Shimer

(2012).
15For instance, the efficiency of the labor market for new economists is discussed in

Coles, Cawley, Levine, Niederle, Roth, Siegfried (2010). For the case of the education
market see, e.g., Ballou (2010). A study of the medicare advantage program is conducted
by Brown, Duggan, Kuziemko and Woolston (2011).

16See Frechette, Roth and Ünver(2010) for the case of football bowls. College admis-
sions are studied by Roth and Sotomayor (1989), the market for physicians by, e.g., Roth
and Peranson (1999). Two-sided and multi-sided market models have been developed by
Rochet and Tirole (2003) and Weyl (2010).
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While most of the matching markets we mention above would not be
well described by either random matching or classical assignment, they rest
comfortably within the predictions of our model of targeted search.

4 Conclusion

We presented a matching model where participants have finite information-
processing capacity. We established that such a model delivers an equilibrium
that resides in between the outcomes of random matching models and optimal
assignment models. Furthermore, if we assume information-processing costs
to be high (infinite in the limit) the outcome of our model is observationally
equivalent to that of a random matching model; whereas if information-
processing costs are zero, our model reproduces the outcome of the optimal
assignment model.

We showed that our model with information-processing constraints can
produce a unique equilibrium. The uniqueness result comes from the fact that
information-processing constraints weaken the complementarities in search
strategies of participants on both sides of the market. By contrast, strong
complementarities in search strategies usually generate multiplicity in di-
rected search models.

Finally, we show that in our model the equilibrium quantity and quality
of matches is generally inefficient. The inefficiency result comes from the
interplay of information-processing constraints and two-sided heterogeneity.
By contrast, as long as the Hosios condition holds, the random matching
equilibrium is unique and efficient while in an optimal assignment model ef-
ficiency is achieved by refinement. Our model of targeted search fills the
middle ground between these two cases, generating a unique inefficient equi-
librium, that can potentially explain the quantity and quality of matches
observed in different markets.
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[37] Sönmez, T. and M. U. Ünver, (2010). ”Matching, Allocation, and
Exchange of Discrete Resources,” in J. Benhabib, A. Bisin, and M. Jack-
son (eds.), Handbook of Social Economics, Elsevier.

[38] Stevens, M. (2007). ”New Microfoundations for the Aggregate Match-
ing Function.” International Economic Review, 48(3), pp. 847-868.

[39] Thomas, C. and J. Cover, (1991). ”Elements of Information The-
ory”. John Wiley & Sons, Inc.

[40] Vives, X. (1990). ”Nash Equilibrium with Strategic Complementari-
ties.” Journal of Mathematical Economics, 19, pp. 305-321.

[41] Weyl E. G. (2010). ”A Price Theory of Multi-Sided Platforms.” Amer-
ican Economic Review, 100(4), pp. 1642-1672.

[42] Woodward, S. and R.E. Hall (2012). ”Diagnosing Consumer Con-
fusion and Sub-Optimal Shopping Effort: Theory and Mortgage-Market
Evidence.” American Economic Review, 102(7), pp. 3249-3276.

34



NOT FOR PUBLICATION

Appendix A: Proof of Theorem 3

The proof proceeds in 3 steps.
Step 1. Under the assumption of increasing convex cost functions, both

individual payoff functions and the social welfare function are concave in the
strategies of workers and firms. Hence, first-order conditions are necessary
and sufficient conditions for a maximum.

Step 2. We denote by CEFOC the first-order conditions of the decen-
tralized equilibrium and by POFOC the first-order conditions of the social
planner. In formulae:

POFOCqy(x): f (x, y) p̃x (y)− ∂cy(κ̃y)

∂κ̃y

∣∣∣
q̃y(x)

1
ln 2

(
ln q̃y(x)

1/N
+ 1
)
− λ̃y = 0

POFOCpx(y): f (x, y) q̃y (x)− ∂cx(κ̃x)
∂κ̃x

∣∣∣
p̃x(y)

1
ln 2

(
ln p̃x(y)

1/N
+ 1
)
− λ̃x = 0

CEFOCqy(x): πy (x) px (y)− ∂cy(κy)

∂κy

∣∣∣
qy(x)

1
ln 2

(
ln qy(x)

1/N
+ 1
)
− λy = 0

CEFOCpx(y): wx (y) qy (x)− ∂cx(κx)
∂κx

∣∣∣
px(y)

1
ln 2

(
ln px(y)

1/N
+ 1
)
− λx = 0

For the equilibrium to be socially efficient we need to have the following:

p̃x (y) = px (y) for all x, y

q̃y (x) = qy (x) for all x, y

Step 3. By contradiction, imagine that the two conditions above hold.
Then, by construction,

∂cy (κ̃y)

∂κ̃y

∣∣∣∣
q̃y(x)

=
∂cy (κy)

∂κy

∣∣∣∣
qy(x)

= ay
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and
∂cx (κ̃x)

∂κ̃x

∣∣∣∣
p̃x(y)

=
∂cx (κx)

∂κx

∣∣∣∣
px(y)

= ax.

Denote them ay and ax respectively.
It then follows that:

f (x, y) p̃x (y)− λ̃y =
∂cy (κ̃y)

∂κ̃y

∣∣∣∣
q̃y(x)

1

ln 2

(
ln
q̃y (x)

1/N
+ 1

)
=
∂cy (κy)

∂κy

∣∣∣∣
qy(x)

1

ln 2

(
ln
qy (x)

1/N
+ 1

)
= πy (x) px (y)− λy

i.e. f (x, y) px (y) − λ̃y = πy (x) px (y) − λy for all x and y. We can use
the first-order conditions of the firms to derive the formulas for λ and λ̃:

(i) N exp
(

1 + λ̃y
ay/ ln 2

)
=

N∑
x=1

exp
(
f(x,y)px(y)
ay/ ln 2

)

(ii) N exp
(

1 + λy
ay/ ln 2

)
=

N∑
x=1

exp
(
πy(x)px(y)

ay/ ln 2

)
(iii) (f (x, y)− πy (x)) px (y) = λ̃y − λy for all x

Jointly (i) (ii) and (iii) imply:

N∑
x′=1

exp

(
f(x′,y)px′ (y)

ay/ ln 2

)
N∑
x′=1

exp

(
πy(x′)px′ (y)
ay/ ln 2

) =
exp

(
f(x,y)px(y)
ay/ ln 2

)
exp

(
πy(x)px(y)

ay/ ln 2

) for all x

Hence,

exp(f(x,y)px(y))
exp(πy(x)px(y))

=
exp(f(x′,y)px′ (y))
exp(πy(x′)px′ (y))

for all x and x′.
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Therefore, either:

a) f (x, y) = πy (x) for all x or

b) f (x′, y) = f (x′′, y) and πy (x′) = πy (x′′) for all x′ and x′′;

Similarly from workers’ first-order conditions it follows that either :

c) f (x, y) = wx (y) for all y or

d) f (x, y′) = f (x, y′′) and wx (y′) = wx (y′′) for all y′ and y′′

Cases b) and d) have been ruled out by the assumptions of the theorem.
Cases a) and b) jointly imply that πy (x) = wx (y) = f (x, y) = wx (y)+πy (x)
which leads to a contradiction πy (x) = wx (y) = f (x, y) = 0.

Appendix B: One-sided model

Here we consider a one-sided model where buyers are searching for sellers and
buyers face information processing constraints. We assume that sellers can
satisfy demands from any finite number of buyers simultaneously. Sellers are
assumed to satisfy the demand of an individual buyer with an exogenously
given seller-specific probability qy. The strategy of a buyer, denoted px (y),
represents the probability of buyer x contacting to seller y. It is also the
buyer’s distribution of attention. We assume that each buyer can rationally
choose his strategy facing a trade-off between a higher payoff and a higher
cost of processing information.

A buyer’s cost of searching is given by cx (κx). This cost is a function
of the amount of information processed by a buyer measured in bits, κx.
Once the optimal distribution px (y) is chosen, each buyer draws from it to
determine which seller to contact.17

Buyer x chooses a strategy px (y) to maximize his expected income flow:

Yx =
M∑
y=1

wx (y) px (y) qy − cx (κx)→ max
px(y)

17As in the two-sided one-shot model, we assume that each buyer sends a single appli-
cation.
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We normalize the outside option of the buyer to zero. The buyer receives
his expected wage in a match with seller y conditional on matching with
that seller. He also incurs a search cost, which depends on the information
processing capacity defined as follows:

κx =
M∑
y=1

px (y) log2

px (y)

1/M
(13)

where the buyer’s strategy must satisfy
M∑
y=1

px (y) = 1 and px (y) ≥ 0 for all y.

Our definition of information, κx, represents the relative entropy between a
uniform prior {1/M} over sellers and the posterior strategy, px (y). Shannon’s
relative entropy can be interpreted as the reduction of uncertainty that the
buyer can achieve by choosing his distribution of attention. This definition
is a special case of Shannon’s channel capacity when information structure
is the only choice variable.18 Thus, our assumption is a special case of a
uniformly accepted definition of information tailored to our problem.

Definition 3. A matching equilibrium of the one-sided matching model is a
set of strategies of buyers, {px (y)}Nx=1, which solve their optimization prob-
lems.

Theorem 6. If the cost functions are non-decreasing and convex, the one-
sided matching model has a unique equilibrium.

Proof. The payoffs of all buyers are continuous in their strategies. They are
also concave in these strategies when cost functions are (weakly) increasing
and convex in information capacities. Hence, each problem has a unique
solution.

When in addition the cost functions are differentiable, it is easy to verify
that first-order conditions are necessary and sufficient conditions for equilib-

18See Thomas and Cover (1991), Chapter 2.
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rium.19 Rearranging the first order conditions for the buyer, we obtain:

p∗x (y) = exp

 wx (y) qy
1

ln 2
∂cx(κx)
∂κx

∣∣∣
p∗x

 /

M∑
y′=1

exp

 wx (y′) qy′

1
ln 2

∂cx(κx)
∂κx

∣∣∣
p∗x

 . (14)

This is an implicit relationship as p∗x appears on both sides of the expres-
sion. If cost functions are linear functions of the amount of information, κx,
then the derivatives on the right hand side are independent of p∗x, and the
relationship becomes explicit.

Note that the assumptions we use to prove uniqueness are by no means re-
strictive. The assumption that cost functions are non-decreasing and convex
is a natural one. Most of the literature on information processing assumes
that either the cost function is linear, or there is a capacity constraint on
processing information, which implies a vertical cost function after a certain
amount of information has been processed. Our assumption incorporates
both of these as special cases.

The equilibrium condition (14) has an intuitive interpretation. It predicts
that the higher is the buyer’s expected gain from matching with a seller, the
greater is the probability of contacting that seller. Thus, sellers are naturally
sorted in each buyer’s strategy by probabilities of contacting those sellers.

It is worth noting the equilibrium properties for two limiting cases. First,
consider the case when marginal costs of processing information go to zero.
In this case, the strategies become more and more focused. In the limit,
each buyer places a unit probability on a single seller. Second, consider the
opposite case when marginal costs go to infinity. In this case, the difference
between probabilities of applying to different sellers shrinks. In the limit,
optimal strategies of buyers approach a uniform distribution.

19Taking derivatives of the Lagrangian function corresponding to the problem of buyer
x, we obtain for all y:

wx (y) qy − ∂cx(κx)
∂κx

∣∣∣
p∗x

1
ln 2

(
ln

p∗x(y)
1/M + 1

)
= λx

We can invert this first-order condition to characterize the optimal strategy:

p∗x (y) = 1
M exp

(
wx(y)qy−λx
1

ln 2
∂cx(κx)
∂κx

|
p∗x

− 1

)
.
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Our model generates a continuum of possible outcomes, which reside in
between these two special cases. For intermediate values of costs the search
strategies of buyers are distributed among all sellers and optimally skewed
towards their best matches.

Efficiency In order to evaluate the efficiency of the equilibrium we compare
the solution of the decentralized problem to a social planner’s solution. We
assume that the social planner maximizes the total surplus of the economy,
which is a utilitarian welfare function. In order to achieve a social optimum,
the planner can choose buyers’ strategies. If no costs of processing informa-
tion were present, the planner would always choose to match each buyer with
the seller that produces the highest surplus. The socially optimal strategies
of buyers would be infinitely precise.

To study the constrained efficient allocation we impose upon the social
planner the same information processing constraints that we place on the
buyers. Thus, the social planner maximizes the following welfare function:

W =
N∑
x=1

M∑
y=1

f (x, y) px (y) qy −
N∑
x=1

cx (κx)

subject to the information constraint (13) and to the constraint that the
px (y)’s are well-defined probability distributions. Under the assumption of
increasing convex cost functions, the social welfare function is concave in the
strategies of buyers. Hence, first-order conditions are sufficient conditions
for a maximum. Rearranging and substituting out Lagrange multipliers, we
arrive at the following characterization of the social planner’s allocation:

pox (y) = exp

 f (x, y) qy
1

ln 2
∂cx(κx)
∂κx

∣∣∣
pox

 /

M∑
y′=1

exp

 f (x, y′) qy
1

ln 2
∂cx(κx)
∂κx

∣∣∣
pox

 . (15)

The first observation to make is that the structure of the social planner’s
solution is very similar to the structure of the decentralized equilibrium. Sec-
ond, from the buyers’ perspective, the only difference between the centralized
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and decentralized equilibrium strategies is that the probability of applying
to a seller depends on the social gain from a match rather than on the pri-
vate gain. Thus, it is socially optimal to consider the whole expected surplus
when determining the socially optimal strategies, while in the decentralized
equilibrium buyers only consider their private gains.

To decentralize the socially optimal outcome the planner needs to give all
of the surplus to the buyers, wx (y) = f (x, y), effectively assigning them a
bargaining power of 1. Note that, if the planner could choose the probability
that a seller accepts a worker, qy, he would also set it to 1.

The only special cases, when the outcome is always efficient are the lim-
iting cases discussed earlier. When costs of information are absent, the equi-
librium of the model is socially optimal. When costs of information are very
high, the random matching outcome is the best possible outcome. For all
intermediate values of costs, the decentralized equilibrium is socially efficient
contingent on the buyer having all the bargaining power.

Figure 4 shows the results for the competitive equilibrium (CE) and the
social optimum (PO) for the one-sided model for the numerical example pre-
sented in the main body of the paper. In the one-sided model, the number of
matches is unaffected by changes in costs of information, because each buyer
sends contacts a single seller which is accepted with a constant probability.
For all values of information costs, the competitive equilibrium is unique,
but constrained inefficient. Because buyers get only half of the surplus, they
put a socialy suboptimal amount of effort into search. As a consequence,
they do not target their best matches well enough. Although this does not
lead to a reduction in the number of matches, average match quality suffers.
As processing information becomes more costly, the quality of matches falls,
which leads to a decline in welfare.

41



0 0.02 0.04 0.06 0.08
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Cost of information, θ

Match Rate

 

 

0 0.02 0.04 0.06 0.08
0

0.2

0.4

0.6

0.8

1

Cost of information, θ

Average Match Quality

 

 

0 0.02 0.04 0.06 0.08

0.075

0.08

0.085

0.09

0.095

0.1

0.105

Cost of information, θ

Search Effort

 

 

0 0.02 0.04 0.06 0.08
0

0.5

1

1.5

2

Cost of information, θ

Welfare

 

 

CE
PO

CE
PO

CE
PO

CE
PO

Figure 4. One-sided Model

Appendix C: Extended model

Primitives

Let worker and firm types be continuously distributed on compact measur-
able sets X and Y . Let there be a measure u (x) of workers of each type
x ∈ X and a measure v (y) of firms of each type y ∈ Y . Workers and firms
search for each other in order to match. Like before, a match between a
worker of type x and firm y generates a surplus f (x, y). If a firm and a
worker match, the surplus is split between the worker and the firm in a such
a way that the worker gets a wage wx (y) and the firm gets a profit πy (x) .
The surplus, wage and profit conditional on types are common knowledge.

We assume that the worker and the firm face relatively general search
costs of the forms:

cx (αx, κx) = χx
αφx+1
x

φx + 1
+ αxθxκx
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cy (γy, κy) = χy
γ
φy+1
y

φy + 1
+ γyθyκy

Each search cost has two components. The first component represents a
convex cost of processing applications, which depends only on the numbers of
applications, α (x) and γ (y). The second component is the cost of processing
information. It is proportional to the number of applications. Following
notation of the one-shot model, κw (x) and κf (y) are amounts of information
per application processed by firms and workers. Both are measured in bits.
Agent-specific parameters, denoted θw (x) and θf (y), stand for marginal costs
of processing information in dollars per bit.

Denote the equilibrium matching rate faced by the worker of type x when
applying to a firm of type y as mw (x, y) . Similarly, we denote the matching
rate faced by firm y when considering worker of type x as mf (y, x). The
worker maximizes his expected income flow:

Yx =

ˆ
Y

wx (y)mw (x, y) px (y)αxdy − cx (αx, κx)

with respect to his search intensity αx and allocation of attention px (y) .
The worker x gets his expected wage conditional on matching with a firm of
type y net of the cost of search. The search cost depends on the amount of
information processed by the worker, defined as follows:

κx =

ˆ
Y

px (y) log2

px (y)

v (y) /
´
Y
v (y) dy

dy (16)

where px (y) is a probability distribution that satisfies the usual assumptions:

ˆ
Y

px (y) dy = 1, px (y) ≥ 0. (17)

The firm also maximizes her expected income flow:
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Yy =

ˆ
X

πy (x)mf (y, x) qy (x) γydx− cy (γy, κy)

with respect to her search intensity γy and allocation of attention qy (x) .
Firm y gets a profit conditional on matching with a worker of type x net of
the cost of search. The search cost depends on the amount of information
processed by the worker, defined as follows:

κy =

ˆ
X

qy (x) log2

qy (x)

u (x) /
´
X
u (x) dx

dx (18)

where qy (x) is a probability distribution that also satisfies the usual assump-
tions:

ˆ
X

qy (x) dx = 1, qy (x) ≥ 0. (19)

Meeting protocol

We extend the telephone line meeting protocol of Stevens (2007) to allow for
two-sided heterogeneity as shown in Figure 5. We assume that out of the
stock of u (x) workers of type x, αxu (x) are sending applications, while the
rest are enjoying leisure/waiting. The expected number of applications sent
by worker of type x to firm of type y is px (y)αxu (x).

Out of the stock of v (y) firms of type y, vp (y) spend time processing ap-
plications. Before knowing the type of worker they are facing, firms choose
applications from which types of workers to pay attention to, and how quickly
to respond. Upon receiving an application from worker of type x, the firm
processes on average γy applications and accepts the application with prob-
ability qy (x).
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Figure 5. Meeting Protocol

We denote vp (x, y) the stock of firms of type y processing applications
from workers of type x. A fraction γy of them transition to the waiting state
per period. The total outflow to the waiting state is γyvp (y) . Those firms
that accepted the application hire the worker and are replaced by a copy of
them in the waiting pool. Those which rejected the application start waiting
for another application to arrive. In a stationary equilibrium, the inflow of
firms into the processing pool equals the outflow:

us (x, y)
vw (y)

v (y)
= γyvp (x, y) .

Using the accounting identity for the number of firms of type y, we can
solve for the numbers of firms in each state. Then, the equilibrium number
of matches for each pair of types equals:

m (x, y) = γyvp (x, y) qy (x) =
px (y)αxu (x) qy (x) γyv (y)´

X
(v (y) γyqy (x′) + px′ (y)αx′u (x′)) dx′

The personal meeting rates arising from this meeting protocol are com-
puted as follows:

µw (x, y) =
m (x, y)

qy (x) px (y)αxγy

1

u (x)
µf (y, x) =

m (x, y)

qy (x) px (y)αxγy

1

v (y)
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Equilibrium

Definition 4. An equilibrium matching process is a set of strategies of work-
ers {px (y) , αx} and firms {qy (x) , γy} , matching rates mf (y, x) and mw (x, y)
such that:

1) strategies solve problems of the workers and firms;
2) matching rates satisfy steady-state equilibrium conditions:

mw (x, y) = qy (x) γyµw (x, y) , mf (y, x) = px (y)αxµf (x, y) .

We can simplify the definition of equilibrium and cast it into a Bayesian
Nash equilibrium by redefining strategies of firms and workers. We introduce
the following notation:

p̂x (y) = αxpx (y) , q̂y (x) = γyqy (x)

Utilizing this notation, the workers’ and firms’ problems can be rewritten
as an unconstrained maximization problems with payoffs:

Yx (p̂x, q̂) =

 ´Y wx (y)µw (x, y) q̂y (x) p̂x (y) dy − χx
(
´
Y p̂x(y)dy)

φx+1

φx+1

− θx
ln 2

´
Y
p̂x (y) ln

p̂x(y)/
´
Y p̂x(y

′)dy′

v(y)/
´
Y v(y

′)dy′
dy



Yy (q̂y, p̂) =

 ´X πy (x)µf (x, y) p̂x (y) q̂y (x) dx− χy
(
´
X q̂y(x)dx)

φy+1

φy+1

− θy
ln 2

´
X
q̂y (x) ln

q̂y(x)/
´
X q̂y(x′)dx′

u(x)/
´
X u(x′)dx′

dx


where equilibrium meeting rates are taken as given. These payoffs can be
analyzed and optimized using standard techniques borrowed from the calcu-
lus of variations. We leave out the technical details and proofs for now. We
introduce the following assumptions:

A1. Type sets x ∈ X and y ∈ Y are compact.

A2. Action sets p̂x ∈ [0, P ] and q̂y ∈ [0, Q] are compact, i.e. P and Q are
finite.

A3. wx (y)µw (x, y) ≥ 0 and πy (x)µf (x, y) ≥ 0 for all x and y.
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A4. Costs parameters θx, θy, χx, χy are non-negative. Costs of applications
are convex: φx ≥ 0, φy ≥ 0.

A5. ”Diagonal dominance” conditions are satisfied along the equilibrium
path:

∣∣∣∣∂2Yx (p̂x, q̂y)

∂p̂x∂p̂x

∣∣∣∣
p̂∗x,q̂

∗
y

>

∣∣∣∣∂2Yx (p̂x, q̂y)

∂p̂x∂q̂y

∣∣∣∣
p̂∗x,q̂

∗
y∣∣∣∣∂2Yy (q̂y, p̂x)

∂q̂y∂q̂y

∣∣∣∣
p̂∗x,q̂

∗
y

>

∣∣∣∣∂2Yy (q̂y, p̂x)

∂q̂y∂p̂x

∣∣∣∣
p̂∗x,q̂

∗
y

Assumptions A1-A2 postulate that types and actions lie on compact do-
mains, while Assumption A3 states that matching is profitable for both
parties. Assumption A4 requires information processing costs to be non-
negative. This assumption is important for uniqueness of equilibrium since
information-processing constraints lower the perceived degree of complemen-
tarities between search efforts of workers and firms. Finally, A.5 guarantees
that we have a contraction mapping of the best response functions.

Theorem 7. Under assumptions A1, A2 and A3 Nash Equilibria exist.

Proof. The proof is achieved in three steps and follows Vives (1990): (a) The
set of all measurable functions mapping a compact set into a compact set is
a lattice under the natural ordering. (b) The game is supermodular since the
cross-derivatives of the objective functions are all non-negative.

∂2Yx (p̂x, q̂y)

∂p̂x∂q̂y
= w (x, y)µw (x, y)

∂2Yy (q̂y, p̂x)

∂q̂y∂p̂x
= π (x, y)µf (x, y)

(c) In a supermodular game on a lattice Nash equilibria exist.

Lemma 1. Under A1 and A2 Yx and Yy are continuous in p̂x and q̂y respec-
tively.

Proof. All the integrands are continuously differentiable with respect to strate-
gies, and all the integrals are taken over compact sets.

Lemma 2. Under assumptions A1, A2 and A4 Yx and Yy are concave in p̂x
and q̂y respectively.
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Proof. Using the previous lemma, it remains to verify that the second varia-
tional derivatives are everywhere non-positive. That is indeed the case under
assumption A4.

Theorem 8. Under A.1, A.2, A.3, A.4 the first-order conditions are neces-
sary and sufficient conditions for equilibrium.

Proof. This theorem is a direct consequence of the previous two lemmas and
assumption A3.

Theorem 9. Under assumptions A.1, A.2, A.3, A.4, A.5 the matching pro-
cess has a unique Nash equilibrium.

Proof. Diagonal dominance conditions guarantee that the Hessian of the
game is negative definite along the equilibrium path. It follows from lemmas
1 and 2 that the payoff functionals are continuous and concave. Then, the
generalized Poincare-Hopf index theorem of Simsek, Ozdaglar and Acemoglu
(2007) implies that the equilibrium is unique.

The first-order conditions can be simplified and rewritten using the origi-
nal notation to yield distributions of attention and search intensities for both
firms and workers. We only report the necessary and sufficient conditions
here:

p∗x (y) =
v (y) exp

(
ln 2
θx
gx (y)

)
´
Y
v (y′) exp

(
ln 2
θx
gx (y′)

)
dy′

α∗x =

 1

ln 2

θx
χx

ln

´
Y
v (y) exp

(
ln 2
θx
gx (y)

)
dy´

Y
v (y) dy


1
φx

q∗y (x) =
u (x) exp

(
ln 2
θy
gy (x)

)
´
X
u (x′) exp

(
ln 2
θy
gy (x′)

)
dx′

γ∗y =

 1

ln 2

θy
χy

ln

´
X
u (x) exp

(
ln 2
θy
gy (x)

)
dx´

X
u (x) dx


1
φy

where private gains of workers and firms are defined as follows:

gx (y) = wx (y)µw (x, y) q∗y (x) γ∗y
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gy (x) = πy (x)µf (x, y) p∗x (y)α∗x

Like in the one shot model, equilibrium allocations of attention have an in-
tuitive interpretation. The higher agents’ expected private gains from match-
ing with each other, the greater the probabilities of applying/processing ap-
plications. Firms and workers are naturally ordered in probabilities of al-
locating attention to each other. In equilibrium, firms’ strategies are best
responses to strategies of workers, and workers’ strategies are best responses
to strategies of firms. The strategies of firms and workers have similar prop-
erties due to the symmetry of the problem.

The rich structure of heterogeneity in costs, surpluses and types is fully
taken into account by all agents in the model. Relatively unrestrictive condi-
tions for uniqueness allow us to accomodate a rich class of matching models
with different structures of fundamentals. Each element of this rich struc-
ture of fundamentals potentially has an impact on matching rates between
all type pairs, which in turn affect the number and quality of matches in equi-
librium. Therefore, this model can be extremely useful for understanding the
consequences of heterogeneity for the aggregate matching function.

Note, that neither existence nor uniqueness of equilibrium relies on su-
permodularity of the surplus function. Therefore, assortative matching (in
expected terms) needs not be an equilibrium outcome of the model. Thus,
our model can generate a rich structure of equilibrium outcomes and has
a potential to speak to the rich empirical literature on the determinants of
wages.

The social planner’s problem

Similarly to the one-shot model, we assume that the social planner maxi-
mizes the total surplus of the economy subject to the the same constraints
that we place on workers and firms in equilibrium. Note that under the afore-
mentioned assumptions the resulting conditions for social optimality are the
same as for equilibrium, except social gains are defined as follows:

gox (y) = f (x, y)µw (x, y) qoy (x) γoy − φ (y) ,

goy (x) = f (x, y)µf (x, y) pox (y)αox − φ (y) ,

where φ (y) is a term that only depends on the firm types.
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Conjecture 1. The equilibrium is socially inefficient under assumptions A1-
A4 and if all of the following hold:

1) 0 < θx <∞
2) 0 < θy <∞
3) f (x, y) > 0 for some (x, y)
4) a non-zero measure of heterogeneity is present on both sides.

The conjecture has a similar intuition to the one shot model. It is not
feasible to achieve the social optimum, because to do that the planner needs
to promise private gains that violate the resource constraint. This result
is crucial for understanding the magnitude of potential inefficiencies in the
matching process. For that it is useful to compute the aggregate number
of equilibrium matches. Note that in this framework the matching rate, an
analog of the matching function, can be computed as:

M =

ˆ
X

ˆ
Y

qy (x) px (y)αxu (x) γyv (y)

v (y) γy +
´
X
px′ (y)αx′u (x′) dx′

dxdy

Simplifying assumptions

To facilitate quantitative explorations of the properties of equilibrium out-
comes and the size of inefficiency we make several auxiliary assumptions.

A6 Workers and firms are distributed uniformly: u (x) = U, v (y) = V.

A7 Workers are identical: θx = θw, χx = χw, φx = φw.

Firms are identical: θy = θf , χy = χf , φy = φf .

A8 Workers and firms are placed on connected unit intervals:

X = [0, 1] , Y = [0, 1] .

A9 Match surplus and Nash bargaining weights depend on distance, d (x, y),
only:

f (x, y) = f (d (x, y)) , w (d) = β (d) f (d) , π (d) = (1− β (d)) f (d) .

where d (x, y) = min {|x− y| , 1− x+ y, 1− y + x} ∈
[
0, 1

2

]
.
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Thus, we place workers and firms on connected unit intervals and define the
surplus of each match as a function of the distance between types. Firm
and worker types are symmetric. Symmetry and uniformity simplify the
analysis substantially. Conditional on assumptions A6-A9, all match-specific
variables become distance-specific, all firm- or worker-specific variables lose
this dependence. Therefore, the solution to the model can be rewritten as
follows:

α∗ =

[
1

ln 2

θw
χw

ln 2

ˆ 1
2

0

exp

(
ln 2

θw

V γ∗

V γ∗ + α∗U
w (d) q∗ (d)

)
dd

] 1
φw

γ∗ =

[
1

ln 2

θf
χf

ln 2

ˆ 1
2

0

exp

(
ln 2

θf

α∗U

V γ∗ + α∗U
π (d) p∗ (d)

)
dd

] 1
φf

p∗ (d) =
exp

(
ln 2
θw

V γ∗

V γ∗+α∗U
w (d) q∗ (d)

)
2
´ 1

2

0
exp

(
ln 2
θw

V γ∗

V γ∗+α∗U
w (d′) q (d′)

)
dd′

q∗ (d) =
exp

(
ln 2
θf

α∗U
V γ∗+α∗U

π (d) p∗ (d)
)

2
´ 1

2

0
exp

(
ln 2
θf

α∗U
V γ∗+α∗U

π (d′) p∗ (d′)
)
dd′

Socially optimal allocations are similar, with the exception that private
gains w (d) and π (d) are replaced by social gains, f (d) . Therefore, it is
straightforward to see that no bargaining weights can help achieve the socially
optimal allocation, unless w (d) = π (d) = f (d), which is not feasible. The
matching rate in this case equals:

M = 2
αUγV

αU + γV

ˆ 1
2

0

p (d) q (d) dd

The matching function takes the form of a constant-returns-to-scale match-
ing function with a constant elasticity of substitution between unemployed
workers and vacant firms. In practice, it can be approximated by a CES or
Cobb-Douglas function. Parameters of this function are fully endogenous.
They are determined exclusively by the distribution of surplus and by costs
of search. The solution to this matching process is easily computable using
standard optimization algorithms. It also allows for a closed-form solution
under additional assumptions, which we describe next.
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Closed-Form Solution

We proceed to a closed-form solution by adding assumptions that cost func-
tions, numbers of workers and bargaining powers are also symmetric:

A10 χf = χw = χ, θw = θf = θ, φw = φf = φ,

U = V and π (d) = w (d) = 1
2
f (d) .

In this case, the solution is symmetric with p (d) = q (d) and α = γ, and can
be solved in closed-form:

p∗ (d) =
1

A∗
exp

(
−W

(
− 1

A∗
ln 2

4θ
f (d)

))
α∗ =

[
θ

ln 2

1

χ
lnA∗

] 1
φ

where W (y) is the real branch of the Lambert-W function, defined as the
solution to y = WeW for W (y) ≥ −1, and A∗ is a normalizing constant that
makes sure that the distribution of attention integrates to one. The planner’s
allocation has a similar form with both workers and firms assuming they will
get the whole surplus instead of a half. Assuming the existence of an upper
bound, F , on the surplus function, the equilibrium is unique if:

θ ≥ θ0 =
Fe ln 2

8
´ 1

2

0
exp

(
−W

(
−f(d)

Fe

))
dd

Constraints on costs of information illustrate that a high enough cost
is necessary to weaken the strategic complementarity between strategies of
workers and firms. The intuition behind the lower bounds is that, for θ < θ0,
the marginal cost is smaller than the marginal benefit of information:

F

A

ln 2

4θ
>

1

e
>

ln p (d)

p (d)

For lower costs of information, the strategic complementarities dominate.
One solution to the problem in this case is the solution to the assignment
model, characterized by infinitely precise strategies described by the Dirac-
delta function, p (d) = δ (d). There is a multiplicity of other infinitely precise
strategies that are also equilibria.
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Figure 6. Shapes of the Surplus and Distributions of Attention

In Figure 6 we plot distributions of attention for three shapes of the
surplus f (d) = 1 − (2d)p for different values of costs above their limiting
values. For different values of curvature, p = {1, 2, 3} , the limiting values
of costs for equilibria to be unique equal θ0 = {1.00, 0.83, 0.75} ∗ ln 2. The
matching rate in these cases also has a closed-form solution:

M = Uα∗
ˆ 1

2

0

(p∗ (d))2 dd

For each of the aforementioned surplus functions the matching function is
strictly decreasing in the cost of information as illustrated in the Figure 7 for
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the case φ→∞. Figure 7 helps quantify losses in efficiency due to existence
of strategic complementarities. For the symmetric economy the efficient out-
come is equivalent to the equilibrium outcome under the assumption that
cost of information is reduced in half. Figure 7 shows that, for intermediate
values of costs, the number of lost matches in equilibrium can reach 50%
compared with the social planner’s allocation.
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Figure 7. Matching Efficiency
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