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 Abstract 

We exploit the 1998 and 2003 constitutional amendment in Texas—allowing home equity loans 
and lines of credit for non-housing purposes—as natural experiments to estimate the effect of 
easier credit access on the labor market. Using state-level as well as county-level data and the 
synthetic control approach, we find that easier access to housing credit led to a notably lower 
labor force participation rate between 1998 and 2007. We show that our findings are remarkably 
robust to improved synthetic control methods based on insights from machine-learning. We 
explore treatment effect heterogeneity using grouped data from the basic monthly CPS and find 
that declines in the labor force participation rate were larger among females, prime age individuals, 
and the college-educated. Analysis of March CPS data confirms that the negative effect of easier 
home equity access on labor force participation was largely concentrated among homeowners, 
with little discernible impact on renters, as expected. We find that, while the labor force 
participation rate experienced persistent declines following the amendments that allowed access 
to home equity, the impact on GDP growth was relatively muted. Our research shows that labor 
market effects of easier credit access should be an important factor when assessing its stimulative 
impact on overall growth. 
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1. Introduction 

Prevalence of household credit constraints can pose major challenges to the pace of 

economic activity. Thus, easing such constraints and facilitating improved access to credit remains 

a key public policy objective during economic slowdowns. Easier credit access can boost the 

economy through consumer spending, as borrowing is an important vehicle of consumption 

smoothing. But when credit is tight, households can alternatively smooth consumption by 

increasing labor supply. Therefore, the net effect of easier credit access on economic activity 

depends not only on its impact on consumer spending but also on its effect on labor supply. While 

a large body of research has examined the effect of credit constraints on consumer spending and 

saving, most assumed labor supply to be fixed (Athreya, 2008). Just a handful of recent papers 

directly examined the impact of credit constraints on labor supply.  

Using a standard life-cycle model of consumption and labor supply and data from the 

Italian Survey of Households Income and Wealth (SHIW), Rossi and Trucchi (2016) found that 

men facing binding liquidity constraints worked on average 4 hours more. More recently, using 

staggered passage of branch-banking deregulation laws across U.S. states, Bui and Ume (2016) 

found that, although weekly hours declined by 0.5 following branch-banking deregulation, the 

effect on the extensive margin (i.e. labor force participation) was insignificant.1 To the best of our 

knowledge, there exists no formal investigation of the effects on the U.S. labor market of policies 

specifically restricting access to home equity borrowing—by far the dominant source of credit for 

a vast majority of American households.  

                                                           
1Among somewhat older papers on credit constraint’s effect on the labor market, see Worswick (1999) and Del Boca 
and Lusardi (2003). A related strand of the literature found positive effects of mortgage debt on labor supply, but did 
not focus on credit constraints, per se. For other related research, see a brief literature review in section 2.   
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We extend the research on labor supply effects of credit constraints by exploiting the 1998 

and 2003 constitutional amendments in Texas—allowing access to closed-end home equity loans 

and lines of credit for non-housing purposes—as natural experiments and make three 

contributions. First, to the best of our knowledge, we are the first to estimate the labor market 

effects of such a large and plausibly exogenous shock to home equity borrowing constraints in the 

U.S. In so doing, we focus on a broad measure of the state of the labor market—the labor force 

participation rate (LFPR). Secondly, we extend the basic two-period theoretical model of (2016) 

to a three-period setting and derive the implications of easier access to home equity for labor 

supply. And finally, using the synthetic control methodology and its recent refinements based on 

insights from machine learning, we shed light on the overall effect of the constitutional 

amendments introducing home equity lending to Texas, not only on the LFPR, but also on GDP 

growth.  

By focusing on labor market effects, the paper complements a small set of recent papers 

that have also exploited the Texas amendment as a source of exogenous shocks for outcomes other 

than labor supply. Most notably, Abdallah and Lastrapes (2012) used the Texas amendment as a 

source of exogenous variation in credit constraints to provide compelling evidence that increased 

access to home equity borrowing spurred consumer spending.2 More recently, Zevelev (2016) 

showed that by removing restrictions on home equity borrowing, the Texas amendment 

contributed to a 3 to 5 percent increase in house prices over the 6 years following the law change.3 

But the labor market effects of the amendment in Texas remain still unexplored. 

                                                           
2 Leth-Petersen (2010) used a home equity borrowing reform in Denmark to estimate its impact on consumer spending. 
3 Stolper (2014) found that a 2003 law that opened up Home Equity Lines of Credit (HELOC) in Texas led to gains 
in access to higher education financed by home equity borrowing. Kumar (2018) shows that restricted access to home 
equity borrowing that limited excessive leverage during the housing boom in Texas relative to the nation lowered 
mortgage default rates. 
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Plotting weighted-averages of state-level LFPR using widely available BLS data, Figure 1 

provides a first glimpse of the LFPR decline in Texas relative to the rest of U.S. after home equity 

access became available in 1998. Access to home equity should clearly have meant more to 

homeowners than renters, who did not have home equity. Therefore, strikingly different trends in 

the LFPR after 1998 for homeowners (Appendix Figure A1) and renters (Appendix Figure A2) in 

Texas vs. other states further reinforce the view that home equity access could have led to the 

decline in the LFPR for homeowners in Texas relative to other states.  

While informative, such simple comparisons between Texas and the U.S. could conflate 

the impact of home equity access in Texas with the effects of other macroeconomic shocks and 

state-level policies that may have changed concomitantly and affected Texas differently than other 

states. For example, the period surrounding the Texas amendment saw sharp swings in oil prices 

(Appendix Figure A3), and it is well-known that oil-price shocks affect Texas differently than 

most other states (Murphy, Plante & Yücel, 2015). Furthermore, Texas could have reacted 

differently to welfare policy changes and the Earned Income Tax Credit (EITC) expansions 

implemented in the 1990s. We adopt a careful and comprehensive approach to address these 

concerns. 

Using aggregate state-level as well as county-level data, we find that, by opening the home 

equity lending market to Texas’ homeowners, the 1998 and 2003 amendments led to persistent 

declines in the LFPR between 1998 and 2007. We first show that conventional difference-in-

differences specifications comparing the LFPR in Texas with other states before and after the law 

changes yield negative effects on the LFPR but may be subject to biases due to pre-existing 

differential trends in the LFPR in Texas vis-à-vis the nation. We, therefore, employ synthetic 

control methods that account for the potential violation of the common trends assumption. We 
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proceed by optimally weighting comparison states to construct a synthetic control group that has 

pre-treatment LFPR trends almost identical to those in Texas (Abadie and Gardeazabal, 2003; 

Abadie, Diamond, & Hainmueller, 2010; Abadie, Diamond, & Hainmueller, 2015).  

While the synthetic control method remains overwhelmingly popular in settings with just 

one treated unit, recent research has proposed important refinements that relax some of the 

underlying restrictions in the traditional method and, using machine learning techniques, enhance 

its suitability in situations with limited controls and a small number of pre-treatment periods. We 

employ two such approaches to demonstrate the robustness of our baseline synthetic control 

estimates: (1) the balancing method with elastic net penalty proposed in Doudchenko and Imbens 

(2016) and (2) the matrix completion approach suggested in Athey et al. (2017).  

Our preferred estimates suggest that access to home equity loans led to about 1 percent 

average decline in the LFPR in the first 5 years between 1998 and 2002—an effect that subsided 

after 2001, but almost doubled between 2004 and 2007, after Home Equity Lines of Credit 

(HELOCs) became available. We find that easier access to home equity led to a 1.3 percentage 

point average decline in LFPR over 10 years. We explore treatment effect heterogeneity across 

demographic groups using basic monthly CPS data and find that easier credit access led to 

relatively larger declines in LFPR of females, prime-age population, and the college-educated. 

Finally, we use grouped data from the March CPS to find that there was a significant decline in 

the LFPR of homeowners, but little discernible effect on renters—a group not directly affected by 

the law change.4 Our findings are different from previous work that found labor supply effects of 

credit constraints mainly on the intensive margin. 

                                                           
4 See Flood, King, Ruggles, & Warren (2015) for details on IPUMS-CPS. 
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While the Texas amendment spurred consumer spending (Abdallah and Lastrapes, 2012) 

and supported house price growth (Zevelev, 2016), our estimates suggest it also reduced the LFPR, 

eroding gains from easier credit access to the Texas’ economy. We confirm this intuition and find 

that easier access to home equity did not affect real GDP growth in Texas.5 Our estimates have 

implications for countries or regions where a significant part of housing wealth is locked up in 

home equity that cannot be tapped, either due to regulations or because the financial markets aren’t 

sufficiently developed to allow easy borrowing against housing collateral. To be sure, providing 

households easier access to untapped home equity could boost consumer spending but may also 

lower the LFPR. Thus, our estimates shed light on the effect of financial frictions on the labor 

market. Our research also has implications for the labor market effects of easing restrictions on 

other forms of borrowing against current wealth—for example 401(k) accounts. 

The rest of the paper is organized as follows. Section 2 presents a brief review of the 

previous literature on the labor market effects of credit constraints. Section 3 presents the 

theoretical framework. Section 4 discusses the Texas 1997 amendment allowing home equity 

access and section 5 describes the data. Econometric specifications and estimation results are 

discussed in section 6, and section 7 concludes.  

 

2. Previous Literature 

Using a standard life-cycle model of consumption and labor supply, Rossi and Trucchi 

(2016) showed that liquidity constraints negatively affect labor supply. They used data from Italian 

Survey of Households Income and Wealth (SHIW) and found that men facing binding liquidity 

                                                           
5 While this may appear somewhat counter-intuitive at first, it is consistent with Jappelli and Pagano (1994), who 
showed that liquidity constraints may positively affect growth.  
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constraints—those with current income below their permanent income—worked on average 4 

hours more. Lacking an exogenous shock to liquidity constraints through clear change in policy, 

Rossi and Trucchi (2016) relied on fixed effects and plausible instrumental variables to deal with 

endogeneity. More recently, using the staggered passage of branch banking deregulation laws 

across U.S. states, Bui and Ume (2016) found that, although weekly hours declined by 0.5 after 

bank branching deregulation eased credit access, the effect on the extensive margin (i.e. labor force 

participation) was insignificant.6 Using a structural model of intertemporal labor supply and data 

from the Canadian census, Worswick (1999) found that, immigrant households were more likely 

to be credit-constrained during the first few years of their arrival in Canada and, therefore, 

immigrant wives worked longer hours to support family consumption. While a positive 

relationship between credit constraints and labor supply found in these three papers is consistent 

with the standard life-cycle model’s prediction that credit-constrained households can smooth 

consumption by increasing labor supply, it is also the case that higher debt due to easier credit 

access would add to the household’s debt service commitments, requiring them to work more. 

Del Boca and Lusardi (2003) used SHIW data from 1989–93 to estimate the effect of easier 

availability of mortgages on LFP using plausibly exogenous variation from entry of foreign banks 

and new banking legislation and found that, even as credit access increased through easier 

mortgage availability, adding mortgage obligations to household debt positively affected wives' 

LFP.  

A related but somewhat separate strand of the literature focused primarily on the labor 

supply effects of higher debt and found positive effects of mortgage debt commitments on labor 

supply, mainly involving married females (Fortin, 1995; Aldershof, Alessie, & Kapteyn, 1997; 

                                                           
6 Using PSID from 1967-1970, Dau-Schmidt  (1997) found that liquidity bound primary male workers (those with 
zero liquid assets) have 1% lower intertemporal labor supply response. 
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Bottazzi, 2004; Butricia and Karamcheva, 2013; Lusardi and Mitchell, 2017; Maroto, 2011; 

Houdre, 2009; Cao 2017). But the evidence of a positive relationship between mortgage debt and 

labor supply remains far from conclusive. Using British Household Panel Survey data from 2001–

06 Pizzinelli (2017), found that wives’ labor supply was negatively related with loan-to-value 

(LTV) ratio, but positively related with husbands’ loan-to-income (LTI) ratio. High-LTV 

households’ behavior appears more elastic on the extensive margin than low-LTV households. 

Bernstein (2015) also found negative effects of being underwater on household labor supply.7  

As is clear from this brief review, with the exception of Bui and Ume (2016), the previous 

research generally lacked a clearly exogenous shock to credit constraints in order to disentangle 

the aggregate impact of easier credit access on the labor market from other potentially confounding 

macroeconomic shocks. Such a gap is particularly striking in research on labor market effects of 

home equity borrowing constraints, where previous work focused almost exclusively on consumer 

spending (e.g. Abdallah and Lastrapes, 2012); Leth-Petersen, 2010). Our paper fills this void by 

estimating the labor market effects of easier access to home equity credit using plausibly 

exogenous variation from the natural experiment in Texas, which for the first time in the state’s 

history allowed home equity loans for non-housing purposes. 

 

3. Theoretical Framework 

                                                           
7 A more distinct stream of research has explored the relationship between the broader housing market and labor 
supply, generally finding negative wealth effects of house price growth, consistent with leisure being a normal good 
(Atalay, Barrett, & Edwards, 2016; Disney and Gathergood, 2013; Milosch, 2014; Fu, Liao, & Zhang, 2016; Bottazzi,  
Trucchi, & Wakefield, 2017; Zhao and Burge, 2017). But a consensus on the effect of house price growth on labor 
supply remains elusive. Estimating heterogeneous effects, He (2015) found that younger age groups, being short on 
housing, increased LFP in response to an increase in house prices. For older households, however, a potential negative 
wealth effect on LFP was more than offset by a positive bequest motive. Yoshikawa and Ohtake  (1989) also found a 
positive effect of an increase in house prices on married female’s LFP. Adding to the mixed evidence that exists in 
this literature, Johnson (2014) found little evidence of a positive effect of house prices on married women’s labor 
force participation but positive effect on female earnings.  
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 We extend the standard two-period life-cycle model of (2016) to a three-period set-up and, 

following Hurst and Stafford (2004) and Bhutta and Keys (2016), explicitly incorporate home 

ownership, mortgage borrowing, house price appreciation, home equity extraction, and collateral 

constraints to capture the key features of the Texas housing market. Additionally, we later allow 

preferences to be present-biased (Laibson 1997; Fredrick, Loewenstein, and O’donoghue, 2002; 

O’Donoghue and Rabin, 1999). In our model, the agent chooses consumption (𝑐𝑐𝑡𝑡) in the three 

periods (𝑡𝑡 = 1,2,3), and leisure (𝑙𝑙𝑡𝑡), and home equity extraction (𝐸𝐸𝑡𝑡) in the first two periods to 

maximize a three-period intertemporally separable utility function with 𝛿𝛿 the discount rate: 

𝑈𝑈 = 𝑢𝑢(𝑐𝑐1, 𝑙𝑙1) + 𝛿𝛿𝑢𝑢(𝑐𝑐2, 𝑙𝑙2) + 𝛿𝛿2𝑈𝑈(𝑐𝑐3, 1) 

subject to the budget constraints: 

𝑐𝑐1 = 𝑤𝑤(1 − 𝑙𝑙1) + 𝐸𝐸1 − 𝑟𝑟𝑟𝑟𝐻𝐻0 − 𝐴𝐴1 

𝑐𝑐2 = 𝐴𝐴1(1 + 𝑟𝑟) + 𝑤𝑤(1 − 𝑙𝑙2) + 𝐸𝐸2 − 𝑟𝑟𝐸𝐸1 − 𝑟𝑟𝑟𝑟𝐻𝐻0 − 𝐴𝐴2 

𝑐𝑐3 = 𝑃𝑃 + (𝐴𝐴1 + 𝐴𝐴2)(1 + 𝑟𝑟) + [(1 + 𝑟𝑟𝐻𝐻)3𝐻𝐻0 − 𝑟𝑟𝐻𝐻0] − (𝐸𝐸1 + 𝐸𝐸2)(1 + 𝑟𝑟) 

and the collateral constraints: 

𝐸𝐸1 ≤ 𝑎𝑎[(1 + 𝑟𝑟𝐻𝐻)𝐻𝐻0 − 𝑟𝑟𝐻𝐻0] 

𝐸𝐸2 ≤ 𝑎𝑎[(1 + 𝑟𝑟𝐻𝐻)2𝐻𝐻0 − 𝑟𝑟𝐻𝐻0] − 𝐸𝐸1 

To keep the model simple we normalize total time endowment to 1, so that labor supply in 

the first two periods are (1 − 𝑙𝑙𝑡𝑡) at wage rate (𝑤𝑤), and assume that the agent retires with retirement 

income 𝑃𝑃 in the third period. Following Hurst and Stafford (2004), at the beginning of the first 

period, the agent owns a home worth 𝐻𝐻0 with an initial LTV (𝑟𝑟) financed with an interest-only 

mortgage that equals 𝑟𝑟𝐻𝐻0, with a fixed mortgage rate (𝑟𝑟). The interest-only mortgage payment 

each period is 𝑟𝑟𝑟𝑟𝐻𝐻0 and the constant rate of house price appreciation is 𝑟𝑟𝐻𝐻. The agent chooses to 

extract equity 𝐸𝐸𝑡𝑡 subject to the collateral constraint that total equity extraction cannot exceed some 
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fraction (𝑎𝑎) of home owner’s equity that is current home value minus the initial mortgage amount. 

The parameter 𝑎𝑎 governs the ease of credit access. It equaled 1 in all other states throughout the 

sample period from 1993 to 2007—households could borrow the entire home equity—but 

switched from 0 to 0.8 in Texas after the 1997 amendment. 𝐴𝐴𝑡𝑡 represents savings in the first two 

periods. The agent leaves no bequests and consumes the proceeds from home sale, (1 + 𝑟𝑟ℎ)3𝐻𝐻0, 

after paying off the interest only mortgage (𝑟𝑟𝐻𝐻0) and borrowed equity (𝐸𝐸1 + 𝐸𝐸2)(1 + 𝑟𝑟). 

The first order conditions derived in Appendix B imply that, if the collateral constraints do 

not bind, which can be achieved, e.g., by allowing unlimited home equity extraction 𝐸𝐸1 and 𝐸𝐸2, 

then 𝜇𝜇4 = 𝜇𝜇5 = 0. It follows that 𝑢𝑢𝑐𝑐2 = (1 + 𝑟𝑟)𝛿𝛿𝑢𝑢𝑐𝑐3 = 𝑢𝑢𝑙𝑙2 𝑤𝑤⁄  and 𝑢𝑢𝑐𝑐1 = 𝑟𝑟𝛿𝛿𝑢𝑢𝑐𝑐2 + (1 +

𝑟𝑟)𝛿𝛿2𝑢𝑢𝑐𝑐3 = (1 + 𝑟𝑟)2𝛿𝛿2𝑢𝑢𝑐𝑐3 = 𝑢𝑢𝑙𝑙1 𝑤𝑤⁄ . Thus: 

𝑐𝑐1𝑁𝑁𝑁𝑁 = 𝑢𝑢𝑐𝑐1
−1�(1 + 𝑟𝑟)2𝛿𝛿2𝑢𝑢𝑐𝑐3� 

𝑙𝑙1𝑁𝑁𝑁𝑁 = 𝑢𝑢𝑙𝑙1
−1�𝑤𝑤(1 + 𝑟𝑟)2𝛿𝛿2𝑢𝑢𝑐𝑐3� 

𝑐𝑐2𝑁𝑁𝑁𝑁 = 𝑢𝑢𝑐𝑐2
−1�(1 + 𝑟𝑟)𝛿𝛿𝑢𝑢𝑐𝑐3� 

𝑙𝑙2𝑁𝑁𝑁𝑁 = 𝑢𝑢𝑙𝑙2
−1�𝑤𝑤(1 + 𝑟𝑟)𝛿𝛿𝑢𝑢𝑐𝑐3� 

The optimum is characterized by equal marginal utility of consumption and labor within as well 

as between periods. 

On the other hand, if one or several collateral constraints bind, then either 𝜇𝜇4 > 0 or 𝜇𝜇5 >

0, or both. This can be achieved, e.g., by prohibiting home equity extraction, i.e., 𝐸𝐸1 = 𝐸𝐸2 = 0. It 

follows that 𝜇𝜇1 > 𝜇𝜇2𝑟𝑟 + (1 + 𝑟𝑟)𝜇𝜇3 or 𝜇𝜇2 > (1 + 𝑟𝑟)𝜇𝜇3. In this case, 𝑢𝑢𝑐𝑐1 = 𝑢𝑢𝑙𝑙1 𝑤𝑤⁄ > 𝑟𝑟𝛿𝛿𝑢𝑢𝑐𝑐2 +

(1 + 𝑟𝑟)𝛿𝛿2𝑢𝑢𝑐𝑐3 and thus 𝑐𝑐1𝑁𝑁 ≤ 𝑐𝑐1𝑁𝑁𝑁𝑁 and 𝑙𝑙1𝑁𝑁 ≤ 𝑙𝑙1𝑁𝑁𝑁𝑁. Both 𝑐𝑐1 and 𝑙𝑙1 are lower with collateral constraints 

than without, as agents are unable to smooth consumption across periods by transferring future 

consumption to period 1 through 𝐸𝐸1. Thus, first-period labor supply is higher with some binding 
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collateral constraints. On the other hand, the impact of binding collateral constraints on 𝑐𝑐2 (and 𝑙𝑙2) 

are ambiguous, i.e., 𝑐𝑐2𝑁𝑁 ⋚ 𝑐𝑐2𝑁𝑁𝑁𝑁 (and 𝑙𝑙2𝑁𝑁 ⋚ 𝑙𝑙2𝑁𝑁𝑁𝑁). The agent is prevented from transferring third-

period consumption to period 2 through 𝐸𝐸2. However, the agent is also prevented from transferring 

consumption from period 3 and period 2 to period 1 through 𝐸𝐸1. Since 𝐸𝐸1 entails interest payments 

in periods 2 and 3 and a repayment in period 3, which has to be financed by lower consumption in 

these future periods, the net effects on 𝑐𝑐2 and second-period labor supply is ambiguous. 

Further insights can be gained by assuming an intertemporally separable log utility function 

that is also separable in consumption and leisure. In this case, if the constraint binds, the optimal 

solution for leisure in the first period is: 

𝑙𝑙1∗ =
𝑤𝑤 + 𝑎𝑎[(1 + 𝑟𝑟ℎ)𝐻𝐻0 − 𝑟𝑟𝐻𝐻0] − 𝑟𝑟𝑟𝑟𝐻𝐻0 − 𝐴𝐴1

2𝑤𝑤
 

𝑙𝑙1∗ varies positively with 𝑎𝑎 if homeowner’s equity, (1 + 𝑟𝑟ℎ)𝐻𝐻0 − 𝑟𝑟𝐻𝐻0, is positive. So as 𝑎𝑎 increases 

and the collateral constraint becomes less binding, leisure increases and labor supply declines. 

Therefore, as in a two-period model, this three-period life-cycle model with collateral constraints 

and home equity extraction predicts that labor supply should have declined initially in Texas 

relative to other states after 𝑎𝑎 increased from 0 to 0.8 and credit access improved. However, our 

three-period model highlights that subsequent effects are ambiguous. 

Implications of Present Bias 

In Appendix B we show that 𝑐𝑐1
𝑁𝑁𝑁𝑁,𝛽𝛽 = 𝑢𝑢𝑐𝑐1

−1�(1 + 𝑟𝑟)2𝛽𝛽𝛿𝛿2𝑢𝑢𝑐𝑐3� > 𝑐𝑐1𝑁𝑁𝑁𝑁, implying that both 𝑐𝑐1 

and 𝑙𝑙1 are higher with present-biased preferences, as 𝛽𝛽 < 1. Thus, first-period labor supply is lower 

and 𝐸𝐸1 higher. With at least one non-binding collateral constraint 𝑐𝑐1
𝑁𝑁,𝛽𝛽 ≤ 𝑐𝑐1

𝑁𝑁𝑁𝑁,𝛽𝛽, i.e. the decrease 

in 𝑐𝑐1 is similar to the case without present-bias. But enhanced consumption-shifting from the future 

to period 1 through the increase in 𝐸𝐸1 leads to a stronger first-period labor supply decline. With 



12 
 

𝛽𝛽 < 1, the agent faces a greater incentive to move consumption from period 3 to 2 with present 

bias than without, but the overshifting of consumption to period 1 leads to more borrowing. 

Subsequent debt servicing requirements and the loan payoff in period 3 must be financed with 

higher second-period labor supply. Thus, the impact of collateral constraints on the second-period 

consumption and labor supply is still ambiguous, just like the case without present-bias. This 

mechanism is consistent with previous evidence on a positive relationship between mortgage debt 

and labor supply. 

 

4. Texas 1997 Home Equity Amendment 

Before 1998, the Texas constitution greatly restricted collateralized borrowing against 

home equity. While home buyers could use their home as collateral to obtain mortgage to finance 

the home purchase, subsequent home equity borrowing was severely limited. Aside from home 

purchase, the Texas constitution allowed using the home as collateral primarily for just two other 

purposes: (1) home improvements and (2) taxes (Graham, 2007). Almost all other forms of home 

equity borrowing remained out of bounds for Texas homeowners.8 For example, cash-out 

refinancing, a widely used form of home equity extraction in the rest of U.S., was not permitted. 

While refinancing, home equity could be used only to cover the cost of refinancing. Home equity 

loans through second mortgages or home equity line of credit remained off limits.  

In November 1997, Texas’ voters ratified House Joint Resolution 31 (HJR 31), amending 

Section 50, Article XVI of the Texas constitution to allow home equity loans through second 

mortgages or cash-out refinancing but capping the borrowed amount to no more than 80 percent 

                                                           
8 Since 1995, in the event of divorce, jointly owned homes could be converted to full ownership through a home equity 
loan to pay off the joint owner’s share of home equity. For more details on the provisions of the constitutional 
amendment see Graham (2007), Abdallah and Lastrapes (2012), Zevelev (2016), and Kumar and Skelton (2013).  
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of a home’s appraised value.9 The amendment took effect on January 1, 1998. Although total 

borrowing against home equity was capped in Texas, anecdotal reports indicate that access to home 

equity loans and cash-out refinancing led to significant expansion of mortgage credit in Texas after 

the amendment became law.  

While authorizing home equity borrowing for non-housing purposes, the 1997 amendment 

allowed only traditional closed-end home equity loans that must be repaid in “substantially equal 

successive periodic instalments”, thus prohibiting HELOCs—revolving accounts with a maximum 

credit limit available for use at the borrower’s discretion for a draw period of typically 10 years at 

a variable rate of interest. A HELOC typically involves interest-only payments on the credit 

accessed during the draw period; any outstanding balance must be paid off within a set repayment 

period after the draw period expires. The 2003 amendment for the first time authorized HELOCs 

in Texas, subject to the 80 percent limit on Combined-Loan-to-Value (CLTV) ratio and other 

consumer protection limitations (Graham, 2007).  

 

5. Data 

Our baseline difference-in-differences and synthetic control estimates are based on state-

level data from 1992-2007 on 50 states, spanning 6 years before and 10 years after the amendment 

that allowed home equity access in Texas. While we extend the pre-treatment period back to 1980 

to explore robustness of our estimates to richer specifications and improved methodologies, 

starting with 1992 helps us avoid differential trends in Texas vs. other states due the 1980’s 

                                                           
9 HJR 31 was presented to voters as Proposition 8. In addition to the cap on the home equity lending Texas also has 
some other provisions to curb predatory lending as summarized in (Graham, 2007). Additionally, the Texas law allows 
only one home equity loan at a time and in case of refinancing, only one refinancing per year. The 1997 constitutional 
amendment also prohibited home equity loans with balloon payments, negative amortization, and pre-payment 
penalties. Further, HELOCS remained prohibited until 2003. 
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recessions, the saving and loans crisis, and the 1991 recession. Our primary outcome variable is 

the LFPR. State-level data on the LFPR is from the Local Area Unemployment Statistics (LAUS) 

program of the Bureau of Labor Statistics (BLS). We use average hourly earnings of 

manufacturing workers as the measure of hourly wages, also from the BLS. Both, the LFPR and 

wages, are available at monthly frequencies, which we average at the annual level. The state-level 

average income tax rate is calculated as the ratio of state-level income tax receipts to state-level 

personal income, with data on both from the Bureau of Economic Analysis (BEA). We use annual 

averages of quarterly state-level data on house prices from the Federal Housing Finance Agency 

(FHFA). We then merge the state-level annual averages of demographic variables—age, race, sex, 

marital status, presence of children in the household, and education—calculated from monthly 

basic CPS data available from IPUMS-CPS.  

We also test the robustness of our state-level estimates to use of county-level data. The 

county-level LFPR is calculated as the county-level size of the labor force divided by county-level 

population age 16 and older. Table 1 presents summary statistics for key variables from the state-

level data. Results using micro data to explore treatment effect heterogeneity are primarily based 

on annual averages by demographic groups constructed using basic monthly CPS files from the 

IPUMS CPS. Because basic monthly CPS lacks information on homeownership, we use March 

supplements of the IPUMS-CPS to examine differences in estimated effects for homeowners vs. 

renters.  

 

6. Econometric Specification and Estimation Results 

6.1 Difference-in-Differences Specifications 
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 Using state-level data to estimate the effect of the Texas’ 1998 amendment, our benchmark 

difference-in-differences (DID) specification with state and time-fixed effects is as follows: 

 𝑌𝑌𝑠𝑠𝑡𝑡 = 𝛽𝛽 
𝐻𝐻𝐻𝐻𝐻𝐻𝐷𝐷𝑠𝑠𝑇𝑇𝑇𝑇 × 𝐷𝐷𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑡𝑡−1997 + 𝛽𝛽 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑁𝑁𝐷𝐷𝑠𝑠𝑇𝑇𝑇𝑇 × 𝐷𝐷𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑡𝑡−2003 + 𝑿𝑿𝑠𝑠𝑡𝑡𝛾𝛾 + 𝛿𝛿𝑡𝑡 + 𝛼𝛼𝑠𝑠 + 𝜂𝜂𝑠𝑠𝑡𝑡 ,             (1)  

where 𝑌𝑌𝑠𝑠𝑡𝑡 is the primary outcome variable (LFPR), 𝐷𝐷𝑠𝑠𝑇𝑇𝑇𝑇 is a dummy variable for the treated state 

Texas, 𝐷𝐷𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑡𝑡−1997 is a dummy variable for the post-1997 period when home equity loans (HEL) 

were allowed, 𝐷𝐷𝑠𝑠𝑇𝑇𝑇𝑇 × 𝐷𝐷𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑡𝑡−1997 is an indicator variable that equals 1 for the treated group (Texas) 

in the post-treatment period from 1998 to 2007 and 0 otherwise. To allow the effect of access to 

home equity lines of credit (HELOC) to differ from that of home equity loans (HEL), we 

additionally include the interaction 𝐷𝐷𝑠𝑠𝑇𝑇𝑇𝑇 × 𝐷𝐷𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑡𝑡−2003 to capture the effect in the post-HELOC 

period (2004-2007). 𝛼𝛼𝑠𝑠 are state fixed effects; 𝛿𝛿𝑡𝑡 the time effects; 𝑿𝑿𝑠𝑠𝑡𝑡 is a vector of economic and 

demographic covariates that vary across states as well as over time, and 𝜂𝜂𝑠𝑠𝑡𝑡 are random state-by-

time effects. All states other than Texas serve as the control group. Coefficients on the policy 

variables, 𝛽𝛽 
𝐻𝐻𝐻𝐻𝐻𝐻 and 𝛽𝛽 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑁𝑁, are the DID estimates of the effects of access to HEL and HELOC, 

respectively.10  

In this framework, the state fixed effects account for pre-existing differences in the LFPR 

between Texas and the rest of U.S, while the year effects control for purely time-varying 

differences due to other macroeconomic shocks common to the state as well as to the nation. The 

DID identifying assumption is that state-by-time effects, 𝜂𝜂𝑠𝑠𝑡𝑡, are random and uncorrelated with 

the policy variables (𝐷𝐷𝑠𝑠𝑇𝑇𝑇𝑇 × 𝐷𝐷𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑡𝑡−1997 and 𝐷𝐷𝑠𝑠𝑇𝑇𝑇𝑇 × 𝐷𝐷𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑡𝑡−2003) i.e., 𝐸𝐸[ 𝜂𝜂𝑠𝑠𝑡𝑡|𝐷𝐷𝑠𝑠𝑇𝑇𝑇𝑇 × 𝐷𝐷𝑡𝑡𝑃𝑃𝑃𝑃𝑠𝑠𝑡𝑡,𝑿𝑿𝑠𝑠𝑡𝑡] =

0. In other words, trends in Texas’ LFPR must be parallel to those in the rest of the nation in the 

                                                           
10 More specifically, 𝛽𝛽 

𝐻𝐻𝐻𝐻𝐻𝐻 represents the DID effect for the period 1998-2003 relative to the pre-HEL period 1992-
1998 and 𝛽𝛽 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑁𝑁captures the effect during the post-HELOC period 2004-2007 relative to the pre-HELOC period 
1998-2003. 
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absence of the intervention (access to home equity), so that the pre-treatment-path for the 

remaining states can serve as valid counterfactuals for Texas’ LFPR in the post-treatment period.  

  Panel A of Table 2 reports results for the DID specification in (2). Column (1) shows 

estimates from the DID model with just state and time-fixed effects, without other covariates. 

Relative to the pre-treatment period (1992-1997), the LFPR in Texas declined about 1 percentage 

point more than in the remaining states (�̂�𝛽 
𝐻𝐻𝐻𝐻𝐻𝐻 = −1.08) after the 1997 amendment allowing HEL. 

The impact of HELOC after 2003 (�̂�𝛽 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑁𝑁 = −0.99) was roughly the same as that of HEL. 

Although conventional standard errors reflect significance, Conley-Taber confidence intervals 

include zero.11  

The DID estimates subside in column (2), that adds key state-level economic covariates 

consistent with theory and state-level demographic covariates12. Like column (2), Conley-Taber 

confidence intervals suggest that estimates are not statistically significant. To account for region-

specific macro shocks, Column (3) includes census division-by-year effects and column (4) adds 

state-specific linear time trends. They show that access to home equity lowered the LFPR in Texas 

and that the effect of HELOC after 2003 (-0.8 to -1.2 percentage points) exceeded that of the HEL 

after 1997 (-0.4 to -0.5 percentage points). Conley-Taber confidence intervals now reflect 

statistical significance.  

However, the excess sensitivity of DID estimates across specifications in Panel A suggests 

that controlling for state-specific macro shocks remains a formidable challenge, particularly 

because Texas reacts differently to swings in oil prices. To ease this concern, in Panel B we restrict 

                                                           
11 The standard errors are calculated using the procedure in Conley and Taber (2011), who showed that in DID 
applications with just one treated cluster, conventional standard errors are valid only under the assumption of normality 
of the error term. 
12 Economic covariates are lagged log average hourly wage of manufacturing workers, lagged state income tax rates, 
lagged log house price and demographic covariates include average age, share female, share white, share black, share 
married, share of households with children, share with high school, and share with a college degree. 



17 
 

the sample to the 12 energy-intensive states with more than 1 percent of total employment in 

mining in the pre-treatment period (1992 -1997). The DID estimates are qualitatively similar to 

those in columns (3) and (4) of Panel A and are significantly more robust. 

Table 3 explores heterogeneity in DID estimates using annual averages of basic monthly 

CPS data by demographic groups. For the model with covariates and census division-by-year 

effects, the DID estimates are larger for females vs. males, for the prime-age group relative to the 

55+, and for the college-educated compared with those lacking college education. Although the 

results are suggestive of a negative effect overall, given the noise in DID estimates, it is difficult 

to draw any firm conclusions regarding the heterogeneity in the effect of HEL access relative to 

HELOC. We revisit treatment effect heterogeneity using synthetic control methods later in the 

paper. 

Time-varying DID Estimates 

 Letting the DID coefficient be time-varying, we next estimate the following specification 

to explore the dynamic effects of access to home equity: 

            𝑌𝑌𝑠𝑠𝑡𝑡 = � 𝛽𝛽𝑡𝑡  𝐷𝐷𝑠𝑠
𝑇𝑇𝑇𝑇 × 𝐷𝐷𝑡𝑡

𝑡𝑡<1997

+ � 𝛽𝛽𝑡𝑡  𝐷𝐷𝑠𝑠
𝑇𝑇𝑇𝑇 × 𝐷𝐷𝑡𝑡

𝑡𝑡>1997

+ 𝑿𝑿𝑠𝑠𝑡𝑡𝛾𝛾 + 𝛿𝛿𝑡𝑡 + 𝛼𝛼𝑠𝑠 + 𝜂𝜂𝑠𝑠𝑡𝑡 ,                 (2) 

where 𝐷𝐷𝑡𝑡 denotes an indicator variable for year 𝑡𝑡. We treat 1997—the year just before the policy 

change—as the base year, so that 𝛽𝛽𝑡𝑡 can be interpreted as the effect of the amendment relative to 

year 1997.  

Time-varying DID coefficients on 𝐷𝐷𝑠𝑠𝑇𝑇𝑇𝑇 × 𝐷𝐷𝑡𝑡 are presented in Appendix Table A1 (using 

state-level data) and Table A2 using (county-level data). If DID assumptions hold, then we should 

see insignificant coefficients on 𝐷𝐷𝑠𝑠𝑇𝑇𝑇𝑇 × 𝐷𝐷𝑡𝑡 interactions before the law change in 1998. Plotting 

time-varying DID coefficients from column (3) of Table A1 for the specification with covariates 

and division-by-year effects, Figure 2 shows evidence broadly consistent with the DID 
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assumptions—estimates before 1997 are not statistically different from those in 1997, but in the 

years after the law change they are mostly negative and statistically different from zero. Analogous 

estimates using county-level data plotted in Appendix Figure A4 display a similar pattern; the only 

difference is some evidence of pre-existing trends in outcomes.  

 Overall, Figures 2 and A3 provide evidence consistent with Table 2—that access to home 

equity lowered the LFPR in Texas and that the effect with HELOC after 2003 exceeded that of the 

HEL after 1997. Figure 2 also shows that the estimated effect weakened significantly 3 years after 

the HEL access was allowed, but strengthened in the post-HELOC period.13 The richest 

specification in columns (4) of Tables A1 and A2 include both census division-by-year effects and 

state-specific linear time trends. They suggest that time-varying estimates are too noisy to infer 

anything about the impact of access to home equity on LFPR in Texas. Such sensitivity to state-

specific trends can have two alternative interpretations.  

First, in addition to imprecision stemming from the loss of several degrees of freedom, a 

model with state-specific linear time trends may be ill-suited for applications where the law change 

did not lead to an immediate discrete change in LFPR, but rather a gradually evolving effect not 

only on the level of LFPR, but also on its growth (Meer and West, 2015; Wolfers, 2006; Lee and 

Solon, 2011). If so, then DID estimates from specifications without state-specific time trends may 

actually be more meaningful.  

                                                           
13 In results not presented due to space constraints we examined the robustness of the estimates from fixed effects 
specifications presented in Figure 2 to first-differenced specifications, specifications with lagged dependent variable 
using Arellano and Bond’s dynamic panel data model. The results were qualitatively similar. Using county-level data. 
Time-varying DID estimates using county-level data presented in Appendix Table A2 are also qualitatively similar to 
state-level estimates presented in Appendix Table A1.  
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The other interpretation is that the pre-treatment trends for Texas differ from the rest of the 

nation and the parallel trends assumption is violated because, by equally weighting diverse states, 

the DID approach is unable to generate a valid counterfactual for the treated state.  

To circumvent this we next use the synthetic control method of Abadie et al. (2010) (henceforth 

SCM-ADH).  

6.2 Synthetic Control Estimates 

Unlike DID, that requires time-constant state effects (𝛼𝛼𝑠𝑠), the SCM-ADH estimator allows 

those to be time-varying. The no-treatment counterfactual follows an unobserved common factor 

model: 

         𝑌𝑌𝑠𝑠𝑡𝑡𝑁𝑁 = 𝑿𝑿𝑠𝑠𝑡𝑡𝛾𝛾𝑡𝑡 + 𝛿𝛿𝑡𝑡 + 𝜇𝜇𝑡𝑡𝛼𝛼𝑠𝑠 + 𝜂𝜂𝑠𝑠𝑡𝑡 ,                                           (3)  

where 𝜇𝜇𝑡𝑡 are common factors and 𝛼𝛼𝑠𝑠 their loadings. Let 𝑡𝑡 = 1 …𝑇𝑇0 denote the pre-treatment period 

and 𝑡𝑡 = 𝑇𝑇0 + 1 …𝑇𝑇 the post-treatment. Using some weighted average of control states to estimate 

𝑌𝑌�𝑇𝑇𝑇𝑇𝑡𝑡𝑁𝑁  (henceforth “synthetic Texas”), the treatment effect for Texas (𝑠𝑠 = 𝑇𝑇𝑇𝑇) is recovered as the 

difference between the actual outcome for Texas minus “synthetic Texas”.  

                                                   �̂�𝛽𝑇𝑇𝑇𝑇𝑡𝑡 = 𝑌𝑌𝑇𝑇𝑇𝑇𝑡𝑡 − 𝑌𝑌�𝑇𝑇𝑇𝑇𝑡𝑡𝑁𝑁 = 𝑌𝑌𝑇𝑇𝑇𝑇𝑡𝑡 − � 𝑤𝑤𝑠𝑠
𝑠𝑠≠𝑇𝑇𝑇𝑇

𝑌𝑌𝑠𝑠𝑡𝑡                                       (4) 

Subject to standard SCM-ADH assumptions, Texas minus “synthetic Texas” gap for 𝑡𝑡 > 𝑇𝑇0, 

�̂�𝛽TX
t,Post, yields an unbiased estimates of treatment effect. With the vector of pre-treatment 

characteristics of the treated state, 𝐙𝐙𝐓𝐓𝐓𝐓Pre and the matrix for control states, 𝐙𝐙−𝐓𝐓𝐓𝐓Pre , the vector of weights 

𝐖𝐖 are chosen to minimize �𝐙𝐙𝐓𝐓𝐓𝐓Pre − 𝐙𝐙−𝐓𝐓𝐓𝐓Pre 𝐖𝐖�, subject to the constraint that the weights are non-

negative and sum to 1.14  

                                                           
14 �𝐙𝐙𝐓𝐓𝐓𝐓Pre − 𝐙𝐙−𝐓𝐓𝐓𝐓Pre 𝐖𝐖� = �(𝐙𝐙𝐓𝐓𝐓𝐓Pre − 𝐙𝐙−𝐓𝐓𝐓𝐓Pre 𝐖𝐖)′𝐕𝐕(𝐙𝐙𝐓𝐓𝐓𝐓Pre − 𝐙𝐙−𝐓𝐓𝐓𝐓Pre 𝐖𝐖), where 𝐕𝐕 is chosen to minimize the Mean-Squared 

Prediction error (MSPE) of the outcome variable for the treated state (Texas) in the pre-treatment period, i.e., the mean 
of the squared deviation between the observed outcome of the treated state (Texas) and its  synthetic control. All 
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Although 𝐙𝐙𝐓𝐓𝐓𝐓Pre may include linear combinations of the outcome variable (LFPR) and other 

covariates correlated with the LFPR, the most obvious choice is to use the entire path of pre-

treatment lags of the outcome variable (𝐘𝐘 
Pre) and minimize �𝐘𝐘𝐓𝐓𝐓𝐓Pre − 𝐘𝐘−𝐓𝐓𝐓𝐓Pre 𝐖𝐖�, in which case other 

covariates are redundant. This leads to the constrained regression model discussed in Doudchenko 

and Imbens (2016).  

Estimates from this model are presented in Figures 3A and 3B. Figure 3A shows that the 

pre-treatment path of the LFPR for “synthetic Texas” is almost identical to that for Texas, yet the 

post-treatment paths diverge significantly. Reporting estimated treatment effects, �̂�𝛽TX
t,Post, column 

(1) of Table 4 shows that the LFPR declined about 0.3 percentage points in 1998, i.e., the first year 

of access to home equity. The gap widened to -0.8 percentage points 4 years after treatment and 

then subsided to -0.5 percentage points by the sixth year, in 2003. The Texas minus “synthetic 

Texas” gap increased further after HELOC became available in 2004 and reached 2.6 percentage 

points 10 years after the 1997 amendment. Estimated weights (𝐖𝐖� ) for control states are reported in 

Appendix Figure A5.  

Since Texas was the only treated state with the law change, control states serve as placebos 

and should not exhibit post-treatment gaps with respect to their synthetic counterparts that look 

like Texas’. This forms the basis for informal placebo inference presented in Figure 3B. Plots of 

�̂�𝛽PL
t,Post for placebo states along with �̂�𝛽TX

t,Post plotted in solid bold, show that just a handful of placebo 

states have differences as negative as Texas. 

Match qualities of pre-treatment LFPR trends of states with respect to their synthetic 

counterparts, �̂�𝛽PL
t,Pre, differ widely across states. Comparing post-treatment trends for Texas with 

                                                           
analysis using synthetic control estimation is carried out using “Synth” package and “Synth Runner” packages (Abadie 
et al. 2014; Galiani and Quistorff, 2016). 
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those of placebo states may not yield the most valid inference and may be too conservative (Abadie 

et al., 2015; Cavallo Galiani, Noy, & Pantano, 2013). Using pre-treatment Root Mean Squared 

Prediction Error (RMSPE 
Pre), calculated as �1/𝑇𝑇0 ∑ �̂�𝛽 

t,Pre2
𝑡𝑡≤𝑇𝑇0 , as a measure of match quality, 

one solution is to conduct inference based on standardized 2-sided p-values:  

                                       P-value𝑡𝑡std = Pr�
��̂�𝛽PL

t,Post�
RMSPEPL

Pre ≥
��̂�𝛽TX

t,Post�
RMSPETX

Pre�                                      (5) 

 Standardized p-values reported in square brackets in column (1) of Table 4 suggest that 

standardized ��̂�𝛽TX
Post� for Texas is the most extreme of all states, yielding p-values of zero. The 

standardized p-value for the post-treatment average effect for Texas, �̂�𝛽TX
Post������, reported in the bottom 

panel of Table 4, also is an extreme outlier among all states.15 In contrast, the p-value calculated 

similarly for the pre-treatment average effect, �̂�𝛽TX
Pre�����, equals 1, suggesting that the pre-treatment 

difference in outcomes between Texas and its counterfactual is not significantly different from 

those for other states.  

To get a sense of the treatment effect for HELOC, separately from HEL, Figure 4A and 4B 

plot SCM-ADH estimates analogous to Figures 3A and 3B, using 1998-2003 as the pre-treatment 

and 2004-2007 as the post-treatment period. They show that the Texas vs. synthetic Texas LFPR 

trends diverged even more markedly after HELOC became available in 2004 and �̂�𝛽TX
t,Post lies further 

into the bottom tail among placebo estimates.16  

                                                           
15 Standardized p-value for �̂�𝛽TX

Post������ are based on RMSPETX
Post

RMSPETX
Pre , where RMSPE 

Post = � 1
𝑇𝑇−𝑇𝑇0

∑ �̂�𝛽 
t,Post2

𝑇𝑇0+1≤𝑡𝑡≤𝑇𝑇 . Appendix 

Figure A6 plots the normalized average post-RMSE for Texas along with that of other states and shows that Texas is 
an extreme outlier. 
16 Analogous to Appendix Figures A5 and A6, Appendix Figures A7 and A8 plot weights and normalized post-RMSE, 
respectively, for the specification with 1998-2003 as the pre-treatment and 2004-2007 as the post-treatment period. 
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To address concerns that SCM-ADH specifications based on all pre-treatment lags may be 

subject to overfitting, column (2) of Table 4 reports analogous SCM-ADH estimates from a 

specification that generates synthetic counterfactuals based on using just three pre-treatment lags 

of LFPR and other covariates guided by theory—the log of state-level average of wage rate, 

average tax rate, and the log house price. Estimated treatment effects are larger than those from 

the constrained regression model in column 1 and standardized p-values somewhat higher. The 

10-year average post-treatment effect reported in the bottom panel is -1.6 percentage point, higher 

than -1 percentage point in column (1) for the constrained regression model. The overall pattern 

of estimated treatment effects plotted in Appendix Figure A9 is again qualitatively similar to those 

in column (1) and the placebo estimates presented in Appendix Figure A10 show that �̂�𝛽TX
t,Post are 

unusually negative. 

Robustness to Alternative Donor Pools 

Column (3) of Table 4 reports SCM-ADH estimates with the donor pool limited to energy 

states, to better control for differential trends due to oil price shocks. Once again, the overall pattern 

of dynamic effects over time is similar to columns (1) and (2). The average post-treatment effect 

in the bottom panel is -1.3 percentage points, which is significant at 10 percent level, with a p-

value of 0.09. We also considered alternative donor pools, limiting them to states that were similar 

to Texas in terms of major factors affecting the labor market in the post-treatment period: (1) states 

that did not change their minimum wage like Texas; (2) states that did not change their EITC; and 

(3) states with similar welfare reform policies. Figure 5A shows that the estimated treatment effects 

are qualitatively similar across alternative donor pools. 

Treatment Effect Heterogeneity 
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The last two columns of Table 4 report SCM-ADH estimates for employment rate among 

homeowners in column (4) and renters in column (5), using aggregate data from the March CPS, 

which has information on homeownership. While the temporal pattern of treatment effect for 

homeowners in column (4) is similar to those in columns (1)-(3), it is different for those not owning 

homes in column (5). Appendix Figure A11 plots estimates reported in column (4) and column (5) 

and shows that the effects for homeowners are consistently negative, but those for renters 

fluctuated with no clear pattern; the average post-treatment average effect for homeowners was     

-1.4 percentage points, substantially larger than just -0.2 percentage points for the renters.  

Finally in Figure 5B we examine heterogeneity in SCM-ADH estimates across 

demographic groups and show that the estimated treatment effect drifted in the negative territory 

for almost all demographic groups, with the effects generally larger for females vs. males, for the 

prime-age group relative to the 55+, and for the college-educated compared with those without 

college education. The difference by gender is consistent with the previous labor supply literature 

that found that females are more elastic than males, particularly on the participation margin. Credit 

constraints are likely to be more binding on the prime-age group relative to older individuals. 

Larger effect for the college-educated is somewhat surprising given that they are less credit-

constrained, but could stem from their higher borrowing ability.  

6.3 SCM based on Machine Learning 

Although the traditional SCM-ADH remains overwhelmingly popular in settings with just 

one treated cluster, recent work has shown that relaxing some of its implicit restrictions can reduce 

bias and incorporating insights from machine learning can alleviate concerns of overfitting. In a 

recent paper Doudchenko and Imbens (2016) showed that both the DID and SCM-ADH estimators 

are nested within a more general framework to estimate the treatment effect, 𝛽𝛽𝑇𝑇𝑇𝑇𝑡𝑡 = 𝑌𝑌𝑇𝑇𝑇𝑇𝑡𝑡 − 𝑌𝑌𝑇𝑇𝑇𝑇𝑡𝑡𝑁𝑁  
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by estimating the missing counterfactual (𝑌𝑌𝑇𝑇𝑇𝑇𝑡𝑡𝑁𝑁 ) using some weighted linear combination of pre-

treatment outcomes for all the control states: 

                                                          𝑌𝑌�𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 = 𝜅𝜅 + ∑𝑤𝑤𝑖𝑖𝑌𝑌𝑖𝑖𝑇𝑇                                                          (6) 

The intercept (𝜅𝜅) and the weights (𝑤𝑤𝑖𝑖) can be thought of as estimates from an OLS regression of 

pre-treatment outcomes for the treated group (Texas) on the pre-treatment outcomes of 49 

remaining control states. If the number of pre-treatment periods is small relative to the number of 

control states, as is typically the case, then such a regression must impose some restrictions for the 

intercept and the weights to be even feasible. Identifying four such restrictions: (1) zero intercept 

(𝜅𝜅 = 0), (2) adding up (∑𝑤𝑤𝑖𝑖 = 1), (3) non-negative weights (𝑤𝑤𝑖𝑖 > 0), and (4) constant weights 

(𝑤𝑤𝑖𝑖 = 𝑤𝑤�), Doudchenko and Imbens (2016) showed that the DID imposes the last three restrictions 

and the SCM-ADH imposes the first three. They argue that some of the restrictions may be 

implausible and relaxing them may reduce bias.17  

Model with Elastic Net Penalty  

Doudchenko and Imbens (2016) proposed a comprehensive data-driven procedure to relax 

these restrictions and estimate the intercept and weights using a regularized least-squares model 

with elastic net shrinkage penalty to minimize the distance between the pre-treatment outcomes of 

the treated unit and a linear combination of the control units. Letting 𝐘𝐘𝐓𝐓𝐓𝐓
𝐩𝐩𝐩𝐩𝐩𝐩 denote the vector of pre-

treatment outcomes for the treated unit (Texas), 𝛋𝛋 the intercept, 𝐘𝐘−𝐓𝐓𝐓𝐓
𝐩𝐩𝐩𝐩𝐩𝐩  the matrix of pre-treatment 

                                                           
17 For example, Imbens and Doudchenko (2016) noted that the no intercept restriction implies absence of any 
permanent differences between the treated group and the controls; the adding up constraint is implausible if the treated 
group is an outlier relative to the control units; and the non-negativity condition helps limit the units with positive 
weights but may affect out-of-sample predictive ability of the estimated weights and increase bias. Moreover, 
imposing the first three restrictions may result in non-unique solutions for the intercept and weights if the number of 
pre-treatment periods is significantly smaller than the number of units, requiring alternative procedures to select 
among the set of estimated weights. 
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outcomes for the control units, and 𝐖𝐖 a conformable state-specific vector of weights, the model 

with elastic net penalty (henceforth SCM-Elastic Net) can be written as:  

                                  �𝐘𝐘𝐓𝐓𝐓𝐓
𝐩𝐩𝐩𝐩𝐩𝐩 − 𝛋𝛋 − 𝐘𝐘−𝐓𝐓𝐓𝐓

𝐩𝐩𝐩𝐩𝐩𝐩𝐖𝐖� + 𝜆𝜆 �
1 − 𝛼𝛼

2
�|𝑤𝑤𝑖𝑖|
𝑁𝑁

𝑖𝑖=1

+ 𝛼𝛼�𝑤𝑤𝑖𝑖
2

𝑁𝑁

𝑖𝑖=1

�                       (7) 

Over a grid of values for the tuning parameters (𝛼𝛼 and 𝜆𝜆), the optimal combination of 𝛼𝛼 and 𝜆𝜆 is 

chosen to minimize the average of out-of-sample RMSPE across all control states, by estimating 

the model over a training sample and calculating the RMSPE over a test sample for each control 

state as a pseudo-treated unit. The training and test samples for each control state are formed by 

splitting the pre-treatment sample into roughly two equal parts. 

Matrix Completion Approach 

In another recent paper, Athey et al. (2017) use insights from machine learning and treat 

the problem of estimating the missing counterfactual for the treated group in the post-treatment 

period as a matrix completion problem, where the objective is to optimally predict the missing 

elements of the matrix of outcomes (𝒀𝒀) by minimizing a convex function of the difference between 

the observed matrix and the unknown complete matrix using nuclear norm regularization. Letting 

Ω denote the row and column indexes, (𝑖𝑖, 𝑗𝑗), of the observed entries of 𝒀𝒀, and the unknown 

complete matrix 𝒁𝒁 to be estimated, the Matrix Completion with Nuclear Norm Minimization 

(henceforth MC-NNM) objective function can be written as: 

                                            𝒁𝒁� = arg min
𝒁𝒁

�
(𝑌𝑌𝑖𝑖𝑡𝑡 − 𝑍𝑍𝑖𝑖𝑡𝑡)2

|Ω|
(𝑖𝑖,𝑡𝑡)∈Ω

+ 𝜆𝜆‖𝑍𝑍‖∗,                           (8) 
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where ‖𝑍𝑍‖∗ is the nuclear norm (sum of singular values of 𝒁𝒁).18 The regularization parameter, 𝜆𝜆, 

is chosen using 5-fold cross-validation. Athey et al. (2017) show that solving for the missing 

counterfactual using this matrix completion problem exploits richer patterns in the data and using 

extensive simulations show that the MC-NNM method outperforms both the SCM-ADH and the 

SCM-Elastic Net estimators in terms of RMSPE. 

Results from SCM-Elastic Net and MC-NNM 

 To implement the two new approaches and compare the results with DID and SCM-ADH, 

we extend the pre-treatment period back to 1980, which also allows us to evaluate how the results 

change relative to the shorter pre-treatment window used earlier in the paper. Table 5 summarizes 

the main results and estimates plotted in Figure 6 show that their overall temporal pattern is 

qualitatively similar to that from the traditional SCM-ADH approach, though there are subtle 

differences. Particularly striking is the fact that, as suspected earlier, the equal weighting of control 

states in the DID model is unable to generate parallel trends between Texas and the control states 

and, therefore, DID estimates of the treatment effect are likely biased.  

On the other hand, SCM-ADH, SCM-Elastic Net and MC-NNM approaches do a fairly 

good job of eliminating pre-existing differences between Texas and “synthetic Texas”, except for 

a brief period surrounding the 1991 recession; MC-NNM appears to perform the best. Appendix 

figures A12, A13, and A14 plot the estimated effects for Texas together with those for the 

                                                           
18 Using the algorithm in Mazumder, Hastie, & Tibshirani (2010) MC-NNM starts with the observed matrix with zeros 
in place of missing entries and iteratively updates the missing entries until convergence, using its singular value 
decomposition (SVD) with the singular values shrunk by some regularization parameter (𝜆𝜆). Estimation was 
conducted using software code from https://github.com/susanathey/MCPanel. 
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remaining states as placebos and confirm that, while all three approaches yield largely similar 

patterns post-treatment, MC-NNM appears to generate the closest counterfactuals.19  

 Pre-treatment RMSPEs reported in the bottom panel of Table 5 suggest that MC-NNM by 

far has the lowest RMSPE for Texas (0.07) as well as the remainder of control states (0.1). The 

average treatment effect of a 1.3 percentage point decline in LFPR is very similar to that from the 

SCM-Elastic Net, although substantially larger than the 1 percentage point effect from SCM-ADH. 

Standardized p-values are generally larger than those for the baseline SCM-ADH models reported 

earlier, but estimates turn significant for periods after 2003. The p-value of 0.08 for the average 

effect over 10 years post-treatment indicates that the impact of credit access was significant at 10 

percent level. Appendix Figure A15 plots the empirical CDF of MC-NNM estimates of 10-year 

average effects across states and shows that the -1.3 percentage point estimate for Texas clearly 

stands out in the lower tail of that distribution.  

Impact on GDP Growth  

  At the outset, we surmised that a potential negative effect of easier credit access on LFPR 

should damp its stimulative effect on the overall economy. In Table 6 we show that the amendment 

allowing access to home equity borrowing in Texas had a relatively small and insignificant impact 

on real GDP growth. Table 6 is isomorphic to Table 5; it differs only in reporting results for the 

annual real GDP growth as the outcome variable instead of the LFPR. Unlike results for the LFPR 

in Table 5, Table 6 shows no clear pattern of an effect on real GDP growth in Texas relative to 

“synthetic Texas”.  

                                                           
19 Figure A15 plots SCM-ADH estimates along with DID, SCM-Elastic Net, and MC-NNM for the donor pool of 
energy states and shows that the overall pattern and magnitude of estimated effects are very similar to Figure 10 for 
the all states sample. Placebo estimates corresponding to the MC-NNM estimates are plotted in Figure A16 and show 
that Texas’ MC-NNM estimates are is in the bottom tail among energy states.  



28 
 

Standardized p-values reflect statistical insignificance. The bottom panel suggests that the 

post-treatment average effect differs widely across the four models. P-values for the significance 

of the average post-treatment effect are close to 1. The best-performing model is the SCM-Elastic 

Net followed by MC-NNM, and both suggest that the impact was negative and insignificant. 

Figure 7 plots the estimated dynamic effects for the four models and, unlike Figure 6 for the LFPR, 

reveals no clear evidence of an impact on real GDP growth. We conclude that the amendment 

allowing easier access to HEL, which lowered LFPR by 1.3 percentage points, had a minimal 

impact on real GDP growth. 

 

7. Conclusion 

We use a 1997 constitutional amendment that allowed access to home equity loans in Texas as 

a natural experiment to estimate the effect of easier credit access on the labor market. Using 

aggregate state- and county-level data, we find that easier access to housing credit led to a notable 

decline in the LFPR between 1998 and 2007. Analysis of March CPS data confirms that the 

negative effect of easier home equity access on labor force participation was concentrated among 

homeowners, with little impact on renters—a group not directly affected by the reform. Employing 

the synthetic control approach and its recent refinements based on insights from machine learning, 

we find that the LFPR persistently declined following the amendment allowing home equity loans, 

while real GDP growth remained largely unaffected. Our preferred estimates suggest that easier 

access to home equity led to a -1.3 percentage point decline in the LFPR, on average, over 10 

years. A key policy implication is that labor market effects of easier credit access should be an 

important factor when assessing its stimulative impact on overall growth. 
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We show that our estimates are remarkably robust across different synthetic control methods 

as well as across alternative donor pools. Nonetheless, we may not have captured all remaining 

differences in LFPR trends between Texas and other states. To that extent, our estimates must be 

used with caution. For example, complicated changes in means-tested program rules through 

welfare-to-work reforms and major expansions of the EITC occurred between 1992 and 2007. If 

other states responded differently to those changes than Texas and if the timing of those responses 

were concomitant with the onset of easier home equity access, our estimates may be biased. Likely 

differential impact of changes in oil prices on Texas vs. the rest of the nation is also a potential 

concern, although our estimates are robust to restricting the analysis to the subsample of energy-

intensive states.  
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Figure 1 

 
Notes: Using data from BLS-LAUS program, the figure plots state-level LFPR for Texas and the weighted-average 
LFPR (weighted by population) for the remaining states. Vertical dashed lines denote 1997 and 2003, the years of 
introduction of HEL and HELOC, respectively. Sources: BLS/LAUS; Authors’ calculations.   
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Figure 2 

 
Notes: Using state-level data, the figure plots coefficients on the interactions between the treatment dummy (an 
indicator for Texas) and dummies for each year from 1992 to 2007 from a regression of the LFPR on those interactions, 
state fixed effects, year fixed effects, key economic and demographic covariates, and census-division specific year 
effects (the specification reported in columns 3 of Appendix Table A1). 1997 is the omitted base year, with its 
interaction with the treatment dummy normalized to zero, so that estimates should be interpreted as the difference 
between Texas and rest of U.S. relative to the difference in year 1997—the year just before the law change. Vertical 
dashed lines denote 1997 and 2003, the years of introduction of HEL and HELOC, respectively. Sources: BLS/LAUS; 
Authors’ calculations.   
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Figure 3A 

 
Notes: The figure shows the pre-HEL (1992-1997) and post-HEL (1998-2007) LFPR path for the treatment group 
(Texas) and the weighted average of control states (synthetic-Texas) using the constrained regression model that uses 
all pre-treatment lags of the outcome variable (LFPR) to construct the synthetic control for Texas. Vertical dashed 
lines denote 1997 and 2003, the years of introduction of HEL and HELOC, respectively. The figure shows that the 
pre-treatment path of LFPR of Texas is almost identical to that for “synthetic Texas”, yet the post-treatment paths 
diverge significantly. Estimation carried out using “Synth” package and “Synth Runner” packages (Abadie at al. 2014, 
Galiani and Quistorff, 2016). Data Sources: BLS/LAUS; Haver Analytics; Basic CPS-IPUMS; Authors’ calculations. 
 

Figure 3B 

 
The figure plots the difference between LFPR paths of each state and its synthetic control for the specification 
described in notes to Figure 3A, with the difference between Texas and synthetic Texas presented in solid bold. The 
figure shows that just a handful of placebo states have post-treatment LFPR relative to their synthetic counterparts as 
negative as Texas. Data Sources: BLS/LAUS; Haver Analytics; Basic CPS-IPUMS; Authors’ calculations. 
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Figure 4A 

 
The figure shows the pre-HELOC (1998-2003) and post-HELOC (2004-2007) LFPR path for the treatment group 
(Texas) and the control group (synthetic-Texas) using the constrained regression model that uses all pre-treatment 
lags of the outcome variable (LFPR) to construct the synthetic control for Texas. Vertical dashed line denotes 2003, 
the year of introduction of HELOC. The figure shows that the pre-HELOC path of LFPR of “synthetic Texas” is 
almost identical to that for Texas, yet the post-HELOC paths diverge significantly. Estimation carried out using 
“Synth” package and “Synth Runner” packages Abadie at al. (2014), Galiani and Quistorff (2016). Data Sources: 
BLS/LAUS; Haver Analytics; Basic CPS-IPUMS; Authors’ calculations. 
 

Figure 4B 

 
The figure plots the difference between LFPR paths of each state and its synthetic control for the specification 
described in notes to Figure 4A, with the difference between Texas and synthetic Texas presented in solid bold. The 
figure shows that just a handful of placebo states have post-treatment LFPR relative to their synthetic counterparts as 
negative as Texas. All analysis using synthetic control estimation is carried out using “Synth” package and “Synth 
Runner” packages (Abadie at al. 2014, Galiani and Quistorff, 2016). Data Sources: BLS/LAUS; Haver Analytics; 
Basic CPS-IPUMS; Authors’ calculations. 
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Figure 5A 

 
Notes: For alternative donor pools, the figure plots the difference between LFPR paths of Texas and synthetic Texas 
for the constrained regression model that uses all pre-treatment lags of the outcome variable (LFPR) to construct the 
synthetic control for Texas. Vertical dashed lines denote 1997 and 2003, the years of introduction of HEL and HELOC, 
respectively. The figure shows that the pre-treatment path of LFPR of “synthetic Texas” is almost identical to that for 
Texas, yet the post-treatment paths diverge significantly for all four alternative donor pools. Estimation carried out 
using “Synth” package and “Synth Runner” packages Abadie at al. (2014), Galiani and Quistorff (2016). Data Sources: 
BLS/LAUS; Haver Analytics; Basic CPS-IPUMS; Authors’ calculations. 
 

Figure 5B 

 
Notes: Using grouped basic monthly CPS data by state, year and demographic groups from 1992-2007, the figure 
plots the difference between LFPR paths of Texas and synthetic Texas for the constrained regression model that uses 
all pre-treatment lags of the outcome variable (LFPR) to construct the synthetic control for Texas. Vertical dashed 
lines denote 1997 and 2003, the years of introduction of HEL and HELOC, respectively. The figure shows that the 
pre-treatment path of LFPR of “synthetic Texas” is almost identical to that for Texas for all demographic groups, yet 
the post-treatment paths diverge significantly for most. All analysis using synthetic control estimation is carried out 
using “Synth” package and “Synth Runner” packages Abadie at al. (2014), Galiani and Quistorff (2016). Data Sources: 
Basic CPS-IPUMS; Authors’ calculations. 
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Figure 6 
 

 
Notes: The figure plots the pre-HEL (1980-1997) and post-HEL (1998-2007) difference between LFPR paths of the 
treatment group (Texas) and the weighted average of control states (synthetic-Texas) using the constrained regression 
model that uses all pre-treatment lags of the outcome variable (LFPR) to construct the synthetic control for Texas. 
The estimates plotted are for alternative synthetic control methods reported in Table 5. Vertical dashed lines denote 
1997 and 2003, the years of introduction of HEL and HELOC, respectively. The figure shows that the pre-treatment 
path of LFPR of Texas is mostly identical to that for “synthetic Texas” for all synthetic control methods, except the 
DID, yet the post-treatment paths diverge significantly. Estimation carried out using software code for SCM with 
Elastic Net penalty available from Doudchenko and Imbens (2016) and DID/SCM-ADH/MC-NNM code from 
https://github.com/susanathey/MCPanel. Data Sources: BLS/LAUS; Haver Analytics; Basic CPS-IPUMS; Authors’ 
calculations. 
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Figure 7 

 
Notes: The figure plots the pre-HEL (1980-1997) and post-HEL (1998-2007) difference between real GDP growth 
paths of the treatment group (Texas) and the weighted average of control states (synthetic-Texas) using the constrained 
regression model that uses all pre-treatment lags of the outcome variable (real GDP growth) to construct the synthetic 
control for Texas. The estimates plotted are for alternative synthetic control methods reported in Table 6. Vertical 
dashed lines denote 1997 and 2003, the years of introduction of HEL and HELOC, respectively. Estimation carried 
out using software code for SCM with Elastic Net penalty available from Doudchenko and Imbens (2016) and 
DID/SCM-ADH/MC-NNM code from https://github.com/susanathey/MCPanel. Data Sources: BLS/LAUS; Haver 
Analytics; Basic CPS-IPUMS; Authors’ calculations. 
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Table 1: Summary Statistics 

 Pre-Treatment (1993-1997) Post-Treatment 1998-2007 
 Rest of US Texas Rest of US Texas 
LFPR 66.48 69.19 66.43 67.61 
 (3.452) (0.122) (3.129) (1.007) 
     
Log Real Wage* 2.971 2.896 2.989 2.864 
 (0.114) (0.0144) (0.108) (0.0481) 
     
Avg. State Tax rate 0.0218 0 0.0230 0 
 (0.00975) (0) (0.0107) (0) 
     
Log FHFA HPI 5.258 4.882 5.698 5.206 
 (0.206) (0.0428) (0.343) (0.133) 
     
Age 43.35 41.37 44.30 42.37 
 (1.142) (0.175) (1.202) (0.522) 
     
Share Female 0.521 0.514 0.519 0.514 
 (0.00909) (0.00207) (0.00809) (0.00178) 
     
Share Married 0.565 0.586 0.549 0.571 
 (0.0244) (0.00398) (0.0241) (0.00574) 
     
Households with 
Children 

0.331 0.376 0.316 0.360 

 (0.0210) (0.00644) (0.0207) (0.0129) 
     
Share White 0.759 0.581 0.717 0.515 
 (0.123) (0.0145) (0.134) (0.0187) 
     
Share Black 0.113 0.111 0.113 0.109 
 (0.0787) (0.00215) (0.0778) (0.00427) 
     
Share High School Grad 0.334 0.291 0.315 0.274 
 (0.0435) (0.00736) (0.0443) (0.00537) 
     
Share College Grad 0.202 0.186 0.239 0.214 
 (0.0356) (0.00509) (0.0402) (0.00703) 

Note: Using state-level data the table presents means, with standard deviation in parenthesis. *Log real wage are for 
workers in manufacturing. Sources: BLS/LAUS; Authors’ calculations. 
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Table 2: Difference in Differences Estimates of Home Equity Access on LFPR 
 

 (1) (2) (3) (4) 
                    Panel A: All States Sample 

Texas X Post 1997 -1.080 -0.764 -0.410 -0.502 
 (0.144) (0.117) (0.498) (0.436) 
 [-2.269, 0.491] [-1.979, 0.196] [-1.645, 0.466] [-0.814, -0.175] 
     
Texas X Post 2003 -0.989 -0.434 -1.155 -0.765 
 (0.161) (0.174) (0.304) (0.561) 
 [-2.669, 0.332] [-1.963, 0.738] [-2.311, -0.081] [-1.300, -0.219] 

                      Panel B: Energy States Sample 
Texas X Post 1997 -1.152 -0.688 -1.015 -0.834 
 (0.152) (0.130) (0.271) (0.356) 
 [-2.653, -0.323] [-1.617, -0.452] [-1.656, -0.441] [-1.055, -0.659] 
     
Texas X Post 2003 -1.205 -1.034 -1.317 -0.732 
 (0.269) (0.258) (0.372) (0.775) 
 [-4.236, -0.179] [-3.167, -0.258] [-2.410, -0.669] [-1.080, -0.389] 
State Fixed Effects Yes Yes Yes Yes 
Year Fixed Effects Yes Yes Yes Yes 
Other Covariates No Yes Yes Yes 
Division X Year Effects No No Yes Yes 
State X Linear Trend No No No Yes 
Observations 800 797 797 797 
AdjR-Sq 0.9430 0.9629 0.9691 0.9783 

Notes: Robust standard errors clustered by state are reported in parenthesis. Confidence intervals using Conley and Taber (2011) reported in square brackets. 
Estimation is weighted by state population. Using state-level data from 1992-2007, the table reports coefficients on the interactions Texas X Post-1997 and Texas 
X Post-2003 dummies from a DID regression of the LFPR on the interactions, state fixed effects, year fixed effects (in column 1), and other controls, as indicated, 
in column 2-4. Other state-levl covariates included are—lagged log average hourly wage of manufacturing workers, lagged state income tax rates, lagged log house 
price and state-level demographic covariates—average age, share female, share white, share black, share married, share of households with children, share with 
high school, and share with a college degree. Data Sources: BLS/LAUS; Haver Analytics; Basic CPS-IPUMS; Authors’ calculations. 
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Table 3: Heterogeneity in Estimates of Home Equity Access on LFPR 
 
 (1) (2) (3) (4) (5) (6) 
 Male Female Prime-Age Age-55+ No-College Any-College 
Texas X Post 1997 -0.376 -0.639 -1.436 1.477 0.269 -1.886 
 (0.536) (0.802) (0.381) (0.890) (0.631) (0.745) 
 [-1.748, 0.811] [-2.551, 1.347] [-3.522, -0.076] [-.658, 3.698] [-1.230, 1.979] [-3.970, -0.361] 
       
Texas X Post 2003 -0.789 -1.606 -0.383 -1.473 -1.565 -0.785 
 (0.442) (0.429) (0.403) (0.605) (0.673) (0.381) 
 [-2.937, 0.488] [-3.713, -0.254] [-2.049, 0.919] [-.232, 1.570] [-3.764, 0.203] [-2.828, 0.478] 
       
State Fixed Effects Yes Yes Yes Yes Yes Yes 
       
Year Fixed Effects Yes Yes Yes Yes Yes Yes 
       
Demographic Controls Yes Yes Yes Yes Yes Yes 
       
Division X Year Effects Yes Yes Yes Yes Yes Yes 
Observations 63372 65417 48508 41464 67219 61570 
AdjR-Sq 0.890 0.891 0.675 0.753 0.876 0.839 
Notes: Robust standard errors clustered by state are reported in parenthesis. Confidence intervals using Conley and Taber (2011) reported in square brackets. 
Estimation is weighted by group-cell count. Using grouped basic CPS data by state, year and demographic groups from 1992-2007, the table reports coefficients 
on the interactions Texas X Post-1997 and Texas X Post-2003 dummies from a DID regression of the LFPR on the interactions, state fixed effects, year fixed 
effects, indicators for demographic groups as controls, and division X year effects. Data Sources: Basic Monthly CPS; Authors’ calculations. 
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Table 4: Synthetic Control Estimates with Standardized P-Values 
 

 Model with All 
Pre-Treatment 

Lags  

Model 
with 

Covariates 
and Some 

Lags 

Model with All Pre-
Treatment Lags: 

Energy States 

Model with All Pre-
Treatment Lags: 

Homeowners 

Model with All Pre-
Treatment Lags: 

Renters 

1998 -0.267 -0.527 -0.542 -1.354 0.337 
 [0.000] [0.163] [0.091] [0.082] [0.061] 
      
1999 -0.545 -0.988 -1.032 -2.133 0.342 
 [0.000] [0.061] [0.091] [0.061] [0.061] 
      
2000 -0.605 -1.566 -1.475 -1.383 -0.617 
 [0.000] [0.041] [0.091] [0.082] [0.082] 
      
2001 -0.777 -1.804 -1.346 -2.061 2.598 
 [0.000] [0.082] [0.091] [0.061] [0.020] 
      
2002 -0.565 -1.146 -0.569 -0.180 1.906 
 [0.000] [0.122] [0.091] [0.143] [0.020] 
      
2003 -0.496 -1.181 -0.618 -1.267 0.879 
 [0.000] [0.163] [0.091] [0.082] [0.020] 
      
2004 -0.869 -1.444 -1.003 -1.103 -0.935 
 [0.000] [0.061] [0.091] [0.102] [0.061] 
      
2005 -1.459 -1.923 -1.477 -1.508 -3.320 
 [0.000] [0.041] [0.091] [0.102] [0.000] 
      
2006 -1.985 -2.240 -1.816 -1.655 -2.865 
 [0.000] [0.020] [0.091] [0.082] [0.020] 
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2007 -2.554 -2.969 -2.574 -1.650 -0.513 
 [0.000] [0.020] [0.091] [0.082] [0.082] 
Post-Treatment Mean Effect -1.012 -1.579 -1.245 -1.429 -0.219 
Post-Treatment P-value 0 0.0408 0.0909 0.102 0.0204 
Pre-Treatment Mean Effect 9.47e-13 -0.0675 0.00121 -3.25e-11 1.06e-11 
Pre-Treatment P-value 1 0.857 0.909 0.898 0.980 
Pre-Treatment RMSPE: Texas 1.96e-10 0.151 0.0586 1.03e-09 1.18e-10 
Pre-Treatment RMSPE: Controls 0.309 0.498 1.152 0.590 0.979 

Standardized P-values reported in square brackets. Pre-treatment period: 1992-1997; Post-treatment period: 1998-2007; Treated group: Texas; Control Group: 49 
remaining states. The table shows synthetic control estimates of the treatment effect, i.e. the post-treatment (post-1997) difference between LFPR of the treatment 
group (Texas) and the synthetic-Texas for the constrained regression model that uses all pre-treatment lags of the outcome variable (LFPR) to construct the synthetic 
control for Texas. All analysis using synthetic control estimation is carried out using the “Synth” and “Synth Runner” packages (Abadie at al. 2014, Galiani and 
Quistorff, 2016). Sources: BLS-LAUS; Authors’ calculations.
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Table 5: Estimated Treatment Effects of Home Equity Access on LFPR from Alternative SCM 
Methods with Standardized P-Values 

 (1) (2) (3) (4) 
 Diff-in-Diff SCM Elastic Net Matrix Completion 
1998 -0.992 -0.605 -0.228 -0.661 
 [0.265] [0.102] [0.673] [0.224] 
     
1999 -1.273 -0.841 -0.416 -0.854 
 [0.122] [0.0408] [0.612] [0.245] 
     
2000 -1.605 -0.724 -0.728 -0.947 
 [0.0408] [0.184] [0.286] [0.122] 
     
2001 -1.622 -0.708 -1.041 -1.235 
 [0.102] [0.163] [0.224] [0.122] 
     
2002 -1.185 -0.377 -0.797 -0.865 
 [0.163] [0.469] [0.327] [0.327] 
     
2003 -1.084 -0.252 -0.829 -0.779 
 [0.184] [0.571] [0.306] [0.327] 
     
2004 -1.527 -0.706 -1.495 -1.103 
 [0.184] [0.245] [0.265] [0.286] 
     
2005 -2.094 -1.168 -2.023 -1.693 
 [0.102] [0.102] [0.122] [0.0408] 
     
2006 -2.516 -1.796 -2.481 -2.209 
 [0.0408] [0.0816] [0.0408] [0.0204] 
     
2007 -3.233 -2.432 -3.281 -2.849 
 [0.0408] [0.0408] [0.0204] [0.0408] 
Post-Treatment Mean Effect -1.713 -0.961 -1.332 -1.320 
Post-Treatment P-value 0.0816 0.0816 0.0816 0.0816 
Pre-Treatment Mean Effect 8.68e-15 -0.000237 2.37e-15 0.0000518 
Pre-Treatment P-value 0.816 0.898 0.776 0.918 
Pre-Treatment RMSPE: Texas 0.585 0.169 0.258 0.0738 
Pre-Treatment RMSPE: Controls 1.000 0.620 0.321 0.102 

Notes: Standardized P-values reported in square brackets. Pre-treatment period: 1980-1997; Post-treatment period: 
1998-2007; Treated group: Texas; Control Group: 49 remaining states. Using alternative synthetic control methods, 
the table shows estimates of the treatment effect, i.e. the post-treatment (post-1997) difference between LFPR of the 
treatment group (Texas) and the synthetic-Texas for the constrained regression model that uses all pre-treatment lags 
of the outcome variable (LFPR) to construct the synthetic control for Texas. Estimation carried out using software 
code for SCM with Elastic Net penalty available from Doudchenko and Imbens (2016) and DID/SCM-ADH/MC-
NNM code from https://github.com/susanathey/MCPanel. 
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Table 6: Estimated Treatment Effects of Home Equity Access on Real GDP Growth with 
Standardized P-Values 

 (1) (2) (3) (4) 
 Diff-in-Diff SCM Elastic Net Matrix Completion 
1998 -0.0213 2.414 1.783 0.950 
 [1] [0.184] [0.429] [0.633] 
     
1999 -0.734 0.0385 -1.024 -1.010 
 [0.714] [0.959] [0.490] [0.551] 
     
2000 1.699 1.651 0.630 0.986 
 [0.571] [0.388] [0.755] [0.694] 
     
2001 0.717 -0.148 -1.179 -0.623 
 [0.898] [0.918] [0.429] [0.857] 
     
2002 -2.562 -1.502 -1.938 -1.935 
 [0.306] [0.408] [0.245] [0.224] 
     
2003 -0.243 -0.685 -1.758 -1.662 
 [0.980] [0.571] [0.224] [0.388] 
     
2004 1.771 0.713 0.0606 0.625 
 [0.612] [0.735] [0.959] [0.735] 
     
2005 1.646 -0.922 -2.279 -1.485 
 [0.735] [0.694] [0.306] [0.490] 
     
2006 3.339 0.399 -0.211 0.711 
 [0.429] [0.694] [0.918] [0.653] 
     
2007 3.111 1.616 1.009 1.403 
 [0.510] [0.490] [0.612] [0.592] 
Post-Treatment Mean Effect 0.872 0.357 -0.491 -0.204 
Post-Treatment P-value 0.959 0.837 0.837 0.959 
Pre-Treatment Mean Effect 1.17e-16 0.337 3.70e-17 0.00304 
Pre-Treatment P-value 0.143 0.429 0.429 0.367 
Pre-Treatment RMSPE: Texas 3.741 1.218 1.017 1.386 
Pre-Treatment RMSPE: Controls 2.980 1.541 1.119 1.328 

Notes: Standardized P-values reported in square brackets. Pre-treatment period: 1980-1997; Post-treatment period: 
1998-2007; Treated group: Texas; Control Group: 49 remaining states. Using alternative synthetic control methods, 
the table shows estimates of the treatment effect, i.e. the post-treatment (post-1997) difference between LFPR of the 
treatment group (Texas) and the synthetic-Texas for the constrained regression model that uses all pre-treatment lags 
of the outcome variable (real GDP growth) to construct the synthetic control for Texas. Estimation carried out using 
software code for SCM with Elastic Net penalty available from Doudchenko and Imbens (2016) and DID/SCM-
ADH/MC-NNM code from https://github.com/susanathey/MCPanel. 
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Appendix 
Figure A1 

 
Figure A2 

 
Notes: Using March CPS-IPUMS data, the figure plots the weighted-average labor force participation rate for Texas 
and the remaining states for homeowners (top panel) and renters (bottom panel). Averages weighted by household 
weight variable in March CPS (hwtsupp). Sources: IPUMS-CPS; Authors’ calculations.  
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Figure A3 

 
Figure A4 

 
Note: Estimates plotted for column (3) of Table A2.  
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Figure A5 

 
The figure shows the estimated weights for different states in constructing the counterfactual for Texas (synthetic 
Texas) for the synthetic control estimates plotted in Figure 3A/3B and reported in column (1) of Table 4. Weights are 
chosen to minimize the mean squared prediction error (MSPE) between pre-treatment characteristics of the treatment 
group (Texas) and its synthetic control (synthetic Texas), using all pre-treatment lags of the outcome variable (LFPR). 
See notes to Figure 3A/3B and Table 4 for more details. All analysis using synthetic control estimation is carried out 
using “Synth” package and “Synth Runner” packages (Abadie at al. 2014, Galiani and Quistorff, 2016). Sources: 
BLS/LAUS; Authors’ calculations. 

Figure A6 

 
The figure plots the ratio of post-treatment (post-1997) RMSPE to the pre-treatment (pre-1997) RMSPE of the treated 
state (Texas) and other control states for the synthetic control estimates plotted in Figure 3A/3B and reported in column 
(1) of Table 4. RMSPE for each state is simply the square root of the mean squared difference between the LFPR of 
that state and the synthetic control for that state. The optimal weights for Texas are shown in Figure A4. The figure 
shows that the post-1997 difference in LFPR of Texas and its counterfactual (synthetic Texas) relative to the pre-1997 
difference is the largest of all states. Sources: BLS/LAUS; Authors’ calculations. 
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Figure A7 

 
The figure shows the estimated weights for different states in constructing the counterfactual for Texas (synthetic 
Texas) for the synthetic control estimates plotted in Figure 4A/4B. The figure is analogous to Figure A4, except that 
it plots estimated weights for SCM-ADH estimated effects of HELOC in the post-2003 period. See notes to Figure 
A4 for more details. 

Figure A8 

 
The figure plots the ratio of post-HELOC (2004-2007) RMSPE to the pre-HELOC (1998-2003) RMSPE of the 
treatment state (Texas) vs. other states for the synthetic control estimates plotted in Figure 4A/4B. The figure is 
analogous to Figure A6, except that it uses SCM-ADH estimates of HELOC in the post-2003 period. See notes to 
Figure A6 for more details. 
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Figure A9 

 

Figure A10 
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Figure A11 

 
Using grouped March CPS-IPUMS data for homeowners and renters, the figure plots the difference between LFPR 
paths of Texas and synthetic Texas for the constrained regression model that uses all pre-treatment lags of the outcome 
variable (LFPR) to construct the synthetic control for Texas. The figure shows that the pre-treatment path of LFPR of 
“synthetic Texas” is almost identical to that for Texas for both homeowners and renters, yet the post-treatment paths 
diverge significantly for homeowners and there is no clear trend for renters. The post-HEL mean effect is large for 
homeowners and relatively very small for renters. All analysis using synthetic control estimation is carried out using 
“Synth” package and “Synth Runner” packages Abadie at al. (2014), Galiani and Quistorff (2016). Data Sources: 
March CPS-IPUMS; Authors’ calculations. 
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Figure A12 

 

Figure A13 
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Figure A14 

 

Figure A15 

 
The figure plots the empirical CDF of MC-NNM estimates of 10-year (1998-2007) average effects across states and 
shows for MC-NNM estimates reported in Table 5 and Figure 10. 
Sources: March CPS-IPUMS; Authors’ calculations. 
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Figure A16 

 
Figure A17 
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Table A1: Time-varying Difference in Differences Estimates of Home Equity Access on LFPR 
using State-Level Data 

 
 (1) (2) (3) (4) 
1992 0.63127 0.64802 -0.38987  
 (0.229) (0.159) (0.732)  
     
1993 0.80334 0.69861 0.43466  
 (0.175) (0.142) (0.612)  
     
1994 0.76639 0.65835 0.21006  
 (0.181) (0.152) (0.574)  
     
1995 0.71015 0.72102 0.21365  
 (0.186) (0.169) (0.617)  
     
1996 0.29280 0.17418 -0.19346  
 (0.111) (0.121) (0.354)  
     
1998 -0.16751 -0.36178 -0.19037 -0.25411 
 (0.079) (0.107) (0.317) (0.494) 
     
1999 -0.48739 -0.46684 -0.47751 -0.29827 
 (0.118) (0.098) (0.164) (0.418) 
     
2000 -0.91417 -1.00487 -1.00895 -0.47769 
 (0.180) (0.163) (0.238) (0.492) 
     
2001 -0.94969 -0.52108 -0.72776 -0.13961 
 (0.213) (0.156) (0.207) (0.471) 
     
2002 -0.51978 -0.02806 -0.39678 0.27748 
 (0.214) (0.175) (0.168) (0.498) 
     
2003 -0.27963 0.47036 0.66696 1.58027 
 (0.177) (0.181) (0.283) (0.705) 
     
2004 -0.70975 -0.09650 -0.31473 0.73083 
 (0.195) (0.211) (0.206) (0.721) 
     
2005 -1.23453 -0.51133 -1.75868 -0.47843 
 (0.218) (0.222) (0.419) (1.272) 
     
2006 -1.68231 -0.92287 -1.77997 -0.32344 
 (0.227) (0.228) (0.629) (1.425) 
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2007 -2.48743 -1.42771 -2.10719 -0.30547 
 (0.269) (0.283) (0.414) (1.321) 
     
State Fixed Effects Yes Yes Yes Yes 
     
Year Fixed Effects Yes Yes Yes Yes 
     
Wage, Tax Rate, House Price No Yes Yes Yes 
     
Demographic Controls No Yes Yes Yes 
     
Division X Year Effects No No Yes Yes 
     
State X Linear Trend No No No Yes 
Observations 800 797 797 797 
AdjR-Sq 0.9434 0.9635 0.9693 0.9788 

Notes: Robust standard errors clustered by state are reported in parenthesis. Estimation is weighted by state population. 
Using state-level data from 1992-2007, the table reports coefficients on the interactions between the treatment dummy 
(an indicator for Texas) and dummies for each year from 1992 to 2007 from a regression of the LFPR on Texas X 
Year interactions, state effects, year effects (in column 1), and other controls, as indicated, in column 2-4. 1997 is the 
omitted base year, with its interaction with the treatment dummy normalized to zero, so that estimates should be 
interpreted as the difference between Texas and rest of U.S. relative to the difference in year 1997—the year just 
before the law change. See notes to Table 2 for details on additional covariates included in columns 2-4. Pre-treatment 
interactions are excluded in column 4 to identify state-specific linear time trends.  
Sources: BLS-LAUS; Authors’ calculations. 
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Table A2: Time-varying Difference in Differences Estimates of Home Equity Access on LFPR 
using County-Level Data 

 
 (1) (2) (3) (4) 
1992 1.49834 1.40140 0.64306  
 (0.298) (0.310) (0.383)  
     
1993 1.41529 1.28691 1.35349  
 (0.256) (0.267) (0.353)  
     
1994 1.50619 1.34538 0.86031  
 (0.203) (0.211) (0.323)  
     
1995 1.36632 1.23068 0.94277  
 (0.160) (0.166) (0.275)  
     
1996 0.55892 0.47353 -0.18982  
 (0.122) (0.119) (0.192)  
     
1998 0.35756 0.32645 -0.23817 -0.03937 
 (0.133) (0.144) (0.180) (0.256) 
     
1999 -0.20908 -0.27384 -0.89012 -0.45954 
 (0.154) (0.166) (0.234) (0.305) 
     
2000 -1.54467 -1.69093 -0.89118 -0.23172 
 (0.503) (0.511) (0.590) (0.621) 
     
2001 -1.56809 -1.73809 -1.05306 -0.16359 
 (0.490) (0.493) (0.592) (0.678) 
     
2002 -0.83465 -0.99346 -0.36736 0.75115 
 (0.529) (0.532) (0.660) (0.797) 
     
2003 -0.58730 -0.77286 -0.42593 0.92125 
 (0.661) (0.655) (0.777) (0.953) 
     
2004 -0.92318 -1.04746 -1.00133 0.57404 
 (0.694) (0.690) (0.804) (1.024) 
     
2005 -1.63405 -1.60630 -2.69430 -0.89124 
 (0.693) (0.694) (0.827) (1.093) 
     
2006 -2.48710 -2.33464 -2.64006 -0.60960 
 (0.679) (0.674) (0.839) (1.165) 
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2007 -3.13346 -2.96846 -3.24586 -0.98695 
 (0.671) (0.661) (0.856) (1.271) 
     
County Fixed Effects Yes Yes Yes Yes 
     
Year Fixed Effects Yes Yes Yes Yes 
     
House Price No Yes Yes Yes 
     
Division X Year Effects No No Yes Yes 
     
State X Linear Trend  No No No Yes 
Observations 46672 33717 33717 33717 
AdjR-Sq 0.8873 0.8931 0.9017 0.9069 

Notes: Robust standard errors clustered by county are reported in parenthesis. Estimation is weighted by county 
population. Using county-level data from 1992-2007, the table reports coefficients on the interactions between the 
treatment dummy (an indicator for Texas) and dummies for each year from 1992 to 2007 from a regression of the 
LFPR on Texas X Year interactions, state effects, year effects (in column 1), and other controls, as indicated, in 
column 2-4. 1997 is the omitted base year, with its interaction with the treatment dummy normalized to zero, so that 
estimates should be interpreted as the difference between Texas and rest of U.S. relative to the difference in year 
1997—the year just before the law change. Pre-treatment interactions are excluded in column 4 to identify state-
specific linear time trends.  
Sources: BLS-LAUS; Authors’ calculations. 
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Appendix B 

The Lagrangian for the consumer’s three-period problem can be written as: 

max
{𝑐𝑐1,𝑙𝑙1,𝑐𝑐2,𝑙𝑙2,𝑐𝑐3,𝐻𝐻1,𝐻𝐻2.𝜇𝜇1,𝜇𝜇2,𝜇𝜇3}

  𝐿𝐿 = 𝑢𝑢(𝑐𝑐1, 𝑙𝑙1) + 𝛿𝛿𝑢𝑢(𝑐𝑐2, 𝑙𝑙2) + 𝛿𝛿𝑢𝑢(𝑐𝑐3, 1) 

−𝜇𝜇1[𝑐𝑐1 − 𝑤𝑤(1 − 𝑙𝑙1) − 𝐸𝐸1 + 𝑟𝑟𝑟𝑟𝐻𝐻0 + 𝐴𝐴1] 

−𝜇𝜇2[𝑐𝑐2 − 𝐴𝐴1(1 + 𝑟𝑟) − 𝑤𝑤(1 − 𝑙𝑙2) − 𝐸𝐸2 + 𝑟𝑟𝐸𝐸1 + 𝑟𝑟𝑟𝑟𝐻𝐻0 + 𝐴𝐴2] 

−𝜇𝜇3[𝑐𝑐3 − 𝑃𝑃 − (𝐴𝐴1 + 𝐴𝐴2)(1 + 𝑟𝑟) − [(1 + 𝑟𝑟𝐻𝐻)3𝐻𝐻0 − 𝑟𝑟𝐻𝐻0] + (𝐸𝐸1 + 𝐸𝐸2)(1 + 𝑟𝑟)] 

−𝜇𝜇4[𝐸𝐸1 − 𝑎𝑎[(1 + 𝑟𝑟𝐻𝐻)𝐻𝐻0 − 𝑟𝑟𝐻𝐻0]] 

−𝜇𝜇5[𝐸𝐸2 − 𝑎𝑎[(1 + 𝑟𝑟𝐻𝐻)2𝐻𝐻0 − 𝑟𝑟𝐻𝐻0] + 𝐸𝐸1] 

𝜇𝜇1, 𝜇𝜇2, 𝜇𝜇3, 𝜇𝜇4, 𝜇𝜇5 are Kuhn-Tucker multipliers on the three budget constraints and the two 

collateral constraints, respectively. The first order conditions with respect to the seven choice 

variables are: 

𝑢𝑢𝑐𝑐1 − 𝜇𝜇1 = 0, 

𝑢𝑢𝑙𝑙1 − 𝜇𝜇1𝑤𝑤 = 0 

𝛿𝛿𝑢𝑢𝑐𝑐2 − 𝜇𝜇2 = 0, 

𝛿𝛿𝑢𝑢𝑙𝑙2 − 𝜇𝜇2𝑤𝑤 = 0 

𝛿𝛿2𝑢𝑢𝑐𝑐3 − 𝜇𝜇3 = 0 

𝜇𝜇1 − 𝜇𝜇2𝑟𝑟 − (1 + 𝑟𝑟)𝜇𝜇3 − 𝜇𝜇4 − 𝜇𝜇5 = 0 

𝜇𝜇2 − (1 + 𝑟𝑟)𝜇𝜇3 − 𝜇𝜇5 = 0 

Present-Biased Preferences 

To incorporate present-biased preferences, we use hyperbolic preferences in the form of the (𝛽𝛽, 𝛿𝛿)-

model (O’Donoghue and Rabin, 1999). Compared to the standard discounted utility model, 𝛽𝛽 < 1 

is a weight attached to future utility from the point of view of the decision moment. In period 1, 

the decision utility is 𝑈𝑈1 = 𝑢𝑢(𝑐𝑐1, 𝑙𝑙1) + 𝛽𝛽𝛿𝛿𝑢𝑢(𝑐𝑐2, 𝑙𝑙2) + 𝛽𝛽𝛿𝛿2𝑈𝑈(𝑐𝑐3, 1). In period 2, it is 𝑈𝑈2 =
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𝑢𝑢(𝑐𝑐2, 𝑙𝑙2) + 𝛽𝛽𝛿𝛿𝑈𝑈(𝑐𝑐3, 1). Unlike 𝛿𝛿, the parameter 𝛽𝛽 represents impatience that leads to decreasing 

discount rates between periods over time. It has been demonstrated that such preferences are time-

inconsistent: the period 1 decision of the second-period choice variables 𝑐𝑐2 and 𝑙𝑙2 will be revised 

in period 2. Laibson (1997) showed that present bias leads to consumption plans that are biased 

towards the present compared to time-consistent preferences. He showed that this mechanism may 

explain present myopic overconsumption and undersaving that are later regretted. 

With present-biased preferences and collateral constraints that do not bind, the decision is 

as before but with the addition of the weight 𝛽𝛽 on future utility. This leads to 

𝑐𝑐1
𝑁𝑁𝑁𝑁,𝛽𝛽 = 𝑢𝑢𝑐𝑐1

−1�(1 + 𝑟𝑟)2𝛽𝛽𝛿𝛿2𝑢𝑢𝑐𝑐3� > 𝑐𝑐1𝑁𝑁𝑁𝑁 where the 𝛽𝛽 superscript denotes the outcome with present-

biased preferences. The higher 𝑐𝑐1 (and 𝑙𝑙1) with present-biased preferences, due to 𝛽𝛽 < 1, implies 

lower first-period labor supply and higher 𝐸𝐸1. Let us defer the discussion of second-period choices 

to a later paragraph. 

With present-biased preferences and at least one non-binding collateral constraint 𝑐𝑐1
𝑁𝑁,𝛽𝛽 ≤

𝑐𝑐1
𝑁𝑁𝑁𝑁,𝛽𝛽, i.e. 𝑐𝑐1 decreases similarly as when preferences are not present-biased. However, with 

present-biased preferences, shutting down the intertemporal substitution channel through home 

equity extraction will have a stronger shifting effect, i.e., 𝑐𝑐1
𝑁𝑁𝑁𝑁,𝛽𝛽 − 𝑐𝑐1

𝑁𝑁𝑁𝑁,𝛽𝛽 > 𝑐𝑐1𝑁𝑁𝑁𝑁 − 𝑐𝑐1𝑁𝑁𝑁𝑁. To clearly 

illustrate this point, assume that savings were not allowed so that intertemporal substitution only 

can work through home equity extraction. In this case, not allowing such extraction (binding 

constraints) leads to 𝑐𝑐1
𝑁𝑁,𝛽𝛽 = 𝑐𝑐1𝑁𝑁 . However, when allowing unlimited extraction (non-binding 

constraints), we showed that 𝑐𝑐1
𝑁𝑁𝑁𝑁,𝛽𝛽 > 𝑐𝑐1𝑁𝑁𝑁𝑁. Thus, present-biased preferences enhance 

consumption-shifting from the future to period 1 through increasing 𝐸𝐸1 and thus lead to a stronger 

first-period labor supply decline.  
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In period 2, we can show that 𝑐𝑐2
𝑁𝑁𝑁𝑁,𝛽𝛽 = 𝑢𝑢𝑐𝑐2

−1�(1 + 𝑟𝑟)𝛽𝛽𝛿𝛿𝑢𝑢𝑐𝑐3�.
20 However, 𝑐𝑐2

𝑁𝑁𝑁𝑁,𝛽𝛽 ⋚ 𝑐𝑐2
𝑁𝑁,𝛽𝛽 , 𝑐𝑐2

𝑁𝑁𝑁𝑁,𝛽𝛽 ⋚

𝑐𝑐2𝑁𝑁𝑁𝑁, and 𝑐𝑐2
𝑁𝑁,𝛽𝛽 ⋚ 𝑐𝑐2𝑁𝑁. With present-biased preferences, it is ambiguous whether second-period 

consumption is higher with or without collateral constraints (as before). Introducing present-biased 

preferences also has ambiguous effects on both constrained and unconstrained second-period 

consumption. With 𝛽𝛽 < 1 the consumption shift from period 3 to period 2 when relaxing the 

collateral constraint is stronger due to impatience. However, so is the consumption shift from 

periods 3 and 2 to period 1, which increases 𝐸𝐸1. This shift leads to higher interest payments in 

periods 2 and 3 and payback of loans in period 3 which has to be financed by lower consumption 

in periods 2 and 3. Hence, present-biased preferences introduce an additional mechanism: 

overshifting of consumption to period 1 leads to higher loans that partly has to be financed with 

higher second-period labor supply. This mechanism is consistent with previous evidence on a 

positive relationship between mortgage debt and labor supply. It also adds ambiguity on the 

direction of the labor supply effect in period 2. 

 

 

                                                           
20 The second-period Lagrangian becomes: 

max
{𝑐𝑐2,𝑙𝑙2,𝑐𝑐3,𝐻𝐻2,𝜈𝜈1,𝜈𝜈2,𝜈𝜈3}

  𝐿𝐿 = 𝑢𝑢(𝑐𝑐2, 𝑙𝑙2) + 𝛽𝛽𝛿𝛿𝑢𝑢(𝑐𝑐3, 1) 

−𝜈𝜈1[𝑐𝑐2 − 𝐴𝐴1(1 + 𝑟𝑟) − 𝑤𝑤(1 − 𝑙𝑙2) − 𝐸𝐸2 + 𝑟𝑟𝐸𝐸1 + 𝑟𝑟𝑟𝑟𝐻𝐻0 + 𝐴𝐴2](𝐸𝐸1 + 𝐸𝐸2) 
−𝜈𝜈2[𝑐𝑐3 − 𝑃𝑃 − (𝐴𝐴1 + 𝐴𝐴2)(1 + 𝑟𝑟) − [(1 + 𝑟𝑟𝐻𝐻)3𝐻𝐻0 − 𝑟𝑟𝐻𝐻0] + (𝐸𝐸1 + 𝐸𝐸2)(1 + 𝑟𝑟)]  

−𝜈𝜈3[𝐸𝐸2 − 𝑎𝑎[(1 + 𝑟𝑟𝐻𝐻)𝐻𝐻0 − 𝑟𝑟𝐻𝐻0] + 𝐸𝐸1] 
The first order conditions with respect to the four choice variables are: 

𝑢𝑢𝑐𝑐2 − 𝜈𝜈1 = 0, 
𝑢𝑢𝑙𝑙2 − 𝜈𝜈1𝑤𝑤 = 0 
𝛽𝛽𝛿𝛿𝑢𝑢𝑐𝑐3 − 𝜈𝜈2 = 0 

𝜈𝜈1 − (1 + 𝑟𝑟)𝜈𝜈2 − 𝜈𝜈3 = 0 
With non-binding collateral constraints 𝜈𝜈3 = 0 and 𝑢𝑢𝑐𝑐2 = (1 + 𝑟𝑟)𝛽𝛽𝛿𝛿𝑢𝑢𝑐𝑐3 = 𝑢𝑢𝑙𝑙2 𝑤𝑤⁄ . 
 




