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1 Introduction

Modeling and forecasting asset return volatility is central to asset pricing, portfolio op-

timization and risk management. As volatility is an unobservable variable, its estimation

is a challenge for both researchers and practitioners. Popular approaches to modeling and

forecasting volatility include the (G)ARCH family of models proposed by Engle (1982)

and Bollerslev (1986), as well as stochastic volatility (SV) models originally proposed by

Taylor (1986). However, these models fail to capture certain stylized facts, including the

long-memory aspect of volatility.

The introduction and use of high-frequency data provided a framework for directly

measuring and capturing the main stylized facts of volatility. This enables us to calculate

a non-parametric measure of volatility, realized volatility or RV, given as the sum of the

intra-day squared returns. Early adoption of RV in modeling and forecasting was featured

in the work of Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold, and Labys

(2001, 2003); Andersen, Bollerslev, and Lange (1999); Andersen, Bollerslev, and Meddahi

(2005), O. E. Barndorff-Nielsen and Shephard (2002a, 2002b), and Meddahi (2002) inter

alios.

In these early studies, the implicit or explicit assumption was that the underlying

asset return process was best described by a continuous, diffusion process which can-

not generate the fat tails observed in the distribution of returns. For that reason, the

literature has advocated the use of jump diffusion processes to explain the behavior of

stocks returns (see Chernov, Gallant, Ghysels, & Tauchen, 2003; Christoffersen, Jacobs,

Ornthanalai, & Wang, 2008; Duan, Ritchken, & Sun, 2006; Eraker, Johannes, & Polson,

2003, among others). Recent developments using threshold and multi-power variation

estimators dissect the components of realized variance into its continuous and jump parts

(see, for instance, Aı̈t-Sahalia, 2004; O. E. Barndorff-Nielsen & Shephard, 2002a, 2004;

Corsi, Pirino, & Reno, 2010; Mancini, 2001, 2009). These estimators were further uti-

lized to build daily and intra-daily jump tests that are capable of detecting significant

jumps (see Andersen, Bollerslev, & Dobrev, 2007; Huang & Tauchen, 2005). Moreover,

the work of Aı̈t-Sahalia and Jacod (2012) provide a unified framework that allows the
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finer characterizations of jumps into finite and infinite activity components.

As a consequence of these developments, the literature has explored the use of jumps

to forecast RV. These studies have generally employed a Heterogeneous Autoregressive

(HAR) framework, as proposed by Müller et al. (1997), and subsequently popularized

by Corsi (2009) as the HAR-RV. For instance, Andersen, Bollerslev, and Diebold (2007)

introduce the HAR-RV-J and HAR-RV-CJ specifications that extend the HAR-RV model

using a daily measure of the jump component, and lagged values of the continuous

and discontinuous components. Whilst jumps based on the bipower variation (BPV)

of O. E. Barndorff-Nielsen and Shephard (2004) improve the out-of-sample performance,

the threshold bipower variation (TBPV) of Corsi et al. (2010) generates the largest out-

of-sample forecasting gains. The reason is that TBPV is a more robust estimator of the

integrated variance than the BPV, which tends to be upwardly biased.

Further developments were subsequently made using signed jumps. O. Barndorff-

Nielsen, Kinnebrock, and Shephard (2010) propose the estimation of realized semivari-

ances, which are constructed as the sum of the squares of the positive and negative returns

in a fixed interval of time. The difference between the two semivariances is the so-called

signed jumps, which are only present when the distribution of returns is asymmetric.

Several studies have considered the use of jumps and signed jumps to forecast realized

volatility. (See, for instance, Andersen, Bollerslev, & Diebold, 2007; Busch, Christensen,

& Nielsen, 2011; Corsi et al., 2010; Duong & Swanson, 2015; Forsberg & Ghysels, 2007;

Ghysels & Sohn, 2009; Giot & Laurent, 2007; Martens, Van Dijk, & De Pooter, 2009;

Patton & Sheppard, 2015; Prokopczuk, Symeonidis, & Wese Simen, 2016; Sévi, 2014, and

references therein.).

Whether we consider jumps or signed jumps, the literature generally provides mixed

evidence regarding their value added in forecasting. There are two strands here. The first

reports gains in forecasting from incorporating jumps. Andersen, Bollerslev, and Diebold

(2007) find that separating the jump component from volatility improves out-of-sample

volatility forecasts, and that jumps are closely related to macroeconomic news. Corsi et al.

(2010) show that the use of a threshold bipower estimator to obtain the jump component
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leads to greater out-of-sample performance. Patton and Sheppard (2015) argue that

volatility is strongly related to the volatility of past negative returns, and report that

negative jumps produce better out-of-sample performance. Duong and Swanson (2015)

study the importance of large and small jumps using higher-order power variations, and

find that small jumps are more important for forecasting volatility than large jumps.

In contrast to these positive findings, many researchers report that jumps do not

significantly improve volatility forecasts. For instance, Forsberg and Ghysels (2007),

Giot and Laurent (2007), Martens et al. (2009), Busch et al. (2011), Sévi (2014), and

Prokopczuk et al. (2016) consider the use of both total and signed jumps to forecast

future volatility. Their results suggest that the inclusion of jumps produces a better

fitting in-sample model, but does not generate any significant out-of-sample forecasting

gains.

This paper contributes to the literature in a number of ways. First, we address the

general question of whether incorporating information on jumps significantly improves

forecasts of the volatility of stock prices. We then study the gains in forecasting per-

formance obtained by dissecting jumps by activity (finite/infinite) and by sign (posi-

tive/negative). Finite jumps are generally linked to macroeconomic announcements and

so almost certainly play an important role, whereas infinite jumps may or may not be

relevant to financial decision making and asset allocation. To the best of our knowledge

only Duong and Swanson (2015) have attempted to use jump components in the form of

large and small jumps using higher-order power variations. Here, we have two reserva-

tions. First, as shown by Ghysels and Sohn (2009), this class of models works best with

volatility measures which are not based on squared returns, even though these measures

are ones researchers and practitioners care about the most. Second, a drawback in disen-

tangling jumps using higher-order power variation is the choice of the power value. High

power values can generate inaccurate estimates.1

1Aı̈t-Sahalia and Jacod (2014) show that, when using power values (p) below(above) 2, the limit
of the power variation converges to the continuous(jump) component, while for p = 2, we obtain the
RV estimator. In the absence of a clear choice for p, the user must arbitrarily select a value of p > 2.
For values of p close to 2, say p = 2.5, the jump component will retain some Brownian increments and
infinite jumps. Finite jumps are isolated when the value of p is sufficiently large, say p ≥ 4. However,
this method exaggerates big jumps and when they are used to predict volatility using linear regression,
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We isolate and dissect jumps by their level of activity and sign using recent theoret-

ical advances in the areas of jump testing and the characterization of continuous time

processes with jumps. We use the so-called ABD test in Andersen, Bollerslev, and Do-

brev (2007), to test for jumps in the asset returns process. The idea underlying this

method is to normalize the intra-day returns and then evaluate the normalized returns

using the Šidàk approach. A day is further classified as a jump day if at least one of

the intra-day returns exceeds the Šidàk based threshold.2,3 Additionally, we use the SFA

test in Aı̈t-Sahalia and Jacod (2011), to determine whether a day is driven mainly by

finite or infinite activity jumps.4 The SFA test has a null of finite activity. Hence, when

the null is rejected, we do not know whether the rejection is driven by the presence of

finite jumps and/or Brownian motion increments. To address this issue, we combine the

ABD and SFA tests, thereby identifying days with infinite jumps (when both tests are

rejected) and days with finite jumps (when only the ABD test is rejected). To obtain

signed jumps, we intersect the ABD and SFA test with an indicator function for the sign

of the jumps.

It is well established in the literature that the characterization of jumps varies by sam-

pling frequency. At higher frequencies, say 5 seconds, infinite jumps are more abundant

than at lower frequencies, say 300 seconds. However, the presence of market micro-

structure at higher frequencies may cast doubt on this characterization since we do not

observe the true price. Instead, we observe a contaminated price, so making the re-

alized volatility a very noisy estimator (see Bandi & Russell, 2006; Zhang, Mykland,

& Aı̈t-Sahalia, 2005). In order to correctly capture the characterization of jumps at

higher frequencies, we use the work of Jacod, Li, Mykland, Podolskij, and Vetter (2009)

and Christensen, Oomen, and Podolskij (2014) to estimate noise-robust estimators of

the future volatility is either over or under-estimated depending on the sign of the coefficient.
2For other examples of work in this area see Aı̈t-Sahalia and Jacod (2009b), O. E. Barndorff-Nielsen

and Shephard (2006), Jiang and Oomen (2008), Huang and Tauchen (2005). For a survey of jump tests,
see Dumitru and Urga (2012) and the references therein.

3We choose the ABD test after testing the power of several jump tests under an alpha stable DGP
that allows for infinite jumps (alpha-stable process).

4Using individual stocks, Aı̈t-Sahalia and Jacod (2012, 2014) show that the degree of jump activity
at higher-frequencies is in the range of [1.4, 1.6], which implies the existence of both finite and infinite
jumps activity.
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quadratic and integrated variation. We introduce two methodological innovations. First,

we modify the ABD test to obtain a version that is noise-robust. Second, we use a

two-time scale realized semivariance, which is a modification of the work of Zhang et al.

(2005).

Our application uses high-frequency, TickData data from 2000 to 2016. We forecast

the volatility of the SPY and 20 stocks, which vary by sector and volume, using extended

HAR-RV models. We consider different frequencies (5, 60, and 300 seconds), forecast

horizons (1, 5, 22, and 66 days) and the use of noise-robust measures. We find evidence

that jumps characterize the structure of both SPY and the 20 individual stocks under

examination.

Our results suggest improvements in performance, in both in- and out-of-sample, when

jumps are used as additional predictors in the extended HAR-RV models. We focus on

the mean squared prediction error (MSPE) results from real time, pseudo out-of-sample

forecasts using rolling window regressions. The classification of jumps by activity shows

that infinite jumps are relatively more important at shorter horizons, whereas finite jumps

are superior at longer horizons. We find little difference in jump asymmetry. Incorporat-

ing signed finite and infinite jumps generates significantly better real-time forecasts than

the HAR-RV model, although no single extended model dominates.

The use of noise-robust estimators substantially improves the out-of-sample perfor-

mance of our extended HAR-RV models, especially at very high frequencies. The gains

are greater for the individual stocks than for SPY. However, the greatest gains in real-time

forecast performance are generally found using returns sampled at 300 seconds intervals,

rather than at 5 or 60 second intervals. At the 300 second frequency, the forecast-

ing performance of standard and noise-robust measures is similar. In line with Ghysels

and Sinko (2011), robust-to-noise measures only improve the forecasting performance at

higher frequencies when market micro-structure noise is important.

Finally, since no single model dominates in terms of forecasting performance, we show

that simple model averaging generally results in economically significant out-of-sample

forecasting performance. These gains are documented using both the SPY and individual
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stocks across horizons. The gains are greatest using returns sampled every 300 seconds.

We assess the predictive accuracy of the model averaging using the pair-wise DM test

of Diebold and Mariano (2002). The results show that the model averaging produces

significantly smaller MSPEs, even at long horizons of 66 days / three months.

The remainder of the paper is as follows: Section 2 introduces the theoretical back-

ground. Section 3 describes the estimation of jumps and their decomposition. Robust-

to-noise volatility measures are also discussed. Section 4 highlights the forecasting frame-

work, and sets out the forecasting models and forecast evaluation criteria. The data used

in this study are described in Section 5, where the incidence of various types of jumps

are detailed. The real-time forecasting results are discussed in Section 6, where the gains

from adding the different types of jumps to extended HAR-RV models are documented. A

range of model averaging results are presented in Section 7. Finally, Section 8 summarizes

the paper and presents out conclusions.

2 Theoretical Background

LetX be an Itô-semimartingale defined on some filtered probability space (Ω,F , (Ft)t≥0,P),

with the following representation

Xt = X0 +

∫ t

0

asds+

∫ t

0

σsdWs + Jt, t ∈ [0, T ] (1)

where a is a locally bounded and predictable drift term, σ is the spot volatility, being

both adapted and càdlàg. In the current context, Xt is the log of the price of an equity or

an equity index. Additionally, W is a standard Brownian motion and Jt is a pure jump

process given by JFt + J It , where JFt has finite activity and J It has infinite activity and is

a Lévy process.

JFt :=

∫ t

0

∫
|x|≥ε

xµ(dx, ds) =
Nt∑
l=1

γl (2)

J It :=

∫ t

0

∫
|x|≤ε

x(µ(dx, ds)− ν(dx)ds), (3)
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where µ is a Poisson random measure with compensator ν, and ε > 0 is an arbitrary

number. Nt is a Poisson process with constant intensity λ, jumping at times denoted

by (τl)l=1,...,Nt , and where each γl denotes the size of the jump occurring at τl. All γl

are i.i.d. and independent from Nt. For more details on Itô-semi-martingale processes,

see Aı̈t-Sahalia and Jacod (2014) and the references therein.

Since volatility is a latent variable, realized measures are often employed to give

consistent estimates of the quadratic variation (QV) of the process on a fixed interval

[0, T ], using high-frequency data. The quadratic variation of the price process is defined

as

QVt =

∫ t

0

σ2
sds︸ ︷︷ ︸

Integrated Variation (IV)

+
∑

0<s≤t

(∆sX)2

︸ ︷︷ ︸
Contribution from Jumps

(4)

where ∆sX := Xs − Xs− 6= 0, if and only if X jumps at time s.
∑

0<s≤t(∆sX)2 is the

total number of discontinuities on the interval [0, t]. A widely used realized measure is

the realized volatility (RV), which converges in probability to the quadratic variation as

∆n → 0. The RV is defined as

RVt =

b1/∆nc∑
i=1

(∆n
iX)2 p−→ QVt, (5)

where b·c is the integer part. The log-returns are defined as ∆n
iX = Xi∆n−X(i−1)∆n , i =

1, 2, . . . , 1/∆n(≡M), where ∆n is the equally-spaced sampling interval. To separate the

integrated variation from the jump part, we use the threshold bipower variation (TBPV)

– which is a modified version of the so-called bipower variation of O. E. Barndorff-Nielsen

and Shephard (2004) – proposed by Corsi et al. (2010). The TBPV, which is robust to

jumps in both the stochastic limit and the asymptotic distribution, is defined as follows

TBPVt = µ−2
1

M

M − 1

b1/∆nc∑
i=2

|∆n
iX|1{(∆n

i X)2≤ϑi}|∆n
i−1X|1{(∆n

i−1X)2≤ϑi−1}
p−→
∫ t

0

σ2
sds, (6)

where µ1 ≡ E|Z| =
√

2/π, Z ∼ N (0, 1), M/(M − 1) is a small sample correction,
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ϑ = c2
ϑV̂t, c

2
ϑ = 3, and V̂t is an auxiliary estimator of σ2.

O. Barndorff-Nielsen et al. (2010) introduce the realized semivariance (RSV) estima-

tor. The RSV captures the variation of only positive or negative returns and is defined

as

RSV +
t =

b1/∆nc∑
i=1

(∆n
iX)21{∆n

i X>0}
p−→ 1

2

∫ t

0

σ2
sds+

∑
0<s≤t

(∆Xs)
21{∆Xs>0} (7)

RSV −t =

b1/∆nc∑
i=1

(∆n
iX)21{∆n

i X<0}
p−→ 1

2

∫ t

0

σ2
sds+

∑
0<s≤t

(∆Xs)
21{∆Xs<0}. (8)

O. Barndorff-Nielsen et al. (2010) show that the difference of the two semivariances is

equal to the signed jumps, obtained by subtracting the positive and negative semivari-

ances; i.e. the halves integrated variations canceled out.

3 Realized Jumps

3.1 Jump test statistics

To identify days with significant jumps, we employ the intra-day jump test proposed

by Andersen, Bollerslev, and Dobrev (2007), and select the highest intra-daily value of

the test within a day. If this value is greater than the cut-off, we classify the day as a

jump day. The jump test is defined as

ABDt,i = |∆n
iX|1{|∆n

i X|>Φ−1
1−β/2

√
∆nTBPVt}, (9)

where Φ−1
(·) is the inverse of the standard normal cumulative distribution function, β =

1− (1− α)∆n is the Šidàk approach, and α is the significance level. The indicator for a

day with a significant jumps is estimated as follows

Kt =


1, if max

(
|∆n
i X|√

∆nTBPVt

)
> Φ−1

1−β/2

0, otherwise.

(10)
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3.2 Infinite/Finite Jump Test

To identify whether the days with significant jumps are mainly driven by infinite or

finite activity, we employ the SFAt test proposed by Aı̈t-Sahalia and Jacod (2011). The

SFAt test statistic, with k = 2, and p = 4 is defined as

SFAt =
B(p, υn, k∆n)t
B(p, υn,∆n)t

p−→


kp/2−1, if Xt has finitely many jumps on [0, t]

1, if Xt has infinitely many jumps on [0, t]

(11)

(SFAt − kp/2−1)√
V̂t

L−→ N (0, 1), (12)

where B(p, υn,∆n) =
∑b1/∆nc

i=1 |∆n
iX|p1{|∆n

i X≤υn}, υn = %∆$
n , % > 0, $ ∈ (0, 1/2). The

SFAt test statistic uses truncated returns to eliminate large jumps. The variance of the

test is defined as

V̂t = N(p, k)
B(2p, υn,∆n)t

(B(p, υn,∆n)t)2
(13)

N(p, k) =
1

m2p

(
kp/2(1 + k)m2p + kp−2(k − 1)m2

p − 2kp/2−1mk,p

)
mp ≡ E[|Z|p] =

2p/2

Γ(1/2)
Γ

(
p+ 1

2

)
mk,p = E[|Z|p|Z +

√
k + 1U |p]

=
2p

Γ(1/2)
(k − 1)p/2Γ

(
1 + r

2

)2

F2,1

(
−p

2
;
p+ 1

2
;
1

2
;
−1

k − 1

)
.

For more details and settings, see Aı̈t-Sahalia and Jacod (2011). The null hypothesis

is that jumps are finite. The indicator Ct =

{
SFAt < kp/2−1 − Φ−1

1−α

√
V̂t

}
is used to

identify days with finite/infinite activity jumps. Φ−1
(·) is the standard normal quantile,

and α is the significance level.

3.3 Jumps Classification and Identification

The partitioning of variation due to continuous and jump components can be done

by taking the difference between measures of realized volatility and integrated variation.
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Andersen, Bollerslev, and Diebold (2007) use this approach to construct measures of the

variation of daily jump and continuous component. In this paper, we follow their method

to disentangle the jump from the diffusive component, where we extend this methodology

to construct measures for infinite and finite jumps. Following Andersen, Bollerslev, and

Diebold (2007) we disentangle the jump and continuous component as follows

Ĉt = RVt · Kt + TBPVt · (1−Kt)

Ĵt = max(RVt − TBPVt, 0) · Kt.
(14)

The intersection of the ABD and the SFA tests enable jumps to be classified by activity.

Infinite jumps are obtained when both tests reject their null of no jumps and finite activity

of jumps, respectively. When only the ABD test rejects its null, we classify this jump as

a finite jump. This new jump classification is outlined as follows

ÎJ t =


Ĵt, if Kt = 1 ∩ Ct = 1

0, otherwise.

(15)

F̂ J t =


Ĵt, if Kt = 1 ∩ Ct = 0

0, otherwise.

(16)

We classify a jump day as an infinite jump day when the ABD and SFA test respectively

reject the nulls of no jumps and finite activity jumps. In the same fashion, we classify a

day as finite activity jump day when the ABD test identifies a jump and the SFA test

fails to reject its null of finite activity jumps.

O. Barndorff-Nielsen et al. (2010) show that by taking the difference between the

positive and negative semivariance it is possible to obtain the so-called signed jumps,

∆Rt = RSV +
t −RSV −t

p−→ (∆Xs)
21{∆Xs>0} − (∆Xs)

21{∆Xs<0}. (17)

Using the intersection of the ABD and SF tests along with an indicator function high-

lighting the sign of the signed jumps provide a further classification of jump by activity
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and sign as follows

Ĵ+
t = ∆Rt1{∆Rt>0∩Kt=1}, Ĵ−t = ∆Rt1{∆Rt<0∩Kt=1}

F̂ J
+

t = ∆Rt1{∆Rt>0∩Kt=1∩Ct=0}, F̂ J
−
t = ∆Rt1{∆Rt<0∩Kt=1∩Ct=0}

ÎJ
+

t = ∆Rt1{∆Rt>0∩Kt=1∩Ct=1}, ÎJ
−
t = ∆Rt1{∆Rt<0∩Kt=1∩Ct=1}.

(18)

3.4 Contribution of Jumps to Quadratic Variation

Following Aı̈t-Sahalia and Jacod (2012), we estimate the relative contribution of jumps

to the quadratic variation (Q) as follows

CV (%) =
ĈT

ĈT + ĴT
× 100, JV (%) =

ĴT

ĈT + ĴT
× 100. (19)

We can also obtain the relative contribution of the jumps dissected by activity and sign

to the total jump component as follows

%JV + =
Ĵ+
T

ĴT
×%JV, %JV − =

Ĵ−T
ĴT
×%JV

%FJV = F̂ JT
ĴT
×%JV, %IJV = ÎJT

ĴT
×%JV

%FJV + = F̂ J
+

T

ĴT
×%FJV, %FJV − = F̂ J

−
T

ĴT
×%FJV

%IJV + = ÎJ
+

T

ĴT
×%IJV, %IJV − = ÎJ

−
T

ĴT
×%IJV,

(20)

where xT =
∑T

t=1 = xt and x = {Ĉt, Ĵt, F̂ J t, ÎJ t, Ĵ+
t , Ĵ

−
t , F̂ J

+

t , F̂ J
−
t , ÎJ

+

t , ÎJ
−
t }. Using

those measures, we may obtain a better understanding of the contribution of jumps to

quadratic variation, as well as the composition of these jumps in terms of level of activity

and sign. For instance, our prior is that infinite jumps are more important at higher

frequencies than at lower frequencies. In addition, using these measures, we can also see

if the level of activity and sign of the jumps matter in modeling and forecasting volatility.

3.5 Market Microstructure Noise

We now examine how the market micro-structure distorts the estimation of realized

volatility measures, and hence the identification of jumps. From Table 4, we know that
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the contribution of jumps varies across frequencies, and as ∆n → 0 the level of market

micro-structure noise increases. As a result, standard realized volatility measures tend to

be biased upward, distorting the jump test statistics.5 Robust-to-noise volatility measures

should be used instead. We assume that the observed prices are contaminated by additive,

micro structure noise

Yt = Xt + ut, (21)

where Xt is the process described in equation (1), ut is an i.i.d. noise process with

E[ut] = 0 and E[u2
t ] = ω2, and ut |= Xt. Jacod et al. (2009) and Christensen et al. (2014)

propose pre-averaging the returns and using the following robust-to-noise estimators for

the realized variance and the bi power variation in this case.6

RV ∗t =
M

M − L+ 2

1

LψL2

M−L+1∑
i=0

|∆n
iX
∗|2 − ψL1 ω̂

2
AC

θ2ψL2
(22)

BPV ∗t =
M

M − 2L+ 2

1

LψL2 µ
2
1

M−2L+1∑
i=0

|∆n
iX
∗||∆n

i+LX
∗| − ψL1 ω̂

2
AC

θ2ψL2
, (23)

where L = θ
√
M + o(M−1/4), M/(M − L + 2), and M/(M − 2 + 2) are small sample

corrections,7 while
ψL1 ω̂

2
AC

θ2ψL2
is a bias-correction to remove a leftover effect of noise that is

not eliminated by the pre-averaging estimator. The unknown noise variance ω2 can be

approximated using either the Bandi and Russell (2006) estimator ω̂2
RV = 1

2

∑M
i=1(∆N

i Y )2,

or Oomen (2006) estimator ω̂2
AC = − 1

M−1

∑M
i=2 ∆N

i−1Y∆N
i Y . In this paper we use the

latter procedure.

The pre-averaging returns are estimated as follows

∆n
iX
∗ =

L−1∑
j=1

g

(
j

L

)
∆n
i+jY, (24)

5Since E[|∆n
i |] ≤ E[|∆n

i + ηi|] where ηi = ui − ui−1, (see Hansen & Lunde, 2006; Huang & Tauchen,
2005, for more details).

6We also tried the threshold bipower variation measure proposed by Christensen, Hounyo, and Podol-
skij (2018) but the differences were negligible.

7We try θ = {1/3, 1} following Christensen et al. (2014).
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where g = (x ∧ 1− x), and ∆N
i Y = Yi∆n − Y(i−1)∆n . The constants associated with g are

defined as

ψL1 = L
L∑
j=1

[
g

(
j

L

)
− g

(
j − 1

L

)]2

, ψL2 =
1

L

L−1∑
j=1

g2

(
j

L

)
. (25)

For estimating the up and downside volatilities in a noise-robust framework, we modify

the two-time scale realized variance of Zhang et al. (2005) to obtain the two-time scale

realized semivariance as follows.

Proposition 1 (Robust semivariances). Assume that the true log-price process is con-

taminated by an additive noise, so that we only observe a log-price as in (21); then the

two-time scale realized semivariances are described as

TSRV +
t =

1

Mk

b1/∆nc−k+1∑
i=1

(Y(k+i∆n)−Yi∆n)21{(Y(k+i∆n)−Yi∆n )>0}−
M

M

b1/∆nc∑
i=1

(∆n
i Y )21{∆n

i Y >0}

p−→ 1

2

∫ t

0

σ2
sds+

∑
0<s≤t

(∆Xs)
21{∆Xs>0} (26)

TSRV −t =
1

Mk

b1/∆nc−k+1∑
i=1

(Y(k+i∆n)−Yi∆n)21{(Y(k+i∆n)−Yi∆n )<0}−
M

M

b1/∆nc∑
i=1

(∆n
i Y )21{∆n

i Y <0}

p−→ 1

2

∫ t

0

σ2
sds+

∑
0<s≤t

(∆Xs)
21{∆Xs<0}, (27)

where M = (M−k+1)/k, Mk = Nk
N/k
≈ k, where Nk represents the number of observations

after using the scale k. k =
[
cM2/3

]
, and c is the bandwidth stated as in Zhang et al.

(2005).

Table 1 presents the finite sample performance exercise using the simulation design

with finite jumps described in appendix B. The entries in Table 1 are MSEs. The results

indicate that the realized semivariance is very sensitive to market micro-structure noise,

resulting in large MSEs even when the level of noise-to-signal ratio is moderate. On the

other hand, the performance of the two-scale realized semivariance is excellent when the

noise-to-signal ratio is moderate, even though the performance deteriorates a little when
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both the frequency and noise-to-signal level are higher.

3.5.1 Robust-to-Noise Jump Test Statistics

The ABD test in Andersen, Bollerslev, and Dobrev (2007) can be modified to give a

test that is robust to the presence of additive market microstructure noise. This is done

by replacing raw returns by pre-averaged returns, and using the pre-averaged bipower

variation without the bias correction. The bias correction is not required since the re-

maining noise from the pre-averaged returns and pre-averaged bipower variation cancel

out.

Proposition 2 (Robust ABD test). Assume that the observed log-price process is (21);

then using robust measures of volatility and pre-averaged returns we obtain the following

daily-jump test statistics

K∗t =


1, if max

(
|∆n
i X
∗|√

∆∗nBV
∗
t

)
> Φ−1

1−β/2

0, otherwise

(28)

BV ∗t =
M

M − 2L+ 2

1

LψL2 µ
2
1

M−2L+1∑
i=0

|∆n
iX
∗||∆n

i+LX
∗|.

Finally, we employ the methodology outlined in Section 3.3 to decompose the noise-

robust RV into its continuous and discontinuous components, and dissect the jump com-

ponent by activity (finite/infinite) and sign (positive/negative).

Table 2 shows the results of a small Monte Carlo exercise that explores the size

and power of the two versions of the ABD test under finite and infinite jumps, with a

moderate and higher level of noise-to-signal ratio. Our simulation design is described in

Appendix B. As expected the size and power of the noise-robust ABD test is much closer

to the theoretical values when the magnitude of noise is greater, i.e. at higher frequencies.

At lower frequencies the ABD test provides more accurate size and power. When testing

for infinite jumps in the presence of moderate noise levels, the power of both tests is

good, but the power of the standard ABD test is badly affected by noise-to-signal levels.
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4 Forecasting Models and Methodology

The basic HAR-RV in Corsi (2009) models current and future RV as a linear function

of lagged values of the RV at the daily, weekly and monthly levels. Our forecasting

models extend the HAR-RV models by including finite and infinite jumps and signed

jumps. Andersen, Bollerslev, and Diebold (2007) and Corsi et al. (2010) originally added

jumps to the HAR-RV model. Our baseline HAR-RV model is

RVt,t+h = β0 + βdRVt + βwRVt−5,t + βmRVt−22,t + εt+h, (29)

where RVt,t+h = h−1[RVt+1 + RVt+2 + · · ·+ RVt+h] aggregates information between {t+

1, t+ h} in order to present the coefficients values at the same scale with daily measures.

h is an integer specifying the forecasting horizon. Our benchmark HAR-RV takes the

original specification proposed by Corsi (2009) where future RV depends only on its

lagged values. We extend the HAR-RV framework using a family of nine different HAR

models.

Total Jumps Models:

RVt,t+h = β0 + βCdĈt + βCwĈt−5,t + βCmĈt−22,t + βJd Ĵt + βJw Ĵt−5,t + βJm Ĵt−22,t + εt,t+h

RVt,t+h = β0 + βCdĈt + βCwĈt−5,t + βCmĈt−22,t + βJ+
d
Ĵ+
t + βJ+

w
Ĵ+
t−5,t + βJ+

m
Ĵ+
t−22,t + εt,t+h

RVt,t+h = β0 + βCdĈt + βCwĈt−5,t + βCmĈt−22,t + βJ−d
Ĵ−t + βJ−w Ĵ

−
t−5,t + βJ−m Ĵ

−
t−22,t + εt,t+h

Finite Jumps Models:

RVt,t+h = β0 + βCdĈt + βCwĈt−5,t + βCmĈt−22,t + βFJdF̂ J t + βFJw F̂ J t−5,t + βFJmF̂ J t−22,t + εt,t+h

RVt,t+h = β0 + βCdĈt + βCwĈt−5,t + βCmĈt−22,t + βFJ+
d
F̂ J

+

t + βFJ+
w
F̂ J

+

t−5,t + βFJ+
m
F̂ J

+

t−22,t + εt,t+h

RVt,t+h = β0 + βCdĈt + βCwĈt−5,t + βCmĈt−22,t + βFJ−d
F̂ J
−
t + βFJ−w F̂ J

−
t−5,t + βFJ−mF̂ J

−
t−22,t + εt,t+h

Infinite Jumps Models:

RVt,t+h = β0 + βCdĈt + βCwĈt−5,t + βCmĈt−22,t + βIJd ÎJ t + βIJw ÎJ t−5,t + βIJm ÎJ t−22,t + εt,t+h

RVt,t+h = β0 + βCdĈt + βCwĈt−5,t + βCmĈt−22,t + βIJ+
d
ÎJ

+

t + βIJ+
w
ÎJ

+

t−5,t + βIJ+
m
ÎJ

+

t−22,t + εt,t+h

RVt,t+h = β0 + βCdĈt + βCwĈt−5,t + βCmĈt−22,t + βIJ−d
ÎJ
−
t + βIJ−w ÎJ

−
t−5,t + βIJ−m ÎJ

−
t−22,t + εt,t+h
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The continuous and jump components in the models were estimated as in equation (14).

We respectively estimate finite and infinite jumps as in equation (16) and (15), while the

estimation of signed jump activity follows from equation (18). We also have an additional

nine models where all the right-hand volatility measures are the noise-robust measures

discussed in Section 3.5.

4.1 Forecast Evaluation

Our primary interest is in the performance of real-time, pseudo out-of-sample fore-

casts. We consider horizons h = 1, 5, , 22, and 66, corresponding to one day, one week,

one month, and one quarter ahead. We also use rolling window regressions of size 1000,

or approximately four years, to estimate the models.

The out-of-sample performance is evaluated using the mean squared prediction error

(MSPE) loss function and the out-of-sample R2. The MSPE has been shown to be robust

to noise in the proxy for volatility in Patton (2011).

MSPE = S−1

S∑
s=1

(
RVs − R̂V s

)2

, (30)

where RVs and R̂V s are respectively the estimated and forecasted RVt,t+h for the pseudo

out-of-sample period. S = T −RW refers to the total number of out-of-sample observa-

tions and RW is the rolling window size. Additionally, we carry out pair-wise DM test,

(see Diebold & Mariano, 2002), which have a null of equal predictive ability based on the

MSPE loss criterion. We use robust HAC standard errors for the DM tests. The Model

Confidence Set (MCS) procedure of Hansen, Lunde, and Nason (2011) is used to identify

the subset of models that significantly outperform the others. We denote by M the set

of all the HAR models. We define dh,i,j = L(RV t,t+h, R̂V
(i)

t,t+h) − L(RV t,t+h, R̂V
(j)

t,t+h) as

the difference in the loss of model i and model j. We use a quadratic loss function as L.

Finally, we construct the average loss difference, d̄h,i,j, and define the test statistics as

17



follows

thi,j =
d̄h,i,j√

V̂ar(d̄h,i,j)
, ∀i, j ∈M (31)

The MCS test statistics are given by TM = max
i,j∈M

|thi,j| and have the null hypothesis, H0

that all models have the same expected loss. The alternative hypotheses is that there

is some model i with a MSPE that is greater than the MSPE’s of all the other models

j ∈ M\i. When the null is rejected the worst performing model is eliminated, and

this process is iterated until no further model can be eliminated. The surviving models

denoted byMMCS are retained with a confidence level α = 0.05. We implement the MCS

via a block bootstrap using a block length of 10 days and 5000 bootstrap replications.8

5 Data

We use the SPDR S&P 500 ETF (SPY) and 20 individual stocks constituents of the

S&P 500 for the period 2000 – 2016, comprising 4277 trading days. The individual stocks

were chosen based on their jump activity index, allowing for different levels of both finite

and infinite jumps. The data source is TickData database. We employ the previous tick

interpolation for aggregating down the data to the required sampling frequency.9 Table 3

reports the descriptive statistics and average volume of the stocks under examination.

This table highlights the heterogeneous composition of our dataset, with great variation

in the trading volume, yet still active enough to avoid higher levels of price staleness,

and different levels of volatility which ensures a great variety of jump activity across our

stocks.

8We tried different block sizes representing 20 and 50 days, and we also use 10000 and 20000 bootstrap
replications, however, the results are qualitatively similar.

9TickData provides pre-cleaned and filtered price series which usually undergo a series of algorithmic
data filters to identify bad prints, decimal errors, transposition errors and other data irregularities. These
filters take advantage of the fact that since we are not producing data in real time, we have the capacity
to look at the tick following a suspected bad tick before we decide whether or not the tick is valid. The
filters are proprietary and are based upon recent tick volatility, moving standard deviation windows, and
time day. For a more detailed explanation refer to TickData. We use the previous tick interpolation
following Hansen and Lunde (2006) who suggest that in applications using quadratic variation, the
interpolation method leads to realized volatilities with value 0.
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As this paper studies the role of the different types of jumps and the effect of market

micro-structure noise in forecasting realized volatility, we sample our data every 5, 60,

and 300 seconds. The choice of 300 seconds is standard in high-frequency finance studies,

and is motivated by the trade-off between bias and variance (see Aı̈t-Sahalia, Mykland, &

Zhang, 2005; Bandi & Russell, 2006; Zhang et al., 2005, for a more detailed discussion).

Table 4 reports the contribution of different types of jumps to the quadratic varia-

tion across frequencies estimated as in equation (19). The contribution of total jumps

decreases as the sampling interval increases, i.e. from 5 to 300 seconds. This means that

aggregating the data reduces the identification of jumps, since longer intervals of time

make the data look more continuous. This is why the continuous component in the SPY

increases from 56% to 85% as the sampling interval increases from 5 to 300 seconds. At

higher frequencies, most jumps in SPY are infinite activity jumps. For the 20 individual

stocks, the share of infinite jumps is somewhat higher. The contribution of infinite jumps

decreases in line with the total jumps as the sampling interval increases, suggesting that

data aggregation reduces the estimated contribution of infinite jumps faster than that of

finite jumps. This result is expected since, at longer sampling intervals, the small vari-

ations that characterize infinite jumps are closer to Brownian increments (or completely

disappear).

Figure 1 plots the RV of the SPY and three individual stocks – AMZN, HD and KO –

over our sample period 2000 to 2016. Days with jumps are shown in red and other days

in blue, so the contribution of the jump component of RV can be identified. Note the

different scales of the time series plots. The highest spikes in volatility occur around the

dot-com and sub-prime crises (shaded areas), but many other spikes in volatility do not

always coincide across stocks, so there is considerable heterogeneity in the level and timing

of volatility. The autocorrelation function of the SPY 5 (left panel) and 300 (right panel)

second realized measures are shown in Figure 2. In the right panel the autocorrelation of

the continuous component start at 0.6, fall steady for about two months and then levels

out at about 0.3, whereas the autocorrelation of the jump component are low throughout.

By contrast, the left panel indicates that the RV is more persistence than the continuous
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component, and also infinite jumps present signs of persistence throughout the 70 days

period. The greater level of persistence in the RV is due to infinite jumps, and implies

that jumps at higher frequencies might contain predictive information power.

The index of jump activity, β̂IJA, measures the activity of small increments. The

estimated values are in line up with the estimated contribution of finite and infinite jump

components. At higher frequencies, the index is 1.45 for both the SPY and the average

of the stocks. This implies that infinite jumps determine most of the jump component

at higher frequencies. At 300 seconds, the estimated β̂IJA is 0.78 for SPY and 0.72 for

the 20 stocks, suggesting that both types of jumps are present, but finite jumps are more

important. Finally, little evidence of asymmetry is observed in signed jumps, even though

the percentage contribution of positive jumps is marginally higher. Similarly, we find that

positive/negative jumps are marginally more abundant in finite/infinite jumps.

Table 5 presents the correlations of the realized measures for SPY in the entries

below the diagonal, and the average correlations for the 20 stocks in the entries above

the diagonal. We find that jumps, finite jumps, and infinite jumps are relatively highly

correlated with both RVt and Ct. However, the level of correlation is somewhat greater

for the average of the stocks. Interestingly, correlations of finite and infinite jumps with

total jumps are 0.939 and 0.293, respectively. The Correlation between the signed jumps

is very low, around 0.05. The difference levels of correlations observed in jumps dissected

by sign and activity suggest that there is novel information in this decomposition that

might help in predicting future realized volatility.

6 Empirical Findings

6.1 RV Prediction: SPY and Individual Stocks

Table 6–9 presents the in-sample coefficients, as well as the in- and out-of-sample

R2, of the baseline HAR-RV and extended HAR-RV models for SPY for four forecast

horizons – h = 1 (day), h = 5 (week), h = 22 (month), h = 66 (three months) using

returns sampled every 300 seconds. The baseline HAR-RV is presented in Table 6, while
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the HAR-CJ (jumps), HAR-CFJ (finite jumps), and the HAR-CIJ (infinite jumps) models

are presented in the subsequent tables. The significance of the coefficients is evaluated

using Newey-West HAC robust standard errors, allowing for serial correlation of up to

order 5 (h = 1), 10 (h = 5), 44 (h = 22), and 132 (h = 66), since the random error term

in the models is serially correlated at least up to order h− 1. We follow Andersen et al.

(1999) and Patton and Sheppard (2015) and estimate R2
(oos) as 1 minus the ratio of the

out-of-sample models-based MSPE to the out-of-sample MSPE from a forecast including

only a constant.

Table 6 reports the baseline HAR-RV estimates, which are all significant at even

h = 66, confirming the existence of highly persistent volatility dependence. The mag-

nitude of the daily and weekly coefficients decrease as we lengthen the forecast horizon.

The magnitude of the monthly coefficient changes little with the horizons, although its

relatively importance increases at longer horizons.10

Table 7–9 report the coefficients for various specifications including the total, finite

and infinite jumps, respectively. The results are in line with those found in the previous

literature: substantial persistence, with the sum of the coefficients on the daily, weekly

and monthly integrated variation (continuous volatility) measures βCd + βCw + βCm close

to 1. The importance of recent information also decreases with the forecast horizon. The

daily and weekly continuous estimates are significant for all of the specifications, across

the four forecast horizons, suggesting that the daily and weekly continuous components

are important to forecast future volatility. On the other hand, the estimated coefficient

on the monthly continuous volatility is generally insignificant in Tables 7 (jumps) and 8

(finite jumps), even though the estimates increase with the forecast horizons. However, in

the specification using infinite jumps (Table 9), the estimated coefficients on the monthly

continuous component is highly significant and quite large for all horizons.

If the level of activity of the jumps does not matter when forecasting volatility, then

we should expect that βJ = βFJ = βIJ . We easily reject this restriction for βJ = βIJ .

Looking at signed jumps, we also reject the hypothesis that βJ = βJ+ = βJ− at the 5%

10These results have been well-documented in the literature, (see Andersen, Bollerslev, & Diebold,
2007; Corsi, 2009; Corsi et al., 2010, among others).
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for all horizons. This means that dissecting jumps by their nature and sign do help to

predict future volatility. Of course, we ideally need to show that the real-time, pseudo

out-of-sample results from HAR type models with finite and infinite jumps, and/or signed

and unsigned jumps generate significantly better out-of-sample forecasts using a standard

loss function such as the MSPE.

Negative/positive jumps usually increase/decrease the level of future volatility, whereas

unsigned total jumps also reduce the estimation of future volatility. These results are line

with those of Andersen, Bollerslev, and Diebold (2007) and Patton and Sheppard (2015).

Turning to the nature of jumps we find that infinite jumps increase the level of future

volatility, whereas finite jumps act like unsigned jumps reducing the value of the expected

future volatility. The daily jump component is potentially important in predicting future

volatility when total and positive jumps are used. On the other hand, the weekly and

monthly jump components are more important for positive and negative jumps, respec-

tively. Infinite jump estimates are usually insignificant, except for the daily negative and

weekly positive infinite jumps which are significant across horizons.

The in-sample R-squared, R2
(in), suggests that incorporating jumps as predictors re-

sults in a better fit for our models outperforming the baseline HAR-RV across the four

horizons we have examined. The out-of-sample R-squared, R2
(oos), shows that all models

based on finite and total jumps outperform the baseline model across horizons, whereas

specifications based on infinite jumps outperform the HAR-RV for 1- and 5-day ahead

predictions. Taking the nature of jumps results, the R2
(oos) indicates that specifications

based on total and finite jumps perform better at longer horizons. For instance, the

HAR-CFJ+ has an increment of 11.89% and 3.82% in terms of R2
(oos) for h = 5 and

h = 22, respectively. Infinite jump specifications perform best at shorter horizons only.

For instance, adding infinite jumps at h = 1 and h = 5 result in an improvement in the

R2
(oos) of 16% and 5%, whilst at h = 22 the R2

(oos) reduces by 8%, suggesting that the

information power of infinite jumps is only important at shorter horizons. Infinite jumps

contribute very little to the QV(%) at lower frequencies, yet its information is very rich.

However, the use of moving averages to construct the measures for h > 1 presumably
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reduces the importance of infinite jumps at longer horizons.

6.2 Rolling Regression Forecast Results

Tables 10 and 11 report the relative MSPE and the Model Confidence Set (MCS) for

SPY and our selection of 20 stocks. Average results for all the 20 stocks are tabulated

in Table 11. The results are based on real-time, pseudo out-of-sample rolling regression

forecast using a 1000 day window. We use the Diebold and Mariano (DM, 2002) test to

identify extended HAR jump models with significantly lower MSPE’s than the benchmark

HAR-RV models. We identify the set of retained models – models with MSPE’s that are

not significantly higher than the MSPE of other retained models – using the Model

Confidence Set (MCS) procedure of Hansen et al. (2011).

The bottom row of the two tables are the MSPEs for the baseline HAR-RV model using

standard or raw volatility measures. The remaining MSPE entries are relative MSPEs,

i.e. the ratio of the proposed models to the MSPE of the benchmark model. Values below

one generate better forecasts than baseline HAR-RV, and vice versa for values above one.

The entries in the top panel are based on forecasts using standard volatility measures as

explanatory variables; the bottom panel entries using robust-to-noise volatility measures.

The MCS entries in Table 10 are the MCS rankings while entries in Table 11 are the

number of times (out of 20 stocks) each extended HAR model is retained in the MCS.

Taking the SPY results (Table 10) first, the starred MSPE entries and the bold MCS

rank entries indicate that many of the extended HAR models with jumps forecast as well

as, or better, than the baseline HAR-RV models. Based on the DM and MCS tests, the

MSPEs of these models are similar or lower than the MSPEs of the baseline models.

Infinite jumps are more persistent than finite jumps at high frequencies than at low

frequencies, and tend to only improve the one-day ahead out-of-sample forecasts.

Comparing the results from Panel A and B, we find that on average the MSPE’s of

the noise-robust based forecasts are about 1/12th smaller than the standard forecasts

at the 5 and 60 second frequencies. As expected, models using 5 and 60 second raw

volatility measures are usually excluded for the MCS at longer horizons, confirming the
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importance of accounting for micro-structure noise at higher frequencies (Ghysels and

Sinko (2011)). Nevertheless, the MSPE numbers for the baseline HAR-RV model in the

final row of Table 10 suggest that models using 300-second volatility measures tend to

forecast better than models using 5 or 60-second returns, irrespective of whether standard

or robust-to-noise volatility measures are used.

Turning now to Table 11, recall that the MSPE entries are averages across the 20

stocks, while the MCS entries are counts of the number of times (out of 20 stocks) each

baseline HAR-RV or extended HAR model with jumps is retained in the MCS. The

relative MSPE entries are more clustered around one than in Table 10.11 In addition,

many of the MCS entries, including entries for the baseline HAR-RV models, are close

to or equal to 20. Thus, the improvement in the forecasting performance of extended

models with jumps is less obvious for the 20 stocks, than it is for the SPY index.

At the 5 and 60-second frequencies, the MCS procedure tends to exclude more models

using standard than noise-robust volatility measures, again confirming the results that

the latter work best at finer frequencies. We also find evidence that infinite jumps based

on noise-robust estimators are more important for forecasting long-horizon volatility at

higher frequencies.

Nevertheless, consistent with the results for SPY, we show that forecasts using 300

second volatility measures are generally better than the forecast using 5 or 60 second

measures, and that the relative MSPEs of the raw volatility measures tend to be somewhat

lower than the relative MSPEs of the robust-to-noise measures. Since no single extended

HAR model with jumps dominates the others, and given that the gains obtained are small

at the aggregate level, we now examine whether or not model averaging does generate

forecasting gains.

7 The Gains from Model Averaging

So far we have shown that a variety of HAR type volatility models that account for the

nature and sign of jumps generate significant improvements in forecasting performance.

11The entries are also less dispersed, in part because we are reporting averages.
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However, there is little to choose when it comes to selecting the best approach, since no

specification consistently outperforms the other models across horizons and frequencies.

This section employs four simple approaches to assigning model averaging weights.

We experimented using more complicated averaging procedures, but the results were sim-

ilar to those we present below. The aim of model averaging is to capture the different

information embedded in the various jump specifications, hopefully producing an ensem-

ble model that outperforms the benchmark HAR-RV model and, more importantly, the

best single jump model. Our approaches follow the literature closely (see, for instance

Aiolfi, Capistrán, & Timmermann, 2011; Aiolfi & Timmermann, 2006; Bates & Granger,

1969; Elliott & Timmermann, 2016, and references therein). We present model averaging

results for the four sets of weights tabulated below – weights minimizing the estimated

variance of the prediction errors, inverse MSPE weights, inverse MSPE rank weights and

equal weights. In the first three cases, the weights are recalculated every time a new set

of rolling window forecasts are generated, and we prune the set of models under consid-

eration by only averaging models which are retained in the Model Confidence Set.

Weight Formula Models

Min. Prediction Error Variance wht = argmin
w

w′Σ̂h
tw s.t. ι′w = 1 MCS

Inverse MSPE wht,i =
(MSPEht,i)

−1∑
i∈MJ

(MSPEht,i)
−1 MCS

Inverse Rank wht,i =
(Rankht,i)

−1∑
i∈MJ

(Rankht,i)
−1 MCS

Equal Weights whi,t = 1
N

All

Note: Σ̂h
t is the estimated, rolling window variance-covariance matrix of the set of

MCS retained horizon h volatility forecasting models at time t. ι is a vector of ones
representing each retained model. MSPEht,i and Rankht,i are the rolling window MSPEs
and MCS Ranks for the MCS retained horizon h forecasting model at time t. Finally,
N represents all the jump specifications used in this study.

We present model averaging results for SPY and four individual stocks that were

chosen based on their level of jump activity. All the stocks have estimated Blumenthal-

Getoor indices in the range 0 to 1, so their returns include both types of jump activity

with finite jumps dominating. BA and KO with jump activity of 0.58 and 0.91 are the

extreme cases.
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Table 12 reports the relative MSPE for the four different model averaging approaches,

the baseline model, and the best jump specification for each stock and horizon. Model

averages with significantly lower MSPEs than the baseline HAR-RV models are denoted

by the superscript ∗. Model averages with lower MSPEs than the baseline HAR-RV and

the best extended HAR model are shown in bold, while the superscript ∗∗ denotes model

averages with significantly lower MSPEs than the extended HAR models. We find that

the four model averaging schemes generate forecasts that significantly outperform the

benchmark model in most cases, for the four forecast horizons examined – h = 1 (one

day), h = 5 (one week), h = 22 (one month) and h = 66 (three months). For example,

in the case of SPY with 300 second returns, the one-week relative MSPE of the best

extended HAR model is 0.753 versus 0.693 to 0.715 for the four model averages.

The largest MSPE reductions are generally found at the one-week horizons, followed

by the one-month horizon. We present model averaging results for SPY using 60 and 300

second returns. The SPY model averaging forecasts using 300 second returns dominate

the forecasts using 60 second returns, generating lower MSPEs. The mode averaging

forecasts using 300 second SPY returns also dominate the unreported model averaging

based on 5 second returns. This result also holds for the other stocks. The 300 second

model average MSPEs are mostly lower than the MSPEs of both the baseline HAR-RV

and the best extended HAR type model with jumps. In about a quarter of the cases,

the 300 second model average forecasts significantly outperform the best extended HAR

type model with jumps.

Model averaging forecasts from the extended HAR models generally result in lower

MSPE forecasts, although no single model averaging procedure stands out. Pruning

the models by only averaging the model in MCS, appears to help and the weights from

minimizing the prediction error variance do not predominate the other weighting schemes.

Overall, pruning dominated models and the use of inverse MSPE weights or inverse MSPE

ranks for model averaging work quite well.
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8 Conclusion

We examine the gains in forecasting the volatility of equity prices by decomposing

jumps by activity (finite/infinite) and by sign (positive/negative) using high-frequency

data for SPY and 20 individual stocks, which vary sector and volume. Our key findings

are as follows. Quadratic variation contains a significant jump component, even at the

300-second frequency. The contribution of infinite jumps is greater than that of finite

jumps at low frequencies. However, at the 300-second frequency, the jumps are mainly

finite jumps.

Extending the HAR-RV style models with a variety of jump measures helps to predict

future volatility, generating significant in- and out-of-sample improvements for both SPY

and the 20 individual stocks. We find that noise-robust estimators substantially improve

the estimation of future volatility at higher frequencies. However, since the level of market

micro-structure declines as the sampling interval increases, the forecasting advantage of

the noise-robust jump volatility also declines.

The real time, pseudo out-of-sample forecasting results using a rolling window suggest

that the lowest MSPE forecasts are obtained using the returns sampled every 300 seconds,

as opposed to every 5 or 60 seconds. This result holds for the horizons examined –one day,

one week, one month and three months– irrespective of whether robust-to-noise volatility

measures were, or were not, used. In terms of MSPEs, there is little to choose between

standard or robust-to-noise measure at this frequency.

Finally, since no single forecasting model dominates, we investigated whether various

model averaging procedures generated further real-time forecasting gains. We report

results for simple model averaging procedures, since the forecasting performance of more

complicated model averaging procedures were similar. In some cases, we pruned the set

of models using the model confidence set procedure of Hansen et al. (2011) to eliminate

dominated models. We find that simple model averaging procedures generally result in

significant gains in forecasting performance vis-a-vis the single best forecasting model,

which in turn outperforms our HAR-RV baseline. For example, model averaged results

using equal weights, or the rather ad hoc, normalized inverse MSPE weights in Bates and
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Granger (1969) perform as well as the model averaged results where the weights minimize

the variance of the prediction error. We hope that these findings will prove helpful for

practitioners.
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A The Index of Jump Activity, βIJA

The index of jump activity denoted by βIJA serves as an indicator of the activity of an

Itô semi-martingale processes, a rich class of stochastic processes which include diffusion,

jump diffusion, Lévy process, and others. The Blumenthal-Getoor index which is defined

as

βIJA := inf

{
r ≥ 0;

∑
0<s≤t

|∆sX|r <∞

}
. (A.1)

The values of the βIJA range between 0 to 2. As shown by (Aı̈t-Sahalia & Jacod, 2012,

figure 7) when the βIJA is close to zero, the jumps resemble Poisson jumps,12 and when

the βIJA is close to two, the increments resemble a Brownian motion. Values in between

will behave as a combination of finite and infinite activity. Aı̈t-Sahalia and Jacod (2009a),

Jing, Kong, Liu, and Mykland (2012), and Todorov and Tauchen (2010) provide evidence

using individual stocks at higher frequencies, that the βIJA ∈ [1.4, 1.6]. This indicates

that both finite and infinite jumps are present in the data.

We follow Jing et al. (2012) and estimate the jump activity index as follows,

β̂IJA = β̂T (t,$, φ, φ′) =: log
U($,φ, g)nt
U($,φ′, g)nt

/
log

(
φ′

φ

)
, (A.2)

where

U($,φ, g)nt =:

b1/∆nc∑
i=1

g

(
∆n
iX

φ∆$
n

)
(A.3)

g(x) =


c−1|x|p, |x| ≤ a

c−1
(
ap + pap−1

2(b−a)
((b− a)2 − (|x| − b)2)

)
, a ≤ |x| ≤ b

1, |x| ≥ b,

(A.4)

where c = ap + pap−1(b−a)/2 and the following conditions must be satisfied: 0 < φ < φ′,

$ ∈ (0, 1/2), 0 < a < b. We set $ = 1/5, φ′ = 2φ, p = 6, a = 6/5, b = 7/5. This

12Gamma and Variance gamma processes also generate βIJA values of 0.
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estimator is a more efficient version of the jump activity index proposed by Aı̈t-Sahalia

and Jacod (2009a). Aı̈t-Sahalia and Jacod (2009a)’s estimator uses only large increments

ending with a very small effective sample size. By contrast. Jing et al. (2012)’s approach

reduces the measurement error by using both small and large increments of the data. For

more details, see Jing et al. (2012).

B Simulation Design

Our simulation is based on the Heston model augmented with finite and infinite jumps

as follows,

dXt =
√
νtdWt + θLdLt

dνt = κ(ην − νt)dt+ γνν
1/2
t dBt,

(B.1)

where E[dWt, dBt] = ρdt, and Lt is either a finite activity compound Poisson process or

an infinite activity Cauchy process (a β-stable process with β = 1).

We take κ = 5, ην = 1/16, ρ = −0.5 following Aı̈t-Sahalia and Jacod (2011). The

compound Poisson process has intensity λ, and jumps that are uniformly distributed on

ν
1/2
t

√
m([−2,−1] ∪ [1, 2]). We set m = 0.7 and λ = 0.5 such that there is on average one

jump every two days. When jumps are of finite activity we set θL = 1, while for infinite

jumps we set θL = 0.5. We follow O. E. Barndorff-Nielsen, Hansen, Lunde, and Shephard

(2008) and simulate the market micro-structure as follows

ut,i ∼ N (0, ω2
t )

w2
t = ξ2

∫ t

0

νsds.
(B.2)

This design enables the variance of the noise to be constant throughout the day, though

changing from day to day. This noise is then added to the Xt,i price process to obtain the

time series of actual high-frequency simulate prices Yt,i = Xt,i+ut,i. ξ is the noise-to-signal

ratio used to simulate the market micro-structure noise.

Finally, we simulate T = 50 days, consisting of 6.5 hours of trading per second,

i.e., n = 23400. We then sample the data every 5, 60, and 300 seconds. We use 3000
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replications providing a total of 150,000 days, and the jump tests are evaluated at the

5% level.

C Tables and Figures

Table 1: Two-Scale Realized Semivariance – MSE Finite Sample Performance

5s 60s 300s 5s 60s 300s
ξ = 0.01 ξ = 0.1

RSV + 9.680 0.067 0.003 963.848 6.718 0.277
RSV − 9.704 0.069 0.004 964.483 6.779 0.290
TSRV + 0.001 0.001 0.002 0.113 0.014 0.008
TSRV − 0.001 0.001 0.002 0.112 0.015 0.009

Note: The table reports the finite sample mean squared er-
rors of the realized semivariances and two-scale realized semi-
variances in the simulation exercise described in Appendix B
with finite activity compound Poisson jumps. ξ represents
the noise-to-signal ratio used to simulate the market micro-
structure noise.

Table 2: Noise-Robust ABD Test – Size and Power

5s 60s 300s 5s 60s 300s
ξ = 0.01 ξ = 0.1

Size

ABD Noise-robust 0.070 0.041 0.015 0.049 0.011 0.006
ABD 0.030 0.055 0.128 0.029 0.045 0.082

Power – Compound Poisson (Finite Jumps)

ABD Noise-robust 1.000 0.991 0.703 0.963 0.905 0.458
ABD 0.985 0.989 0.986 0.337 0.484 0.586

Power – Cauchy Process (Infinite Jumps)

ABD Noise-robust 0.948 0.784 0.410 0.670 0.572 0.342
ABD 0.732 0.774 0.764 0.361 0.415 0.463

Note: This table report the empirical size and power of the ABD test
of Andersen, Bollerslev, and Dobrev (2007) and our modified version
that is noise-robust. The theoretical size is α = 0.05, and the Monte
Carlo settings and models are described in Appendix B. ξ represents the
noise-to-signal ratio used to simulate the market micro-structure noise.
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Table 3: Summary Daily Statistics for RV and Trading Volume

Stock / RV Average
Index Mean Std. Dev. P25 Median P75 Min Max Volume

SPY 1.037 2.259 0.240 0.485 1.030 0.013 59.863 98.972
AMZN 8.284 14.846 1.834 3.344 7.209 0.225 229.244 6.462
BA 2.812 3.900 0.908 1.602 3.232 0.086 55.570 4.347
BFB 1.920 4.861 0.752 1.152 1.912 0.074 240.414 0.875
CAT 3.239 4.889 1.116 1.873 3.486 0.185 105.908 5.826
CHL 2.052 3.608 0.511 1.063 2.245 0.082 65.965 1.078
COST 3.087 4.728 0.790 1.497 3.295 0.126 83.955 3.460
CVX 2.113 4.181 0.752 1.263 2.244 0.112 137.535 7.188
DOW 3.976 7.353 1.176 2.039 4.251 0.146 216.937 6.556
EXC 2.635 4.791 0.875 1.429 2.643 0.158 130.875 3.917
GILD 6.308 10.469 1.570 2.839 5.889 0.198 187.286 17.587
GS 4.186 11.978 1.062 1.757 3.683 0.153 400.346 5.731
HD 3.121 4.938 0.877 1.573 3.475 0.156 103.477 9.746
JNJ 1.385 3.482 0.408 0.692 1.488 0.076 179.016 8.559
JPM 4.615 10.848 0.869 1.770 4.466 0.114 252.877 20.538
KO 1.561 2.535 0.494 0.836 1.630 0.046 58.808 13.275
OKE 3.402 8.590 0.954 1.668 3.469 0.160 411.055 1.289
SO 1.744 2.773 0.555 0.937 1.947 0.092 97.041 3.203
UPS 1.649 4.140 0.526 0.851 1.673 0.081 216.939 3.045
WMT 2.045 3.277 0.580 0.976 2.117 0.090 71.485 10.569

Note: The table reports the summary RV statistics and average daily trading volume for SPY and the 20
stocks listed. The sample period is Jan 3, 2000 to Dec 30, 2016, which consists of 4277 trading days, RV
is estimated using 300 second returns. P25 and P75 are the 25th and 75th percentiles of daily RV. Average
daily trading volume is reported in millions.
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Table 4: Contribution of Jumps to Total QV

SPY Avg. Stocks AMZN BA BFB CAT CHL COST CVX
5s 60s 300s 5s 60s 300s 300s 300s 300s 300s 300s 300s 300s

%CV 56.798 88.474 85.725 32.399 65.612 70.198 73.426 72.586 55.143 74.899 62.182 69.525 80.277
%JV 43.202 11.526 14.275 67.601 34.388 29.802 26.574 27.414 44.857 25.101 37.818 30.475 19.723

%JV+ 21.847 6.450 8.257 33.946 16.535 14.992 15.208 14.362 22.474 12.574 17.978 15.963 9.849
%JV− 21.355 5.075 6.018 33.653 17.853 14.810 11.366 13.052 22.383 12.527 19.841 14.512 9.874

%FJV 10.602 10.419 14.156 33.394 32.417 29.597 26.410 27.228 44.649 24.852 37.314 30.357 19.576
%IJV 32.600 1.106 0.118 34.207 1.971 0.205 0.165 0.187 0.208 0.249 0.504 0.118 0.147

%FJV+ 5.584 5.941 8.219 17.028 15.539 14.883 15.127 14.248 22.380 12.465 17.681 15.892 9.766
%FJV− 5.017 4.478 5.937 16.366 16.878 14.714 11.283 12.979 22.269 12.387 19.633 14.465 9.810
%IJV+ 16.263 0.509 0.038 16.918 0.996 0.108 0.081 0.114 0.093 0.110 0.296 0.070 0.083
%IJV− 16.338 0.597 0.080 17.287 0.975 0.096 0.084 0.073 0.115 0.140 0.208 0.047 0.064

β̂IJA 1.454 1.056 0.778 1.455 1.040 0.723 0.461 0.576 0.802 0.621 0.763 0.697 0.748

DOW EXC GILD GS HD JNJ JPM KO OKE PG SO UPS WMT
300s 300s 300s 300s 300s 300s 300s 300s 300s 300s 300s 300s 300s

%CV 68.881 69.488 63.203 75.979 73.935 70.611 76.122 74.208 59.168 71.147 70.791 68.292 74.102
%JV 31.119 30.512 36.797 24.021 26.065 29.389 23.878 25.792 40.832 28.853 29.209 31.708 25.898

%JV+ 15.029 15.506 18.911 12.311 13.875 12.919 12.926 12.498 19.059 15.416 14.486 15.477 13.013
%JV− 16.090 15.006 17.886 11.710 12.190 16.470 10.952 13.294 21.773 13.438 14.723 16.231 12.885

%FJV 30.849 30.400 36.458 23.941 25.940 29.279 23.822 25.519 40.602 28.777 28.642 31.527 25.802
%IJV 0.270 0.112 0.339 0.080 0.125 0.111 0.056 0.273 0.230 0.076 0.568 0.181 0.096

%FJV+ 14.830 15.434 18.670 12.297 13.843 12.832 12.899 12.341 18.982 15.365 14.274 15.373 12.968
%FJV− 16.019 14.966 17.788 11.644 12.097 16.447 10.923 13.178 21.620 13.413 14.368 16.154 12.834
%IJV+ 0.198 0.072 0.241 0.014 0.032 0.088 0.028 0.157 0.077 0.051 0.213 0.104 0.045
%IJV− 0.071 0.040 0.098 0.066 0.093 0.023 0.029 0.116 0.153 0.025 0.355 0.077 0.051

β̂IJA 0.579 0.725 0.522 0.610 0.665 0.971 0.606 0.913 0.645 0.955 0.878 0.895 0.824

Note: The table reports the contribution of the different jump measures to the total quadratic variation (QV) across
frequencies for SPY and the average of all the stocks using 5 second, 60 second and 300 second returns. The results for the
individual stocks were estimated using 300 second returns. β̂IJA is the estimated Blumenthal-Getoor index of jump activity
(Appendix A).

Table 5: Correlations of Volatility Measures
Twenty stock average correlations above, and SPY below, main diagonal

RVt Ct Jt FJt IJt J+
t FJ+

t IJ+
t J−t FJ−t IJ−t

RVt 0.796 0.614 0.441 0.352 0.364 0.228 0.272 −0.491 −0.375 −0.273

Ct 0.713 0.564 0.433 0.301 0.354 0.263 0.242 −0.386 −0.312 −0.191

Jt 0.403 0.281 0.798 0.467 0.359 0.270 0.174 −0.513 −0.454 −0.174

FJt 0.301 0.217 0.939 −0.057 0.285 0.355 −0.044 −0.488 −0.561 0.041

IJt 0.332 0.212 0.293 −0.054 0.179 −0.048 0.400 −0.141 0.040 −0.448

J+
t 0.683 0.555 0.431 0.370 0.222 0.817 0.464 0.057 0.043 0.047

FJ+
t 0.413 0.605 0.495 0.536 −0.051 0.704 −0.037 0.043 0.033 0.036

IJ+
t 0.544 0.169 0.105 −0.021 0.365 0.695 −0.020 0.043 0.032 0.035

J−t −0.309 −0.334 −0.112 −0.085 −0.090 0.068 0.050 0.045 0.867 0.385

FJ−t −0.176 −0.288 −0.107 −0.135 0.064 0.038 0.028 0.025 0.799 −0.031

IJ−t −0.269 −0.157 −0.038 0.046 −0.238 0.061 0.044 0.040 0.556 −0.056

Note: The table reports the correlation of the different realized measures estimated at the 300 second frequency. The entries below the diagonal are
for SPY, and entries above the diagonal are average correlations for the 20 stocks.
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Table 6: HAR-RV Benchmark

RVt,t+h = β0 + βdRVt + βwRVt−5,t + βmRVt−22,t + εt,t+h

HAR-RV
h=1 h=5 h=22 h=66

β0 0.095∗ 0.148∗∗ 0.288∗∗∗ 0.527∗∗∗

βd 0.246∗∗ 0.184∗∗∗ 0.103∗∗∗ 0.061∗∗∗

βw 0.422∗∗∗ 0.347∗∗∗ 0.322∗∗∗ 0.200∗∗∗

βm 0.238∗∗ 0.323∗∗∗ 0.290∗∗∗ 0.215∗∗∗

R2
(in) 0.512 0.629 0.562 0.337

R2
(oos) 0.443 0.673 0.707 0.470

MSPE 3.102 1.322 0.944 1.262

Note: The table reports the OLS coefficient estimates

and in- and out-of-sample R-squared for HAR-RV forecast-

ing regressions for SPY RV at the daily (h = 1), weekly

(h = 5), monthly (h = 22) and quarterly (h = 66) hori-

zons. The RV measures are calculated using 300 second

returns. The significant of the coefficients are based on

Newey-West HAC standard errors, allowing for serial cor-

relation up to order 5 (h = 1), 10 (h = 5), 44 (h = 22),

and 132 (h = 66), respectively. The superscripts ∗,∗∗, and
∗∗∗ indicate that the coefficient is statistically significant at

the 10%, 5% or 1% level respectively. The out-of-sample

R-squared, R2
oos, is calculated as one minus the ratio of

the out-of-sample model-based MSPE to the out-of-sample

MSPE from a forecast that includes only a constant.
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Table 7: HAR type regressions using unsigned and signed total jumps

HAR-CJ: RVt,t+h = β0 + βCd
Ct + βCwCt−5,t + βCmCt−22,t + βJdJt + βJwJt−5,t + βJmJt−22,t + εt,t+h

HAR-CJ+: RVt,t+h = β0 + βCd
Ct + βCwCt−5,t + βCmCt−22,t + β

J+
d
J+
t + βJwJ

+
t−5,t + βJmJ

+
t−22,t + εt,t+h

HAR-CJ−: RVt,t+h = β0 + βCd
Ct + βCwCt−5,t + βCmCt−22,t + β

J−
d
J−t + βJwJ

−
t−5,t + βJmJ

−
t−22,t + εt,t+h

HAR-CJ HAR-CJ+ HAR-CJ−

h=1 h=5 h=22 h=66 h=1 h=5 h=22 h=66 h=1 h=5 h=22 h=66

β0 0.106∗∗∗ 0.148∗∗∗ 0.271∗∗∗ 0.527∗∗∗ 0.069 0.130∗∗ 0.291∗∗∗ 0.524∗∗∗ 0.003 −0.016 0.126∗∗ 0.431∗∗∗

βCd 0.502∗∗∗ 0.340∗∗∗ 0.188∗∗∗ 0.109∗∗∗ 0.371∗∗∗ 0.232∗∗∗ 0.148∗∗∗ 0.086∗∗∗ 0.246∗∗ 0.184∗∗∗ 0.107∗∗∗ 0.063∗∗∗

βCw 0.398∗∗ 0.382∗∗∗ 0.250∗∗ 0.159∗∗∗ 0.520∗∗ 0.562∗∗∗ 0.421∗∗∗ 0.240∗∗∗ 0.365∗∗∗ 0.245∗∗∗ 0.222∗∗ 0.141∗∗∗

βCm 0.054 0.111 0.191∗∗ 0.214∗∗ 0.124 0.137 0.129 0.160 0.153 0.186∗ 0.170∗ 0.146∗

βJd −0.634∗∗∗−0.393∗∗ −0.218∗∗∗−0.118∗∗

βJw −0.614∗ −0.725 0.004 0.083
βJm 0.848 1.266∗ 0.934 −0.003
βJ+

d
−0.529∗∗ −0.229∗ −0.198∗∗∗−0.106∗∗∗

βJ+
w

−0.922∗ −1.500∗∗ −0.781∗∗ −0.326∗∗

βJ+
m

0.203 0.844 1.225 0.333

βJ−d
0.438 0.501∗ 0.242 0.118

βJ−w
0.980 0.151 −2.179 −1.376∗∗

βJ−m
−6.741∗∗ −9.834∗∗∗−6.705∗∗ −3.789∗∗

R2
(in)

0.555 0.666 0.572 0.338 0.541 0.668 0.578 0.341 0.523 0.664 0.612 0.362

R2
(oos)

0.493 0.747 0.728 0.465 0.450 0.754 0.739 0.489 0.511 0.724 0.690 0.445

MSPE 2.821? 1.017? 0.872? 1.274 3.059 0.995? 0.840? 1.218? 2.720? 1.110? 0.994 1.318

Note: See Notes to Table 6. Bold in-sample and out-of-sample R-squared entries indicate that the fit of the proposed models is
better than that of the baseline HAR-RV model in Table 6. The ? indicates that the MSPE of the model is significantly lower
than the MSPE of the benchmark HAR-RV model in Table 6.

Table 8: HAR type regressions using unsigned and signed finite jumps

HAR-CFJ: RVt,t+h = β0 + βCd
Ct + βCwCt−5,t + βCmCt−22,t + βFJdFJt + βFJwFJt−5,t + βFJmFJt−22,t + εt,t+h

HAR-CFJ+: RVt,t+h = β0 + βCd
Ct + βCwCt−5,t + βCmCt−22,t + β

FJ+
d
FJ+

t + βFJwFJ
+
t−5,t + βFJmFJ

+
t−22,t + εt,t+h

HAR-CFJ−: RVt,t+h = β0 + βCd
Ct + βCwCt−5,t + βCmCt−22,t + β

FJ−
d
FJ−t + βFJwFJ

−
t−5,t + βFJmFJ

−
t−22,t + εt,t+h

HAR-CFJ HAR-CFJ+ HAR-CFJ−

h=1 h=5 h=22 h=66 h=1 h=5 h=22 h=66 h=1 h=5 h=22 h=66

β0 0.106∗∗ 0.148∗∗∗ 0.272∗∗∗ 0.527∗∗∗ 0.068 0.129∗∗ 0.290∗∗∗ 0.523∗∗∗ 0.007 −0.011 0.130∗∗ 0.432∗∗∗

βCd 0.502∗∗∗ 0.340∗∗∗ 0.188∗∗∗ 0.109∗∗∗ 0.371∗∗∗ 0.232∗∗∗ 0.148∗∗∗ 0.086∗∗∗ 0.246∗∗ 0.184∗∗∗ 0.107∗∗∗ 0.063∗∗∗

βCw 0.397∗∗ 0.382∗∗∗ 0.249∗∗ 0.159∗∗∗ 0.519∗∗ 0.562∗∗∗ 0.420∗∗∗ 0.241∗∗∗ 0.363∗∗∗ 0.242∗∗∗ 0.219∗∗ 0.139∗∗∗

βCm 0.053 0.111 0.193∗∗ 0.216∗∗∗ 0.125 0.138 0.132 0.164 0.155 0.188∗ 0.171∗ 0.145∗

βFJd −0.635∗∗∗−0.393∗∗ −0.218∗∗∗−0.118∗∗∗

βFJw −0.613∗ −0.723 0.008 0.084
βFJm 0.852 1.267∗ 0.923 −0.016
βFJ+

d
−0.530∗∗ −0.229∗ −0.198∗∗∗−0.106∗∗∗

βFJ+
w

−0.918∗ −1.496∗∗ −0.776∗∗ −0.326∗∗

βFJ+
m

0.196 0.831 1.183 0.278

βFJ−d
0.448∗ 0.507∗ 0.244 0.118

βFJ−w
0.988 0.149 −2.188 −1.378∗∗

βFJ−m
−6.799∗∗ −9.915∗∗∗−6.811∗∗ −3.949∗∗

R2
(in)

0.555 0.666 0.572 0.338 0.541 0.668 0.577 0.341 0.523 0.665 0.614 0.363

R2
(oos)

0.493 0.747 0.728 0.464 0.449 0.753 0.734 0.478 0.511 0.724 0.684 0.446

MSPE 2.822? 1.018? 0.874? 1.276 3.066 0.998? 0.857? 1.243 2.721? 1.112? 0.994 1.317

Note: See Notes to Table 6. Bold in-sample and out-of-sample R-squared entries indicate that the fit of the proposed models is
better than that of the baseline HAR-RV model in Table 6. The ? indicates that the MSPE of the model is significantly lower
than the MSPE of the benchmark HAR-RV model in Table 6.
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Table 9: HAR type regression using unsigned and signed infinite jumps

HAR-CIJ: RVt,t+h = β0 + βCd
Ct + βCwCt−5,t + βCmCt−22,t + βIJdIJt + βIJw IJt−5,t + βIJmIJt−22,t + εt,t+h

HAR-CIJ+: RVt,t+h = β0 + βCd
Ct + βCwCt−5,t + βCmCt−22,t + β

IJ+
d
IJ+
t + βIJw IJ

+
t−5,t + βIJmIJ

+
t−22,t + εt,t+h

HAR-CIJ−: RVt,t+h = β0 + βCd
Ct + βCwCt−5,t + βCmCt−22,t + β

IJ−
d
IJ−t + βIJw IJ

−
t−5,t + βIJmIJ

−
t−22,t + εt,t+h

HAR-CIJ HAR-CIJ+ HAR-CIJ−

h=1 h=5 h=22 h=66 h=1 h=5 h=22 h=66 h=1 h=5 h=22 h=66

β0 0.100∗∗ 0.154∗∗∗ 0.280∗∗∗ 0.506∗∗∗ 0.090∗ 0.139∗∗ 0.257∗∗∗ 0.478∗∗∗ 0.099∗ 0.156∗∗∗ 0.300∗∗∗ 0.544∗∗∗

βCd 0.245∗∗ 0.183∗∗∗ 0.103∗∗∗ 0.061∗∗∗ 0.245∗∗ 0.183∗∗∗ 0.101∗∗∗ 0.059∗∗∗ 0.246∗∗ 0.184∗∗∗ 0.103∗∗∗ 0.061∗∗∗

βCw 0.419∗∗∗ 0.342∗∗∗ 0.324∗∗∗ 0.209∗∗∗ 0.421∗∗∗ 0.345∗∗∗ 0.319∗∗∗ 0.198∗∗∗ 0.421∗∗∗ 0.345∗∗∗ 0.320∗∗∗ 0.197∗∗∗

βCm 0.244∗∗ 0.332∗∗∗ 0.289∗∗∗ 0.200∗∗∗ 0.238∗∗ 0.324∗∗∗ 0.286∗∗∗ 0.204∗∗∗ 0.239∗∗ 0.327∗∗∗ 0.296∗∗∗ 0.223∗∗∗

βIJd 1.423 0.095 −0.266 −0.202

βIJw −6.066∗ −7.153 −8.157 −2.585
βIJm −1.841 −1.708 15.370 26.391
βIJ+

d
2.731∗ 0.069 −0.284 −0.097

βIJ+
w

−10.826∗−11.283∗∗−13.030∗∗ 0.180∗∗

βIJ+
m

21.886 33.708 99.050 133.553

βIJ−d
−1.857∗ −1.106∗∗ −0.400∗ −0.222∗

βIJ−w
0.827 2.731 1.190 0.484∗∗

βIJ−m
5.704 8.459 15.214 21.347

R2
(in)

0.512 0.630 0.563 0.340 0.512 0.630 0.576 0.381 0.512 0.629 0.563 0.339

R2
(oos)

0.511 0.709 0.644 0.452 0.509 0.711 0.652 0.475 0.512 0.712 0.651 0.454

MSPE 2.722? 1.173? 1.151 1.316 2.731? 1.168? 1.125 1.264 2.714? 1.162? 1.121 1.299

Note: See Notes to Table 6. Bold in-sample and out-of-sample R-squared entries indicate that the fit of the proposed models is
better than that of the baseline HAR-RV model in Table 6. The ? indicates that the MSPE of the model is significantly lower
than the MSPE of the benchmark HAR-RV model in Table 6.
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Table 12: Model Averaging Relative MSPEs

h = 1 h = 5 h = 22 h = 66 h = 1 h = 5 h = 22 h = 66
SPY – 300 seconds SPY – 60 seconds

HAR-RV Baseline 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Best Extended HAR 0.875∗ 0.753∗ 0.891∗ 0.965∗ 0.752∗ 0.969 0.877 0.940∗

Avg. – Min Var Weights 0.987 0.693∗∗ 0.895∗ 0.966∗ 0.812∗ 0.977 0.940∗ 0.971∗

Avg. – MSPE Weights 0.879∗ 0.706∗∗ 0.862∗∗ 0.919∗∗ 0.875∗ 0.914∗∗ 0.850∗ 0.965∗

Avg. – Rank Weights 0.910∗ 0.715∗ 0.845∗∗ 0.873∗∗ 0.880∗ 0.923∗ 0.846∗ 0.986
Avg. – Equal Weights 0.873∗ 0.712∗ 0.876∗ 0.928∗ 0.877∗ 0.914∗∗ 0.852∗ 0.964∗

Memo:

HAR-RV MSPE 3.102 1.322 0.944 1.262 4.550 1.350 1.025 1.344

BA – 300 seconds BFB – 300 seconds

HAR-RV Baseline 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Best Extended HAR 0.981 0.937 0.993 0.864∗ 0.924∗ 0.836∗ 0.822∗ 0.876∗

Avg. – Min Var Weights 0.992 0.905∗∗ 1.083 1.001 0.969∗ 0.845∗ 0.751∗∗ 0.812∗∗

Avg. – MSPE Weights 0.972∗ 0.906∗ 0.915∗∗ 0.959∗ 0.926∗ 0.823∗ 0.814∗ 0.856∗∗

Avg. – Rank Weights 0.976∗ 0.923∗ 0.928∗∗ 0.980 0.936∗ 0.820∗ 0.810∗∗ 0.847∗∗

Avg. – Equal Weights 0.972∗ 0.906∗ 0.919∗∗ 0.961∗ 0.926∗ 0.823∗ 0.816∗ 0.878∗

COST – 300 seconds KO – 300 seconds

HAR-RV Baseline 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Best Extended HAR 0.958∗ 0.879∗ 0.925∗ 0.957∗ 0.814∗ 0.709∗ 0.882∗ 0.939∗

Avg. – Min Var Weights 1.016 0.985 0.881∗∗ 0.950∗ 0.923∗ 0.695∗∗ 0.837∗∗ 0.916∗

Avg. – MSPE Weights 0.962∗ 0.871∗ 0.920∗ 0.958∗ 0.817∗ 0.713∗ 0.888∗ 0.975∗

Avg. – Rank Weights 0.969∗ 0.856∗ 0.907∗∗ 0.945∗∗ 0.811∗ 0.686∗ 0.829∗∗ 0.950∗

Avg. – Equal Weights 0.962∗ 0.873∗ 0.922∗ 0.960∗ 0.817∗ 0.723∗ 0.914∗ 0.983∗

Note: The table reports the relative MSPE, the ratio of MSPE of the model indicated in the first column to the MSPE of
the baseline HAR-RV, in both cases using standard volatility measures as opposed to robust-to-noise measures. The best
models refers to the min MSPE model from the set of jump models presented in Section 4. The superscript ∗ identifies
models with significantly lower MSPEs than the benchmark HAR-RV. The bold entries highlight models where the MSPE of
the model average is lower than the MSPEs of both the HAR-RV benchmark and the best model. The starred bold entries
(superscript ∗∗) identify models whose MSPEs are significantly lower than the MSPEs of both the benchmark HAR-RV and
the best extended HAR model.
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Figure 1: Time Series of Realized Volatility – Jump and Continuous Components

Note: This figure depicts the elements of the realized volatility for SPY and three individual stocks
estimated at the 300 second frequency. The three individual stocks have the largest, smalles and average
RV. NBER dated U.S. recession are shaded grey.

Figure 2: Autocorrelation Function of SPY Realized Measures
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Note: The figure graphs the autocorrelation of the realized variance and its elements. The autocor-
relations at the 5 and 300 second frequencies were estimated using noise-robust and raw estimators,
respectively.
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