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1 Introduction

There has been much interest in the relationship between linear vector autoregressive (VAR) models

and linear local projection (LP) models. Linear LP estimators of impulse responses were first proposed

by Jordà (2005, 2009) and popularized by Ramey (2016). Kilian and Lütkepohl (2017) showed that

the impulse responses implied by a linear VAR process can, in principle, be recovered by a linear local

projection. Plagborg-Møller and Wolf (2019) proved that both linear VAR models and LP regression

models may be viewed as a linear approximation to an unknown possibly nonlinear process. The

latter result, however, allows this approximation to be arbitrarily poor. In this paper, we therefore

examine the ability of LP regressions to recover nonlinear responses generated by linear models that

include regressors that are censored or otherwise nonlinearly transformed. Such models have played

an important role in recent years in capturing asymmetries, thresholds and other nonlinearities in the

responses of macroeconomic variables to exogenous shocks.1

For any variable , let () denote a nonlinear transformation of . For example, we may define

() = max(0 ), in which case  () corresponds to a censored version of . Our analysis covers

a wide range of censored regressors that have been employed in the empirical literature including

increases, net increases, net changes and large increases in model variables as well as powers of regres-

sors. We follow a large existing literature in postulating that ( )
0 is a bivariate structural dynamic

process such that, in general,  may linearly depend on its own lags or lags of , whereas  depends

on current and lagged values of  and () as well as its own lags (e.g., Kilian and Lūtkepohl 2017).

Thus,  is assumed to be predetermined with respect to . We are interested in estimating the

response of +  = 1 , to a one-time shock to the innovation in  of size . This response is

nonlinear in general, even though the model is linear in the parameters.

It is well known that this nonlinear impulse response function may be estimated by Monte Carlo

integration based on estimates of the structural model and based on the data, but this approach tends

to be computationally demanding. Our paper makes four main contributions. First, we derive exact

analytical solutions for the population impulse responses in this class of structural models. This result

not only allows the evaluation of the finite-sample accuracy of alternative impulse response estimators

by simulation, but it enables us to derive a novel plug-in estimator of the population impulse responses

that dispenses with the need for simulations. The availability of fast analytic solutions is an important

advantage when bootstrapping the distribution of the impulse response estimator or when constructing

critical values under the null of symmetric response functions.

1Examples include Hamilton (2011), Kilian and Vigfusson (2011a,b, 2017), Venditti (2013), Herrera, Lagalo and

Wada (2011, 2015), Herrera and Karaki (2015), Alsalman and Herrera (2015), Hussain and Malik (2016), Tenreyro and

Thwaites (2016), Hwa, Kapinos and Ramirez (2018), and Barnichon, Matthes and Ziegenbein (2019).
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Second, there has been increasing interest in applied work in recent years in estimating the response

function in this class of models by local projections. There has been no theoretical work justifying

the use of LP estimators for models involving nonlinearly transformed regressors, however. We show

that LP estimators may be used to recover the population impulse responses in this class of models,

provided that  is an observable exogenous i.i.d. shock. This case has become the empirically most

important setting in macroeconomics in recent years. More generally, when  is exogenous, but

serially correlated, or when  is endogenous, LP estimators are not valid. Thus, the equivalence

between impulse response estimators based on the structural model and LP estimators breaks down

in this class of models.

Third, when the LP approach may be used, the construction of the LP estimator differs from the

LP estimators currently used in the literature, which effectively ignore the nonlinearity of the impulse

responses (e.g., Tenreyro and Thwaites 2016, Barnichon, Matthes and Ziegenbein 2019). This result

has important implications for applied work on the asymmetry of responses to positive and negative

shocks of the same magnitude in a wide range of macroeconomic contexts.

Fourth, we prove that both the plug-in estimator and the modified LP estimator proposed in

this paper are consistent when  is an observable i.i.d. shock. Monte Carlo simulations, however,

suggest that in finite samples estimators based on the structural model tend to be systematically more

accurate than the LP estimator when both are valid. Regardless of the model specification, there is

little to choose between the plug-in estimator and the Monte Carlo integration estimator based on

their finite-sample accuracy, but the analytical approach is 200-300 times faster.

The remainder of the paper is organized as follows. In section 2, we introduce matrix notation

for our model and discuss the definition of impulse response functions in structural dynamic models

with nonlinearly transformed regressors. We also review examples from the empirical literature of how

researchers have transformed regressors and why. Section 3 discusses how to recover impulse response

functions when  is restricted to be an observable exogenous i.i.d. shock. We show that these responses

may be identified by local projections and in closed-form based on the structural model. Section 4

focuses on the general model, including the special case when  is an exogenous autoregressive process.

We analytically derive the impulse response function and demonstrate the inability of local projections

to recover the impulse responses in this general model. Section 5 introduces the plug-in estimator and

a modified LP estimator and proves the consistency of these estimators for the important special case

when  is an observable exogenous i.i.d. shock. Section 6 summarizes what we have learned. In

section 7, we use simulations to assess the relative accuracy of the modified LP estimator and of the

simulation-based estimator and the plug-in estimator based on the structural model. We also provide
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evidence on the computational advantages of the plug-in estimator. The concluding remarks are in

section 8. Details of the proofs and a review of the conventional impulse response estimator based on

Monte Carlo integration can be found in the appendix.

2 Nonlinear impulse response functions in models with nonlinearly

transformed regressors

2.1 Structural dynamic models with nonlinearly transformed regressors

For expository purposes, let ( )
0 denote a bivariate stationary time series.2 For expositional pur-

poses, we assume that all variables have been suitably demeaned. A widely used structural data

generating process that allows for the inclusion of nonlinear regressors is⎧⎨⎩
 () =  ()  + 1

 ()  =  () +  ()  () + 2

(1)

where

 () = 1− 1− 2
2 −   − 

  () = 1− 1− − 


and

 () = 0 + 1+ + 


 () = 0 + 1+ + 
 and  () = 0 + 1+ + 



We assume that all lag polynomials have the same order . This is without loss of generality because

we can set  = max (    ) and zero out the elements that exceed the true lag order. For

instance, if  is the number of lags in  (), set  = 0 for all   . For convenience, we collect all

parameters in the vector θ =
¡
φ0α0ρ0β0γ0

¢0
.3 It should be noted that it is important that (·) is a

function of  rather than 1. This assumption is dictated by the economic reasoning underlying this

class of models in the literature.

Model (1) can be written in matrix form as

0 =  () −1 +  ()  () +  (2)

where  ≡ ( )0   = (1 2)0  and

0 =

µ
1 −0
−0 1

¶
  () =

µ
̄ () ̄ ()

̄ () ̄ ()

¶
and  () =

µ
0

 ()

¶


2Although there is no reason why one could not consider higher-dimensional processes, the empirical literature has

tended to focus on bivariate processes.
3This specification avoids the pitfalls that arise when specifying a VAR model for (() )

0
and treating this model

as linear. Kilian and Vigfusson (2011a) prove that responses constructed from such VAR models are invalid.
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with

̄ () = 1 + 2+   + 
−1 ̄ () = 1 + 2+   + 

−1

̄ () = 1 + 2+   + 
−1 ̄ () = 1 + 2+   + 

−1

When there are no nonlinearities,  () = 0 and hence  () = 0. In this case, (2) is a recursive

structural linear VAR model for . When  () 6= 0,  depends on  (), a measurable nonlinear

function of , and lags of  (). We will consider several economically interesting examples of (·)
at the end of this section.

In order to derive our results, we make the following assumptions.

Assumption E. {1} and {2} are mutually independent time series such that

 ≡
µ

1
2

¶
∼ i.i.d.

µµ
0

0

¶


µ
21 0

0 22

¶¶


Assumption P. The process  = ( )
0 is generated by (1) (or (2)) with 0 = 0.

Assumption S. The roots of the equation det ( ()) = 0 are outside the unit circle, where  () ≡
2 −−10  () and the process  is stationary and ergodic.

Assumption M. sup || ∞ and sup | ()| ∞.

Under Assumption E, the structural errors 1 and 2 are i.i.d. over time and follow mutually

independent processes. These assumptions are stronger than the white noise assumption, which is not

enough to justify the validity of our impulse response estimators in the presence of  (). Assumption

P postulates that 0 = 0, implying that the matrix 0 (which describes the instantaneous relations

between  and ) is lower triangular. This assumption allows us to identify the structural parameter

vector θ. It means that  is predetermined with respect to . This assumption is reasonable in

typical applications (e.g., Romer and Romer 2004, 2010; Kilian and Vega 2011).

Assumption S contains two parts. First, we assume that the roots of the determinantal equation

associated with the matrix polynomial  () = 2 − −10  () are all outside the unit circle. This

standard assumption ensures the absolute summability of the inverse filter Ψ () ≡  ()−1, which

will be used below to obtain the impulse response function. Although this condition is sufficient for the

stationarity and ergodicity of  when  () = 0, it is not enough when  () 6= 0 For this reason, we
assume stationarity and ergodicity of  as a high level condition. When both  () 6= 0 and  () 6= 0,
providing more primitive conditions under which this high-level condition is verified is challenging.

This question is outside the scope of this paper. When  () = 0, the following assumption (together

with Assumption E) suffices for Assumption S.
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Assumption S0

(i)  () = 0 and the roots of  () = 0 and  () = 0 are all outside the unit circle.

(ii) The function (·) is nonperiodic and bounded on compact sets such that  () =  (||1) as
→∞ for some 1 ∈ R.

(iii) 
³
|1|max(11+2)

´
∞ for some 2  0

When  () = 0,  given by (2) is a special case of the nonlinear bivariate ARX model studied by

Masry and Tjostheim (1997), where the only additive nonlinear term is itself an additive function of

current and lagged values of  (). We can show that Assumptions E and S
0 suffice for their Assump-

tion 3.3, implying that  is stationary and strongly mixing with exponentially decaying coefficients

(cf. their Lemma 3.1). The condition on (·) allows for functions that grow faster than a linear

function, as →∞, and is satisfied for the empirically motivated examples of (·) we discuss below.
Finally, Assumption M postulates that  and  () have finite first-order moments. This assumption

together with our remaining assumptions also implies that sup ||  ∞. The moment condition
on  follows from the moment condition on  when  () = 0, but not necessarily when  () 6= 0
unless  () = 0.

One special case of model (2) arises when ̄ () = ̄ () = 0, or, equivalently, when in model (1)

 () = 1 and  () = 0, implying that  = 1 is a serially uncorrelated directly observable exogenous

shock, as postulated in a number of recent studies on fiscal policy and monetary policy shocks (e.g.,

Romer and Romer 2004, 2010; Ramey 2011, 2016; Tenreyro and Thwaites 2016, Ramey and Zubairy

2018), OPEC oil supply shocks (e.g., Kilian 2008, Hamilton 2011, Bastianini and Manera 2018), news

shocks (e.g., Ramey 2011; Kilian and Vega 2011; Kilian and Hicks 2013), financial market shocks (e.g,.

Barnichon, Matthes and Ziegenbein 2019) and shocks to market expectations (e.g., Kuttner 2001;

Cochrane and Piazzesi 2002; Piazzesi and Swanson 2008; Baumeister and Kilian 2016). Another special

case emerges when ̄ () = 0 but ̄ () 6= 0, implying that  is a strictly exogenous autoregressive

process. In the latter case,  is independent of 2 but is allowed to be serially correlated. Thus, (2)

can be viewed as a bivariate ARX model for ( )
0, where  is augmented with exogenous regressors

given by  () = 0+ ̄ ()−1 and  ()  ()  We will discuss these two special cases in more

detail below.

Note that under our assumptions,  (and hence  ()) does not depend on the current value of

2, given that it is only a function of 1 and its lags as well as lags of 2 when  () 6= 0 Since we
assume that 1 and 2 are mutually independent i.i.d. processes,  ()+ ()  () is independent
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of 2 in model (2). Hence, we can estimate the structural parameters in (2) by equation-by-equation

OLS. The estimation of the model is discussed in more detail in Sections 5.1 and 5.2.

We are interested in estimating the responses of + at horizon  = 0 1  to a shock of

magnitude  in 1. Note that even though model (2) is linear in the parameters, it is nonlinear in the

variables. Hence, the impulse responses are inherently nonlinear.

2.2 Nonlinear impulse responses

Nonlinear impulse response functions can be defined in many different ways (e.g., Gallant, Rossi and

Tauchen 1993, Koop, Pesaran and Potter 1996, Potter 2000, Gourieroux and Jasiak 2005, Kilian and

Vigfusson 2011a). A natural starting point is to compare two sample paths for the variable of interest,

one where the model is subject to a shock at time  and another one where no such shock is present.

The difference between the values of the outcome variable over time under these two scenarios can be

interpreted as a measure of the impulse response function.

More specifically, we trace out the effect of a shock in 1 at time  on the future value of the

outcome variable +, for  = 0 1    , by comparing two sample paths for +. One is the

baseline path, which we denote by {+}. This path is implied by the sequence of structural shocks

∞ = {    1−1 1 1+1     2−1 2 2+1     } 

The other sample path is {+ ()}, which is the path implied by the sequence of shocks

∞ () = {    1−1 1 +  1+1     2−1 2 2+1     } 

The only difference between ∞ and ∞ () occurs at time , when 1 () = 1 + . All other shocks

are the same. Thus, this thought experiment involves perturbing by  the structural innovation 1

that is driving the variable  in model (1). This shock translates into a contemporaneous change

in  of the same magnitude, but a one-time shock to 1 may imply a persistent change in  (e.g.,

Gourieroux and Jasiak 2005).

Our definition of the nonlinear impulse response function is as follows.

Definition 1 (Unconditional IRF) The unconditional nonlinear impulse response function (IRF)

of + to a shock of size  in 1 is given by  =  (+ ()− +), for  = 0 1 2    

Several remarks are in order. First, as expected from the literature on nonlinear impulse response

functions, the presence of nonlinearities implies that the dynamic response of + to a shock in 1 de-

pends on the whole sample path of the process. In particular, it depends on current and future values of

the shocks in the model. Our approach in this paper is to integrate out this randomness, by considering
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the expected value of the difference between {+ () :  = 0 1    } and {+ :  = 0 1    }.
In doing so, we are effectively using the expected value of the difference between these two sample

paths as a summary measure of their whole joint distribution (see Definition 4 in Gourieroux and

Jasiak (2005) who proposed this approach in the context of nonlinear univariate reduced-form mod-

els). In this paper, we are interested in the expected value of the difference between the two sample

paths of +, but one could consider other functionals of their joint distribution.

Second, unlike the studies by Gallant, Rossi and Tauchen (1993), Koop, Pesaran and Potter (1996),

Potter (2000), Gourieroux and Jasiak (2005) and Kilian and Vigfusson (2017), we do not condition on

the history of the process up to time  − 1, denoted Ω−1 We note, however, that it is also possible
to define a version of our  that conditions on Ω−1.

Definition 2 (Conditional IRF) The conditional nonlinear impulse response function of + to a

shock of size  in 1 is given by Ω−1 = [(+ ()− +) |Ω−1], for  = 0 1 2    

This definition is routinely employed in estimating the unconditional response function by Monte

Carlo integration. Details of this algorithm can be found in Appendix 1.

Third, a further difference with respect to some of the previous literature (e.g. Koop et al. (1996),

Potter (2000) and Kilian and Vigfusson (2011a)) is the type of shocks that are presumed to occur

between  and + . The aforementioned papers fix 1 () equal to  in the perturbed model and let

1 denote a random draw of the shock at  in the baseline model. Instead, we consider the impact

of 1 () = 1 +  versus 1  averaged over the possible realizations of 1. Although this difference

does not matter for some model specifications (such as model (1) with  () = 1 and  () = 0), it

may potentially matter for other specifications.

Finally, our approach is closely related to that of Gallant, Rossi and Tauchen (1993) and Gourieroux

and Jasiak (2005), with the difference that Gallant, Rossi and Tauchen (1993) consider shocks to the

outcome variable rather than shocks to innovations, and Gourieroux and Jasiak (2005) consider shocks

to a sequence of nonlinear innovations within the context of univariate reduced-form models. Our

premise is that the shocks, (1 2)
0 in the structural model (1), are i.i.d. over time and mutually

independent. This allows us to perturb one of these structural shocks, namely 1, without perturbing

the other structural shocks ({2} and {1, for  6= }).

2.3 Examples of nonlinearly transformed variables

Next we discuss several economically interesting examples of nonlinear transformations (·) of  (and
possibly additional lags of ).
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Example 1: Increases

A leading example is the censored variable + ≡ max(0 ). Note that model (1) with () = + is

equivalent to a model that includes both + and 
−
 ≡ min(0 ) with potentially different coefficients.

This specification was originally proposed by Mork (1989) and allows for asymmetries in the response of

the economy to positive and negative oil price shocks. Mork argued that increases in oil prices matter

more than decreases. This proposition has been explored by Kilian and Vigfusson (2011a, 2017),

Herrera, Lagalo and Wada (2011, 2015), Alsalman and Herrera (2015), and Herrera and Karaki (2015),

among others. Other applications of this framework include the potentially asymmetric passthrough

of oil price shocks to gasoline prices (Venditti 2013), the differential effects of positive and negative

tax changes on U.S. real GDP (Hussain and Malik 2016), the effects of positive and negative shocks

to financial regulation on inflation and industrial output growth (Barnichon, Matthes and Ziegenbein

2019), the effect of positive and negative shocks to regulatory bank oversight (Hwa, Kapinos and

Ramirez 2018), and the effects of contractionary and expansionary monetary policy shocks on the

economy (Cover 1992, Tenreyro and Thwaites 2016).

Example 2: Net increases

Concerns about the ability of models including oil price increases and decreases to match the data

prompted Hamilton (2003) to argue for an alternative specification in which oil price increases matter

only to the extent that they exceed their maximum value over the preceding three years, denoted

by ∗ ≡ max(−1  −36) The resulting net oil price increase measure + ≡ max(0  − ∗ ) is

another example of a censored regressor. This specification, which has been motivated on behavioral

grounds, is widely used in empirical work (e.g., Kilian and Vigfusson 2011a,b; Hamilton 2011; Herrera,

Lagalo and Wada 2011, 2015).

Example 3: Net changes

In related work, Kilian and Vigfusson (2013) allow real GDP growth to depend on net changes in

the price of oil, defined as the sum of net increases and net decreases in the price of oil, consistent

with the behavioral arguments advanced in Hamilton (2011). Their net change measure is defined as

 ≡ 
−
 + 

+
  where 

−
 ≡ min(0  − ∗∗ ) with ∗∗ defined as the minimum over the last

36 months.

Example 4: Large increases
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Yet another hypothesis is that economic agents respond more to large changes in the model vari-

ables than to small changes. For example, Goldberg (1988) conjectures that the presence of costs to

monitoring energy costs and of adjusting consumption patterns might make households reluctant to

respond to small changes in energy prices. A gasoline price shock of typical magnitude might not

evoke any reaction from consumers at all. In fact, it might go unnoticed by many households. Davis

and Kilian (2011) make an analogous argument with respect to gasoline tax changes. Similarly,

Alsalman and Herrera (2015) explore threshold effects in the response of stock returns to oil price

shocks. Such threshold dynamics may be modelled, for example, by replacing (·) in the process (1)
by 

 arg 
 = 1 (||  ), where commonly  =  and  denotes a multiple of the standard deviation

 of , typically set to 1 or 2. Similar model structures may also arise in other economic contexts

when modeling trigger points or thresholds.

Example 5: Large changes

Another empirically relevant specification involves higher powers of . For example, Tenreyro and

Thwaites (2016) consider an exogenous shock series  and include () = 3 in the regression in

addition to . This specification allows larger values of  of either sign to have more powerful effects

on the outcome variable. A similar approach has also been employed by Hwa, Kapinos and Ramirez

(2018) to study the impact of large exogenous changes in ratings by bank supervisors on economic

activity.

Next, we derive closed-form expressions for the nonlinear impulse response functions for several

versions of our model. This will allow us to obtain an analytical estimator of the IRF that does not

require Monte Carlo integration. We then investigate the ability of local projections to estimate these

impulse responses.

3 The population IRF:  is an i.i.d. observed shock

The goal of this section is to derive a closed-form expression for  for a special case of model (1),

or equivalently, model (2). In particular, we assume not only that  is strictly exogenous (so that

 () = 0), but that it is serially uncorrelated (so,  () = 1). Hence,  = 1.

There are three reasons for starting with this simpler model. First, this model corresponds to the

case when  is an observed sequence of i.i.d. shocks, as is often the case in applied work. Second,

the derivation of the population IRF is much simpler in this case, which helps build intuition for the

general results that follow in Section 4. Third, we demonstrate that in this model one can, alternatively,
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recover the population IRF with a modified local projection (LP) approach. This result only holds for

the special case of  = 1.

3.1 A closed-form expression for the IRF

Let ⎧⎨⎩
 = 1

 ()  =  () +  ()  () + 2

(3)

Define the following inverse and product filters,

() = (1− 1− 2
2 − − 

)−1 = (1 + 1+ 2
2 + )

 () =  () () = 0 + 1+ 2
2 +  and

 () =  ()  () = 0 + 1+ 2
2 + 

Note that we can express the coefficients of these filters as a function of the structural parameters

θ =
¡
ρ0β0γ0

¢0
. Under the assumption that the roots of  () are outside the unit circle, these inverse

filters have absolutely summable coefficients and, the process ( )
0 is stationary under Assumptions

S0 and E.

We can write

 = () + () () +  () 2 (4)

where  = 1.

In order to obtain the population IRF for + , we rely on Definition 1 and on equation (4) to

evaluate the difference + ()− +. Specifically, using the definitions of  () and  () and the

two sequences of shocks ∞ and ∞ (), we have that

+ = 01+ +   + 1 +   + 0 (1+) +   +  (1) +   + ()2+

and

+ () = 01++   + [1 + ] +   +0 (1+)+   + (1 + )+   +()2+

Hence,

+ ()− + =  +  [ (1 + )−  (1)]  (5)

As (5) shows, this difference depends on the realization of the shock  = 1 at time , except if there

are no nonlinearities in the model (in which case  = 0). In order to obtain the population IRF,

we average over the realizations of  = 1

The following proposition formalizes this result.
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Proposition 3.1 Assume Assumptions E, P, S0 and M hold with  () = 1 and  () = 0. Then, for

any  = 0 1 2    

 =  + 0 where 0 ≡  [ ( + )−  ()] 

This formula indicates that, unless  () = 0 (implying that  = 0), the nonlinear  is

different from the traditional linear IRF given by . The nonlinearity is captured by a second

term that depends on 0, the expected value of the difference between the nonlinear function (·)
evaluated at  +  and , respectively.

3.2 Can local projections identify the IRF?

Next, we investigate the ability of linear LP regressions to recover the IRF. In order to develop

intuition, we first consider a special case of model (3), where  () = 1 − ,  () =   () = .

For this special case,

 =  +  ( ( + )− ( ())) 

i.e.  =  and  = . Note also that  =  in this case.

The value of + is

+ = + + +−1 + (+) + 2+

which we can write as

+ =  +  () + +1−1 + + (6)

where + is a function of {1+     1+1  (1+)       (1+1)  2+     2+1 2}  Specifically,

+ = 
³
1 + +    −1−1

´
1+ + 

³
1 + +    −1−1

´
 (1+)

+
³
1 + +    −1−1

´
2+ + 2

If  = 0,  =  =  and expression (6) can be written as

+ =  + −1 + + (7)

where

 (+) =  (+) =  (−1+) = 0

using the fact that 1 and 2 are mutually uncorrelated sequences of i.i.d. zero mean random variables.

Hence, (7) is a local projection where  =  and  = +1 This implies the usual result that

we can recover the IRF at lag  by setting  =  where  is the slope coefficient associated

with  in the regression of + onto  and −1.
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When  6= 0, this result no longer holds. In this case, as we will see, one may still use an LP

regression to obtain  and , but one needs to add an estimate of 0 ≡  [ ( + )−  ()] 

The LP regression (6) in this case contains ,  () and −1 as regressors, and the error term

+ depends on the nonlinear functions  (), evaluated at  +       + 1. As these functions are

not mean zero (even if  = 1 has mean zero), we need to subtract  (+) from the error term.

This introduces a constant in equation (6) given by

 ≡  (+) = 
h³
1 + +    −1−1

´
 (1+)

i
= 

³
1 + +   + −1

´
 ( (1)) 

where we used the stationarity of 1 to simplify the expression. Hence, the LP regression becomes

+ =  +  +  () + −1 + + (8)

where  =  = ,  =  =  and  = +1 = +1. The error term is equal to

+ = 
³
1 + +    −1−1

´
1+ +

+
³
1 + +    −1−1

´
[ (1+)− ( (1+))]

+
³
1 + +    −1−1

´
2+ + 2

and satisfies the orthogonality conditions

 (+) = + − (+) = 0 and

 (+) =  ( () +) =  (−1+) = 0

given that + only depends on {1  (1)− ( (1)) :  = + 1     + } and {2 :  =      + }
and given that these shocks are independent of  = 1 and  () as well as of −1

Equation (8) is the local projection equation we need to estimate to recover  when  6= 0.
The coefficients  and  associated with  and  (), respectively, are equal to  and ,

the coefficients that enter the IRF.

As the next proposition shows, these results generalize to model (3).

Proposition 3.2 Assume Assumptions E, P, S0 and M hold with  () = 1 and  () = 0. Then, for

 = 0 1 2     we have that

+ =  +  +  ()−1 +  () +  ()  (−1) +  () −1 + +

12



where

 () = 1 + 2   + 
−1

 () = 1 + 2+   + 
−1

 () = 1 + 2+   + 
−1 and

 () = 1 + 2+   + 
−1 with

 =  and  = 

Moreover, + is mean zero and is orthogonal to all the regressors in the equation, i.e.

 (p+) = 0

where

p0 =
¡
1     −  ()     (−) −1    −

¢


Proposition 3.2. implies that the IRF can be estimated by  single regressions of + on   () 

and  lags of   () and , where the coefficients associated with  and  () are equal to

 =  and  = 

the inputs necessary to compute  given in Proposition 3.1. Note that the error term + is

an () process which satisfies the orthogonality conditions  (p+) = 0, thus implying that the

model + = p
0
 + + is a local projection. We prove the consistency of this modified LP-based

 estimator in Section 5.1.

4 The population IRF for the general model

4.1 A closed-form expression for the IRF

To describe the population IRF for the general model, we proceed as in the previous section and

evaluate the difference between + () and +. We rely on the matrix equation

0 =  () −1 +  ()  () +  (9)

Pre-multiplying (9) by −10 yields

 = −10  () −1 +−10  ()  () +−10 

where −10  () =  ()  Note that given the form of 0, 
−1
0 exists for any value of 0 and is given

by

−10 =

µ
1 0

0 1

¶


13



Hence, we obtain4

 =  () −1 +  ()  () +  (10)

where

 () = −10  () and  = −10 

We can easily show that  () is given by

 () =

X
=1


−1,

where

 ≡
µ

 
0 +  0 + 

¶


We can write

(2 − ())| {z }
=()

 =  ()  () +  (11)

where

 () ≡ 2 − () = 2 −
X

=1




is a  degree lag matrix polynomial whose inverse matrix filter Ψ () ≡  ()−1 exists and is

absolutely summable under Assumption S. Using the definition of the inverse filter, i.e. Ψ () () =

2, we can show that Ψ0 = 2, Ψ1 = Ψ01. . . , and Ψ = Ψ−11 +   +Ψ− for any  ≥ 

By pre-multiplying (11) by Ψ () and using the fact that  = −10 , we can write

 = Ψ ()  +Ψ ()  ()  (12)

where

Ψ () ≡ Ψ ()−10 and Ψ () ≡ Ψ () () 

The second equation of (12) is the analogue of equation (4) for our general model. In particular,

we can write this equation as

 = Ψ
(21)

 () 1 +Ψ
(22)

 () 2 +Ψ
(21)
 ()  ()  (13)

where for any matrix A, we let A() denote its ( ) element.
4 If  () = 0, (10) is the standard reduced-form version of the structural model (2). When  () 6= 0, (10) is not

quite a reduced-form model as  () still appears in the second equation of the system. In fact, given the form of −10 ,

the “reduced-form” errors for this equation are equal to 2 = 01 + 2, implying that  () is correlated with 2
(since it depends on  which in turn depends on 1). Thus, we cannot estimate the second equation of (10) by OLS

(the first equation is the same as the that of (2) since 1 = 1 and can be estimated by OLS). We will only use (10) to

define the population IRF.

14



We rely on equation (13) to evaluate the two sample paths of the outcome variable + corre-

sponding to the sequences of shocks ∞ () and ∞. This yields

+ ()− + = Ψ
(21)

  +Ψ(21) () [ (+ ())−  (+)] 

where the second term reflects the contribution of the nonlinearities to the IRF.

We can further simplify this term by noting that + () must be equal to + for all   0. This

is true because we can use the first equation of (12) to see that  depends only on 1 and lags of

 = (1 2)
0 and their nonlinear transforms. Since the two sequences of shocks are the same prior

to , we must have + () = + for   0 However, for   0, + () 6= +. As a result,

+ ()− + is equal to

Ψ
(21)

 +Ψ
(21)
0 [ (+ ())−  (+)]+Ψ

(21)
1 [ (+−1 ())−  (+−1)]+  +Ψ

(21)

 [ ( ())−  ()] 

In contrast to the model considered in Section 3, where  = 1, a shock to 1 propagates to

future values of , either because  is serially correlated or because it depends on lags of , inducing

a feedback effect. For these reasons,  (+ ()) −  (+) 6= 0 for all  ≥ 0 and not just for  = 0,
as in Section 3.

The population  is the unconditional expectation of + () − + The next proposition

formalizes this result and describes an algorithm for computing  ≡  [ (+ ())−  (+)] 

Proposition 4.1 Under Assumptions E, P, S, and M, for any  = 0 1 2    

 = Ψ
(21)

  +Ψ
(21)
0  +Ψ

(21)
1 −1 +   +Ψ

(21)

 0

where

 =  ( (+ ()))− ( (+)) 

The following steps can be used to calculate  for  = 0 1     :

i) For  = 0, set  () =  +  and 0 =  ( ( + )−  ()) 

ii) For  = 1 2      let

+ () = + +Ψ
(11)

  +Ψ
(11)
1 [ (+−1 ())−  (+−1)] +   +Ψ

(11)
 [ ( ())−  ()] 

For each , denote

+ () =  (+  +−1     ;θ) 

where the function  is defined implicitly by the iteration above.

15



iii) For  = 1 2     , let

 =  ( ( (+  +−1     ;θ))−  (+)) 

As Proposition 4.1 shows, computing the IRF at horizon  involves evaluating + 1 expectation

terms  for  = 0 1     . Each of these evaluations requires computing + (), where + () is

the value of the variable  at time + in the perturbed version of the model. For  = 0 ,  () = +

as given by step (i). For   0, we use step (ii) to obtain + () recursively. This defines + () as

an implicit function  (+      ;θ) of the random variables (+      ), the magnitude of the

shock  and the vector of structural parameters θ. Step (iii) defines  as the expectation of the

difference of  ( (+      ;θ)) and  (+).

To illustrate the algorithm described in Proposition 4.1, suppose we want to evaluate  for

 = 1. This requires evaluating the terms 0 and 1. By step (i),

 () =  +  and 0 =  ( ( + )−  ()) 

where the expectation is with respect to the marginal distribution of . To obtain 1, we use step

(ii) with  = 1 to write

+1 () = +1 +Ψ
(11)

1  +Ψ
(11)
1 [ ( + )−  ()] ≡ 1 (+1 ;θ) 

where  () =  +  from step (i). Step (iii) then implies that

1 =  ( (1 (+1 ;θ))−  (+1)) 

where the expectation is with respect to the joint distribution of (+1 ). We can proceed in this

manner to compute  for any value of  As we increase , more terms  need to be computed

since   requires  for  = 0 1     . The functions  that implicitly define + () as a

function of the observables {+  +−1     } can be computed recursively as we did for  = 1.
It is important to note that the iterative algorithm in Proposition 4.1 may be implemented in

practice without relying on Monte Carlo integration, making this approach computationally attrac-

tive. In particular, estimating the  terms, only requires evaluating the sample average of the

difference between 
³


³
+  +−1     ; θ̂

´´
−  (+) at each horizon  = 1 2     , where

θ̂ is an estimator of θ For instance, in the preceding example for  = 1, we compute  () =

 +  for  = 1   to obtain the estimate ̂0 =
1


X
=1

( ( + )−  ())  Similarly, ̂1 =

1
−1

X
=2

³

³
1

³
+1 ; θ̂

´´
−  (+1)

´
. Further details of the estimation procedure are discussed

in section 5.
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4.2 Revisiting the special case when  = 1

Next, we show that the computation of  and hence of  can be simplified in two special cases

of our model. One special case of our results is the model studied in Section 3. This corresponds to

model (2) with

 () =

µ
0 0

̄ () ̄ ()

¶


For this model,  () =  () and

 () =

µ
1 0

−̄ () 1− ̄ ()

¶
=

µ
1 0

−̄ ()  ()

¶


It follows that

Ψ () =  ()−1 =
µ

1 0

−1 () ̄ () −1 ()

¶


Hence,

Ψ () = Ψ ()
−1
0 =

µ
1 0

−1 () () −1 ()

¶
≡
µ

1 0

 ()  ()

¶


using the fact that  () = ̄ ()+ 0 and the definition of  () ≡ −1 () (). Similarly,

Ψ () = Ψ () () =

µ
0

−1 ()  ()

¶
≡
µ

0

 ()

¶


We conclude that for any  = 0 1 2   

Ψ
(21)

 =  and Ψ
(21)

 = 

Moreover, since for  = 1     

Ψ
(11)

 = Ψ
(11)
 = 0

we conclude that + () = + for any  ≥ 1. Thus,  = 0 for all   0 and we obtain

 = Ψ
(21)

  +Ψ
(21)
0 |{z}

=0

+Ψ
(21)
1 −1| {z }

=0

+   +Ψ
(21)

 0|{z}
6=0

=  + 0

where

0 =  ( ( + )−  ()) 

This shows that Proposition 3.1 is a special case of Proposition 4.1.

Because only 0 enters in the computation of the IRF at horizon , for any  = 0 1 2   , and

0 =  ( ( + )−  ()) 

the formula for the  is considerably simpler in this model. In particular, 0 does not depend

on any unknown parameters, which simplifies the estimation of 
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4.3 Special case:  is an exogenous () process

Another special case emerges when  is exogenous (i.e.  () = 0) but serially correlated (i.e.

̄ () 6= 0). In particular, suppose that

 = ̄ ()−1 + 1

or equivalently,

 () = 1, where  () = 1− ̄ ()

This corresponds to model (2) with

 () =

µ
̄ () 0

̄ () ̄ ()

¶


For this model,

 () =

µ
̄ () 0

0̄ () + ̄ () ̄ ()

¶
and

 () =

µ
 () 0

0 ()−  ()  ()

¶


Note that  () and  () coincide with the expressions obtained in the previous section when we set

̄ () = 0 and  () = 1. The inverse matrix filter of  () is equal to

Ψ () =  ()−1 =
µ

−1 () 0

−0−1 () + −1 () −1 () () −1 ()

¶
implying that

Ψ () = Ψ ()
−1
0 =

µ
−1 () 0

−1 () −1 () () −1 ()

¶


and

Ψ () = Ψ () () =

µ
0

−1 ()  ()

¶
≡
µ

0

 ()

¶


Hence, Ψ () is the same as when  = 1, but the first column of Ψ () is multiplied by −1 ()

when  () = 1. The implication is that for any  = 0 1 2     

+ () = + +Ψ
(11)

  +Ψ
(11)
1| {z }
=0

[ (+−1 ())−  (+−1)] +   +Ψ
(11)
| {z }
=0

[ ( ())−  ()]

= + +Ψ
(11)

 

where Ψ
(11)

 is the  coefficient of the infinite order lag polynomial,

Ψ
(11)

 () = −1 () = 1 + 1+ 2
2 +    
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Consequently,

+ () = + +  ≡  (+ ;θ)  for  = 0 1      (14)

and

 = Ψ
(21)

  +Ψ
(21)
0  +Ψ

(21)
1 −1 +   +Ψ

(21)

 0

where now

 = 
¡

¡
+ + 

¢−  (+)
¢


Two remarks are in order. First, compared to the previous special case, + () 6= + , for   0

Thus, the  depends not only on 0 but also on 1 through . This is due to the fact that

a shock in 1 propagates into future values of + due to serial correlation of {}. Moreover, (14)
shows that the function  that governs how + () compares to + is very easy to characterize

because it depends only on + and the coefficient  . Step (ii) thus is much simpler in this case,

as compared to the general case, where we need to iterate on the equation for + ().

4.4 The inability of local projections to identify the IRF in our general model

A natural question is whether we can use an LP approach to obtain an estimate of , as we did

in Section 3. The answer is no. To explain this result, we consider a simplified version of our model,

where  () = 1− ,  () = 1− ,  () =  and  () = . Given Proposition 4.1, we can show

that

 =  +  + −1 +   + 0

where

 = 
h

³
 + 

´
−  ()

i


We can write

+ =  (1− )−1 + +  (1− )−1  (+) + (1− )−1 2+

where now  = −1 + 1. Suppose first  = 0. Proceeding as in Section 3, we can decompose +

as

+ =  + 
³
+ + +−1 +   + −1+1

´
+ +1 (−1 + −2 +   )

+
³
2+ + 2+−1 +   + −12+1 + 2

´
+ +1 (2−1 + 2−2 +   )

=  + +1−1 + 
³
+ + +−1 +   + −1+1

´
+
³
2+ + 2+−1 +   + −12+1 + 2

´
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Now, for any  ≥ 0 we can write

+ =  +
³
−11+1 +   + 1+

´


This implies that

+ = 
³
 + −1 +   + −1+ 

´
| {z }

=

 + +1−1

+
³
−11+1 +   + 1+

´
+

³
−21+1 +   + 1+−1

´
+   + 1+1

+
³
2+ + 2+−1 +   + −12+1 + 2

´
Letting {+1 · · · +} denote a linear combination of the variables between +1 and +, we can

then write

+ =  + +1−1 + +

where

+ =
³
2+ + 2+−1 +   + −12+1 + 2

´
+{1+1 · · · 1+} ≡ {1+1 · · · 1+; 2 · · · 1+} 

Given the definition of + and our assumptions on 1 and 2, it is clear that  (+) =

 (−1+) = 0, implying that we can recover  from a local projection given by the regres-

sion of + onto  and −1.

Now, suppose that  6= 0. Then, a similar argument implies the following decomposition for +:

+ =  +  + +1−1 +  () + + (15)

where the constant  = 
¡
1 + + 2 +   + −1

¢
 ( ()) accounts for the fact that  ≡

 ( ()) 6= 0 if (·) is nonlinear. The error term is equal to

+ = {1+1 · · · 1+; 2 · · · 1+}+
h¡
 (+)− 

¢
+ 

¡
 (+−1)− 

¢
+   + −1

¡
 (+1)− 

¢i


It is the presence of the nonlinear term in + that complicates things. Even though we can still write

+ =  +
³
−11+1 +   + 1+

´


it is not the case in general that we can write

 (+) =  () + 
³³

−11+1 +   + 1+

´´
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for some function  (·). Since all we can say is that

 (+) = 
³
 +

³
−11+1 +   + 1+

´´


the presence of 1+ through 1+ inside the function  (+) implies that the error term + is not

orthogonal to  nor −1 since  (+) depends on  for all  ≥ 0 Thus, equation (15) is a not a
local projection. Estimates of this equation do not provide consistent estimates of  or of the IRF.

There are no easy solutions of this problem such as including  (+1) in the LP.
5

5 Estimation of the IRF

This section introduces a new estimator of the population  based on the closed-form expressions

obtained in the previous sections. This estimator is an alternative to the Monte Carlo integration

method proposed by Kilian and Vigfusson (2011a) for this class of models (see Appendix 1). The new

estimator is computationally more attractive, as it does not involve any simulations. Since it is based

on a plug-in approach, with the unknown parameters entering  replaced by sample estimates,

we will refer to it as the plug-in estimator, denoted by 
−
 .

Section 5.1 provides results for the special case when  = 1, in which case the form of the pop-

ulation IRF simplifies. We also show that in this special case it is possible to estimate the population

 using a modified local projection approach. We then discuss impulse response estimation in the

general model in Section 5.2.

5.1 Special case:  is an i.i.d. shock

5.1.1 Plug-in estimator

A natural estimator of the population IRF given by Proposition 3.1 is a plug-in estimator that replaces

the structural parameters in the lag polynomials  (),  () and  () by consistent estimators ̂ () 

̂ () and ̂ (), and estimates the nonlinear term  [ ( + )−  ()] by its sample analogue. Let

y−1 = (−1     −)0, x = (     −  ()       (−))0 and p =
¡
1y0−1x

0


¢0


The steps used to estimate  using the plug-in approach based on the structural model (3)

are described below.

Algorithm for the IRF plug-in estimator when  is i.i.d.

5 If the nonlinear term were (1) rather than () these complications would not arise because perturbing 1 by

 would only have an effect in the impact period. This means that we would effectively be back in the special case of

 = 1. The only difference would be that we need to estimate the residual by regressing  on lags of  and . Of

course, the (1) specification is not what applied researchers have been interested in, making this point moot.
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i) Regress  onto w=
¡
y0−1x

0


¢0
and obtain

θ̂ =
³
ρ̂0 β̂

0
 γ̂0
´0
=

⎛⎝ X
=1+

ww
0


⎞⎠−1 X
=1+

w

ii) Compute ̂ and ̂ using the definitions of ̂ () = ̂ () ̂ () and ̂ () = ̂ () ̂ (),

where ̂ () = ̂ ()−1.

iii) Obtain an estimate of 0 ≡  [ ( + )−  ()] as

̂0 =
1



X
=1

( ( + )−  ()) 

iv) Then


−
 = ̂ + ̂̂0

5.1.2 Modified LP estimator

As shown in Proposition 3.2 of Section 3, we can, alternatively, identify the parameters  and 

entering  via local projections, but, as in the plug-in approach above, consistent estimation of

the  by LP methods requires an estimate of 0. The algorithm for constructing this modified

LP estimator is:

Algorithm for estimating IRF based on LPs when  is i.i.d.

i) Regress + onto p =
¡
1y0−1x

0


¢0
and get

π̂ =

⎛⎝ −X
=1+

pp
0


⎞⎠−1 −X
=1+

p+

Let ̂ and ̂ denote the slope coefficients associated with  and  (), respectively.

ii) Obtain an estimate of 0 ≡  [ ( + )−  ()] as

̂0 =
1



X
=1

( ( + )−  ()) 

iii) Then


 = ̂ + ̂̂

Remark 1 The proof of Proposition 3.2 shows that if the lag polynomials  (),  (), and  ()

have different orders, then we must modify the local projection appropriately. In particular, the local

projection should include  lags of ,  lags of  () and  lags of .
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Remark 2 It should be noted that existing studies in the literature working with (3) have not used the

LP algorithm described here (e.g., Tenreyro and Thwaites 2016, Barnichon et al. 2019). Consider the

example of () = + . The conventional approach has been to fit local projections,

+ =  +  + 
+
 + + +

or, equivalently,

+ =  + +
+
 + −

−
 + + +

for  = 0 1 2     where, for simplicity, we have dropped all lagged regressors. Then the sequences©
+

ª
=0

and
©
−

ª
=0
, after normalizing the impact coefficients to unity, are interpreted as the

response functions with respect to a positive and a negative 1 shock of size  = 1 and  = −1,
respectively. Our analysis shows that this approach does not recover the population response functions

even asymptotically.

5.1.3 Consistency

To conclude this section, we establish the consistency of 
−
 and 

 for the population

 . The plug-in estimator is consistent, provided (i) θ̂ is consistent for θ (which implies the consis-

tency of ̂ and ̂ given that these are continuous functions of θ̂) and (ii) ̂0 is consistent for

0. Establishing the consistency of the LP estimator also follows standard arguments by showing

(ii) and the consistency of the LP coefficient estimators ̂ and ̂.

In order to establish these results, we add the following assumptions.

Assumption M0. sup ||4 ∞ and sup | ()|4 ∞.

Assumption R. Σ ≡  (ww
0
) and Σ =  (pp

0
) are positive definite matrices.

Theorem 5.1 Under Assumptions E, S0, M0 and R with  () = 0 and  () = 1, as  →∞


−


−→   and 


−→  

for any  = 0 1    and fixed 

Note that when  () = 0 and  () = 1, Assumptions E and S0 suffice for Assumption S, as

discussed above. We strengthen Assumption M by requiring the existence of finite fourth moments

rather than first-order moments of  and  (). This is required to ensure the existence of Σ and Σ.

Specifically, we use Assumption M0 and the Cauchy Schwarz inequality to show that sup |w0w| ∞
and sup |p0p| ∞ Assumption R is a standard rank condition which ensures that Σ−1 and Σ−1
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exist. Under these assumptions, one can show that θ̂ is consistent for θ (and π̂ is consistent for

π ) using standard arguments. This implies the consistency of ̂ and ̂, given that these are

continuous functions of θ̂. Moreover, we can show that ̂0 is consistent for 0. Since ̂0 is the

sample average of  ( + )−  (), where  is i.i.d., this follows by a standard law of large numbers

for i.i.d. data. No further restrictions on  beyond those imposed by Assumption S0(ii) are required

in this case.

5.2 General model

Next, we extend the analytical estimator introduced in Section 5.1 to the general model. Note that we

do not consider estimation results based on LP regressions because these cannot be used to identify

the  in the general model, as discussed in Section 4.

Algorithm for the IRF plug-in estimator in the general structural model

i) Regress  onto w=
¡
y0−1x

0


¢0
 Collect the estimated parameters in ρ̂ β̂ and γ̂.

ii) Regress  onto  lags of  and  lags of  and obtain φ̂ and α̂. Let θ̂ =
³
ρ̂0 β̂

0
 γ̂0 φ̂

0
 α̂0
´0


iii) Use θ̂ to form

̂−10 =

µ
1 0

̂0 1

¶
 ̂ () =

µ
0

̂ ()

¶


and

Ψ̂ () = 2 + Ψ̂1+ Ψ̂2
2 +   + Ψ̂

 +    

where

Ψ̂0 = 2 Ψ̂1 = Ψ̂0̂1 Ψ̂2 = Ψ̂1̂1 + Ψ̂0̂2 and

Ψ̂ = Ψ̂−1̂1 +   + Ψ̂−̂  for any  ≥ 

with

̂ ≡
µ

̂ ̂

̂0̂ + ̂ ̂0̂ + ̂

¶
  = 1 2    

iii) For  = 0 1     , compute the  lag coefficients of the elements of

Ψ̂ () = Ψ̂ () ̂
−1
0 and Ψ̂ () = Ψ̂ () ̂ () 

iv) Let

̂0 =
1



X
=1

( ( + )−  ()) 
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For  = 1      estimate  ≡  [ (+ ())−  (+)] with

̂ =
1

 − 

−X
=1


³


³
+  +−1     ; θ̂

´´
− 1



X
=1

 () 

where 

³
·; θ̂
´
is defined by the recursion in step ii) of Proposition 4.1. For instance, for  = 1,

1

³
+1 ; θ̂

´
= +1 + Ψ̂

(11)

1  + Ψ̂
(11)
1 [ ( + )−  ()]

and

̂1 =
1

 − 1
−1X
=1


³
1

³
+1  ; θ̂

´´
− 1



X
=1

 ()

v) Set


−
 = Ψ̂

(21)

  + Ψ̂
(21)
0 ̂ + Ψ̂

(21)
1 ̂−1 +   + Ψ̂

(21)

 ̂0

As for the special case considered in Section 5.1, establishing the consistency of the plug-in esti-

mator in the general model requires two steps: (i) consistency of θ̂ for θ; and (ii) consistency of the

nonlinear terms ̂ for  = 0 1 2      The first step follows the same arguments as in Section 5.1,

once we assume that  = ( )
0 is stationary and ergodic. As we discussed in Section 2.1, providing

primitive conditions for Assumption S in the general model is more involved because of the presence

of  () in the structural equation for  and the fact that  () 6= 0. This task is beyond the scope
of this paper and left for future research.

Another complication compared to Section 5.1 is that we now need to show consistency of the

additional nonlinear terms ̂ for  = 1 2     . As the algorithm above makes clear, these

terms are no longer a simple sample mean of  ( + ) − (), as is the case for ̂0. Instead,

they depend on 

³
+  +−1     ; θ̂

´
, a continuous function of θ̂ that is recursively defined

for  = 1 2    . Consequently, showing the consistency of ̂ towards  for   0 involves

more than a simple application of a law of large numbers. If we define  (+  +−1     ;θ) =

 ( (+  +−1     ;θ)) and assume that  (·θ) is a differentiable function of θ a standard
application of the Taylor expansion implies the result. If  is not differentiable as a function of θ,

as in some of our examples, the result follows by an application of a uniform law of large numbers

for stationary ergodic data (see e.g. Theorem A.2.2. of White, 1996). This is in turn requires more

structure on the function (·) such as a Lipschitz continuity condition.

6 Discussion

Table 1 summarizes the main results. Regardless of the specification of model (1), it is always possible

to evaluate the unconditional response function of interest numerically by Monte Carlo integration.
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Typically, this involves constructing response functions conditional on randomly drawn histories Ω−1

and averaging the response functions over these histories.

Alternatively, one can use the plug-in estimator proposed in this paper whose computational cost

is negligible. This approach also works in the special cases when  is an observable exogenous shock

or when  follows an exogenous autoregressive process. The availability of olug-in estimators is

an important advantage when bootstrapping the distribution of this estimator or when constructing

critical values under the null of symmetric response functions (see Kilian and Vigfusson 2011a).

LP estimators of the impulse response function can only be used when  is an observable exogenous

i.i.d. shock. The latter situation has become the empirically most important setting in macroeconomics

in recent years. More generally, when  is exogenous, but serially correlated, or when  is endogenous,

LP estimators are not valid in this class of models, contrary to conjectures in the existing literature.

Thus, the equivalence between impulse response estimators based on the structural model and LP

estimators breaks down in this class of models.

It should be noted, however, that the construction of the LP estimator differs from the standard

LP estimators currently used in the literature, which effectively ignore the nonlinearity of the impulse

responses (e.g., Tenreyro and Thwaites 2016, Barnichon, Matthes and Ziegenbein 2019). Conventional

LP estimators are invalid. This result has important implications for applied work on the asymmetry

of responses to positive and negative shocks of the same magnitude in a wide range of macroeconomic

contexts and for studies that evaluate the differential impact or large and small shocks.

7 Simulation evidence

In this section, we examine the finite-sample accuracy of the plug-in estinator, the Monte Carlo

integration (MCI) estinator and (where applicable) the modified LP estimator. The evaluation criteria

are the bias, variance and mean squared error (MSE) of the impulse response estimators.

7.1 Simulation design

We consider three data generating processes (DGPs). DGP 1 is the population model (1) with 

restricted to an observed i.i.d. shock:⎧⎨⎩
 = 1

 = 05−1 + 05 + 03−1 − 04max (0 ) + 03max (0 −1) + 2

 (16)

In DGP 2,  is instead restricted to follow an exogenous AR(1) process:⎧⎨⎩
 = 05−1 + 1

 = 05−1 + 05 + 03−1 − 04max (0 ) + 03max (0 −1) + 2

 (17)
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DGP 3 corresponds to the unrestricted model (1):⎧⎨⎩
 = 03−1 + 02−1 + 1

 = 05−1 + 05 + 03−1 − 04max (0 ) + 02max (0 −1) + 2

 (18)

In all DGPs, the intercept has been normalized to 0 in population and the population innovations are

Gaussian. Results for DGPs with other parameter values are qualitatively similar and hence are not

reported.

The number of Monte Carlo trials is 10 000. For each draw from the DGP, we estimate the

unconditional impulse response function of +,  = 0 1  to a shock in 1 of magnitude  = 1.

The MCI method is implemented, as discussed in the appendix, with 1 = 2 = 1 000. The plug-

in method and LP method are implemented as discussed in section 5. The lag order for all local

projections is set to one, consistent with the assumption of a known lag order of  = 1 in the DGP.

For expository purposes, we focus on samples of length  = 240, corresponding to 20 years of monthly

data or 60 years of quarterly data. Qualitatively similar results are obtained for  = 120 and  = 480,

corresponding to ten years of monthly (or 30 years of quarterly) data and 40 years of monthly data.

7.2 Simulation results

The first row of Figure 1 shows that when the modified LP estimator is applicable, it tends to be less

accurate in finite samples than the plug-in estimator or the MCI estimator. Although the modified

LP estimator has slightly lower bias at longer horizons, it has much higher variance and hence a

much higher MSE. The performance of the plug-in estimator and the MCI estimator is identical, as

expected for this DGP. In the second row of Figure 1, the bias of the MCI and plug-in estimators

tends to be very small and their variance is almost the same. Only for much smaller  , is there any

evidence that these estimators are not effectively identical. Finally, for the unrestricted DGP in the

last row, the plug-in estimator has slightly higher variance than the MCI estimator and slightly lower

bias at short horizons. As a practical matter, these differences are negligible. Thus, there is little to

choose between the plug-in estimator and the MCI estimator based on their finite-sample accuracy.

The plug-in estimator, however, is substantially less computationally demanding, as shown in Table

2. Even for these simple DGPs, the plug-in estimator is 200-300 times faster than the MCI estimator.

8 Conclusions

Our analysis in this paper has focused on structural dynamic models with nonlinearly transformed

regressors that are widely used in applied work. We compared existing approaches to estimating
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impulse responses in this setting based on Monte Carlo integration methods and linear projections

(LPs) to a new approach based on analytical derivations.

We first derived exact solutions for population impulse responses in this class of models. This

result not only is required for evaluating the finite-sample accuracy of alternative impulse response

estimators by simulation, but it allows us to derive a plug-in estimator based on estimates of the

structural model that avoids the high computational cost of Monte Carlo integration methods. We

showed that this estimator has a closed-form solution when the forcing variable is exogenous. It

can be computed iteratively in more general model specifications without resorting to Monte Carlo

integration.

Second, we examined the theoretical support for the use of linear projections in dynamic models

that allow for various forms of nonlinear responses, while maintaining a linear structure that facilitates

the estimation of the model. We showed that, among the estimators considered, in all but one

important special case of this model there is no alternative to the use of impulse response estimators

based on the structural model. When the LP estimator may be applied, its construction differs from

current implementations of the LP estimator in applied work. This result has important implications

for existing empirical work on the role of asymmetries and other nonlinearities in the transmission of

shocks to macroeconomic aggregates.

Third, in addition to establishing the identifiability of the population  , we proved the con-

sistency of the modified LP estimator and the plug-in estimator for the special case of the nonlinear

response to an observable exogenous i.i.d. shock.

Fourth, we compared the finite-sample accuracy of the modified LP estimator to plug-in and

Monte Carlo integration estimators based on the structural model. Simulations suggest that, when

all estimators are valid, the modified LP estimator tends to be less reliable for realistic sample sizes.

In contrast, there is little to choose between the Monte Carlo integration estimator and the plug-in

estimator based on their finite-sample accuracy for any of the model specifications considered. The

analytical approach, however, is 200-300 times faster in practice, which facilitates the use of bootstrap

methods of inference in this class of models.

An interesting question for future research will be whether LP estimators of impulse responses are

theoretically justified in more general nonlinear models. One example is models with state dependence

where the effect of a shock, for example, may depend on whether the economy is in recession or not.

Another example is models with threshold effects. Such nonlinear models are inherently different from

the models studied in the current paper in that the regression models themselves are nonlinear in the

parameters. Thus, the implied impulse responses presumably can only be estimated by nonlinear local
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projections, whereas the current paper focused on more conventional linear local projections.
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A Appendix 1: Algorithm for Computing Responses byMonte Carlo

Integration

The algorithm involves first constructing the conditional response function, Ω−1 at horizons

 = 0  from model (1), or any of its variants, and then the unconditional response function,

. We focus on the most general model specification, but the algorithm below applies with the

obvious changes to any of the models considered in this paper.

1. Consider a block of  consecutive values of  , ( ), and  for  = −  −1. This sequence
defines a history, Ω−1.

2. Simulate two alternative time paths for +, (+), and +,  = 0 , from model (1) by

iterating the model forward, given Ω−1 and the estimated model coefficients. In simulating data

from the model, we need to take a stand on the future realizations of the structural shocks. Each

realization of 1+,  = 0 , is drawn with replacement from the set of structural residuals,

{b1+}+1. Realizations of 2+  = 0 , are independently generated by drawing with

replacement from the set of structural residuals {b2+}+1. The only difference between the
baseline and the alternative shock sequence is that for the alternative we replace 1 by 1+ ,

where the constant  measures the magnitude of the shock of interest.

3. Subtract the simulated baseline path of +,  = 0 , from the simulated alternative path.

The difference across the two paths measures the impact of a shock of size  on +,  = 0 ,

conditional on Ω−1.

4. Repeat steps 2 and 3 1 times and average this difference to obtain an estimate of the impulse

response function conditional on Ω−1, denoted by Ω−1 .

The corresponding unconditional response function can be computed as the average value of the

conditional response functions over 2 randomly drawn histories, Ω

−1, each of which is generated by

drawing with replacement a block of  consecutive observations from the observed data:

 =

Z
Ω−1Ω


−1

B Appendix 2: Proofs

Proof of Proposition 3.1. The proof is in the text.
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Proof of Proposition 3.2. We prove the result for  ≥ . The proof for 0 ≤    is similar,

but requires some adjustments. Given model (3), we have that

+ = ()+ + () (+) +  () 2+

Since  () =  () (), the first term can be written as

()+ =  () ()+ =  ()
¡
0 + 1+   + 


¢
+

=  ()0+ +  ()1+−1 +   +  ()+−

We can further decompose each of the terms above using the definition of  ()  This yields

()+ = 0 + 0

n
1 + 1+   + −1

−1
o
+

+0

n
+1

+1 + +2
+2 +   

o
+ + 1−1

+1

n
1 + 1+   + −2

−2
o
+−1 + 1

n


 + +1
+1 +   

o
+−1

+   

+− + 

n
1 + 1+   + −−1

−−1
o
+− + 

n
−+1

−+1 +   
o
+−

=
¡
0 + 1−1 +   + −

¢| {z }
=

 + 1 + 2

where

1 ≡ 0

n
1 + 1+   + −1

−1
o
+| {z }

={++1}

+ 1

n
1 + 1+   + −2

−2
o
+−1| {z }

={+−1+1}

+   + 

n
1 + 1+   + −−1

−−1
o
+−| {z }

={+−+1}

is a (linear) function only of future values of , {+1     +}.6 Note that because  = 1, an i.i.d.

shock over time, we have that  (1) = 0. In addition, 1 is orthogonal to ,  (), their lags as

well as lags of . Instead, the term 2 is defined as

2 = 0

n
+1

+1 + +2
+2 +   

o
+ + 1

n


 + +1
+1 +   

o
+−1 +   

+

n
−+1

−+1 +   
o
+−

6Henceforth, and in order to simplify the notation, we will use {+1     +} to denote a linear combination of the
variables inside the curly brackets.
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and is a function only of past values of . We can rewrite 2 as

2 = 0
©
+1−1 + +2−2 +   

ª
+ 1

©
−1 + +1−2 +   

ª
+2

©
−1−1 + −2 + +1−3 +   

ª
+   

+
©
−+1−1 + −+2−2 +   + − + +1−−1 +   

ª
= +1

©
0 + 1+   + 


ª| {z }

=()

−1 +
¡
1 + 2−1 +   + −+1

¢| {z }
≡1

−1

++2

©
0 + 1+   + 


ª| {z }

=()

−2|{z}
−1

+
¡
2 +   + −+2

¢| {z }
≡2

−2

+   

++

©
0 + 1+   + 


ª| {z }

=()

−|{z}
=−1−1

+
¡


¢| {z }
≡

−

+++1

©
0 + 1+   + 


ª
−−1 + 0

+   

= 1−1 +   + −| {z }
=()−1

+
¡
+1 + +2+   

¢
 ()−1

Assembling these results yields

()+ =  +  ()−1 +
¡
+1 + +2+   

¢
 ()−1 + 1

where

 = 

and

 () = 1 + 2+   + 
−1

Proceeding the same way, we have that

() (+) =  () +  ()  (−1) +
¡
+1 + +2+   

¢
 ()  (−1) + 1

where

 = 

 () = 1 +   + 
−1
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and

1 ≡ 0

n
1 + 1+   + −1

−1
o
 (+)| {z }

={(+)(+1)}

+1

n
1 + 1+   + −2

−2
o
 (+−1)| {z }

={(+−1)(+1)}
+   

+

n
1 + 1+   + −−1

−−1
o
 (+−)| {z }

={(+−)(+1)}



and it can be shown that

2 = 1 (−1) +   +  (−) +
¡
+1 + +2+   

¢
 ()  (−1) 

Because  ( ()) 6= 0, for any  (due to the nonlinearity of ),  (1) 6= 0, so we need to add and
subtract  ≡  (1) from the equation that defines +. Hence, we can write

+ =  +  +  () +  ()−1 +  ()  (−1)

+
£¡¡

+1 + +2+   
¢
 ()−1

¢
+
¡
+1 + +2+   

¢
 ()  (−1)

+
¡
+1 + +2+   

¢
2−1

¤
++

=  +  +  () +  ()−1 +  ()  (−1)

+ + +

where  is the term in square brackets and + is the error term. Thus,

 =
¡
+1 + +2+   

¢
( ()−1 +  ()  (−1) + 2−1)| {z } =

=()−1

¡
+1 + +2+   

¢
 () −1

and

+ = 2 + 1 + (1 − (1)) + {1+     2+1} 

It can be shown that + has mean zero and is orthogonal to ,  () and their lags using the proper-

ties of the structural errors 1 and 2. To complete the proof, we show that  ≡
¡
+1 + +2+   

¢
 () −1

can be written as a linear function of −1     − This follows from proving that
¡
+1 + +2+   

¢
 ()

is a lag polynomial of order − 1 using the definition of . To show this, recall that for any  ≥ 

 = −11 + −22 +   + −
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Thus,
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=≡ 6=0
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+
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+
¡
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This concludes the proof.

Proof of Proposition 4.1. Let A(·) denote the  column of any matrix A. With this
notation, we can write (12) asµ




¶
= Ψ

(·1)
 () 1 +Ψ

(·2)
 () 2 +Ψ ()  ()  (19)

The elements of the vectors Ψ
(·1)
 ()  Ψ

(·2)
 () and Ψ () are infinite order lag polynomials whose

coefficients are a function of the structural model parameters. Importantly, we can show that

Ψ
(·1)
0 = (1 0)

0  Ψ(·2)0 = (0 1)
0 and Ψ0 = (0 0)

0 

This implies that  does not depend on 2 nor it depends on  () (although it can depend on lags

of 2 and  ()). For the benchmark economy, using (19) ,

+ = Ψ
(·1)
 () 1+ +Ψ

(·2)
 () 2+ +Ψ ()  (+) 

whereas for the -economy,

+ () = Ψ
(·1)
 () 1+ () +Ψ

(·2)
 () 2+ () +Ψ ()  (+ ()) 
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Since 1 () = 1 + , 1 () = 1 for all  6=  and 2 = 2 for all , we have that

+ ()− + = Ψ
(·1)
  +Ψ () [ (+ ())−  (+)] 

Our definition of the two sequences of shocks implies that + () = + for any   0. Hence,

+ ()− + = Ψ
(·1)
  +Ψ0 [ (+ ())−  (+)]

+Ψ1 [ (+−1 ())−  (+−1)] +   +Ψ [ ( ())−  ()]  (20)

This describes a system of two equations which we can use to obtain the population IRF in closed

form. In particular, the second equation is

+ ()− + = Ψ
(21)

  +Ψ
(21)
0 [ (+ ())−  (+)] +   +Ψ

(21)

 [ ( ())−  ()] 

implying that

 ≡  (+ ()− +)

= Ψ
(21)

  +Ψ
(21)
0  [ (+ ())−  (+)]| {z }

≡

+   +Ψ
(21)

  [ ( ())−  ()]| {z }
≡0



To end the proof, we explain why the proposed algorithm can be used to evaluate  for any

 = 0 1      (these are the terms needed to obtain  for any  = 0 1 2    ).

Suppose we care about 0, which requires 0. The first equation of (20) with  = 0 implies

 () =  +Ψ
(11)

0  =  + 

since Ψ
(11)

0 = 1. Hence, 0 =  ( ( + )−  ()) as in step (i). Next, consider  = 1. We require

now  for  = 0 1. Step (i) gives 0. For  = 1, steps (i) and (ii) imply that

+1 () = +1 +Ψ
(11)

1  +Ψ
(11)
1 [ ( ())−  ()]

= +1 +Ψ
(11)

1  +Ψ
(11)
1 [ ( + )−  ()] 

using the fact that  () =  + . This shows that we can express +1 () as a function of +1 and

, as well as  and the model parameters θ. We call this function +1 () = 1 (+1 ;θ). Step

(iii) defines

1 =  ( (+1 ()−  (+1))) =  ( (1 (+1 ;θ))−  (+1)) 

By iterating on steps (ii) and (iii), we can obtain  for any  = 0 1      and any  = 0 1 2    

37



Proof of Theorem 5.1. The proof follows standard arguments and therefore we only provide

a sketch of the proof. For the plug-in estimator, to show that θ̂ is consistent for θ, note that we can

write

θ̂ − θ =
⎛⎝ 1


X
=1+

ww
0


⎞⎠−1 1


X
=1+

w2

Under the stated assumptions, {ww
0
} is stationary and ergodic, which implies that 1

P
=1+ww

0


−→
Σ  0. Similarly, we can show 1



P
=1+w2

−→  (w2) = 0, where the orthogonality condi-

tions can be verified under Assumption E. In particular, w depends on y−1 and x, which are only a

function of 1 and lags of  = (1 2) and their nonlinear transforms. Since w is not a function of

2, Assumption E implies that  (w2) = 0, delivering the result. A similar argument can be used

to show the consistency of π̂ towards π. The consistency of ̂0 towards 0 follows by a standard

LLN for i.i.d. observations.
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Table 1: Validity of Alternative Impulse Response Estimators

Data Generating Process Based on Structural Model Based on LP

Plug-in Monte Carlo Integration Modified Conventional½
 = 1
 ()  =  () +  ()  () + 2

YES YES YES NO½
 () = 1
 ()  =  () +  ()  () + 2

YES YES NO NO½
 () =  ()  + 1
 ()  =  () +  ()  () + 2

YES YES NO NO

Table 2: Ratio of Computation Time for Monte Carlo Integration Relative to Plug-in Estimator

 = 120  = 240  = 480

DGP 1 278.57 272.30 272.97

DGP 2 302.87 295.83 285.13

DGP 3 306.07 321.65 227.03
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Figure 1: The Accuracy of Alternative Impulse Response Estimators for  = 240
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