
 

 

Working Paper 2112                September 2021 
Research Department 
https://doi.org/10.24149/wp2112 

Working papers from the Federal Reserve Bank of Dallas are preliminary drafts circulated for professional comment. 
The views in this paper are those of the authors and do not necessarily reflect the views of the Federal Reserve Bank 
of Dallas or the Federal Reserve System. Any errors or omissions are the responsibility of the authors. 

The Local Fiscal Multiplier of 
Intergovernmental Grants: 

Evidence from Federal Medicaid 
Assistance to States 

 
Seth Giertz and Anil Kumar 

 
 

https://doi.org/10.24149/wp2112


The Local Fiscal Multiplier of Intergovernmental Grants: 
Evidence from Federal Medicaid Assistance to States* 

 
                                    Seth Giertz† and Anil Kumar‡  
     

          September 2021 
 

     
                   Abstract 
 
Advocates of Medicaid expansion argue that federal Medicaid assistance to states fosters 
economic activity, generating positive local multiplier effects. Furthermore, during 
economic downturns, Congress regularly tweaks federal match rates for state Medicaid 
spending – including during the COVID-19 public health emergency – in order to assist 
states. Despite heavy reliance on Medicaid funding formulas, identifying the economic 
effect of these federal transfers has proved challenging. This is because federal Medicaid 
assistance (to states) is endogenous, since funding levels are correlated with unobserved 
factors driving state economic activity. To address this concern, we construct an 
instrument based on a slope discontinuity in the federal matching rate for state Medicaid 
spending. Using state-level panel data from 1990 to 2013, we find that federal Medicaid 
assistance does stimulate economic activity, but the implied cost per job created is quite 
high and the multiplier is well below 1. Despite modest economic effects over the entire 
sample period, we find that federal Medicaid assistance provided powerful fiscal stimulus 
to states after the Great Recession when the implied multiplier shot up to 1.5. 
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1. Introduction 

Medicaid accounted for more than half of the nearly $800 billion the federal government 

sent to state and local governments as intergovernmental grants in 2019.1 It is by far the largest 

and the fastest growing means-tested transfer program in the U.S, constituting 9.4 percent of 

federal expenditures. The Congressional Budget Office (CBO) projects that federal Medicaid 

spending as a share of GDP will increase by 74 percent, from 1.9 percent of GDP in 2018 to 3.3 

percent of GDP in 2047.2 The program is funded jointly by the federal and state governments, with 

the federal government reimbursing 50-74 percent of states’ Medicaid costs in the form of 

matching funds based on the Federal Medical Assistance Percentage (FMAP) formula. 

Furthermore, Congress often passes temporary increases to FMAP in order to send more money 

to states during periods of economic stress. This includes an across-the-board increase to FMAP 

of 6.2 percentage points in the Families First Coronavirus Response Act (FFCRA) to extend 

through the COVID-19 public health emergency.   

Research, as well as media reports, points to positive spillovers from federal Medicaid 

assistance (henceforth FMA) on state employment and economic activity.3 For example, in 

separate 2014 reports, the President’s Council of Economic Advisors touted the effect of federal 

matching grants on state economies, arguing that the stimulative effects from temporary increases 

to federal Medicaid reimbursement rates in the 2009 economic stimulus package created or saved 

millions of jobs.4 Despite such triumphant pronouncements, there are surprisingly few estimates 

of the state-level multiplier from FMA, which has been in operation since 1965. Estimating its 

impact on local economic activity is a challenge because state Medicaid spending, by construction, 

is inherently endogenous and almost surely driven by local economic conditions.   

Among the few papers to explicitly focus on FMA, Chodorow-Reich et al. (2012) and 

Chodorow-Reich (2019) estimated the local multiplier of a temporary increase in FMAP transfers 

under the American Recovery and Reinvestment Act (ARRA) during 2009-2010 and addressed 

 
1 See https://www.gao.gov/federal-grants-state-and-local-governments.  
2 The pace of growth accelerated further with the Medicaid expansion under the Affordable Care Act (ACA). The 
CBO estimates that as much as 21 percent of the overall Medicaid funding in 2019 will support adults made eligible 
because of the ACA Medicaid expansion.  
3 For example, see Kliff (2012) in The Washington Post. 
4 In the other case, they touted prospective gains to state economies from increased federal grants associated with 
expanding Medicaid. Here, they argued that federal Medicaid spending raises worker productivity partly by improving 
the health of recipients. This notwithstanding, empirical size of local multipliers is far from clear, as it depends on a 
number of factors, including how the spending is structured, how it is financed, on macroeconomic conditions, and 
on possible monetary policy responses. 

https://www.gao.gov/federal-grants-state-and-local-governments


2 

the endogeneity by using state-level lagged (pre-recession) Medicaid spending as an instrument. 

As noted in Chodorow-Reich et al. (2012), a potential concern with the lagged spending instrument 

is that it still depends on state Medicaid spending rules which may be correlated with the severity 

of the downturn. 

We propose a new instrument to overcome endogeneity concerns and, in so doing, make 

three contributions to this literature. First, our instrument is based on a long-standing discontinuity 

in the slope of FMAP with respect to relative per capita income (RPCPI), where RPCPI is defined 

as a moving average of lagged state per capita personal income divided by the corresponding 

measure for the US as a whole. FMAP covers a declining share of state Medicaid spending as 

RPCPI increases before reaching a floor of 50 percent when RPCPI exceeds 1.054, which imparts 

the slope discontinuity (see Figure 1). We show that the discontinuity in the FMAP schedule also 

induces a discontinuity in per capita federal matching dollars states receive – something also found 

by Leung (2016) in addressing a different question. Second, rather than estimate the effect of bonus 

FMAP transfers to states often made during economic downturns, we are the first to estimate the 

local multiplier from traditional FMAP-based transfers. And third, our use of a long panel of state-

level data from 1990 to 2013 allows us to estimate dynamic, time-varying, and long-term estimates 

of the multiplier, spanning the range of the business cycle. 

To preview key findings, our preferred IV estimates indicate that FMA had a modest 

positive multiplier over the period 1990-2013. For example, when restricting our sample to a 

narrow band surrounding the kink created by the FMAP discontinuity, we find that an additional 

$100,000 per year in FMA yields about 0.75 jobs over three years. This implies a statistically 

insignificant employment impact of 0.25 job-years at a cost per job of $400,000 (in 2016 dollars).5 

However, these aggregate results mask substantial heterogeneity across subsets of years. Over the 

1990s, we consistently find that the FMA multiplier was very small with point estimates below 

0.25. Based on confidence intervals, we can rule out multiplier larger than 0.33 when restricting 

the sample to a narrow bandwidth surrounding the slope discontinuity; for the full sample, we can 

rule out multipliers larger than 0.66. However, the estimated multiplier is larger after 2000, 

reaching 1.5 after the Great Recession with an associated cost per job year of $81,000. Thus, our 

 
5 Alternative specifications for the full time period sometimes yield a much larger, but still very small, jobs multiplier. 
For example, without bandwidth restrictions, our full period estimate is a multiplier of 0.54 at a cost of over $200,000 
per job. It should also go without saying that intergovernmental transfers to states serve important purposes beyond 
creating jobs. And, policymakers will want to consider these other benefits, in addition to multiplier effects. 
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multiplier estimates for 2008-2010 are similar, although somewhat smaller, than those reported by 

Chodorow-Reich et al. (2012) for the same time period. They estimated a cost of $26,000 (in bonus 

FMAP payments) in order to create one job, implying a multiplier of around 2.6  

Our main identifying assumption is that the FMAP discontinuity (with respect to RPCPI) 

is uncorrelated with either local economic conditions or state Medicaid rules. Thus, we assume 

that states do not pursue perverse economic policies in order to manipulate their Medicaid match 

rate, nor do they have enough influence to lead Congress to manipulate the formula. However, 

states may have a good idea as to what their match rate will be when making policy decisions 

regarding Medicaid. Thus, a state’s location with respect to the FMAP slope discontinuity may 

influence its fiscal policy, including spending on Medicaid.     

 The remainder of the paper is organized as follows. Section 2 connects our work with the 

literature on multipliers from intergovernmental grants; section 3 describes the data and details the 

proposed FMAP instrument; section 4 presents the econometric specification and discusses 

identification; section 5 reports the results and section 6 concludes. 

 

2. Incentive Effects from FMAP and Literature on Local Multipliers 

The federal government subsidizes state Medicaid spending via matching grants. The 

match rate varies across states and over time, but for a state (in a given year) the rate is fixed.7 In 

other words, the match rate is based on lagged economic variables and is independent of state 

Medicaid rules. We examine the effects of an increase to a state’s Medicaid match rate, which 

increases the size of the matching grant sent to the state, on state economic activity. The incentive 

effects to states flow through two different channels. The first channel is an inframarginal effect, 

where the state receives more federal dollars (than it would have otherwise) for Medicaid spending 

than it would have absent an increase to its match rate. This inframarginal effect is akin to a lump-

sum or unrestricted grant to the state. The second channel is a marginal (or behavioral) effect, 

where the state has an incentive to increase Medicaid spending as a result of the increased match 

rate. Increased federal spending from this second channel contributes directly to an expansion of 

 
6 In another paper, Chodorow-Reich (2019) also uses cross-sectional variation to identify stimulative effects of total 
ARRA spending. Here, he emphasizes a jobs multiplier of between 1.8 to 2.3 per $100,000 in additional federal grant 
at a cost per job year of $50,000 with an implied multiplier of 1.5. 
7 In some cases, states may have a different match rate for certain groups, such as those covered by the ACA Medicaid 
expansion.  



4 

Medicaid. In contrast to the inframarginal effect, to benefit from the marginal effect, the state must 

divert funds from other activities towards Medicaid in exchange for increased federal grants.8 The 

effects of grants to states will depend partly on the relative importance of these two different 

channels and thus on the policy under evaluation.  

 

2.1 The Inframarginal Channel 

In examining the effects from the 2009 recovery act (i.e., ARRA), the inframarginal 

channel is of primary importance. This is because ARRA temporarily increased Medicaid match 

rates to states, with bigger increases for states that experienced greater increases in their 

unemployment rates. (Penalties prevented states from cutting Medicaid while the FMAP bonus 

was in effect.) As a result, extra federal grants were almost entirely de facto lump sum grants to 

states. Chodorow-Reich (2019) reviews a number of papers examining the stimulative effects of 

the temporary FMAP increase, as well as producing new estimates.9 Chodorow-Reich refers to 

these as “cross-sectional” multipliers because they measure effects of targeted spending in states 

or localities, and because cross-sectional variation in treatment is used to identify effects. 

Identification in these studies is generally based on instruments constructed from pre-recession 

variables. 

Chodorow-Reich employs a cross-sectional approach where the dependent variable is 

average annual employment (or output) growth over the period of the act (normalized by the state’s 

working age population). This variable is regressed against a vector of state economic conditions, 

and ARRA outlays, with these variables normalized (where relevant) in the same manner.  

He then compares estimates using alternative instruments for ARRA outlays. With respect 

to job years per a $100,000 increase in spending, estimated multipliers from the four sets of 

instruments range from 1.8 to 2.2, with a mean of 2.1. Recalibrating these numbers, based on 

output per worker, yields a mean output multiplier of 1.9. This is in line with seven other papers 

that he considers, where the mean output multiplier is 2.1 – and 1.8 when excluding two studies 

examining permanent, rather than transitory, spending increases. 

 

2.2 The Marginal Channel 

 
8 Note that, the first (inframarginal) channel could also result in some increased Medicaid spending.    
9 Also see Wilson (2012) and Conley and Dupor (2013) among papers estimating multipliers from ARRA. 
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On the other hand, in analyzing the Medicaid expansion following the 2010 Affordable 

Care Act (ACA), the marginal channel would be the only relevant factor. For the most part, under 

the ACA Medicaid expansion, the federal government offered to cover new groups with, at least 

initially, a 100-percent match rate – and did not provide more funding for groups previously 

covered by Medicaid. Thus, added funds from ACA would represent federal support for new 

Medicaid spending and not an unrestricted grant. While supporters of Medicaid expansion argue 

that it would be a boon to states, there is little hard evidence to support (or to counter) this 

contention.  

 

2.3 Blended Approach 

As an alternative to these two examples, consider an increase (or decrease) to the match 

rate for a state, where the increase (or decrease) applies both to preexisting state Medicaid 

spending, as well as to increases in state Medicaid spending. This “blended” case is also policy 

relevant and is the focus of our analysis. For example, in its 2018 budget options volume, the 

Congressional Budget Office analyzed the federal revenue implications of three options that would 

modify Medicaid matching grants to states. One of these options involved removing the 50-percent 

floor on the federal match rate, which binds for some rich states, i.e., they examine the effects of 

removing the slope discontinuity. Our analysis evaluates the broader policy implications of just 

such a policy change.  

With respect to methodology, our paper has much in common with Lundqvist et al. (2014) 

who estimate the effect of intergovernmental grants on employment. Like us, their identification 

strategy centers on a slope discontinuity in the generosity of intergovernmental grants. Unlike us, 

their focus is not on Medicaid match rates, but rather on a program in Sweden. Their main 

dependent variable is the per capita number of full-time equivalent employees (by municipality) 

and their key dependent variable is per capita intergovernmental grants received. As an instrument, 

they use a dummy variable that indicates whether the municipality is below or above the out-

migration threshold that determines eligibility for supplemental internal grants. In contrast to many 

US-based ARRA papers, Lundqvist et al. report almost no effect of grants on employment. 

 

3. Data and Instruments  
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3.1 Sate-Level Panel, 1990-2013  

Our analysis is based on panel data for U.S. states spanning years 1990-2013. The primary 

dependent variable—per capita jobs—is based on non-farm payroll employment data from the 

Current Establishment Statistics (CES) program of the Bureau of Labor Statistics (BLS). We 

calculate per capita jobs for each state by normalizing the annual average of monthly non-farm 

payroll employment from the BLS by state population from the Bureau of Economic Analysis 

(BEA). We focus on jobs because it provides the most reliable estimate of economic activity at the 

state level and is measured more accurately than more comprehensive measures such as GDP, 

which are known to contain significant measurement error at the state level.  

Data on state Medicaid expenditures are included in the Centers for Medicare & Medicaid 

Services (CMS) data files on “State Health Expenditures by State of Provider.” For each state, we 

use FMAP to compute our key explanatory variable, federal assistance to states for Medicaid, also 

converted to per capita terms. FMAP data are from the U.S. Department of Health and Human 

Services (HHS) and data on state and US per capita personal income are from the Bureau of 

Economic Analysis (BEA). Federal Medicaid dollars and other monetary variables, such as GDP, 

are expressed in 2016 prices.  Data on demographic covariates included in various specifications 

come from the Current Population Survey (CPS) of the Census Bureau. Table 1 presents summary 

statistics for key variables. 

 

3.2 Discontinuity in the Federal Medicaid Funding Formula 

Recall that our goal is to estimate the effect of an exogenous change to FMA on state 

employment. However, state employment and FMA are simultaneously determined, since both are 

closely correlated with state PCPI. A floor in the FMAP funding formula implies no relationship 

between PCPI and FMA once the floor is reached. Here, we provide background on the 

determinants of federal funding for Medicaid and establish that the floor in the FMAP formula is 

mirrored by a floor in per capita FMA.  

The FMAP formula governs the share of total Medicaid expenditures (appropriated by 

states) paid by the federal government. The formula is given by 

𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑠𝑠𝑠𝑠 = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑚𝑚𝑚𝑚𝑚𝑚 �0.5,  1 − 0.45 ∗ � 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
�������𝑠𝑠𝑠𝑠
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�������𝑠𝑠

𝑈𝑈𝑈𝑈�
2
� ,  0.83� (1)

Central to FMAP is the relationship between state and U.S. per capita personal income (PCPI). In 
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equation (1), 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�������𝑠𝑠𝑠𝑠 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�������𝑠𝑠𝑈𝑈𝑈𝑈represent a 3-year moving averages of PCPI in year 𝑡𝑡 for state 𝑠𝑠 

and the U.S., respectively. For year 𝑡𝑡, PCPI is calculated based on income from years 𝑡𝑡 − 3,  𝑡𝑡 −

4, and 𝑡𝑡 − 5. The formula implies that FMAP is 55 percent if the lagged measure of state PCPI 

equals the U.S. average (USPCPI). Also note that, above the floor, FMAP is inversely related to 

the RPCPI, i.e., 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
�������𝑠𝑠𝑠𝑠
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�������𝑠𝑠

𝑈𝑈𝑈𝑈,. The FMAP floor of 50 percent imparts a discontinuity in the match rate 

when the RPCPI reaches 1.054. In other words, FMAP is greater than 0.5 if the RPCPI is below 

1.054 and FMAP equals 0.5 if the ratio exceeds 1.054. In addition to a floor, FMAP also includes 

a ceiling of 83 percent. However, this ceiling almost never binds.  

 The discontinuity in per capita FMA, with respect to state PCPI relative to the US, is used 

to construct our instrument. This is discussed in greater detail in the following section. Here, we 

present Figure 2 in order to establish that the FMAP formula does, for a given level of state 

Medicaid spending, impart a slope discontinuity in the level of per capita FMA. Figure 2 represents 

a stylized state with Medicaid expenditures equal to the 2018 national average of $1,811 per capita. 

The figure is constructed such that, while per capita Medicaid expenditures is held constant, per 

capita FMA varies across a range of actual PCPI ratios observed for the 50 U.S. states.  

Figure 2 shows that the discontinuity in the FMAP formula does in fact mirror the 

discontinuity in per capita FMA. For PCPI ratios exceeding 1.054, the grant hits a floor of $906 

per capita. The difference between this floor and the near-linear relationship can be viewed as an 

exogenous bonus to states that hit the floor. This bonus exceeds $906 per capita for the very richest 

states, since, absent the floor, the very richest states would have a negative FMAP. Note that FMA 

without a floor would be poorly suited for isolating the effects of federal grants to states. Without 

the floor, FMA is declining at a smooth rate with respect to state PCPI which is closely correlated 

with both the need and the ability of states to finance Medicaid. Thus, the endogeneity cannot be 

disentangled. However, by comparing the relationship between state economic activity and 

deviations between actual FMA and counterfactual FMA (i.e., FMA in the absence of the floor), 

we can isolate the causal effects of the grants on state economic activity.   

 FMAP has remained largely unchanged since its inception and states have no control over 

the formula. While the FMAP formula is determined by (lagged) economic activity, the 

discontinuity in the formula is exogenous with respect to policy or economic considerations. As 

detailed in Mitchell (2020), there have been some instances when FMAP has deviated from the 

formula. For example, FMAP for DC is set at 70 percent regardless of how its per capita income 
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compares to that of the nation. Also, as part of the ACA, FMAP increased to 100-percent for newly 

eligible Medicaid enrollees in states that opted for Medicaid. FMAP was also increased in 2003-

2004 to assist states during a slow economic recovery. During the Great Recession, ARRA 

permitted FMAP to deviate from the usual formula through 2010, with deviations tied to the state 

unemployment rates. There were also temporary adjustments for Alaska, Michigan, and Louisiana 

(due to Hurricane Katrina). 

 In addition to Medicaid funding, FMAP is also used for some much smaller programs: 

Guardianship Assistance, Child Care and Development Block Grant, Child Care mandatory and 

matching funds of the Child Care and Development Fund, Foster Care- Title IV-E, Adoption 

Assistance, and the phased down state contribution or the clawback for Medicare—Part D. 

Additionally, the Children’s Health Insurance Program (CHIP) uses enhanced FMAP (E-FMAP) 

which equals 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃 + 0.3 × (1 − 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃) with a cap of 85 percent. Thus E-FMAP also has a 

discontinuous slope with respect to RPCPI at the same place as FMAP.  

 

4. Econometric Framework and Identification 

 

4.1 Econometric Framework 

To estimate impulse responses with panel data we follow the local projections (LP) 

approach with instrumental variables employed in influential work on government spending 

multipliers by Ramey and Zubairy (2018).10 The LP approach is an alternative to vector 

autoregression (VAR), where a system of equations is estimated, and then impulse responses are 

produced by, for example, shocking the error term of one of the equations and then projecting 

forward. LPs are simpler in that they do not require multiple equations.11 Jordà notes additional 

advantages of the LP approach, stating that LPs “are robust to misspecification of the data 

generating process; and they easily accommodate experimentation with highly nonlinear 

specifications that are often impractical or infeasible in a multivariate context.” LPs are based on 

“projections local to each forecast horizon.” By contrast, Jordà demonstrates that VAR-based 

 
10 LP approach was originally proposed in Jordà (2005). 
11 While a system of equations is not required, more than one equation may be required, if an instrumental variables 
approach is used to address endogeneity issues.  
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impulse responses are more susceptible to biases as the forecast period increases – for example, 

resulting from the linear extrapolation of nonlinear phenomena.  

Following Ramey and Zubairy (2018) and Chodorow-Reich (2019), the h-period impulse 

response of FMA dollars on employment can be estimated using the following specification: 

𝑦𝑦𝑠𝑠,𝑠𝑠+ℎ − 𝑦𝑦𝑠𝑠,𝑠𝑠 = 𝛽𝛽1ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠 + 𝜆𝜆1ℎ𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� 𝑠𝑠𝑠𝑠 + +𝛾𝛾ℎ𝑋𝑋𝑠𝑠𝑠𝑠 + 𝜇𝜇𝑠𝑠ℎ + 𝛼𝛼𝑠𝑠ℎ + 𝑢𝑢𝑠𝑠,𝑠𝑠+ℎ , (2) 

where  𝑦𝑦𝑠𝑠,𝑠𝑠+ℎ − 𝑦𝑦𝑠𝑠,𝑠𝑠 is the h-period change in per capita jobs for state 𝑠𝑠 in year 𝑡𝑡 + ℎ; 𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠 is 

the state’s federal reimbursement for Medicaid spending, in per capita terms and based on FMAP. 

To exploit the FMAP slope discontinuity as  a source of identification, we augment the 

conventional specification with the normalized assignment/running variable (𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�  = 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 −

1.054), i.e., normalized RPCPI that equals zero when 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1.054; 𝜇𝜇𝑠𝑠ℎ are year effects; and 

𝑋𝑋𝑠𝑠𝑠𝑠 consists of other controls that may be correlated with both 𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠 and  𝑦𝑦𝑠𝑠,𝑠𝑠+ℎ − 𝑦𝑦𝑠𝑠,𝑠𝑠; 𝛼𝛼𝑠𝑠ℎ is an 

unobserved state effect that may be correlated with other covariates. The LP methodology involves 

regressing 𝑦𝑦𝑠𝑠,𝑠𝑠+ℎ − 𝑦𝑦𝑠𝑠,𝑠𝑠 on the right-hand side variables of (2) for a set of time horizons, ℎ. In this 

LP framework, 𝛽𝛽ℎ captures the impulse response of one unit of initial shock to 𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠 on the 

outcome variable in period ℎ. 

Guided by econometric specifications in Chodorow-Reich et al. (2012) and Ramey and 

Zubairy (2018), we include a set of variables (𝑋𝑋𝑠𝑠𝑠𝑠) in our baseline specification to control for the 

economic and demographic composition of states. These variables include the share of state 

employment that is unionized, share of manufacturing in state GDP, state population to control for 

states’ size, and per capita real GDP. These variables are lagged one year to avoid endogeneity. 

To account for trends in economic activity that may be correlated with 𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠. we include year 

affects. We additionally control for state-level demographic covariates: the share of state 

population:  over age 65; female; white non-Hispanic; black; Hispanic; with a high school diploma; 

and those with college education. We also show that the estimates from our baseline specification 

are robust to an expanded set of covariates that include Census division dummies and division by 

year effects. And finally, while we do not include lags of the dependent variable in our baseline 

specifications due to well-known problems with lagged dependent variables in unobserved effects 

panel data models, we show that the results are highly robust to inclusion of such lags.   

 As discussed in Ramey and Zubairy (2018), in a dynamic environment, the multiplier has 

many definitions depending on the timing and scope of output response and/or the spending shock. 

We estimate the cumulative version of the multiplier—the response of H-year integral of change 
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in per capita jobs to the H-period integral of per capita 𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠, estimating the following 

specification: 

��𝑦𝑦𝑠𝑠,𝑠𝑠+ℎ − 𝑦𝑦𝑠𝑠,𝑠𝑠�
𝐻𝐻

ℎ=0

= 𝛽𝛽1𝐻𝐻�𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠+ℎ

𝐻𝐻

ℎ=0

+ 𝜆𝜆1𝐻𝐻𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� 𝑠𝑠𝑠𝑠 + 𝛾𝛾𝐻𝐻𝑋𝑋𝑠𝑠𝑠𝑠 + 𝜇𝜇𝑠𝑠𝐻𝐻 + 𝛼𝛼𝑠𝑠𝐻𝐻 + 𝑢𝑢𝑠𝑠,𝑠𝑠+𝐻𝐻 , (3) 

where 𝛽𝛽1𝐻𝐻 denotes the H-year cumulative jobs impact.12 We show that our estimate of the implied 

per-year jobs response to per-year 𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠 (i.e., 𝛽𝛽1𝐻𝐻/𝐻𝐻) is remarkably robust to the horizon 𝐻𝐻, so 

we set 𝐻𝐻 to 3 in most specifications, unless indicated otherwise.13 Noting that ∑ 𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠+ℎ𝐻𝐻
ℎ=0  is in 

$100,000 per capita, we calculate the implied cost per job year as $100,000/(𝛽𝛽1𝐻𝐻/𝐻𝐻) and, 

following the suggestion in Chodorow-Reich (2019), also back out the implied multiplier by 

dividing an estimate of output per job with the implied cost per job. We estimate output per job as 

the average GDP across states divided by the average nonfarm payroll jobs over the estimation 

sample, which yields an output per job of $108,700 in 2016 prices.  

As previously noted, ∑ 𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠+ℎ𝐻𝐻
ℎ=0  is likely correlated with 𝛼𝛼𝑠𝑠ℎ and 𝑢𝑢𝑠𝑠,𝑠𝑠+ℎ , making OLS 

estimates, with or without fixed effects, biased and inconsistent. In addition to being correlated 

with a variety of economic and demographic factors, FMA is also both a cause and an effect of 

state economic activity. For example, all else equal, lower-income states, with slower income 

growth, will tend to receive more FMA than more prosperous states. Furthermore, as noted in 

Chodorow-Reich et al. (2012),  ∑ 𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠+ℎ𝐻𝐻
ℎ=0  is almost surely correlated with intricacies of state-

specific Medicaid spending rules, which end up in 𝑢𝑢𝑠𝑠,𝑠𝑠+𝐻𝐻  because Medicaid spending tends to be 

countercyclical. And if such state-specific Medicaid rules are serially correlated then even the use 

of lagged Medicaid spending would not mitigate the endogeneity problem (Bellemare et. al., 

2017). 

Our instrument is motivated by the Fuzzy Regression Kink Design (RKD) approach 

proposed by Card et al. (2015) and employed by Lundqvist et al (2014) in the context local 

multipliers. The discontinuity in the slope of ∑ 𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠+ℎ𝐻𝐻
ℎ=0  with respect to the 

assignment/running variable RPCPI is driven by the well-known discontinuity in the FMAP 

formula. The discontinuity occurs when RPCPI equals 1.054: FMAP is greater than 0.5 if RPCPI 

is under 1.054 and FMAP equals 0.5 if RPCPI exceeds 1.054. Now let Above denote an indicator 

 
12 The cumulative multiplier specification used here is almost identical to Fieldhouse, Mertens and Ravn (2018). 
13 Note that  𝛽𝛽1𝐻𝐻 in the numerator of  𝛽𝛽1𝐻𝐻/𝐻𝐻 is 𝛽𝛽1 with superscript 𝐻𝐻and should not be confused with power 𝐻𝐻. 
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variable, 1(𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� > 0), for RPCPI being above the FMAP slope discontinuity at 1.054. Then for 

the local linear specification. the first-stage relationship can be written as:14 

�𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠+ℎ

𝐻𝐻

ℎ=0

= 𝛾𝛾1𝐻𝐻𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� 𝑠𝑠𝑠𝑠 + 𝜂𝜂1𝐻𝐻�𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� 𝑠𝑠𝑠𝑠 × 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� + 𝛿𝛿𝐻𝐻𝑋𝑋𝑠𝑠𝑠𝑠 + 𝜆𝜆𝑠𝑠𝐻𝐻 + 𝛾𝛾𝑠𝑠𝐻𝐻 + 𝐴𝐴𝑠𝑠𝑠𝑠+𝐻𝐻 (4) 

For a linear polynomial, the estimation collapses to a simple regression of ∑ 𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠+ℎ𝐻𝐻
ℎ=0  on 

𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�  , the interaction term 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�  × 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, and other controls. The coefficient on the linear 

interaction term, 𝜂𝜂1, measures the difference in slope of 𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠 with respect to 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  at the 

FMAP slope discontinuity (𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�  = 0). Given well-known concerns with higher order 

polynomial in RD/RKD designs with small sample size as ours (Gelman and Imbens, 2018; Pei et. 

al., 2021), we estimate local linear regressions, omitting higher order polynomials of 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�  and 

𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�  × 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. In the Fuzzy RKD case,  𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�  × 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 can be seen as an instrument and we 

treat it as such in the remainder of this paper. If it is indeed a valid instrument, then for the linear 

polynomial case, the second stage becomes: 

��𝑦𝑦𝑠𝑠,𝑠𝑠+ℎ − 𝑦𝑦𝑠𝑠,𝑠𝑠�
𝐻𝐻

ℎ=0

= 𝛽𝛽1𝐻𝐻�𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠+ℎ

𝐻𝐻

ℎ=0

�
 + 𝛽𝛽3𝐻𝐻𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠� + 𝛾𝛾𝐻𝐻𝑋𝑋𝑠𝑠𝑠𝑠 + 𝜇𝜇𝑠𝑠𝐻𝐻 + 𝛼𝛼𝑠𝑠𝐻𝐻 + 𝑢𝑢𝑠𝑠,𝑠𝑠+𝐻𝐻 (5) 

In both (4) and (5), we assume that conditional on a rich set of covariates the unobserved state 

effects are uncorrelated with the instrument and ∑ 𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠+ℎ𝐻𝐻
ℎ=0 , respectively, and use pooled OLS.  

As discussed at length later, this is because the instrument has little time variation within states. 

This is consistent with the recent literature on geographic cross-sectional multiplier, which is 

identified primarily off of cross-sectional variation (Chodorow-Reich et. al., 2012; Lundqvist, 

Dahlberg, and Mörk, 2014; Suárez, Serrato, and Wingender, 2016; Chodorow-Reich, 2019).15  We 

recognize that the presence of state-specific unobserved effect would induce serial correlation in 

the composite error term 𝛼𝛼𝑠𝑠ℎ + 𝑢𝑢𝑠𝑠,𝑠𝑠+ℎ —a concern that we address by clustering all standard errors 

at the state level. Additionally, we throughout estimate regressions unweighted by variables 

representing states’ size as the objective is to get causal estimates of the jobs impact of FMA rather 

than nationally representative quantities. 

 

 
14 Note that using normalized RPCPI in this equation is simply for convenience, as the regression is numerically 
equivalent to one in which 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�  is replaced with RPCPI.  
15 See Nakamura and Steinsson (2014) for an alternative empirical approach using panel data. 



12 

4.2 Identification 

The key identifying assumption is that the instrument, 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�  × 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, is correlated with 

𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠, it has no direct correlation with 𝑦𝑦𝑠𝑠,𝑠𝑠+ℎ. In other words, the location of the FMAP 

discontinuity is effectively exogenous and states are unable to manipulate their location around the 

discontinuity. The ability to manipulate their location would imply that the slope discontinuity 

itself is endogenous and therefore an invalid instrument. This can be informally tested by 

examining whether the density of the assignment variable (RPCPI) evolves continuously around 

the discontinuity in the FMAP formula.  

Figure 3 plots the density of RPCPI around the discontinuity and shows no statistically 

significant difference in the densities at the discontinuity — i.e., there is no statistical evidence of 

manipulation (McCrary, 2008). Moreover, the log difference in height of the two densities at the 

discontinuity is 0.29 with a standard error of 0.16, which is not significant at the 5 percent level.  

This is hardly surprising, as RPCPI for state 𝑠𝑠 in year 𝑡𝑡 is calculated using personal income data 

from years 𝑡𝑡 − 3, 𝑡𝑡 − 4, and 𝑡𝑡 − 5, which is to say that they are several years old. 

 The primary identification condition, that 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�  × 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is uncorrelated with the error 

term 𝑢𝑢𝑠𝑠,𝑠𝑠+ℎ, remains fundamentally untestable in the just identified case. However, we do conduct 

an informal test for the discontinuity in slopes (with respect to the running variable) in other 

covariates potentially correlated with economic activity. Table 2 reports p-values on the test of 

significance of 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�  × 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 for several covariates, including two state-level spending 

measures—per capita TANF spending and per capita non-Medicaid spending. P-values along with 

significance indicators are reported for different bandwidths around the discontinuity. Importantly, 

for the two non-Medicaid spending measures reported in in the first two rows, the null hypothesis 

that no discontinuity exists (at the location of the discontinuity in the FMAP formula) cannot be 

rejected. Overall, Table 2 shows that the presence of a significant slope discontinuity among 

covariates is an exception rather than the norm. A few covariates out of multiple being tested 

would turn out to be significant simply by chance. When we adjust the p-values for multiple 

testing, none of them remain significant.   Nonetheless, as an extra precaution and to guard against 

potential correlations with any such covariates, we control for a large set of covariates in our main 

results (presented in the next section).  
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Even as Table 2 shows little evidence of slope discontinuity across other covariates, Figure 

4 shows visual evidence of discontinuity in the slopes with respect to RPCPI for both the 

endogenous variable (FMA) and the outcome variable (jobs).  

 

5. Results 

 

5.1 Full sample results 

Table 3 includes regression results that examine the validity of our identifying assumptions. 

We control for year effects as well as state-level economic and demographic covariates (including 

𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� ) for the full sample from 1990 to 2010.16 While the instrument, 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�  × 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, is 

uncorrelated with non-Medicaid spending in column (1), it is correlated with Medicaid spending 

in column (2), with an estimated coefficient that is significant at 10-percent level. Furthermore, 

the first-stage estimated coefficient of 0.052, reported in column (3), shows a strong statistically 

significant relationship with the endogenous variable—federal Medicaid dollars (∑ 𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠+ℎ3
ℎ=0 ). 

Column 4 of Table 3 presents the reduced form coefficient from regressing the key outcome 

variable, ∑ �𝑦𝑦𝑠𝑠,𝑠𝑠+ℎ − 𝑦𝑦𝑠𝑠,𝑠𝑠�𝐻𝐻
ℎ=0 , on the instrument along with other controls. The reduced-form 

coefficient of 0.078 is also precisely estimated. By definition, the IV estimate of 1.5 equals the 

ratio of the reduced form coefficient to the first-stage coefficient. That is, a $100,000 injection of 

FMA in states through the traditional FMAP formula is associated with 1.5 added jobs over 3 

years, for a per-year job estimate of around 0.5, at a cost per job of nearly $200,000 over the entire 

sample period from 1990 to 2010. 

 Continuing with the full sample results, Table 4 compares IV estimates with simple OLS 

estimates and examines the sensitivity of the estimates to inclusion of state fixed effects in our IV 

specifications. The OLS estimate in column (1) is consistent with downward endogeneity bias. 

This estimate more than doubles in size when accounting for state fixed effects in column (2). This 

suggests substantial omitted variable bias with simple OLS due to unobserved state-level 

characteristics. IV estimates from column 3, without fixed effects, are similar to fixed effects OLS 

estimates, suggesting that the instruments help mitigate the bias from omitted state-specific factors. 

The first stage Kleibergen-Paap rk Wald F-statistic of 9.06, reported in column (3), shows that the 

 
16 Note that, while our data extend to 2013, the latest base year used in our analysis is 2010, since some variables 
include information from the three years following the base year.  



14 

instrument is sufficiently strong and the null of weak instruments is strongly rejected, with an 

associated p-values of 0.004. 

However, IV estimates are imprecise when state fixed effects are included in column (4) 

and are no longer reliable as the first stage F-statistic drops to a level that suggest (very) weak 

instruments. This is not entirely surprising because the instrument, 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�  × 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, exhibits little 

time-series variation within states. This is because 80 percent of states have RPCPI that is always 

either above or below the FMAP discontinuity (at 1.054) for the entire sample period. Even RPCPI 

has limited within-state variation over time—the within standard deviation is just 18 percent of the 

overall standard deviation. Given the lack of within variation, the fixed effects IV models are not 

very informative. Therefore, like Chodorow-Reich et al. (2012), Chodorow-Reich (2019) and 

Lundqvist et al. (2014), identification in our case relies primarily on cross-sectional variation in 

the instrument, relying on the assumption that conditional, on an extensive set of covariates, 

𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�  × 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is uncorrelated with any remaining unobserved shocks to current or future 

economic conditions.  

Table 5 assesses the robustness of our estimates to the inclusion of covariates, providing 

insight into the degree of omitted variable bias in our IV estimates. Column (1) starts with the most 

parsimonious specification with  𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�  as the only control in the IV regression. This barebones 

specification yields a precise estimated coefficient of 0.87. We see a decline in the estimate with 

the inclusion of year effects in column (2), suggesting that other macroeconomic drivers of 

economic activity absent from column (1) were positively correlated with FMA. The addition of 

other state-level economic and demographic covariates in columns (3) and (4) does have an 

important effect on the size of the estimated coefficient, underscoring the need for their inclusion 

in the baseline specification. To account for any unobserved shocks by region or by region and 

time, column (5) include Census division dummies and column (6) also interacts these dummies 

with year fixed effects. Finally, column (7) shows that the estimates are robust to inclusion of three 

lags of job growth. From columns (4) to (7), coefficient estimates increase modestly in size but are 

largely stable; therefore, the model in column (4) is our default specification unless otherwise 

indicated otherwise. 

 

5.2 Sensitivity over time  
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Sensitivity of estimates over time is presented in Table 6 with the column (1) reproducing 

the full sample results from the baseline specification. Column (2) restricts the sample to the 1990s, 

which reduces the coefficient to just a half of the full sample estimates in column (1) and 

uncertainty jumps considerably. The implied cost per job doubles from $200,000 for the full 

sample to $400,000 for the 1990s with the implied multiplier declining from 0.54 to 0.25.  FMA 

appears to have done very little to stimulate state economies during the 1990s expansion. However, 

the effect for the early 2000s was much bigger with the coefficient jumping to 2.2 in column (3). 

Even this much higher estimate implies a still modest multiplier of 0.83. Column (4) suggests that 

the stimulus from FMA to states was strongest in the aftermath of the Great Recession from 2008-

2010. While the estimates are highly imprecise—likely due to weak instruments, the implied 

multiplier exceeds 1.  

 

5.3 Robustness to bandwidth 

 So far, we have used the entire range of the running variable, 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� , which extends from 

-0.4 to 0.4 on either side of the FMAP discontinuity—i.e., for a symmetric bandwidth of 0.4. It is 

well known that estimates based on RDD/RKD are more credible for small bandwidths around the 

discontinuity. As the bandwidth is expanded, the possibility of unobserved heterogeneity rises. We 

examine the sensitivity of our estimates to bandwidths in Table 7, which reports estimated 

coefficients for a set of 4 bandwidths, ranging from 0.1 to 0.4.  

Results for the smallest bandwidth, 0.1, appear to suffer from weak instruments, as the first 

stage F statistic on the instrument is small. In terms of instrument strength, estimates for the 0.2 

bandwidth appear reliable across all periods, though, given small sample sizes, precision is still a 

concern. While the results are clearly sensitive to the bandwidth, the overall pattern across periods 

appears consistent with the full sample results with 0.4 bandwidth in column (4)—the estimate is 

small and imprecise in the 90’s and increases in the 2000’s, though the implied multiplier remains 

modest for the pre-Great Recession period. For the post-Great Recession period, only the estimate 

with 0.2 bandwidth appears reliable with a first stage F statistic of 5.49 and an associated p-value 

of 0.06. Because there is potential for more bias in estimates from larger bandwidths, we focus 

mainly on results from employing the 0.2 bandwidth for discussing the implications of our 

estimates. 
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5.4 Discussion  

Implied multipliers mirror estimated coefficients discussed earlier—they are small in the 

1990s, larger in the 2000s, and quite substantial only during the three years after the Great 

Recession, when the multiplier is 1.5 with an implied cost per job of $81,000—close to Chodorow-

Reich’s (2012) estimates for the same period. Given the uncertainty around point estimates, the 

multipliers have fairly wide confidence intervals, which we present in Tables 8, for the full sample 

with 0.4 bandwidth in panel A and for the narrower 0.2 bandwidth in panel B.  

Focusing on 0.2 bandwidth and the 1990-2010 period, the upper bound of the multiplier in 

column (1) is 0.64, so we can rule out large multipliers from FMA—a dollar of spending led to 

less than a dollar of output. We know that estimates using data from 1990 to 2010 mask substantial 

heterogeneity across years. As already noted earlier, the multipliers were small during the 90s 

expansion and so is their upper bound presented in panel B of Table 8. Between 2000 and the Great 

Recession, the multiplier had an upper bound of around 1. Point estimates are largest following 

the Great Recession, where we cannot rule out very large multipliers as high as 3.5. Figure 5 plots 

point estimates and confidence intervals for the model with 0.2 bandwidth. 

Cost per job estimates reported in Appendix Table 1 reveal a pattern analogous to that for 

the multiplier estimates. Using data for all years the estimated cost per job is quite high—nearly 

$200,000 for the full sample and $400,000 for the 0.2 bandwidth, with even larger upper bounds.17 

Cost per job estimates declined in the 2000s, reaching as low as $81,000 after the Great recession, 

though confidence intervals are wide and suggest that the cost could have been as large as 

$188,000/job. 

While we have focused on cumulative 3-year jobs impact, Figure 6 shows that the 

cumulative effect at other horizons yield similar cost per job-year estimates. The figure plots 

estimated coefficients for the post-2000 period with 0.2 bandwidth and shows that cumulative 

estimates are quite persistent over the first 5 years. Estimates for longer horizons are not feasible 

with our data as the LP framework requires more data for longer horizons. 

 

6. Conclusion 

 
17 Note that confidence intervals for cost per job may not exactly align with the bounds for the coefficients as they are 
nonlinear functions and their intervals have been estimated using delta method. 
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Using state-level data from 1990 to 2013, we propose a new instrument to estimate the 

federal Medicaid assistance multiplier and present dynamic and long-term estimates of the 

multiplier. We find that the long-standing discontinuity in the slope of FMAP with respect to state 

RPCPI also induces a corresponding discontinuity in state federal Medicaid assistance. We posit 

that this discontinuity is otherwise uncorrelated with local economic conditions and show that non-

Medicaid spending and most other covariates do not exhibit a similar discontinuity. 

Our preferred IV estimates, employing a narrow bandwidth around the discontinuity, 

suggest that the multiplier from federal Medicaid dollars was very small in the 1990’s expansion 

but rose to 1.5 during the Great Recession. On average from 1990-2010, federal Medicaid 

assistance through FMAP transfers have a modest positive multiplier—an additional $100,000 in 

federal Medicaid assistance creates about 0.75 jobs over three years, yielding a statistically 

significant employment impact of 0.25 job-years at a cost per job of $400,000, with an implied 

multiplier of 0.27. Full sample estimates using all data yield a somewhat larger, though still 

modest, multiplier of 0.5 at a cost per job year of $200,000. 

This relatively modest macroeconomic stimulus from FMAP transfers should not be 

conflated with the overall welfare effects of the Medicaid program, which extends well beyond its 

multiplier effects through its impact on health and well-being of the target population. 

Furthermore, in line with this literature, we ignore contractionary effects (experienced by other 

states) from financing federal FMA.  

While we break new ground in finding a new instrument to estimate the outside-financed 

geographic cross-section fiscal multiplier, our estimates do come with some important caveats. 

First, instrument weakness with narrower bandwidths precludes us from using Mean Squared Error 

(MSE)-optimal bandwidths, which turn out to be quite small. Secondly, our estimates should be 

viewed as a local average treatment effect (LATE) specific to states that would alter their Medicaid 

spending due to the FMAP slope discontinuity—and hence would get more or fewer federal 

Medicaid dollars than would be the case otherwise. 

With these caveats, we anticipate our estimates being still useful in assessing the 

stimulative effect of nearly $400 billion annually sent to states as federal Medicaid assistance 

through FMAP, accounting for more than half of all federal grants to states. Our results suggest 

that the regular FMAP transfers during normal times are not very stimulative.  However, our 

estimates imply that $50 billion provided to states as fiscal relief through a 6.2 percentage point 
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increase in FMAP rate during the Covid-19 downturn was likely effective in spurring economic 

activity. 
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The figure plots the exact formula-based relationship between Federal Medical Assistance 
Percentage (FMAP) and the running variable—state’s per capita personal income relative to 
the nation (RPCPI). FMAP equals 1 − 0.45 ∗ 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃2 and is a declining function of RPCPI 
for values less than 1.054. FMAP reaches a floor of 50 percent when RPCPI exceeds 1.054, 
inducing a slope discontinuity in FMAP-RPCPI relationship. 
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Figure 1: FMAP Formula based on State Relative Per Capita Personal Income
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Notes: Calculations are based on a stylized state with Medicaid expenditures equal to the national 
average of $1,811 (2018) per capita. The federal grant varies based on the actual range of the PCPI 
ratio for US states. For PCPI ratios exceeding 1.054, the grant hits a floor of $906 per capita. The 
difference between this floor and the near-linear relationship can be viewed as an exogenous bonus 
to states beyond the kink.  
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The figure plots the density of the normalized running variable (RPCPI-1.054) on the either 
side of the FMAP discontinuity.   
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Figure 3: McCrary Test for Manipulation of Running variable



25 

 
The figure plots binned sample means with the underlying linear fit on 
either side of RPCPI normalized to equal zero at FMAP kink.  The 
number of bins is selected using IMSE-optimal evenly-spaced method 
proposed in Calonico, Cattaneo. and Titiunik (2014b) for the full 
sample (bandwidth 0.4). 

.0
2

.0
3

.0
4

.0
5

-.4 -.2 0 .2 .4
RPCPI

Panel A: Per Capita FMA
Figure 4: Slope Discontinuity

-.0
2

-.0
1

0
.0

1
.0

2
.0

3

-.4 -.2 0 .2 .4
RPCPI

Panel B: Per Capita Jobs



26 

 
The figure plots implied multiplier and 95% confidence intervals for 0.2 bandwidth reported in 
Panel B of Table 8. The implied multiplier is estimated as $108,700/($100,000/(𝛽𝛽1/3)) using 
estimates of 𝛽𝛽1 for 0.2 bandwidth from estimating equation (5). Estimates of  𝛽𝛽1 are reported in 
Table 7. Confidence intervals are estimated using delta method. 
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Notes: The figure plots the coefficients on cumulative FMA (𝛽𝛽1𝐻𝐻) at horizons (H) ranging 
from year 1 through year 5 (see equation (5)). cumulative H-year future change in per 
capita jobs All regressions control for running variable (normalized RPCPI); year effects; 
first lag of share of union workers, share of manufacturing in state GDP, state population, 
and per capita real GDP; and demographic covariates--share of state population over age 
65; female; white non-Hispanic; black; Hispanic; with a high school diploma; and those 
with any college education.  
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Figure 6: Cumulative Jobs Impact of FMA: 2000-2010
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Table 1: Summary Statistics 
     Mean   SD   Min   Max 

 Outcome var. (cumul per capita jobs)ψ .002 .04 -0.173 .133 
 Endogenous var. (cumul. per capita FMA)χ .023 .01 0.007 .081 
 IV (norm. RPCPI X Above) .029 .072 0.000 .394 
 Running var. (RPCPI – 1.054) -.089 .15 -0.385 .394 
 Lagged union coverage 14.663 5.986 3.300 31.9 
 Lagged manuf’g share of GDP 14.869 6.679 0.299 31.467 
 Lagged pop (millions) 5.463 6.066 0.454 36.961 
 Lagged GDP per capita 44884.69 16902.712 23904.338 176245.2 
 Age 65+ 15.835 2.171 6.000 21.666 
 Female 51.832 1.001 49.319 54.966 
 White 77.198 15.724 18.155 98.825 
 Black 10.078 11.087 0.114 67.581 
 Hispanic 6.698 8.337 0.091 42.834 
 High school 29.725 9.338 2.041 43.747 
 Any college .48 .068 0.230 .632 
 Jobs/pop .464 .096 0.339 1.208 
 Medicaid spending per capita 928.071 408.212 223.286 2739.4 
 FMA/pop 554.927 248.816 111.643 1865.547 
 Non-Medicaid exp/pop ($100,000) .047 .02 -0.007 .192 
 TANF exp/pop ($100,000) .001 .001 0.000 .004 
 FMAP 60.087 8.472 50.000 80.18 
 RPCPI .965 .15 0.669 1.448 

Notes: The table presents unweighted averages of variables across states. See equation (3) for definition of cumulative 
outcome and endogenous variables. ψOutcome variable is cumulative 3-year future change in per capita jobs; 
χEndogenous variable is cumulative 3-year future per capita FMA. 
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Table 2. P-Values for Test of Slope Discontinuity in Other Covariates 
 0.1 0.2 0.3 0.4 
Non-Medicaid spending/pop  0.2063 0.4722 0.9509 0.7211 
TANF spending/pop  0.3565 0.2396 0.6029 0.4290 
Lagged union coverage 0.7340 0.3189 0.2980 0.1028 
Lagged manuf’g share of GDP 0.3785 0.5163 0.9717 0.9472 
Lagged pop (millions) 0.4995 0.8039 0.1798 0.0504 
Lagged GDP per capita 0.1070 0.9863 0.6238 0.3008 
Age 65+ 0.1419 0.5660 0.3664 0.2272 
Female 0.1907 0.0226* 0.0079** 0.0030** 
White 0.9321 0.9549 0.5529 0.3733 
Black 0.6797 0.1581 0.1099 0.0810 
Hispanic 0.0294* 0.6343 0.9612 0.6661 
High School 0.0747 0.5740 0.4863 0.5522 
Any college 0.4317 0.1659 0.0693 0.0948 
Notes: The reports p-values on the test of significance of 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�  × 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 from a simple 
regression of the indicated covariate as the dependent variable on the running variable 
𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�  and the interaction term  𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�  × 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. 
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Table 3. Basic Full Sample Estimates 
 (1) (2) (3) (4) 
 Non-Medicaid 

Spending  
Medicaid 
Spending 

FMA Jobs  

RPCPI X Above 0.038 0.012* 0.052** 0.078** 
 (0.037) (0.007) (0.017) (0.030) 
Observations 1000 1068 1068 1068 
R-Sq 0.501 0.692 0.694 0.714 

Notes: * p<0.10, ** p<0.05. Standard errors clustered by state in parentheses. Estimates based on annual state-level 
panel data from 1990-2010. Data sources include BLS, CPS, BEA, CMS, and HHS. All dependent variables are in 
per-capita terms.  Dependent variables for the first stage regression in column (3) and for the reduced form regression 
in column (4) are both calculated as 3-year cumulative. All regressions control for the running variable (RPCPI); year 
effects; first lag of share of union workers, share of manufacturing in state GDP, state population, and per capita real 
GDP; and demographic covariates--share of state population over age 65; female; white non-Hispanic; black; 
Hispanic; with a high school diploma; and those with any college education. See equation (2). 
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Table 4. Sensitivity of OLS and IV to Fixed Effects 
(Dependent Variable: Per Capita Jobs) 

 (1) (2) (3) (4) 
 OLS OLS with Fixed 

Effects 
IV IV with Fixed 

Effects 
Per Capita FMA 0.671** 1.676** 1.485** 12.715 
 (0.265) (0.794) (0.571) (12.028) 
Observations 1068 1068 1068 1068 
R-Sq 0.719 0.784 0.704 0.299 
First Stage F   9.058 0.629 
Underid P-val   0.004 0.428 

Notes: * p<0.10, ** p<0.05. Standard errors clustered by state in parentheses. Estimates based on annual state-level 
panel data from 1990-2010. Data sources include BLS, CPS, BEA, CMS, and HHS. Dependent variable is cumulative 
3-year future change in per capita jobs; the endogenous variable is cumulative 3-year future per capita FMA; for IV 
models, instrument is the product of RPCPI and a dummy variable for RPCPI exceeding FMAP slope discontinuity 
of 1.054 (RPCPI X 1(RPCPI>1.054)). All regressions control for running variable (normalized RPCPI); year effects; 
first lag of share of union workers, share of manufacturing in state GDP, state population, and per capita real GDP; 
and demographic covariates--share of state population over age 65; female; white non-Hispanic; black; Hispanic; with 
a high school diploma; and those with any college education. See equation (2). 
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Table 5. IV Estimates of Jobs Impact of FMA: Robustness across Covariates 
(Dependent Variable: Per Capita Jobs) 

 (1) (2) (3) (4) (5) (6) (7) 
Per Capita FMA 0.873** 0.660** 0.620* 1.485** 1.916** 2.054** 1.861** 
 (0.234) (0.230) (0.328) (0.571) (0.601) (0.670) (0.598) 
        
Year Fixed Effects No Yes Yes Yes Yes Yes Yes 
        
Economic No No Yes Yes Yes Yes Yes 
        
Demographic No No No Yes Yes Yes Yes 
        
Region FE No No No No Yes Yes Yes 
        
Region X Year FE No No No No No Yes Yes 
        
Y Lags No No No No No No Yes 
Observations 1068 1068 1068 1068 1068 1068 1068 
Cost/Job Year (000) 344 454 484 202 157 146 161 
Implied Multiplier 0.316 0.239 0.225 0.538 0.694 0.744 0.674 
R-Sq NA 0.676 0.686 0.704 0.715 0.793 0.810 
First Stage F 7.608 7.913 14.699 9.058 11.152 8.772 8.989 
Underid P-val 0.030 0.025 0.001 0.004 0.007 0.011 0.012 

Notes: * p<0.10, ** p<0.05. Standard errors clustered by state in parentheses. Estimates based on annual state-level 
panel data from 1990-2010. Data sources include BLS, CPS, BEA, CMS, and HHS. Dependent variable is cumulative 
3-year future change in per capita jobs; the endogenous variable is cumulative 3-year future per capita FMA; for IV 
models, instrument is the product of RPCPI and a dummy variable for RPCPI exceeding FMAP slope discontinuity 
of 1.054 (RPCPI X 1(RPCPI>1.054)). All regressions control for running variable (normalized RPCPI); economic 
covariates include first lag of share of union workers, share of manufacturing in state GDP, state population, and per 
capita real GDP; and demographic covariates--share of state population over age 65; female; white non-Hispanic; 
black; Hispanic; with a high school diploma; and those with any college education. See equation (2). 
 
  



33 

Table 6. IV Estimates of Jobs Impact of FMA: by Year 
(Dependent Variable: Per Capita Jobs) 

 (1) (2) (3) (4) 
 1990-2010 1990-1999 2000-2007 2008-2010 
Per Capita FMA 1.485** 0.752 2.181** 2.685 
 (0.571) (0.632) (0.861) (2.023) 
Observations 1068 510 408 150 
Cost/Job Year (000) 202 399 138 112 
Implied Multiplier 0.538 0.249 0.831 1.088 
R-Sq 0.704 0.513 0.629 0.782 
First Stage F 9.058 12.559 5.403 3.229 
Underid P-val 0.004 0.001 0.024 0.115 
     

Notes: * p<0.10, ** p<0.05. Standard errors clustered by state in parentheses. Estimates based on annual state-level 
panel data from 1990-2010. Data sources include BLS, CPS, BEA, CMS, and HHS. Dependent variable is cumulative 
3-year future change in per capita jobs; the endogenous variable is cumulative 3-year future per capita FMA; for IV 
models, instrument is the product of RPCPI and a dummy variable for RPCPI exceeding FMAP slope discontinuity 
of 1.054 (RPCPI X 1(RPCPI>1.054)). All regressions control for running variable (normalized RPCPI); year effects; 
first lag of share of union workers, share of manufacturing in state GDP, state population, and per capita real GDP; 
and demographic covariates--share of state population over age 65; female; white non-Hispanic; black; Hispanic; with 
a high school diploma; and those with any college education. See equation (2). 
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Table 7: IV Estimates of Jobs Impact of FMA: Sensitivity to Bandwidth 
(Dependent Variable: Per Capita Jobs) 

Panel A: 1990-2010 
 (1) (2) (3) (4) 
 0.1 0.2 0.3 0.4 
Per Capita FMA -1.077 0.749 0.776 1.485** 
 (2.843) (0.510) (0.666) (0.571) 
Observations 355 736 1003 1068 
Cost/Job Year (000) -279 400 386 202 
Implied Multiplier -0.400 0.274 0.281 0.538 
R-Sq 0.742 0.752 0.747 0.704 
First Stage F 1.146 13.649 5.517 9.058 
Underid P-val 0.249 0.004 0.014 0.004 

 
Panel B: 1990-1999 

 (1) (2) (3) (4) 
 0.1 0.2 0.3 0.4 
Per Capita FMA -2.603 0.182 0.078 0.752 
 (3.710) (0.417) (0.547) (0.632) 
Observations 159 348 482 510 
Cost/Job Year (000) -115 1651 3870 399 
Implied Multiplier -0.884 0.061 0.026 0.249 
R-Sq 0.621 0.636 0.603 0.513 
First Stage F 5.343 11.709 9.944 12.559 
Underid P-val 0.029 0.003 0.002 0.001 

 
Panel C: 2000-2007 

 (1) (2) (3) (4) 
 0.1 0.2 0.3 0.4 
Per Capita FMA 2.990 1.186* 3.106 2.181** 
 (2.760) (0.697) (2.294) (0.861) 
Observations 145 279 380 408 
Cost/Job Year (000) 100 253 97 138 
Implied Multiplier 1.160 0.457 1.182 0.831 
R-Sq 0.679 0.700 0.524 0.629 
First Stage F 4.010 16.833 1.946 5.403 
Underid P-val 0.072 0.012 0.133 0.024 

 
Panel D: 2008-2010 

 (1) (2) (3) (4) 
 0.1 0.2 0.3 0.4 
Per Capita FMA  -0.068 3.720 3.394 2.685 
 (0.759) (2.537) (3.394) (2.023) 
Observations 51 109 141 150 
Cost/Job Year (000) -4414 81 88 112 
Implied Multiplier -0.029 1.519 1.374 1.088 
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R-Sq 0.913 0.721 0.751 0.782 
First Stage F 2.964 5.488 1.280 3.229 
Underid P-val 0.080 0.055 0.245 0.115 

Notes: * p<0.10, ** p<0.05. Standard errors clustered by state in parentheses. Estimates based on annual state-level 
panel data from 1990-2010. Data sources include BLS, CPS, BEA, CMS, and HHS. Dependent variable is cumulative 
3-year future change in per capita jobs; the endogenous variable is cumulative 3-year future per capita FMA; for IV 
models, instrument is the product of RPCPI and a dummy variable for RPCPI exceeding FMAP slope discontinuity 
of 1.054 (RPCPI X 1(RPCPI>1.054)). All regressions control for running variable (normalized RPCPI); year effects; 
first lag of share of union workers, share of manufacturing in state GDP, state population, and per capita real GDP; 
and demographic covariates--share of state population over age 65; female; white non-Hispanic; black; Hispanic; with 
a high school diploma; and those with any college education. See equation (2). 
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Table 8: Implied Multiplier from FMA 
Panel A: Full sample 

 (1) (2) (3) (4) 
 1990-2010 1990-1999 2000-2007 2008-2010 
Implied Multiplier 0.538** 0.249 0.831** 1.088 
 [0.132,0.944] [-0.161,0.658] [0.188,1.475] [-0.518,2.694] 
Observations 1068 510 408 150 

 
Panel B: Bandwidth 0.2 

 (1) (2) (3) (4) 
 1990-2010 1990-1999 2000-2007 2008-2010 
Implied Multiplier 0.274 0.061 0.457* 1.519 
 [-0.092,0.640] [-0.212,0.334] [-0.069,0.983] [-0.511,3.549] 
Observations 736 348 279 109 

Notes: * p<0.10, ** p<0.05. Standard errors clustered by state in parentheses. Estimates based on annual state-level 
panel data from 1990-2010. Data sources include BLS, CPS, BEA, CMS, and HHS. Implied multiplier is estimated 
as $108,700/($100,000/(𝛽𝛽1/3)) using estimates of 𝛽𝛽1 for 0.2 bandwidth from estimating equation (5). Estimates of  
𝛽𝛽1 are reported in Table 7. Confidence intervals are estimated using delta method.  
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Appendix Table 1: Implied Cost per Job 
Panel A: Full sample 

 (1) (2) (3) (4) 
 1990-2010 1990-1999 2000-2007 2008-2010 
Cost/Job Year ($1000) 202** 399 138** 112 
 [50,354] [-258,1055] [31,244] [-53,277] 
Observations 1068 510 408 150 

 
Panel B: Bandwidth 0.2 

 (1) (2) (3) (4) 
 1990-2010 1990-1999 2000-2007 2008-2010 
Cost/Job Year ($1000) 400 1651 253* 81 
 [-134,935] [-5773,9075] [-38,544] [-27,188] 
Observations 736 348 279 109 

Notes: * p<0.10, ** p<0.05. Standard errors clustered by state in parentheses. Estimates based on annual state-level 
panel data from 1990-2010. Data sources include BLS, CPS, BEA, CMS, and HHS. Cos per job is estimated as 
$100,000/(𝛽𝛽1/3) using estimates of 𝛽𝛽1 for 0.2 bandwidth from estimating equation (5). Estimates of  𝛽𝛽1 are reported 
in Table 7. Confidence intervals are estimated using delta method.  
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Appendix Table 2: IV Estimates of Cumulative Jobs Impact of FMA by Time Horizon 
(Dependent Variable: Per Capita Jobs) 

 (Bandwidth 0.2) 
Panel A: 1990-2010 

 (1) (2) (3) (4) (5) 
 Year 1 Year 2 Year 3 Year 4 Year 5 
Per Capita FMA 0.181 0.451 0.749 1.038 1.231 
 (0.173) (0.346) (0.510) (0.661) (0.758) 
Observations 736 736 736 736 699 
R-Sq 0.762 0.762 0.752 0.738 0.728 
First Stage F 13.214 13.400 13.649 13.954 14.287 
Underid P-val 0.005 0.005 0.004 0.004 0.004 

 
Panel B: 2000-2010 

      

 (1) (2) (3) (4) (5) 
 Year 1 Year 2 Year 3 Year 4 Year 5 
Per Capita FMA 0.632* 1.277* 1.872* 2.433* 2.880** 
 (0.352) (0.698) (1.005) (1.281) (1.468) 
Observations 388 388 388 388 351 
R-Sq 0.759 0.732 0.702 0.666 0.597 
First Stage F 13.550 14.114 14.493 14.822 16.705 
Underid P-val 0.017 0.016 0.015 0.014 0.012 

 

Notes: * p<0.10, ** p<0.05. Standard errors clustered by state in parentheses. Estimates based on annual state-level 
panel data from 1990-2010. Data sources include BLS, CPS, BEA, CMS, and HHS. Dependent variable is cumulative 
future change in per capita jobs at different horizons; the endogenous variable is cumulative future per capita FMA at 
different horizons; instrument is the product of RPCPI and a dummy variable for RPCPI exceeding FMAP slope 
discontinuity of 1.054 (RPCPI X 1(RPCPI>1.054)). All regressions control for running variable (normalized RPCPI); 
year effects; first lag of share of union workers, share of manufacturing in state GDP, state population, and per capita 
real GDP; and demographic covariates--share of state population over age 65; female; white non-Hispanic; black; 
Hispanic; with a high school diploma; and those with any college education. See equation (2). 
 
 




