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1 Introduction

This paper is concerned with estimating β in structural time series equations of the form

yt = β′Yt + ut ,(1)

where yt is the scalar observation of an outcome variable in period t, Yt is a K × 1 vector of

explanatory variables, ut is an error term, and the K × 1 vector β contains the structural

parameters of interest. The explanatory variables Yt may contain contemporaneous vari-

ables, but also lagged variables or economic agents’ expectations of future variables that are

not necessarily measured well by the econometrician. We are interested in applications in

which E[Ytut] 6= 0, such that standard regression techniques yield biased and inconsistent

estimates of β because of endogeneity problems.

Equation (1) nests a very wide range of dynamic relationships of interest in macroeco-

nomics. To illustrate the range of difficulties that can arise in the estimation of β, consider

the specific example of the Hybrid New Keynesian Phillips Curve (HNKPC),

πt = γbπt−1 + γfπ
e
t+1 + λgapt + ut ,(2)

where πt denotes inflation, πet+1 is the price setters’ period t expectation of inflation in

t + 1, and gapt is an output gap measure (the difference between the actual level of eco-

nomic activity and the natural level that would prevail in the absence of price rigidities).

Equation (2) maps into the more general estimation problem in (1) after defining yt = πt,

Yt = [πt−1, π
e
t+1, gapt]

′ and β = [γb, γf , λ]′.

The estimation of β = [γb, γf , λ]′ in the HNKPC is complicated by a number of well-

known problems that result in E[Ytut] 6= 0, see for instance Mavroeidis et al. (2014) or

McLeay and Tenreyro (2019) for discussions. A first general source of endogeneity prob-

lems is measurement error. In practice, both the output gap and price setters’ inflation

expectations are not observed directly by the econometrician and must be replaced with

proxy measures. A second general source of endogeneity problems is simultaneity, since the

error term generally includes structural disturbances that also influence the endogenous vari-

ables in Yt = [πt−1, π
e
t+1, gapt]. Many theoretical dynamic relationships include expectations

terms and other endogenous explanatory variables, and therefore face very similar problems.

A common approach in the literature to address these endogeneity problems is to rely on

dynamics for identification, and use lagged economic variables as instrumental variables. In

the case of the HNKPC, for example, it is typical to use gapt−1, gapt−2, . . . and πt−2, πt−3, . . .,
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or lags of other readily available macroeconomic variables.1 Instrument exogeneity in this

case requires the assumption that the error term ut is independent of any of the influences

on the instrumenting lagged macroeconomic variables. However, there is generally little

theoretical justification for this assumption. Lags of output gaps or inflation, for example,

are not valid instruments for (2) in fully specified medium-scale macroeconomic models such

as the Smets and Wouters (2007) model. For this reason, Barnichon and Mesters (2020) re-

cently proposed to use the current and lagged values of direct measures of structural shocks

from the literature as instrumental variables.2 Instrument exogeneity in this case requires

measures of economic shocks that are independent of both the contemporaneous and lagged

macroeconomic influences on the error term ut. In practice, however, the literature is rarely

comfortable with imposing the strong assumption of lag exogeneity on available empirical

measures of structural shocks, and typically avoids doing so by including a rich set of lagged

macroeconomic controls. Unfortunately, including such controls in an IV regression with

lagged shocks as instruments shrinks the explanatory power of the instrument set towards

that of only the contemporaneous value of the instrumenting shocks, resulting in weaker or

even under-identification.

Even if one is willing to assume that lag sequences of empirical shock measures or macroe-

conomic variables satisfy the required exogeneity assumptions, in many macroeconomic ap-

plications it is challenging to find strong instruments.3 In practice researchers will therefore

often be tempted to include a relatively large number of lags in the instrument set to improve

the predictive power of the instruments, which in macroeconomic applications is often dis-

tributed over an extended time horizon. However, this can lead to many-weak-instruments

problems that can exacerbate small sample bias and render weak-instrument-robust infer-

ence methods unreliable.

In this paper, we propose a novel approach to estimating β in the face of the endogeneity

problems that are typical in the estimation of dynamic structural equations. Specifically,

we replace the single equation (1) by an H-dimensional system in forecast errors for various

leads of yt and Yt, where H is the number of leads. The forecast errors can be derived from

a variety of forecasting models, and in this paper we consider vector autoregressive models

(VARs) and local projections (LPs). We then use only the contemporaneous value of the

Nz instrumental variables to yield HNz moment conditions, which can be solved in closed

form for β, yielding a restricted two-stage least squares (2SLS) estimator within the system

1Gaĺı and Gertler (1999), for example, use four lags of inflation, the labor income share, the output gap, the long-short
interest rate spread, wage inflation, and commodity price inflation.

2Gaĺı and Gambetti (2020) follow an approach that is closely related to Barnichon and Mesters (2020) to estimate the
wage Phillips curve.

3For discussions of the weak identification problems that arise in the context of estimating the HNKPC, see Nason
and Smith (2008), Kleibergen et al. (2009), Mavroeidis et al. (2014) among others.
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of reduced form forecast errors.

The SP-IV approach has several conceptual advantages. First, like Barnichon and

Mesters (2020), it can leverage existing identified shocks from the literature, but it requires

only the weaker assumption of contemporaneous exogeneity. Our approach is therefore

better aligned with the identification assumptions that the literature is typically willing to

make about empirical measures of economic shocks. Second, our approach allows exploiting

the dynamic relationship between the shocks and the endogenous variables across a large

number of horizons H without creating many-weak-instruments problems, since the number

of instruments in our setup does not depend on H. Both these advantages arise because

our approach is based on lead sequences of the endogenous variables yt and Yt, and not on

lag sequences of the instrumental variables as in existing approaches.

Barnichon and Mesters (2020) point out that single-equation 2SLS with lag sequences of

shocks as instruments is equivalent to a regression of the impulse response function (IRF)

of yt on the IRFs of Yt, where the IRFs are estimated by regressions of the endogenous

variables on a distributed lag of the shocks. We show that SP-IV is similarly equivalent to a

regression of the IRF of yt on the IRFs of Yt. However, an additional advantage of SP-IV is

that these IRFs can be obtained using any valid impulse response estimator and identifica-

tion scheme. SP-IV therefore allows the estimation of structural relationships across IRFs

as they are estimated in practice, which is not typically by distributed lag specifications.

The SP-IV inference methods in this paper enable the formal testing of hypotheses about

structural relationships across these IRFs, whereas in empirical practice claims about such

relationships have typically relied on more informal arguments (e.g., Angeletos et al. (2020)).

The inference methods presented in this paper should make SP-IV of practical use in

a wide range of settings. We describe standard inference under strong identification, and

develop a first-stage test for instrument strength by extending the popular bias-based test in

Stock and Yogo (2005) to the SP-IV setting. For practitioners, such a pre-test provides a con-

venient way to assess whether standard inference will be reliable, or to compare the strength

of identifying information contained in different specifications. As instrumental variables

are often likely to be weak in practical applications, we develop two weak-instrument-robust

inference procedures, one based on Anderson and Rubin’s (1949) AR statistic, and another

based on an extension of Kleibergen’s (2002) KLM statistic.

To demonstrate the potential improvements offered by SP-IV beyond the weaker exo-

geneity requirements, we present simulation evidence for the estimation of the parameters

of the HNKPC in (2) using data generated from the Smets and Wouters (2007) model and

instrumental variables that are weak. OLS is strongly biased, and the SP-IV estimators with
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controls exhibit smaller biases than single-equation 2SLS estimators, including the Almon

shrinkage estimator proposed by Barnichon and Mesters (2020). In particular, a VAR im-

plementation of SP-IV has the lowest bias of all estimators we consider, while estimates from

SP-IV based on LP implementations have lower variances. Standard Wald inference is badly

over-sized for all IV estimators due to weak instruments. We find that both of our proposed

robust inference procedures remain relatively well-sized in realistic sample sizes, exhibit-

ing small size distortions only when H is large relative to T . In contrast, single-equation

2SLS with lag sequences as instruments suffers from many-weak-instruments problems that

quickly lead to prohibitive over-rejection. The AR test for 2SLS with Almon shrinkage

proposed by Barnichon and Mesters (2020) appears to be incorrectly sized asymptotically.

As an empirical application, we estimate the Phillips curve parameters in US data using

the Main Business Cycle (MBC) shock of Angeletos et al. (2020) as the instrument. Based

on the IRFs to an MBC shock identified in a monthly VAR, our SP-IV inference points

towards a greater weight on future inflation than on lagged inflation. At the same time, the

SP-IV robust confidence sets for the coefficient on unemployment are consistent with both

very weak and fairly strong cyclical responses of inflation. We conclude that the responses

to the MBC shock do not necessarily support the conclusion in Angeletos et al. (2020)

that inflation dynamics are disconnected from the business cycle. We show in a simple dy-

namic rational expectations model that the inflation dynamics implied by a Phillips curve

parametrized by the SP-IV point estimates closely resemble those estimated in the data.

This is not the case for the OLS point estimates or the 2SLS-Almon estimator of Barnichon

and Mesters (2020).

For the remainder of the paper, IN denotes the identity matrix of dimension N , ⊗ the

Kronecker product, Tr(·) the trace operator, vec(·) the vectorization operator, mineval{·} /

maxeval{·} the minimum/maximum eigenvalue, E[X | Y ] the conditional expectation of X

given Y ,
p→ is convergence in probability, and

d→ is convergence in distribution.

2 System Projections with Instrumental Variables

We begin by reformulating the dynamic relationship of interest in (1) in terms of forecast

errors. Taking leads at horizon h of (1) and subtracting the expectation conditional on an

information set It−1 yields

y⊥t+h = β′Y ⊥t+h + u⊥t+h ,(3)

where y⊥t+h = yt+h −E[yt+h | It−1], Y ⊥t+h = Yt+h −E[Yt+h | It−1], and u⊥t+h = ut+h −E[ut+h |
It−1]. Let zt denote a Nz × 1 vector of instrumental variables, and define z⊥t = zt − E[zt |
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It−1]. As explained in the introduction, we focus on applications that rely on dynamics for

identification. Instead of the typical approach of imposing orthogonality between zt−h and

ut for various h ≥ 0, we impose

E[u⊥t+hz
⊥
t ] = 0 ; h = 0, . . . , H − 1 .(4)

The orthogonality conditions in (4) naturally furnish a set of HNz moment conditions that

can be used to identify the K elements of β. Let y⊥H,t and u⊥H,t denote the H × 1 vectors in

which the h+ 1-th element is y⊥t+h and u⊥t+h respectively. Let YH,t denote the HK×1 vector

stacking the H × 1 vectors Y k
H,t, each of which has Y k

t+h−E[Y k
t+h | It−1] in the h+ 1-th row,

where Y k
t is the k-th variable in Yt. Using this notation, the HNz moment conditions are

E[u⊥H,t(β)⊗ z⊥t ] = 0 ,(5)

where u⊥H,t(b) = y⊥H,t − (b′ ⊗ IH)YH,t, and the true value of b is β.

The moment conditions in (5) must be augmented to include the estimation of the

forecast errors. We assume that the information set It−1 consists of predetermined control

variables Xt−1, and we consider the class of forecasting models that are linear in Xt−1, but

possibly nonlinear in a set of parameters collected in the vector d. This class of forecasting

models includes local projections (LP) and vector autoregressions (VARs), both of which

are widely used in applied macroeconomics. The moment conditions associated with the

forecasting step are

E
[[
y⊥′H,t(ζ), Y ⊥′H,t(ζ), z⊥′t (ζ)

]′ ⊗Xt−1

]
= 0,(6)

where y⊥H,t(d), Y ⊥H,t(d), z⊥t (d) are functions of parameters d that depend on the forecasting

model chosen, and the true value of d is ζ.

The moments in (5) and (6) can be stacked in a moment function f(b, d, yH,t, YH,t, zt, Xt−1)

with E[f(β, ζ, yH,t, YH,t, zt, Xt−1)] = 0. The associated GMM objective function is given by

FT (b, d) =
1

T

(
T∑
t=1

f(b, d, yH,t, YH,t, zt, Xt−1)

)′
Φ(b, d)

(
T∑
t=1

f(b, d, yH,t, YH,t, zt, Xt−1)

)
,

(7)

where Φ(b, d) is a positive definite weighting matrix. The forecasting step and the structural

estimation stage are separable for estimation purposes. In particular, b does not enter (6).

Moreover, the Jacobian of (5) with respect to d is zero in expectation at d = ζ. Therefore, for

the remainder of this section, we take the forecast estimates as given, and focus exclusively
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on the structural estimation step after making the following assumption,

Assumption 1. There exists a unique solution, ζ, to the first-stage moments (6), and the

associated GMM estimator satisfies ζ̂
p→ ζ and

√
T (ζ̂ − ζ)

d→ N (0, Vfs) for some feasible

weighting matrix.

Assumption 1 ensures that estimation error in the forecast errors is asymptotically neg-

ligible. Henceforth, we let Φs(b, d) denote the block in the weighting matrix Φ(b, d) corre-

sponding to the moments of the structural estimation step in (5).

2.1 The SP-IV Estimator

Our baseline estimator is based on the weighting matrix Φs(b, d) = IH ⊗ Q−1, where Q =

E[z⊥t z
⊥′
t ], which standardizes the instruments, z⊥t . With this choice, the solution for β to

the population analog of the GMM problem in (7) has a closed form expression given by

β =
(
R′(E[Y ⊥H,tz

⊥′
t ]Q−1E[Y ⊥H,tz

⊥′
t ]′ ⊗ IH)R

)−1
R′ vec(E[y⊥H,tz

⊥′
t ]Q−1E[Y ⊥H,tz

⊥′
t ]′) ,(8)

where R = IK⊗vec(IH). Let the H×T matrix y⊥H , the HK×T matrix Y ⊥H , and the Nz×T
matrix Z⊥ collect the sample of observations of y⊥H,t, Y

⊥
H,t, and z⊥t respectively. Define the

projection matrix PZ⊥ = Z⊥′(Z⊥Z⊥′)−1Z⊥ and the residualizing matrix MZ⊥ = IT − PZ⊥ .

Using this notation, the most general sample analog of (8) is

β̂ =
(
R′(Y ⊥H PZ⊥Y

⊥′
H ⊗ IH)R

)−1
R′ vec(y⊥HPZ⊥Y

⊥′
H ) ,(9)

which minimizes the GMM objective (7) with respect to b, using the sample analog of the

weighting matrix, IH ⊗ (ZZ ′/T )−1. That minimization problem is equivalent to minimizing

Tr(u⊥HPZ⊥u
⊥′
H ), or the sum of squared residuals in the system of equations

y⊥H = (β′ ⊗ IH)Y ⊥H + u⊥H ,(10)

after projection on the instruments Z⊥. Thus, the estimator in (9) is also the restricted

2SLS estimator of β in the system of equations in (10). For this reason, we refer to β̂ as

the System of equations after Projection on the Instrumental Variables (SP-IV) estima-

tor.4 Note that the parameter restrictions in (10) do not impose any additional restrictions

beyond those that are already implied by the original structural equation.

To derive the limiting distribution of β̂, we make high-level assumptions on the covari-

ances between instruments, z⊥t , the innovations, u⊥H,t, and the endogenous variables Y ⊥H,t.

4An equivalent expression for (9) is β̂ =
(∑H−1

h=0 Y
⊥
h PZ⊥Y ⊥′h

)−1∑H−1
h=0 Y

⊥
h PZ⊥y⊥′h where Y ⊥h and y⊥h are the rows

corresponding to horizon h in Y ⊥H and y⊥H , respectively. This alternative expression clarifies β̂ as a ratio of sums over the
terms from the 2SLS estimator for individual horizons.
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Assumption 2. The following limits hold

Z⊥Z⊥′/T
p→ E[z⊥t z

⊥′
t ] = Q, where Q is positive definite,(2.a)

Y ⊥H Z
⊥′/T

p→ E[Y ⊥H,tz
⊥′
t ] = ΘYQ

1
2 , a real HK ×Nz matrix,(2.b)

Z⊥u⊥′H /T
p→ E[z⊥t u

⊥′
H,t] = 0,(2.c)

and the following rank condition holds

R′(ΘY Θ′Y ⊗ IH)R is a fixed matrix with full rank.(2.d)

The convergence in probability in 2.a-2.c holds under standard primitive conditions and

laws of large numbers. Condition 2.a ensures linear independence of the instruments and

consistency of the weighting matrix. Condition 2.b states that the covariance between Y ⊥H
and Z⊥ is consistently estimated. As we will discuss below, the population covariance

ΘYQ
1
2 is a rotation of impulse response coefficients of Y ⊥t to the instruments z⊥t , after stan-

dardization, denoted by ΘY . Condition 2.c is the exogeneity condition. Finally, the rank

condition in 2.d is a sufficient condition for the existence of a unique solution to the moment

conditions in (5), and ensures that the denominator of the closed form solution (8) is full

rank; together with the definition of ΘY , it implies that the instruments are relevant. Jointly,

2.b and 2.d imply that the instruments are strong, an assumption we later relax in Section 3.

The conditions in Assumption 2 closely resemble the usual assumptions for IV under

strong identification, see for instance Stock and Yogo (2005). Note, however, that unlike in

the traditional IV setting, condition 2.d does not require that there are at least as many

instruments as endogenous explanatory variables, Nz ≥ K. Since rank(R′(ΘY Θ′Y ⊗IH)R) =

min{K,H rank(ΘY Θ′Y )}, the necessary condition is instead that HNz ≥ K, the order con-

dition for (5). Adding leads can therefore make up for Nz < K just as adding more lags

can do so in the traditional single-equation 2SLS with lag sequences as instruments.

Assumption 2 and the continuous mapping theorem imply that

R′(Y ⊥H PZ⊥Y
⊥′
H ⊗ IH)R

p→ R′(ΘY Θ′Y ⊗ IH)R ,(11)

R′ vec(y⊥HPZ⊥Y
⊥′
H )

p→ R′(ΘY Θ′Y ⊗ IH)Rβ ,

such that the SP-IV estimator in (9) is consistent, β̂
p→ β.

2.2 Exogeneity and Shocks as Instruments

Following the Slutzky-Frisch paradigm of expressing macroeconomic variables as arising from

current and past shocks (including measurement error), yt and Yt can be expressed in terms
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of current and past values of a random shock vector εt, where E[εt] = 0, E[εtε
′
t] = Idim(ε)

and E[εtε
′
s] = 0 for s 6= t. Assuming linearity of yt and Yt in εt, equation (1) implies that

ũt = ut − E[ut] = µ′0εt + µ′1εt−1 + µ′2εt−2 + . . .(12)

This representation of the error term helps to clarify that the strictness of the exogeneity

assumption in 2.c depends on the information set It−1 used to form the forecast errors. On

one end of the range of information sets is the empy set, It−1 = ∅, such that β̂ is obtained

using the current values and leads of ỹt = yt − E[yt] and Ỹt = Yt − E[Yt], and the current

values of z̃t = zt −E[zt] as the instruments z⊥t . When It−1 = ∅, the forecasts are not based

on any additional information, and ỹt and Ỹt are simply the raw (demeaned) observations.

In that case, the exogeneity condition 2.c is satisfied by the (demeaned) instrument z̃t when

µ′lE[εt+h−lz̃
′
t] = 0 ; l = 0, . . . ,∞ ; h = 0, . . . , H − 1 .(13)

This condition states that whenever an element of z̃t has positive covariance with a past

shock, contemporaneous shock, or a shock up to H − 1 periods in the future, there must

be an associated exclusion restriction requiring the corresponding element in µl to be zero.

Following the terminology in Stock and Watson (2018), we refer to the subset of the con-

ditions in (13) with l > h as lag exogeneity, with l = h as contemporeneous exogeneity, and

with l < h as lead exogeneity.

At the other end of the range of information sets is It−1 = Ifullt−1 , defined as an information

set that eliminates the influence of all past values of εt on yt and Yt, such that

ūt = ut − E[ut | Ifullt−1 ] = µ′0εt ,(14)

and conditioning on Ifullt−1 also eliminates the influence of all past values of εt on the error

term. The exogeneity condition 2.c is satisfied by the fully conditioned instrument z̄t when

µ′0E[εt+hz̄
′
t] = 0 ; h = 0, . . . , H − 1 ,(15)

which is analogous to (13) with l = 0 only. Equation (15) requires that any contemporanous

or future shock that has a nonzero covariance with z̄t is excluded from ūt, but compared

with ũt it eliminates the same requirement for the entire history of shocks up to period t.

With a full information set, the exogeneity conditions are therefore considerably weaker,

requiring contemporaneous and lead exogeneity, but not lag exogeneity.

In between the empty and full information sets lies a range of other possible information

sets. Each of these sets may purge different combinations of shocks in εt−l for l > 0 from ut,
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and by doing so may eliminate the corresponding condition of the form µ′lE[εt+h−lz
⊥
t
′] = 0,

as discussed in Forni and Gambetti (2014), Stock and Watson (2018) or Miranda-Agrippino

and Ricco (2019). A large literature focuses on the identification of economic shocks within

εt that can be potential instruments for SP-IV, see Ramey (2016) or Kilian and Lütkepohl

(2017) for overviews.

2.3 When to Use SP-IV instead of Single-Equation 2SLS

Our approach based on a system of H leads of yt and Yt and the contemporaneous zt as

instruments mirrors the more standard IV approach with a single equation in yt and Yt,

and H lags of zt as instruments. In this section, we discuss the circumstances under which

SP-IV is preferable over single-equation 2SLS with lag sequences as instruments.

Consider first a single-equation specification with only the (demeaned) raw data, that is

the 2SLS regression of ỹt on Ỹt using z̃t−h, h = 0, . . . , H − 1 as instruments. Exogeneity in

this case requires that

E[ũtz̃t−h] = 0 ; h = 0, . . . , H − 1 ,(16)

which, given the representation of ũt in terms of shocks in (12), requires that

µ′lE[εt−lz̃
′
t−h] = 0 ; l = 0, . . . ,∞ ; h = 0, . . . , H − 1 .(17)

Under stationarity, E[εt−lz̃
′
t−h] = E[εt+h−lz̃

′
t], such that (17) is equivalent to the require-

ment of lead, contemporaneous, and lag exogeneity in (13). In other words, the exogeneity

requirements are the same as for the SP-IV estimator based on the unconditional data

(It−1 = ∅). If the error term ũt is i.i.d., both estimators are asymptotically equally efficient.

In general, however, the SP-IV estimator with unconditional data is likely to be asymptoti-

cally less efficient than the single-equation 2SLS estimator. In Appendix A, for example, we

prove that single-equation 2SLS is asymptotically more efficient if the error term ũt follows

a stable AR(1) process with persistence ρ > 0. For specifications without any control vari-

ables in either stage, and instruments that satisfy lag exogeneity, we therefore recommend

to continue using the single-equation 2SLS estimator.

In practice, however, it is almost always beneficial to add control variables to both IV

stages to improve efficiency and/or reduce the strictness of the exogeneity requirements. A

key advantage of the SP-IV estimator is that it easily allows such conditioning, up to the

point where lag exogeneity is no longer required. This is not the case in the single-equation

setting, where conditioning on a full information set generally results in the loss of poten-

tially valuable identifying information. To see this, consider the 2SLS regression of ȳt on
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Ȳt using z̄t−h, h = 0, . . . , H − 1 as instruments. This is the case where all variables are

orthogonalized to all lagged shocks εt−1, εt−2, . . . by first conditioning on a full information

set Ifullt−1 . Such conditioning reduces the residual variance in the two stages, and eliminates

the lag exogeneity requirement just as in our approach. However, in the single-equation

setting it also means that only the contemporaneous instruments z̄t remain relevant. By

construction, all z̄t−h for h > 0 are uncorrelated with Ȳt, and must therefore be dropped

from the instrument set. As a result, identification can no longer exploit the information

from the full dynamic relationship between zt and Yt. When Nz < K, dropping the lags

from the instrument set also leads to under-identification in the single-equation setting. In

SP-IV, the conditioning step has all the usual benefits, but the identifying information from

the dynamic relationship between zt and the endogenous variables is fully preserved.

Under some circumstances, it is possible to partially address lag exogeneity concerns

in the single-equation setting by considering the 2SLS regression of ỹt on Ỹt using z̄t−h,

h = 0, . . . , H − 1 as instruments. That is, zt is first conditioned on Ifullt−1 , but the second-

stage regression still uses the unconditional data to preserve the relevance of lags of z̄t in

the instrument set. This approach is valid as long as z̄t satisfies

µ′lE[εt−lz̄
′
t−h] = 0 ; l = 0, . . . ,∞ ; h = 0, . . . , H − 1 ,(18)

which under stationarity is equivalent to µ′lE[εt+h−lz̄
′
t] = 0 for l = 0, . . . ,∞; h = 0, . . . , H−

1. Condition (18) is weaker than (13), but stronger than (15). It requires lag exogeneity

with respect to the shocks in εt that are spanned by z̄t, but it does not require lag exo-

geneity with respect to all other shocks in εt. Even if the weaker lag exogeneity in (18) is

plausibly satisfied, the single-equation setup with ‘orthogonalized’ instruments can still be

inefficient relative to the SP-IV estimator. In Appendix A, for example, we show that when

ũt follows an AR(1) process, the SP-IV estimator with all data – not just the instruments

– conditioned on Ifullt−1 is asymptotically more efficient when the error term is sufficiently

persistent and H is not too large.

In applications where the number of horizons H is large and lag exogeneity is plausible,

single-equation 2SLS is still unlikely to be the better choice if the instruments are weak.

As is well known, weak instruments generally introduce bias in 2SLS estimators, and make

conventional inference methods unreliable. In those cases, it is necessary to use alternative

weak-instrument-robust inference methods, for instance based on inverting the Anderson

and Rubin (1949) statistic. As we discuss later, the same weak instrument problems arise for

the SP-IV estimator, and in this paper we provide two robust inference methods to handle

cases where instruments are weak. When the number of weak instruments is large, the

finite sample bias in 2SLS can be large, and robust inference methods can still perform very
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poorly (e.g., Bekker (1994), Mikusheva (2021)). The SP-IV estimator exploits identifying

information from dynamic correlations across H horizons by using only Nz instruments,

whereas the corresponding single-equation 2SLS estimator instead uses HNz instruments.

In both cases, the rank condition for identification requires that HNz ≥ K. However, when

H is large and Nz is small, the SP-IV estimator does not suffer from many-weak-instruments

problems.

2.4 Interpretation of SP-IV as a Regression in Impulse Response Space

As mentioned earlier, the large macroeconomic literature identifying economic shocks is a

natural source of instruments for estimating the structural parameters in (1). Barnichon

and Mesters (2020) provide an appealing interpretation of single-equation 2SLS with a lag

sequence of an economic shock as instruments: assuming lag, contemporaneous and lead

exogeneity, 2SLS is equivalent to a ‘regression in impulse response space’, i.e. to regressing

the IRF of yt to the shock on the IRFs of Yt to the same shock, where the IRF coefficients

are estimated in regressions of yt and Yt on a distributed lag of the shock.

SP-IV similarly has the interpretation of a regression in impulse response space when

the instruments are measures of economic shocks. Suppose that the instruments are an

identified rotation of the first Nz shocks that drive the endogenous variables yt and Yt, that

is z⊥t = Q
1
2 ε1:Nz
t . Consider

Θ̂Y =
Y ⊥H Z

⊥′

T

(
Z⊥Z⊥′

T

)− 1
2

; Θ̂y =
y⊥HZ

⊥′

T

(
Z⊥Z⊥′

T

)− 1
2

,(19)

which are the OLS coefficients in the regression of Y ⊥H and y⊥H on the standardized instru-

ments
(
Z⊥Z⊥′/T

)− 1
2 Z⊥. Under conditions 2.a and 2.b, Θ̂Y

p→ ΘY , and since z⊥t = Q
1
2 ε1:Nz
t

each of the columns ΘY collects the HK IRF coefficients of the K variables in Yt to the

corresponding structural shock in ε1:Nz
t . Similarly, assuming that y⊥HZ

⊥′/T
p→ Θy, we have

that Θ̂y
p→ Θy where Θy contains the IRF coefficients of yt to the structural shocks in ε1:Nz

t .

Using the elements of Θ̂y, construct the HNz × 1 vector Θ̂y by stacking the Nz vectors

with the H IRF coefficients of yt. Similarly, construct the HNz×K matrix Θ̂Y by stacking

the vectors of IRF coefficients for Yt. Formally,

Θ̂Y = ((Z⊥Z⊥′/T )−
1
2Z⊥ ⊗ IH/T )Y⊥H ; Θ̂y = ((Z⊥Z⊥′/T )−

1
2Z⊥ ⊗ IH/T )y⊥H ,(20)

where y⊥H = vec
(
y⊥H
)

is TH × 1 and Y⊥H = [vec(Y ⊥H,1), . . . , vec(Y ⊥H,K)] is TH × K. With

these definitions, β̂ in (9) can equivalently be expressed as

β̂ = (Y⊥′H (PZ⊥ ⊗ IH)Y⊥H)−1Y⊥′H (PZ⊥ ⊗ IH)y⊥H = (Θ̂′Y Θ̂Y )−1Θ̂′Y Θ̂y ,(21)
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which clarifies the interpretation of SP-IV as a projection of estimated IRFs, i.e. of Θ̂y on

Θ̂Y . Whereas single-equation 2SLS relies on IRFs estimated by a distributed lag specifica-

tion, SP-IV can be based on the IRFs from more commonly used approaches, such as VARs

or LPs. Moreover, these IRFs can be identified in a variety of ways. They can be based on

external instruments, but also any other VAR or LP-based identification scheme, see Kilian

and Lütkepohl (2017) and Plagborg-Møller and Wolf (2021) for overviews. Finally, note

that SP-IV does not necessarily require using the identifying information over all horizons

h = 0, . . . , H − 1, but can also be based on any subset of horizons.

2.5 Inference for SP-IV under Strong Identification

When identification is strong, which is the case under the conditions in Assumption 2,

inference can proceed using methods analogous to those for single-horizon 2SLS estimators.

To do so, we make the following additional high-level assumption,

Assumption 3. T−1/2 vec(Z⊥u⊥′H )
d→ N(0, (Σu⊥H

⊗Q)) , where Σu⊥H
is full rank.

Rearranging the expression for β̂ in (9) and using the fact that vec(β′ ⊗ IH) = Rβ,

β̂ − β =
(
R′(Y ⊥H PZ⊥Y

⊥′
H ⊗ IH)R

)−1
R′ vec(u⊥HPZ⊥Y

⊥′
H ) .(22)

Under Assumptions 2 and 3,

(23)
√
T (β̂ − β)

d→ N(0, Vβ) ,

where

Vβ = (R′(ΘY Θ′Y ⊗ IH)R)
−1
R′
(

ΘY Θ′Y ⊗ Σu⊥H

)
R (R′(ΘY Θ′Y ⊗ IH)R)

−1
.(24)

A consistent estimator of Vβ can be obtained by replacing Σu⊥H
with a consistent estima-

tor, Σ̂u⊥H
, and ΘY Θ′Y with Y ⊥H PZ⊥Y

⊥′
H , and inference can be based on the standard Wald

statistic.5

2.6 Generalized SP-IV

The efficient GMM estimator of β arises from using the weighting matrix Φs(β, ζ) = (Σ−1
u⊥H
⊗

Q−1). This estimator is also the ‘Generalized Least Squares’ version of SP-IV that minimizes

5Note that, given the forecasting model in (6) and Assumption 1, estimation error in the forecast errors does not

impact the asymptotic variance of β̂. As in the standard IV setting, this is an application of the Frisch-Waugh-Lovell
theorem. More formally, the expected Jacobian of the moments with respect to the model parameters is block-diagonal,
since the entries corresponding to derivatives of second-stage moments with respect to first-stage parameters all feature
products of control variables Xt−1 and forecast errors y⊥H,t, Y

⊥
H,t, z

⊥
t , which are orthogonal by construction.
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Tr
(

(u⊥HPZ⊥u
⊥′
H )Σ−1

u⊥H

)
. Given Σu⊥H

, the estimator is available in closed form as

β̂G =
(
R′
(
Y ⊥H PZ⊥Y

⊥′
H ⊗ Σ−1

u⊥H

)
R
)−1

R′
(
Y ⊥H PZ⊥ ⊗ Σ−1

u⊥H

)
vec(y⊥HPZ⊥) .(25)

We replace Assumption 2.d by

Assumption 2.d′. R′(ΘY Θ′Y ⊗ Σ−1
u⊥H

)R is a fixed matrix with full rank.

Under Assumptions 2.a-2.c, Assumption 2.d′ and Assumption 3,

(26)
√
T (β̂G − β)

d→ N(0, VβG) , VβG =
(
R′
(

ΘY Θ′Y ⊗ Σ−1
u⊥H

)
R
)−1

.

The Generalized SP-IV estimator is feasible only after replacing Σu⊥H
with a consistent

estimator, either in a two-step or iterated procedure.

3 SP-IV with Weak Instruments

So far, we have assumed that identification is strong. In this section, we consider settings

where identification is weak, which is often more realistic in macroeconomic applications.

We first derive a bias-based test of instrument strength based on the first stage that is

similar to the popular Stock and Yogo (2005) test for single-equation IV. Next, we describe

inference procedures for the structural parameters that are robust to weak identification

based on Anderson and Rubin (1949) and Kleibergen (2002).

3.1 A First-Stage Test for Weak Instruments

To model weak identification, we replace Assumptions 2 and 3 by Assumption 4.

Assumption 4. The following limits hold(
u⊥Hu

⊥′
H /T, u

⊥
Hv
⊥′
H /T, v

⊥
Hv
⊥′
H /T

)
p→
(

Σu⊥H
,Σu⊥Hv

⊥
H
,Σv⊥H

)
,(4.a)

T−1/2
[
vec(Z⊥u⊥′H )′, vec(Z⊥v⊥′H )′

]′ d→
[
vec(ΨZu)′, vec(ΨZv)

′]′ ∼ N (0, Q⊗ Σ⊥) ,(4.b)

Σ⊥ =

 Σu⊥H
Σu⊥Hv

⊥
H

Σ′
u⊥Hv

⊥
H

Σv⊥H

 non-singular ,

and v⊥H = Y ⊥H −ΘYQ
− 1

2Z⊥ denote the first-stage error terms. Assumption 4.a requires that

sample averages of the errors are consistent for their variances. Note that, in contrast to

Stock and Yogo (2005), we allow for autocorrelation in both the first stage and structural

equation errors by allowing correlation across horizons in vH and uH (Σu⊥H
and Σv⊥H

need not

be diagonal). Assumption 4.b requires that a central limit theorem applies to suitably scaled

sums, with a variance structured to reflect homoskedasticity of the errors conditional on Z⊥.
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We use the conventional local-to-zero asymptotic embedding for weak identification,

Assumption 5. ΘY = C/
√
T where C is a fixed HK ×Nz matrix.

Assumption 5 implies that all coefficients in ΘY are on the same order.

To provide a benchmark for the SP-IV estimator, we define the ‘system’ version of the

OLS estimator (SP-OLS) that minimizes Tr(u⊥Hu
⊥′
H ), given by

β̂SP-OLS =
(
R′(Y ⊥H Y

⊥′
H ⊗ IH)R

)−1
R′ vec(y⊥HY

⊥
H
′).(27)

Under Assumptions 4 and 5, Y ⊥H Y
⊥′
H /T

p→ Σv⊥H
and u⊥HY

⊥′
H /T

p→ Σu⊥Hv
⊥
H

, and the asymptotic

bias of the SP-OLS estimator is

β̂SP-OLS − β
p→
(
R′(Σv⊥H

⊗ IH)R
)−1

R′ vec(Σu⊥Hv
⊥
H

).(28)

Under Assumptions 4 and 5, Y ⊥H PZ⊥Y
⊥′
H

d→ Σ
1
2

v⊥H
(L + Zv)(L + Zv)

′Σ
1
2

v⊥H
and u⊥HPZ⊥Y

⊥′
H

d→

Σ
1
2

u⊥H
Zu(L + Zv)

′Σ
1
2

v⊥H
, where L = Σ

− 1
2

v⊥H
C ′, Zu = Σ

− 1
2

u⊥H
Ψ′ZuQ

− 1
2 and Zv = Σ

− 1
2

v⊥H
Ψ′ZvQ

− 1
2 ,

[vec(Zu), vec(Zv)] ∼ N(0, INZ ⊗ Σ̄), and Σ̄ =

 IH Σ
− 1

2

u⊥H
Σu⊥Hv

⊥
H

Σ
− 1

2

v⊥H

Σ
− 1

2

v⊥H
Σ′
u⊥Hv

⊥
H

Σ
− 1

2

u⊥H
IHK

.

The asymptotic behavior of the SP-IV estimator is therefore

β̂ − β d→
(
R′
(

Σ
1
2

v⊥H
(L+ Zv)(L+ Zv)

′Σ
1
2

v⊥H
⊗ IH

)
R
)−1

R′ vec
(

Σ
1
2

u⊥H
Zu(L+ Zv)

′Σ
1
2

v⊥H

)
.(29)

Equation (29) states that β̂ converges to a quotient of quadratic forms in normal random

variables, and is therefore not consistent.

Deriving the Bias

To account for more than one endogenous regressor (K ≥ 1) we consider the inner product

of the asymptotic bias, weighted by Ω = R′(Σv⊥H
⊗ IH)R. This weighting scheme mirrors

that of Stock and Yogo (2005). Using (28), the weighted squared SP-OLS bias is

(Eβ̂SP-OLS − β)′Ω(Eβ̂SP-OLS − β) = ρ′RR′ρ ≤ Hρ′ρ ,(30)

where ρ = ((Ω−
1
2 ⊗ IH)⊗ IH) vec(Σu⊥Hv

⊥
H

) and the inequality provides the worst-case bias for

SP-OLS for a given value of ρ. The weighted squared SP-IV bias is

(Eβ̂ − β)′Ω(Eβ̂ − β) = ρ′h′hρ .(31)
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where h = E
[
(R′ (S(L+ Zv)(L+ Zv)

′S ′ ⊗ IH)R)−1R′ (S(L+ Zv)Z
′
vS
−1 ⊗ IH)

]
and S =

(Ω−
1
2 ⊗ IH)Σ

1
2

v⊥H
. The squared SP-IV bias relative to the worst-case squared SP-OLS bias is

therefore

B2 =
1

H

ρ′h′hρ

ρ′ρ
≤ maxeval {h′h}

H
,(32)

where the bound is independent of ρ and depends only on Σv⊥H
and L.

In the single-equation case, Stock and Yogo (2005) show that when the number of instru-

ments is large, the maximum 2SLS asymptotic bias is a decreasing function of the minimum

eigenvalue of a concentration matrix. In our setting, the same approximation yields

maxeval {h′h} /H = maxeval {hh′} /H ≈ (1 + mineval{Λ})−2 ,(33)

where Λ = R′(SLL′S ′ ⊗ IH)R/Nz is the concentration matrix, and the approximate max-

imum bias depends only on its minimum eigenvalue. As in Stock and Yogo (2005), this

dependence on the minimum eigenvalue of Λ motivates our bias-based test of instrument

strength. We define the weak instrument set as B = {L,Σv⊥H
: |B| > ξ}, i.e. as the set of

instruments associated with asymptotic relative bias greater than a tolerance level, ξ.

Test Statistic

Our test statistic is based on an extension of the Cragg and Donald (1993) statistic. Under

weak instrument asymptotics

Γ = Ω−
1
2R′(Y ⊥H PZ⊥Y

⊥′
H ⊗ IH)RΩ−

1
2

d→ R′(W ⊗ IH)R .(34)

The random matrix W = S(L + Zv)(L + Zv)
′S ′ has a noncentral Wishart distribution,

W ∼ W(Nz, SS
′, D), with Nz degrees of freedom, covariance matrix SS ′ and noncentrality

parameter D = (SS ′)−1SLL′S ′, using the notation in Muirhead (1982). Motivated by (33),

we characterize the weak instrument set in terms of gmin, the minimum eigenvalue of Γ:

gmin = N−1
z mineval{Γ} d→ N−1

z mineval{R′(W ⊗ IH)R} .(35)

We compute `min(ξ), the threshold for the minimum eigenvalue of Λ associated with a level

of bias ξ, numerically. Specifically, we draw a large number of HK ×Nz matrices L0 such

that SL0L
′
0S
′ has rank min{HK,Nz} and R′(SL0L

′
0S
′ ⊗ IH)R/Nz has a minimum eigen-

value of 1. For each L0, we set L =
√
xL0 and compute h as a function of x by simulation.

Next, we solve for the value of x such that |B| = ξ. The value of `min(ξ) is the supremum

of the solutions for x over all draws of L0.
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While W has a noncentral Wishart distribution, the critical values for the test statistic

gmin for a given bias tolerance ξ requires the distribution ofN−1
z mineval{R′(W⊗IH)R}. The

form of this distribution is in general unknown, and in addition depends on all parameters of

the concentration matrix (not just its minimum eigenvalue). In Appendix B, we derive upper

bounds for the first three cumulants of gmin that only depend on `min(ξ) and S, and we show

that a distribution proposed by Imhof (1961) matching these upper bounds is a conservative

limiting distribution for gmin in the right tail. When H = 1, our test statistic corresponds

to the usual Cragg and Donald (1993) statistic N−1
z mineval{Σ−1/2

v⊥H
Y ⊥H PZ⊥Y

⊥′
H Σ

−1/2

v⊥H
}, as

in Stock and Yogo (2005). When H = 1 or when SS ′ is the identity matrix (i.e. no

serial correlation in the first-stage errors), the bounding cumulants correspond to those of a

noncentral χ2 with noncentrality Nz`min(ξ) and Nz degrees of freedom, which in those cases

can be used for the critical values instead of the Imhof (1961) approximation.

3.2 Weak-Instrument Robust Inference for SP-IV

Under weak identification, the Wald statistic in Section 2.5 is not valid, and leads to em-

pirical rejection rates that generally exceed the desired nominal levels, see for instance the

simulations in Section 5. We describe two test statistics (with appropriate limiting distribu-

tions) that are robust to weak identification and are asymptotically correctly sized regardless

of the strength of identification.

AR Statistic

The first test for SP-IV that is robust to weak identification is based on the Anderson

and Rubin (1949) statistic for the setting with multiple outcome variables yt+h with h =

0, . . . , H − 1. In particular, the AR test statistic associated with the SP-IV estimator in (9)

and its limiting distribution under the null hypothesis are given by

AR(b) = (T − dAR) Tr
(
u⊥H(b)PZ⊥u

⊥
H(b)′

(
u⊥H(b)MZ⊥u

⊥
H(b)′

)−1
)

; AR(β)
d→ χ2

HNz ,(36)

where u⊥H(b) = y⊥H − (b′ ⊗ IH)Y ⊥H , dAR = Nz + Nx is a degrees of freedom correction, and

Nx is the number of predetermined control variables. Just as the conventional AR statistic

for single-equation 2SLS, the AR statistic in (36) exploits the testable restriction that the

instruments are uncorrelated with the residuals u⊥H under the null hypothesis. In Appendix

C.1, we show that AR(β) has a χ2 limiting distribution with HNz degrees of freedom. For

the Generalized SP-IV estimator, the AR statistic is asymptotically equivalent to the S

statistic of Stock and Wright (2000), which can be used directly for inference by evaluating

the GMM objective in (7) using the efficient weighting matrix.
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KLM Statistic

While the AR statistic is robust to instrument strength, it can have poor power in practice

when over-identifying restrictions are present. Kleibergen (2002) proposes the KLM (or

K) statistic as an alternative to the AR statistic with better power properties in various

settings, see also the overview in Andrews et al. (2019).

The degrees of freedom of the χ2 limiting distribution of the AR statistic increase with

the number of instruments – and, in our setting – also with the number of horizons. When

the number of instruments (times the number of horizons in our case) is much larger than

the number of structural parameters, the AR statistic has low power. The KLM statistic

remedies this loss of power without introducing nuisance parameters. Instead of the covari-

ance of u⊥H and (Z⊥Z⊥′)−1/2Z⊥, the numerator of the KLM statistic features the covariance

of u⊥H and the projection of a transformation of Y ⊥H on (Z⊥Z⊥′)−1/2Z⊥. The transforma-

tion is necessary since, considering u⊥HZ
⊥′(Z⊥Z⊥′)−1/2Θ̂′Y , Θ̂Y is in general correlated with

u⊥HZ
⊥′ even asymptotically; the transformation ensures that the (consistent) estimate of

ΘY is asymptotically independent of u⊥HZ
⊥′. This independence means that the limiting

distribution does not depend on ΘY , and thus also not on the strength of the instruments.

The KLM statistic is a score statistic based on the derivative of the AR statistic in

(36) with respect to b, accounting for the dependence of the variance estimator in the

denominator on b. This step gives rise to the particular projection of Y ⊥H on Z⊥ that the

statistic exploits. The test statistic is a quadratic form of this score, normalized by the

variance of the score. Based on this logic, the KLM statistic for our setting is:

K(b) = (T − dK)R′(Ξ−1u⊥H(b)Y̌ ′H ⊗ IH)R(37)

×
(
R′(Y̌H Y̌

′
H ⊗ Ξ−1u⊥H(b)u⊥′H (b)Ξ−1)R

)−1

×R′(Y̌Hu⊥′H (b)Ξ−1 ⊗ IH)R ,

K(β)
d→ χ2

K ,

where Y̌H = Y ⊥H PZ⊥ − v̌⊥H ǔ⊥′H (b)
(
ǔ⊥H(b)ǔ⊥′H (b)

)−1
u⊥H(b)PZ⊥ is the projection of Y ⊥ on Z⊥,

Ξ = u⊥H(b)MZ⊥u
⊥′
H (b), v̌⊥H = v⊥HMZ⊥ , and ǔ⊥H(b) = u⊥H(b)MZ⊥ . dK = Nz + Nx is a degrees

of freedom correction and Nx is the number of predetermined control variables. Appendix

C.2 derives K(b) and shows that the stated limiting distribution holds under strong, weak,

and non-identification. The Generalized SP-IV estimator coincides with the efficient GMM

estimator, so in that case inference can instead proceed directly with the KLM statistic for

GMM described in Kleibergen (2005).
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4 A Guide For Implementing SP-IV

This section describes how to implement SP-IV based on two of the most widely used

forecasting/IRF methods, Jordà (2005) local projections and vector autoregressive models

(VARs).6 SP-IV is highly flexible and, if concerned about misspecification, other models

can also be used to estimate the conditional expectations entering the forecast errors.7 We

also discuss the implementation of the proposed inference procedures.

Let yH denote the H × T matrix of leads of the outcome variable, i.e. with yt+h in the

h+ 1-th row and t-th column. Let YH be the HK ×T matrix vertically stacking the H ×T
matrices Y k

H for k = 1, . . . , K, each of which has Y k
t+h in the h+ 1-th row and t-th column,

and Y k
t is the k-th variable in the vector Yt. Let Xt be the period t observation of an Nx×1

collection of predetermined control variables (including a constant). By assumption, Xt is

generally a function of all current and all lagged values of the full set of shocks εt that drive

yt and Yt, but Xt is independent of all future values of εt. Note that Xt can include not

only current values, but also lags of yt, Yt, Zt, or any other time series.

4.1 Implementation Using Local Projections

Define the Nx×T matrix X with controls Xt−1 in the t-th column, and the projection matrix

PX = X ′(XX ′)−1X and residualizing matrix MX = IT − PX . Using a direct forecasting

approach, the forecast errors after projection on Xt−1 are given by

y⊥H = yHMX , Y ⊥H = YHMX , Z⊥ = ZMX ,(38)

which can be used in (9) to obtain the SP-IV estimator β̂. By the Frisch-Waugh-Lovell

theorem, this direct forecasting approach is equivalent to estimating Jordà (2005) local

projections of yt+h and Yt+h on zt and Xt−1 for h = 0, . . . , H − 1, using the estimated

coefficients on zt to construct the rows of Θ̂y and Θ̂Y , and subsequently constructing the

SP-IV estimator using the alternative expression for β̂ in (21). When zt are measures of

economic shocks conditional on Xt−1, the LP estimates are IRF coefficients representing

the dynamic causal effects of the shocks. Some studies estimate IRFs by local projections

of an endogenous outcome variable at t+ h on an endogenous explanatory variable Yt and

controls Xt−1 using zt as instruments, a procedure often referred to as ‘LP-IV’. Such IRFs

can be used for identification in the SP-IV estimator exactly as described above, i.e. by the

associated reduced form projections of the outcome variables directly on zt and Xt−1.

6For recent assessments of both methods, see Stock and Watson (2018), Montiel Olea and Plagborg-Møller (2021),
Plagborg-Møller and Wolf (2021) or Li et al. (2021).

7Depending on the model, however, it may be necessary to adjust inference for estimation error in the first-stage, since
the expected Jacobian may no longer have the structure described in footnote 5.
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4.2 Implementation Using Vector Autoregressions

Suppose that yt, and the elements of Yt and Zt are – possibly together with other variables

– all contained in Xt, and that Xt evolves according to a VAR,

Xt = AXt−1 + wt .(39)

The representation in terms of a VAR of order one is without loss of generality, as any VAR

of order p can be rewritten as a VAR of order one. As before, let X denote the Nx × T

matrix with Xt−1 in the t-th column, and let Xf denote the Nx × T matrix with Xt in

the t-th column. The standard estimator of A is Â = XfX ′(XX ′)−1, leading to the h-step

ahead forecast errors

X⊥t+h =
h∑
j=0

Âh−jŵt+j , ŵt = Xt − ÂXt−1 .(40)

The appropriate selection of elements in X⊥t+h leads to y⊥H , Y ⊥H and Z⊥, which can be used

to obtain the SP-IV estimator β̂ in (9). ‘Structural’ VARs are VARs in which researchers

make assumptions to identify columns of B in wt = Bεt, allowing the estimation of IRFs

that are interpretable as dynamic causal effects of the associated economic shocks in εt. If

ε̂1:Nz
t are the Nz identified shocks in the structural VAR, it is possible to use z⊥t = ε̂1:Nz

t

to form Z⊥, and use these shock estimates for identification in the SP-IV estimator. This

procedure also nests the case of identification with ‘external instruments’, which can be

directly included in the VAR and combined with zero restrictions in B, or used indirectly

as instruments to identify columns in B as in the ‘proxy SVAR’ or ‘SVAR-IV’ approach,

see Mertens and Ravn (2013), Stock (2008), Stock and Watson (2012), and Stock and

Watson (2018). Note that (19), or equivalently (20), are consistent estimators of the IRFs

associated with ε̂1:Nz
t . In finite samples, however, even under (39) these IRF estimates

will not be numerically identical to the structural VAR impulse responses obtained from

Θ̂V AR
X,h = ÂhB1:Nz, h = 0, . . . , H − 1, where B1:Nz denotes the first Nz columns of B. The

reason is that the restrictions implied by the VAR dynamics are imposed on the reduced

form forecast errors, but (19) or (20) do not impose the same VAR dynamics on the IRFs.

An alternative implementation of SP-IV with structural VARs is to select the elements

corresponding to yt and Yt in Θ̂V AR
X,h to form Θ̂y and Θ̂Y , and then obtain the SP-IV estimator

from the regression of impulse responses as in (21). This alternative implementation imposes

the VAR dynamics on both the reduced form forecast errors as well as on the impulse

responses. In general, imposing the VAR dynamics is easily done in all formulas above

by replacing y⊥HPZ⊥Y
⊥
H by Θ̂V AR

y Θ̂V AR
Y

′ and Y ⊥H PZ⊥Y
⊥
H by Θ̂V AR

Y Θ̂V AR
Y

′, where Θ̂V AR
Y is the

HK×Nz matrix stacking the K blocks of the VAR IRF coefficients of Yt, and Θ̂V AR
y contains
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the H × Nz VAR IRF coefficients of yt.
8 When comfortable imposing VAR dynamics, it

makes sense to impose these restrictions consistently, and we therefore recommend this

second implementation in practical applications of SP-IV with VAR-based IRFs.

4.3 Inference in Practice

4.3.1 Estimating the Error Variances

Given y⊥H , Y ⊥H , Θ̂Y and β̂ as obtained from either the LP or VAR implementation, the error

term of the structural equation can be obtained by û⊥H = y⊥H − (β̂′ ⊗ IH)Y ⊥H , whereas the

first-stage error terms can be obtained by v̂⊥H = Y ⊥H − Θ̂Y (ZMXZ
′/T )−

1
2ZMX . The error

variance can be consistently estimated by

Σ̂u⊥H
=

û⊥H û
⊥′
H

T −Nx −K
; Σ̂v⊥H

=
v̂⊥H v̂

⊥′
H

T −Nx −Nz

,(41)

where Nx is the dimension of Xt (including a constant) in the LP or VAR. Note that (41)

embeds any serial correlation up to H horizons. The variance estimators in (41) could

be replaced with a heteroskedasticity and autocorrelation robust (HAR) estimator such as

Newey and West (1987) or Lazarus et al. (2018). However, pre-multiplying the serially

correlated errors in our estimators by Σ
−1/2

u⊥H
or Σ̂

−1/2

v⊥H
(as, in effect, the denominators of our

test statistics achieve) already has a pre-whitening effect, and the resulting errors become

white noise when the order of serial correlation is less than H. Moreover, when K and H are

relatively large, it is difficult to implement orthogonal-series HAR estimators as in Lazarus

et al. (2018) due to the high dimensionality. Doing so may require a very large number of

basis functions relative to the sample size to yield a full-rank covariance matrix. In practice,

we find in simulations that inference based on (41) adequately adjusts for serial correlation

in the errors, and systematically outperformed the HAR estimators that we considered.

4.3.2 Step-by-step Implementation of the Weak-Instruments Test

1. Using Σ̂v⊥H
in (41), construct Ω̂ = R′(Σ̂v⊥H

⊗ IH)R, Ŝ =
(

Ω̂−
1
2 ⊗ IH

)
Σ̂

1
2

v⊥H
, and Ŝ = ŜŜ ′.

2. Calculate the test statistic gmin = N−1
z mineval{Ω̂− 1

2R′(Y ⊥H PZ⊥Y
⊥′
H ⊗ IH)RΩ̂−

1
2}

3. Obtain `min(ξ) using the numerical procedure outlined above and calculate the first

three cumulants of the bounding limiting distribution of gmin under the null hypothesis

8To impose the VAR dynamics in the Generalized SP-IV formula (25), replace y⊥HPZ⊥ by Θ̂V AR
y (ZMXZ

′/T )−
1
2ZMX

and to construct Y̌H in the KLM statistic in (37), replace Y ⊥H PZ⊥ by Θ̂V AR
Y (ZMXZ

′/T )−
1
2ZMX .
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of a minimum eigenvalue of `min(ξ),

κ1 = Nz(1 + `min(ξ)) ,

κ2 = 2
(
Nzmaxeval{R′(Ŝ2 ⊗ IH)R}+ 2`min(ξ)Nz

)
,

κ3 = 8
(
Nzmaxeval{R′(Ŝ3 ⊗ IH)R}+ 3`min(ξ)Nzmaxeval{R′(Ŝ2 ⊗ IH)R}

)
.

Using ν = κ2/κ3 and δ = 8κ2ν
2, compute the critical value

g∗min(ξ, α) =
1

Nz

(
χ2
δ(α)− δ

4ν
+ κ1

)
,(42)

where χ2
δ(α) is the upper α% percentile of a central χ2 distribution with δ degrees of

freedom.

Weak instruments are defined as instruments that generate a bias in β̂ that in absolute

value is ξ percent of the worst-case OLS bias or larger. The test rejects the null hypothesis

of weak instruments when gmin exceeds the critical value g∗min(ξ, α), with significance level

of α. The procedure is generally straightforward, although the computation of `min(ξ) can

be time-consuming for large H and K. As in Montiel-Olea and Pflueger (2013), a simpler

alternative plug-in procedure is to replace `min(ξ) with 1/ξ in the cumulants above.

4.3.3 Constructing Confidence Sets for Strong Instruments

If the instruments are strong (as indicated by the first-stage test), asymptotically valid

confidence sets can be constructed by inverting the usual Wald statistic. In particular, (24)

provides the asymptotic variance for β, the elements of which can be replaced with their

natural consistent estimators. Explicitly, the 1− α confidence set for β is

(43) CSWβ (α) = {b : T (β̂ − b)′V −1
β (β̂ − b) < χ2

K(α)} .

As usual, confidence sets for subsets of β can be formed by using selection matrices to take

linear combinations of β, with comparison to limiting distributions with correspondingly

reduced degrees of freedom.

4.3.4 Constructing Robust Confidence Sets

If the first-stage test fails to reject the null hypothesis of weak instruments, or if the econo-

metrician prefers to use inference that will be valid regardless of instrument strength, con-

fidence sets can be constructed by inverting either the AR or KLM statistics in (36) and

(37) respectively. In particular, confidence sets for β are

CSARβ (α) = {b : AR(b) < χ2
HNZ

(α)} ; CSKLMβ (α) = {b : K(b) < χ2
K(α)} .(44)
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These confidence sets provide valid inference for the full vector of structural parameters,

β. If the econometrician is interested in a confidence set for only a subset of β, β̃ (with

complement β̌), confidence sets for β̃ can be defined as

CSAR
β̃

(α) = {b̃ : min
b̌
AR(b̃, b̌) < χ2

HNZ
(α)} ; CSKLM

β̃
(α) = {b̃ : min

b̌
K(b̃, b̌) < χ2

K(α)} .
(45)

Note that, as is the norm for robust inference, these confidence sets use the projection

method, comparing the test statistics to critical values with degrees of freedom equal to

that of the full-vector test. Reductions in degrees of freedom, like those for Wald tests on

subsets of a parameter vector, only arise in special cases.

As in any weakly-identified setting, there are potential complications when constructing

robust confidence sets. For instance, AR confidence sets may be infinite, if non-identification

cannot be rejected, or empty, in the case of over-identifying restrictions that do not appear

to be satisfied, see Andrews et al. (2019) for a discussion. Robust confidence sets will not,

in general, be centered at the estimated values of the parameters. Since the KLM statistic

is a quadratic form of the score, it will not only fail to reject parameter values associated

with minima, but also with maxima and inflection points, meaning that confidence sets

should be inspected to determine whether the included region contains these zeros as well,

see Kleibergen (2002) for a discussion.

5 Performance of SP-IV in Model Simulations

We evaluate the performance of SP-IV using data generated from the workhorse macroeco-

nomic model of Smets and Wouters (2007).9 The objective is to estimate the parameters

of the Hybrid New-Keynesian Phillips Curve (HNKPC) in (2), which is one of the model

equations in a system of fourteen simultaneous dynamic equilibrium equations for the dy-

namics of key macroeconomic aggregates at a quarterly frequency. In Smets and Wouters

(2007), the error term in (2) is the ARMA(1,1) process

ut = ρuut−1 + εpt − µpε
p
t−1 , | ρu |< 1 ,(46)

where εpt is an i.i.d. normally distributed price markup shock. Inverting the autoregressive

term in (46) yields ut = εpt + ρu(1− µp)εpt−1 + ρu(ρu− µp)εpt−2 + ρ2
u(ρu− µp)ε

p
t−3 + . . . , which

makes clear that the error term in general depends on the entire history of price markup

shocks εpt , ε
p
t−1, ε

p
t−2, . . . The period t values of the endogenous variables in the model are

functions of all current and lagged values of a 7 × 1 vector of shocks εt, of which εpt is one

9The data is generated from the Smets and Wouters (2007) model using the Dynare replication code kindly provided
by Johannes Pfeifer at https://sites.google.com/site/pfeiferecon/dynare.

23

https://sites.google.com/site/pfeiferecon/dynare


element. Lagged values of standard endogenous macro variables are therefore in general

not valid instruments. These variables either violate the lag exogeneity assumption, or else

lose relevance if the data is first conditioned on predetermined variables to avoid the lag

exogeneity requirement.

We assume that the econometrician cannot exploit the ARMA(1,1) error structure in

(46). To achieve identification, we assume that a sample of Nz elements of the vector of

shocks εt (other than εpt ) is observed. These shocks are mutually independent i.i.d. normal

variables, and satisfy the necessary lead, contemporaneous, and lag exogeneity requirements

for all estimators we consider. Using the true shocks as instruments is not a realistic as-

sumption, as in real world applications researchers must confront the problem of empirically

identifying these economic shocks in finite samples.10 In this section, we focus on simula-

tions with true shocks as instruments in order to level the playing field across estimators in

this dimension.

We do not assume access to a full information set, that is a set of controls spanning the

full history of all the shocks in the model. Instead, we use a more realistic set of controls

containing four lags of seven endogenous variables: the short term interest rate, inflation,

marginal cost, output, consumption, investment and the real wage. Price setters’ inflation

expectations πet+1 are assumed to be unobserved, and are replaced in (2) by realized future

inflation πt+1. This is a common approach in the literature when expectations appear in

structural equations. Under rational expectations, as assumed in the Smets and Wouters

(2007) model, the resulting measurement error only depends on future realizations of εt,

which does not create any additional endogeneity problems since the instruments satisfy

lead exogeneity.

We examine the performance of several consistent estimators of β. First, the single-

equation 2SLS estimator regresses ỹt and Ỹt on the contemporaneous value and H − 1 lags

of the shocks in the first stage, and therefore implicitly relies on IRFs from a distributed

lag specification. Second, we consider a single-equation 2SLS estimator that uses Almon

shrinkage to estimate the IRFs. This estimator shrinks the number of instruments from

HNz to 3Nz by using quadratic approximations to the IRFs, which is what Barnichon and

Mesters (2020) propose to avoid many-weak instrument problems. In their 2SLS-Almon

procedure, the first stage consists of a regression ỹt and Ỹt on sums of the contemporaneous

value and H − 1 lags of the shocks, interacted with constant, linear and quadratic terms in

the impulse response horizon h. Next, we consider two versions of SP-IV that obtain the

forecast errors of the endogenous variables using LP, as described in Section 4.1. The two

10Wolf (2020) provides simulation results on the ability of various identification schemes to recover the true monetary
policy shocks in the Smets and Wouters (2007) model.
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versions differ in the controls: the first, SP-IV LP, uses only a constant, while the second,

SP-IV LP-C, adds the set of lagged controls described above. Next, we consider SP-IV

based on a VAR in the seven variables of the control set and with four lags. We implement

this SP-IV VAR estimator using the IRFs that are directly obtained from inverting the

estimated VAR model, as we recommend in Section 4.2. Finally, we also examine feasible

GLS versions of the previous three SP-IV estimators as in Section 2.6. These are labeled

FGSP-IV, and also correspond to the efficient GMM estimates.

We generate 5000 Monte Carlo samples for 12 different specifications, varying sample

size, the number of horizons H, and the set of instruments. We evaluate sample sizes

of T = 250 and T = 500 to assess the performance in small samples, and T = 5000 to

verify the asymptotic properties of the estimators and inference procedures. We consider

specifications with the first H = 8 or H = 20 horizons, corresponding to two and five years

worth of leads (or lags in the case of single-equation 2SLS) of quarterly data, respectively.

Finally, we consider Nz = 1, instrumenting with the monetary policy shock as in Barnichon

and Mesters (2020), and a richer set of Nz = 3 instruments, adding the government spending

and risk premium shocks. The tables with simulation results for Nz = 3 are in Appendix D

for brevity. Appendix D also presents simulation results for the underlying IRF estimators.

5.1 Bias and Variance

Table 1 reports the mean estimates of β = [γb, γf , λ]′ for Nz = 1, with H = 8 and H = 20.

The true values β are in the first row of each panel. As a benchmark for the bias of the various

consistent estimators, the second row provides the simple OLS estimate from the regression

of the demeaned variables, ỹt on Ỹt. Unsurprisingly, the OLS estimates are strongly biased

for all sample sizes because of simultaneity and measurement error in inflation expectations.

The first panel in Table 1, with results for H = 8, shows that the mean estimates for

2SLS and SP-IV LP (without controls) are very similar, and both reduce the bias consider-

ably relative to OLS. Implementing SP-IV with controls, either using LP or a VAR, tends to

further reduce the bias. Across all parameters, SP-IV VAR typically delivers the lowest bias,

although SP-IV LP-C occasionally exhibits lower bias for λ. The FGSP-IV mean estimates

are generally very similar to their SP-IV counterparts. Finally, the 2SLS-Almon estimator

proposed in Barnichon and Mesters (2020) shows larger bias than OLS for γb and λ when

T = 250, and only becomes competitive with the other estimators in larger samples.

The second panel in Table 1, with results for H = 20, shows that the ranking of the

estimators and general performance is overall similar to the first panel, although the bias is

often slightly larger. This suggests that the additional horizons generally do not add much
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Table 1: Mean parameter estimates, Nz = 1

H = 8 T = 250 T = 500 T = 5000
Estimator γb γf λ γb γf λ γb γf λ

β 0.15 0.85 0.05 0.15 0.85 0.05 0.15 0.85 0.05
OLS 0.47 0.47 0.00 0.48 0.48 0.00 0.48 0.48 0.00
2SLS 0.27 0.51 0.01 0.24 0.60 0.01 0.17 0.83 0.04
2SLS-Almon 0.55 0.85 -0.15 0.16 0.76 0.09 0.16 0.79 0.02
SP-IV LP 0.26 0.50 0.01 0.23 0.60 0.01 0.17 0.83 0.04
SP-IV LP-C 0.29 0.64 0.04 0.24 0.74 0.05 0.16 0.84 0.05
SP-IV VAR 0.23 0.81 0.03 0.18 0.84 0.05 0.12 0.83 0.09
FGSP-IV LP 0.25 0.44 0.00 0.23 0.54 0.00 0.17 0.82 0.03
FGSP-IV LP-C 0.30 0.66 0.03 0.25 0.76 0.03 0.16 0.84 0.05
FGSP-IV VAR 0.22 0.82 0.03 0.16 0.85 0.05 0.11 0.84 0.09
H = 20 T = 250 T = 500 T = 5000
Estimator γb γf λ γb γf λ γb γf λ

β 0.15 0.85 0.05 0.15 0.85 0.05 0.15 0.85 0.05
OLS 0.47 0.47 0.00 0.48 0.48 0.00 0.48 0.48 0.00
2SLS 0.39 0.53 0.00 0.36 0.61 0.00 0.23 0.80 0.01
2SLS-Almon 0.28 0.73 0.02 0.55 0.48 -0.05 0.20 0.83 0.02
SP-IV LP 0.38 0.53 0.01 0.35 0.61 0.00 0.23 0.80 0.01
SP-IV LP-C 0.41 0.55 0.02 0.37 0.63 0.01 0.23 0.81 0.02
SP-IV VAR 0.27 0.80 0.01 0.23 0.84 0.02 0.17 0.83 0.05
FGSP-IV LP 0.42 0.54 0.00 0.39 0.61 -0.01 0.26 0.79 0.01
FGSP-IV LP-C 0.46 0.57 0.00 0.42 0.65 0.00 0.25 0.80 0.01
FGSP-IV VAR 0.28 0.81 0.01 0.23 0.84 0.02 0.16 0.83 0.06

Notes: The top row in each panel contains the true parameter values β = [γb, γf , λ]
′

of (2) in the Smets and
Wouters (2007) model. The other rows show mean estimates across 5000 Monte Carlo samples of size T and
with h = 0, . . . ,H − 1. All IV estimators use the monetary policy shock as the instrument. 2SLS-Almon is
the estimator proposed in Barnichon and Mesters (2020). SP-IV is the estimator in (9) while FGSP-IV is
the feasible generalized estimator in (25). LP and LP-C denote implementations based on local projections
discussed in Section 4.1, without and with controls, respectively. VAR denotes the implementation with a
vector autoregression discussed in Section 4.2.
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Table 2: Standard deviation of parameter estimates, Nz = 1

H = 8 T = 250 T = 500 T = 5000
Estimator γb γf λ γb γf λ γb γf λ

2SLS 0.26 0.33 0.21 0.24 0.31 0.21 0.13 0.08 0.09
2SLS-Almon 21.15 8.77 8.79 11.38 10.56 7.17 4.38 3.17 3.92
SP-IV LP 0.27 0.34 0.23 0.25 0.30 0.21 0.13 0.09 0.09
SP-IV LP-C 0.28 0.29 0.27 0.26 0.21 0.24 0.12 0.06 0.08
SP-IV VAR 0.31 0.36 0.29 0.30 0.24 0.26 0.14 0.06 0.09
FGSP-IV LP 0.33 0.46 0.25 0.27 0.41 0.22 0.12 0.09 0.09
FGSP-IV LP-C 0.35 0.35 0.31 0.31 0.23 0.28 0.12 0.06 0.08
FGSP-IV VAR 0.36 0.42 0.35 0.33 0.27 0.30 0.13 0.06 0.09
H = 20 T = 250 T = 500 T = 5000
Estimator γb γf λ γb γf λ γb γf λ

2SLS 0.11 0.12 0.05 0.11 0.11 0.06 0.07 0.05 0.03
2SLS-Almon 5.48 4.87 1.65 13.01 11.78 4.48 1.79 0.65 0.63
SP-IV LP 0.12 0.13 0.07 0.11 0.11 0.06 0.07 0.05 0.03
SP-IV LP-C 0.09 0.11 0.06 0.09 0.10 0.06 0.08 0.05 0.04
SP-IV VAR 0.22 0.25 0.11 0.20 0.19 0.09 0.11 0.06 0.05
FGSP-IV LP 0.15 0.17 0.07 0.12 0.15 0.06 0.07 0.05 0.03
FGSP-IV LP-C 0.11 0.12 0.07 0.10 0.09 0.06 0.08 0.05 0.03
FGSP-IV VAR 0.24 0.29 0.16 0.22 0.20 0.12 0.12 0.06 0.06

Notes: Rows show standard deviations across 5000 Monte Carlo samples of size T and with h = 0, . . . ,H−1.
All IV estimators use the monetary policy shock as the instrument. 2SLS-Almon is the estimator proposed
in Barnichon and Mesters (2020). SP-IV is the estimator in (9) while FGSP-IV is the feasible generalized
estimator in (25). LP and LP-C denote implementations based on local projections discussed in Section
4.1, without and with controls, respectively. VAR denotes the implementation with a vector autoregression
discussed in Section 4.2.

useful identifying variation, and mostly exacerbate problems of weak identification. For

the specifications with Nz = 3, see Appendix D, the general performance and ranking of

the estimators remains very similar, although 2SLS-Almon performs better than in Table 1

with more instruments. In addition, the FGSP-IV estimators consistently show somewhat

greater bias than their SP-IV counterparts with additional instruments.

Table 2 reports the standard deviations of the various estimators for Nz = 1, with re-

sults for H = 8 in the first panel, and H = 20 in the second. As expected, variances are

everywhere decreasing in sample size. Comparing the first and second panel reveals that

variances are also decreasing in H, indicating that additional horizons reduce the variabil-

ity of all estimators. For Nz = 1, we find that the 2SLS-Almon estimator of Barnichon

and Mesters (2020) is unstable, with standard deviations that are two orders of magnitude

larger than those of all other estimators. The variances of single-equation 2SLS and the

two LP-based SP-IV estimators are overall roughly similar for both H = 8 and H = 20,

while the variance of SP-IV VAR is systematically somewhat higher than that of 2SLS or
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SP-IV with LP. While the three FGSP-IV estimators are asymptotically more efficient, with

Nz = 1, this advantage does not materialize in the sample sizes considered, as all FGSP-IV

variances slightly exceed those of their SP-IV counterparts.

Using additional instruments leads to lower variances overall, see the results for Nz = 3

in Appendix D. The 2SLS-Almon estimator performs much better after adding instruments,

but still tends to have higher variance than the other estimators. With Nz = 3, 2SLS and

the LP-based SP-IV estimators continue to have similar variances, and the variance of SP-

IV VAR continues to be generally slightly higher than 2SLS or SP-IV with LP. Finally, with

more instruments, there is some sporadic evidence of (small) efficiency gains of FGSP-IV

relative to their SP-IV counterparts.

Based on the simulation results across all 12 specifications, we draw several conclusions.

First, the SP-IV VAR estimator consistently performs the best in terms of bias, followed

by SP-IV LP-C, and then SP-IV LP and single-equation 2SLS. However, in terms of vari-

ance, the latter three estimators are comparable, and perform better than SP-IV VAR.

This pattern may be surprising given existing results on the variance-bias trade-off between

VARs and LPs for the estimation of IRFs (e.g., Plagborg-Møller and Wolf (2021), Li et al.

(2021)).11 However, the various SP-IV estimators do not estimate IRFs, but relationships

across IRFs, see Section 2.4. Biases and covariances across IRFs can have offsetting or

reinforcing effects on the bias and variance of the SP-IV estimators.

Second, SP-IV LP (without controls) and single-equation 2SLS are very close substi-

tutes, both in terms of bias and variance. This is not that surprising since neither include

controls and, given instruments that satisfy lead, contemporaneous, and lag exogeneity,

both estimate very similar IRFs in the first stage. As discussed in Section 2.3, 2SLS can be

asymptotically more efficient than SP-IV LP or vice versa, depending on H and the proper-

ties of the error term. In our simulations, the differences between the variances of the 2SLS

and SP-IV LP estimators are generally very small. The benefits of SP-IV emerge once the

controls are included, either in the LP-C or VAR implementation. As the simulation results

show, adding predetermined variables as controls can lead to meaningful reductions in bias

by moderating the weak-instrument bias in smaller samples. As we explained in Section 2.3,

adding these controls is generally not feasible in single-equation 2SLS with lagged shocks as

instruments. Recall also that, in our simulation setup, the instruments zt always satisfy lag

exogeneity. Were the raw instruments to be correlated with past price markup shocks, and

thus fail the lag exogeneity condition, there would be a further performance wedge between

SP-IV (LP-C or VAR) and single-equation 2SLS and 2SLS-Almon due to the bias induced

11Typically, imposing VAR dynamics introduces bias in the IRFs but yields efficiency gains relative to the LP approach.
Appendix D shows that this trade-off is also present for the IRFs in our simulations.
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Table 3: Empirical size of nominal 5% tests, Nz = 1

H = 8 H = 20
T = 250 T = 500 T = 5000 T = 250 T = 500 T = 5000

WALD 2SLS 13.10 11.20 12.50 65.20 59.80 42.30
AR 2SLS 12.60 9.30 4.60 38.00 20.90 5.50
AR 2SLS-Almon 4.20 2.00 0.10 8.60 7.00 2.10
WALD SP-IV LP 15.70 13.00 12.90 69.40 63.90 43.70
WALD SP-IV LP-C 13.10 11.40 7.80 72.90 63.40 29.50
WALD SP-IV VAR 7.80 6.90 5.50 33.00 27.40 13.40
AR SP-IV LP 5.80 5.50 4.70 9.60 6.90 4.90
AR SP-IV LP-C 6.40 5.60 4.90 11.40 7.60 5.00
AR SP-IV VAR 4.40 4.80 4.80 5.20 5.80 4.70
KLM SP-IV LP 5.60 5.90 5.10 8.00 6.40 4.60
KLM SP-IV LP-C 7.20 5.70 5.10 11.70 7.30 4.80
KLM SP-IV VAR 5.30 5.30 4.90 8.20 6.60 4.60

Notes: Empirical rejection rates of various nominal 5% tests of the true values of β = [γb, γf , λ]
′

in 5000
Monte Carlo samples from the Smets and Wouters (2007) model using the monetary policy shock as the
instrument. The 2SLS Wald test uses a HAR variance matrix following Lazarus et al. (2018). AR 2SLS and
AR 2SLS-Almon are the Anderson and Rubin (1949) tests in Barnichon and Mesters (2020). WALD SP-IV
is based on (23) with Σ̂u⊥

H
as in (41), AR is based on (36), and KLM is based on (37). LP and LP-C denote

implementations based on local projections discussed in Section 4.1, without and with controls, respectively.
VAR denotes the implementation with a vector autoregression discussed in Section 4.2.

by invalid instruments.

Third, the feasible GLS (or efficient GMM) versions of our estimators (FGSP-IV) do not

improve performance in practice, at least not in realistic sample sizes and for our data gen-

erating process. The bias is comparable or worse than the corresponding SP-IV estimators,

and the variance is often higher for small sample sizes. The fact that GLS does not provide

efficiency gains (and may fare slightly worse) in small samples likely results from estimation

error in the H ×H weighting matrix, which itself depends on the estimates β̂.

Finally, the 2SLS-Almon estimator tends to perform poorly with the monetary policy

shock as the only instrument in data from the Smets and Wouters (2007) model, although it

fares better when there are more instruments. While a quadratic approximation to the IRFs

reduces the number of instruments, in our simulations the approach proposed by Barnichon

and Mesters (2020) appears generally inferior to conventional 2SLS or the SP-IV estimators

in terms of bias and variance.

5.2 Inference

Table 3 reports empirical rejection rates of various nominal 5% tests of the true values of

the full parameter vector, β = [γb, γf , λ]′. The table shows the empirical sizes for the speci-
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fications with Nz = 1; the table for Nz = 3 is in Appendix D.

We consider a 2SLS HAR Wald test – using the HAR estimator proposed by Lazarus et

al. (2018) – as well as the Anderson and Rubin (1949) tests used in Barnichon and Mesters

(2020) for 2SLS and 2SLS-Almon. The first row in Table 3 shows that the Wald test for 2SLS

exhibits moderate size distortions for H = 8 and Nz = 1. The size distortions, however,

become very large when H = 20, or when Nz = 3, see Appendix D. The AR test for 2SLS is

relatively well-sized in small samples when H = 8 and Nz = 1, but becomes very oversized

for H = 20, or when Nz = 3. This is entirely in keeping with the many-weak-instruments

problem discussed earlier, and consistent with the findings in Barnichon and Mesters (2020)

based on their data generating process.

The third row in Table 3 shows the AR tests for 2SLS-Almon, which shrinks the number

of instruments to avoid many-weak instruments problems. For H = 8, we find that the

tests are consistently under-sized. For H = 20, the tests have small positive size distortions

in small samples, and negative size distortions in large samples. Moreover, we find that

– unlike the AR test for 2SLS – the empirical rejection rates of the 2SLS-Almon AR test

consistently converge towards zero as the sample size T increases.

The next three rows in Table 3 consider Wald tests for the three SP-IV estimators with

Σ̂u⊥H
as in (41). Just as the Wald test for 2SLS, these tests are valid only under strong iden-

tification. Consistent with identification being weak, the SP-IV Wald tests exhibit large size

distortions in many cases. Just as for the 2SLS Wald test, the size distortions are relatively

moderate for H = 8 and Nz = 1, but become very large for higher H or Nz.
12 Note that

the size distortions decrease with T , as the first-stage relationships stay fixed across speci-

fications and the concentration parameter rises.

The remaining rows of Table 3 consider our robust inference methods for SP-IV. The

next three rows report the AR tests based on (36). The SP-IV AR tests are generally well-

sized, although they do exhibit some over-rejection in small samples when H = 20 in the

case of the LP estimators. When H = 8, the SP-IV AR tests are also slightly conservative

for the VAR estimator in small samples. Just as the AR test for 2SLS (but not for 2SLS

Almon), the rejection rates of the SP-IV AR tests all approach 5% as the sample size in-

creases, reflecting asymptotic validity. The final three rows of Table 3 report the KLM tests

based on (37). Just as the SP-IV AR tests, the KLM tests exhibit at most only relatively

small size distortions across all specifications, see also Appendix D.

12The size distortions are generally worse for the FGSP-IV estimators than their SP-IV counterparts. Results for
FGSP-IV are omitted from Table 3 for brevity.
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The main takeaway from Table 3 (and also D.3 in Appendix) is that for all SP-IV

implementations the AR and KLM robust inference procedures are well-sized, showing only

small size distortions when H is large relative to T . By leading the endogenous variables

rather than lagging the instruments, SP-IV effectively mitigates the many-weak-instrument

problems that plague the 2SLS AR test in small samples. The 2SLS-Almon shrinkage

procedure of Barnichon and Mesters (2020) also reduces the number of instruments, but

their associated AR test appears to be incorrectly sized asymptotically. Other approaches

in the literature may also be able to address many-weak-instrument problems in time series

settings, see Mikusheva (2021) for suggestions, but they do not necessarily have any of the

other advantages of SP-IV. There may also be test statistics offering refinements over the

AR and KLM, but many – for example, the CLC of Andrews (2016) – are only directly

applicable to the Generalized SP-IV estimators.

6 Application to the New Keynesian Phillips Curve with U.S. Data

In this section, we use SP-IV to estimate the parameters of the Hybrid New Keynesian

Phillips curve in (2) using U.S. data, and compare our results with those from OLS, 2SLS,

and 2SLS with the Almon approximation. We consider the following specification for the

dynamics of quarterly inflation at a monthly frequency,

π1q
t = (1− γf )π1y

t−3 + γfπ
1y
t+12 + λUt + ut ,(47)

where π1q
t is the annualized percent change in the Core CPI from a quarter ago in month

t, π1y
t is the percent change in the Core CPI over the preceding year in month t, and Ut is

the headline unemployment rate in month t. The variable definitions in terms of quarterly

and annual lagged and future inflation rates and unemployment as the gap measure are

the same as in Barnichon and Mesters (2020), but we estimate (47) using monthly data

instead of quarterly data. As is common in the literature, e.g. Mavroeidis et al. (2014), the

specification in (47) restricts the coefficient on lagged and future inflation to sum to one,

γb + γf = 1. This parameter restriction imposes that there is no long run trade-off between

unemployment and inflation.

As the instrumenting shock, we use a monthly version of the Angeletos et al. (2020)

Main Business Cycle (MBC) Shock. Specifically, we estimate a monthly six-variable VAR

using the annualized one-month percent change in the core CPI, the unemployment rate,

the 12-month change in log industrial production, the 12-month percent change in the PPI

for all commodities, the 3-month T-bill rate, and the 10-year Treasury rate. The effective

sample period is 1979:M1 to 2018:M4 (472 monthly observations), and we use 6 lags in the

VAR. The MBC shock is identified as the shock that – out of all orthogonal rotations of
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structural shocks – maximizes the contribution to the variation in the unemployment rate

at horizons of 18 to 96 months in the frequency domain.

In principle, there is a range of economic shock measures that could be suitable to iden-

tify the parameters of (47). There are several reasons why we use the MBC shock, and not

measures of monetary policy shocks as in Barnichon and Mesters (2020). The most useful

instruments have strong predictive power for the endogenous variables, while still satisfying

the exogeneity requirements. High frequency measures of monetary policy shocks are far

too weak as predictors of unemployment and inflation to be useful in practice. The same is

typically – though not always – the case for monetary shocks identified through timing re-

strictions or the narrative measures of Romer and Romer (2004). Moreover, contractionary

policy shocks identified by these last two methods robustly generate puzzling expansionary

effects in updated samples, raising questions about their interpretation and exogeneity.13

We also show below that point estimates based on the Romer and Romer (2004) shocks give

rise to unrealistic cyclical inflation dynamics.

Angeletos et al. (2020) find that the MBC shock obtained by maximizing the contri-

bution to cyclical unemployment fluctuations is interchangeable with shocks identified by

maximizing the cyclical variance contribution to other major macro aggregates, such as

GDP, consumption, investment, or hours worked. This interchangeability suggests a single

main driver of business cycles with a common propagation mechanism. The authors argue

that this main driver best fits the notion of an aggregate demand shock, making it poten-

tially a good instrument for estimating the Phillips curve. Indeed, looking at the disconnect

between the unemployment and inflation responses to the MBC shock, Angeletos et al.

(2020) conclude that the Phillips curve must be overly flat, and suggest that demand-driven

business cycles are perhaps not tied to nominal rigidities at all. Rather than relying on

casual inspections of the IRFs, SP-IV allows for a formal investigation of such claims.

Our monthly version of the MBC shock produces IRFs that are very similar to those in

Angeletos et al. (2020). The red lines in Figures 1a-1b plot the VAR-based IRFs of quarterly

inflation π1q
t and unemployment Ut following a one standard-deviation MBC shock, while

Figure 1c shows the contributions of the MBC shock to the forecast error variance (FEV).

As in Angeletos et al. (2020), the MBC shock looks like an aggregate demand shock, pushing

unemployment higher and inflation lower. At the same time, the MBC shock explains a

relatively small fraction of the FEV of inflation. On impact, the MBC shock explains es-

sentially zero percent of the inflation FEV, and the contribution rises only to slightly above

20% after about two years. This is the apparent disconnect between inflation and the shock

that explains most of the variance of unemployment at business cycle frequencies.

13See for instance Barakchian and Crowe (2013), Ramey (2016), or Miranda-Agrippino and Ricco (2021).
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Figure 1: Impact of the Main Business Cycle Shock on Core CPI and Unemployment
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Notes: Inflation is the annualized inflation rate from a quarter ago (π1q
t ). Results in red are obtained

from a six-variable VAR with six lags using the annualized one-month percent change in the core CPI,
the unemployment rate, the 12-month change in log industrial production, the 12-month percent change
in the PPI for all commodities, the 3-month T-bill rate, and the 10-year Treasury rate. The MBC shock
maximizes the contribution to the variance of the unemployment rate at horizons of 18 to 96 months in the
frequency domain, as in Angeletos et al. (2020). The effective sample period is 1979:M1 to 2018:M4. Blue
lines show results from regressions on lag sequences of the MBC shock, whereas yellow lines show results
from a quadratic (Almon) approximation.

By using the MBC shock as the instrument, the 2SLS, SP-IV and 2SLS-Almon estima-

tors each produce estimates of the Phillips curve parameters as they are encoded in the IRFs

associated with an MBC shock. The 2SLS estimator uses contemporaneous and lagged val-

ues the MBC shocks as the instrumental variables. The 2SLS-Almon estimator shrinks the

number of instrumental variables down to three by using sums of the contemporaneous and

lagged values interacted with constant, linear, and quadratic terms in the impulse response

horizon h as the instrumental variables. The SP-IV estimator uses the contemporaneous

MBC shock as a single instrument in a system of forecast errors.14 In each case, the first

stage leads to different estimators of the IRFs associated with the MBC shock. Figure 1a-1b

show the three different IRFs that implicitly underlie the estimates of the parameters γf and

λ in each case. The 2SLS estimator is built from the IRF coefficients obtained from regres-

sions of π1q
t (and π1y

t−3 and π1y
t+12) and Ut on a distributed lag of the shock (blue lines). The

2SLS-Almon of Barnichon and Mesters (2020) is similar but uses quadratic approximations

to those IRFs (yellow lines). SP-IV, in contrast, allows the direct use of the VAR-based

IRFs (red lines). To make efficient use of the identifying information contained in the IRF

dynamics, we use the coefficients in the first month of the first 12 quarters of the response

horizons – that is at h = 0, 3, 6, . . . , 33 – to construct each estimator. Figures 1a-1b show

the first twelve IRF coefficients that are used in practice in the estimation, and also show

the next eight quarters of the VAR and distributed lag IRF coefficients to visualize the full

dynamics following an MBC shock.

14The forecast errors of π1q
t ,π1y

t−3 and π1y
t+12 are straightforward to obtain from the VAR based on the forecast errors of

monthly inflation π1m
t .
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Figure 2: OLS and SP-IV Confidence Sets for Estimates of Hybrid NK Phillips Curve Parameters

(a) OLS Wald Inference
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(b) 2SLS AR Inference
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(c) 2SLS-Almon AR Inference
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(d) SP-IV KLM Inference
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Notes: Figures show point estimates and 68%, 90% and 95% confidence sets. The OLS sets are based on
the HAR Wald statistic. The 2SLS and 2SLS-Almon sets are those in Barnichon and Mesters (2020). The
SP-IV sets are based on the KLM statistic described in Sections 3.2 and 4.3.4.

Figure 2 shows the different estimates of γf and λ, together with 68%, 90% and 95% confi-

dence sets. The point estimates of γf , the weight on future inflation, are 0.57 for both 2SLS

and SP-IV, which is larger than the OLS estimate of 0.49 and smaller than the 2SLS-Almon

estimate of 0.67. The 2SLS-Almon point estimate for the coefficient on unemployment, λ,

is the smallest in absolute value (λ = −0.06) while the OLS, 2SLS and SP-IV estimates

each successively imply steeper slopes of the Phillips curve (λ = −0.09 to −0.11 and −0.13

respectively). Before discussing the implications of these estimates for the cyclical dynamics

of inflation, we first discuss the inference results. The OLS confidence set shown in Figure

2a is based on the HAR Wald statistic, using the variance estimator of Lazarus et al. (2018).

This set is relatively tight, but of course potentially misleading because of endogeneity bias.

For 2SLS and 2SLS-Almon, the sets shown in Figures 2b-2c are the AR sets used in Bar-
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nichon and Mesters (2020). Neither reject weights on future inflation as low as zero or as

high as one at the 5% or 10% significance levels, or are able to rule out a wide range of

possible Phillips curve slopes. The 90% set for 2SLS includes values of λ as high as 0.2 and

as low −0.3, and the 95% set includes an even wider range for λ. As is well known, and was

also evident in our simulations earlier, AR-based inference for 2SLS can be very unreliable

in the face of many weak-instruments problems. The shrinkage to three instruments under

the 2SLS-Almon can avoid these problems, as shown in Barnichon and Mesters (2020), but

our simulations also showed rejection rates tending to zero with sample size.

Turning to the SP-IV inference, we first apply the testing procedure in Section 3.1 to

assess instrument strength. For the SP-IV VAR, we find a value for the gmin test statistic

in (35) of 7.76. The 5% critical value associated with the hypothesis that the bias does not

exceed 10% percent of the worst-case OLS bias is 21.88. Hence, we cannot reject that the

MBC shock is a weak instrument, and must therefore rely on one of the robust inference

procedures.15 Figure 2d shows robust confidence sets for the SP-IV estimator based on the

KLM statistic. The simulation evidence in Section 5 demonstrated the good performance

of SP-IV VAR with KLM inference in small and large samples in both absolute terms and

compared with the other approaches, particularly when Nz = 1 and H is not too large. We

therefore view the KLM sets in Figure 2d, where Nz = 1 and H = 12, as the most reliable

for inference. Compared with the 2SLS approaches, inference for SP-IV is much sharper

for the weight on future inflation, with the confidence set ruling out values of γf that are

meaningfully below 0.4 or above 1. At the same time, the KLM sets also do not rule a wide

range of possible Phillips curve slopes, with values of λ ranging from -0.5 to slightly greater

than zero within the 90% set.

To gain insight on the implications for cyclical inflation dynamics, we consider a back-

of-the-envelope calculation by embedding the estimated Phillips curves in a simple dynamic

rational expectations economic model in which unemployment follows an exogenous AR(2)

process, Ut = ρ1Ut−1 + ρ2Ut−2 + εMBC
t . We set ρ1 and ρ2 to minimize the Euclidean dis-

tance between the IRFs of Ut to εMBC
t in the model and the VAR. Figure 3a shows that

the resulting AR(2) approximation of the unemployment dynamics closely matches the IRF

of unemployment from the VAR. To assess the inflation dynamics implied by the various

estimates of γf and λ, we consider the impact of a recessionary shock εMBC
t with a peak

response of the unemployment rate of one percentage point. Figure 3b shows the responses

of inflation based on Phillips curves parametrized by the OLS, SP-IV, 2SLS and 2SLS-

Almon point estimates reported in Figure 2. The Phillips curves with the 2SLS and SP-IV

parameters both provide good approximations to inflation dynamics estimated by the VAR

15A similar first-stage test of instrument strength that allows for serially correlated errors and multiple endogenous
regressors is currently not available for single-equation 2SLS.
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Figure 3: Empirical and Model Inflation Dynamics After a Recessionary Shock
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Notes: Figures show model-based and VAR-estimated responses to a recessionary shock with a peak unem-
ployment response of one percentage point. The model consists of the Phillips curve π1q

t = (1− γf )π1y
t−3 +

Etγfπ
1y
t+12 +λUt +ut, the AR(2) process Ut = ρ1Ut−1 + ρ2Ut−2 + εMBC

t and assumes rational expectations.

at all horizons, including those beyond the initial twelve (at three-month intervals) that

are used in the estimation. The OLS estimates also lead to a reasonable approximation

at horizons up to a year, but do not capture the dynamics at longer horizons very well.

The 2SLS-Almon estimates considerably understate the inflation response to a recessionary

shock at all horizons, as the simple quadratic function in practice provides a poor approx-

imation to inflation response after an MBC shock, see Figure 1a. Finally, the figures also

show the inflation dynamics implied by the estimates of γf = 0.53 and λ = −0.45 reported

in Barnichon and Mesters (2020) based on 2SLS-Almon and responses to the Romer and

Romer (2004) monetary policy shocks. These estimates imply a much stronger disinfla-

tionary response than suggested by the empirical inflation response to a recessionary MBC

shock. The magnitude of these responses to a shock increasing the unemployment rate by

one percentage point – a decrease in inflation by up to 4 percentage points – strikes us as

implausible, and cause us to doubt that the responses to Romer and Romer (2004) shocks

contain reliable information about the relationship between inflation and unemployment.

In the above application to the Phillips curve, single-equation 2SLS and SP-IV provide

similar point estimates, and both lead to realistic cyclical inflation dynamics based on a

Phillips curve with just two parameters. However, only the SP-IV inference is robust to

the many-weak-instruments problems that arise when using identifying information across a

relatively large number of time horizons. In other applications the 2SLS and SP-IV estimates

may also differ more substantially, as the IRFs from VARs or LPs are in practice not always

in such close agreement with those from distributed lag specifications without controls. The
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weaker exogeneity requirements of SP-IV can also be important, and a key advantage of

SP-IV is that it enables researchers to fit structural equations directly to the IRFs obtained

from methods that are preferred in practice, such as VARs or LPs. Moreover, the SP-IV

methodology provides a way to formally test claims about structural relationships embedded

in these empirical impulse responses. On the basis of the estimated inflation dynamics

following the MBC shock of Angeletos et al. (2020), our SP-IV inference points towards a

likely greater weight on future inflation than on lagged inflation, and the confidence sets

are consistent with a wide range of possible cyclical responses of inflation, both weak and

relatively strong. The evidence based on MBC shocks therefore does not necessarily support

the conclusion that inflation dynamics are disconnected from the business cycle, or that the

Hybrid New Keynesian Phillips curve is of little use to model these dynamics.

7 Concluding Remarks and Future Research

We conclude by discussing several other potential interesting applications, and some av-

enues for future research. SP-IV should be useful for estimating a wide variety of structural

relationships in macroeconomics, such as Euler equations for consumption or investment,

the wage Phillips curve, monetary or fiscal policy rules, or aggregate production functions.

SP-IV can also be used more broadly to conduct inference on ratios (or other relationships)

of impulse response coefficients, such as Okun coefficients, sacrifice ratios, multipliers, etc.

conditonal on economic shocks.

In this paper, we have taken the selection of horizons as given. Future work can study

methods for the optimal selection of the horizons. If h = 0, ..., H − 1 indexes cross-sectional

groups rather than time horizons, then this paper also describes instrumental variables in

the cross-section with heterogeneity in the first stage. Our methodology could be extended

to panel data settings, and be potentially useful in applications that commonly rely on

lagged variables as instruments, such as the estimation of production functions in industrial

organization, see Wooldridge (2009). Finally, the derivation of the first-stage test for instru-

ment strength in this paper naturally follows the same steps required for a first-stage test

for single-equation 2SLS under heteroskedasticity and autocorrelation with respect to the

instruments, therefore extending Montiel-Olea and Pflueger (2013) to the case of multiple

endogenous regressors. We plan to pursue these and other avenues in future research.
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A Relative Efficiency of β̂ with an AR(1) Error Term

Recall that x̃t = xt − E[xt] and x̄t = xt − E[xt | Ifullt−1 ] where Ifullt−1 is a full information set

for [yt, Y
′
t ]
′. Define

• ˆ̃β, as in (9) with y⊥t = ỹt, Y
⊥
t = Ỹt, Z

⊥ = z̃t.

• ˆ̄β, as in (9) with y⊥t = ȳt, Y
⊥
t = Ȳt, Z

⊥ = z̄t.

• ˆ̃βSE, the standard single-equation 2SLS estimator of ỹt on Ỹt using z̃t−h, h = 0, . . . , H−
1 as instruments.

• β̂∗SE, the standard single-equation 2SLS estimator of ỹt on Ỹt using z̄t−h, h = 0, . . . , H−
1 as instruments.

and assume that the exogeneity requirements are met in all cases.

We consider β̂j asymptotically more efficient than β̂i if aV ar(β̂i)− aV ar(β̂j) is positive

semi-definite, as in e.g. Rothenberg and Leenders (1964). The asymptotic variances for the

estimators above are given by

aV ar( ˆ̃β) = (Θ′Y ΘY )−1Θ′Y (INz ⊗ V ar(ũH,t)) ΘY (Θ′Y ΘY )−1 ,

aV ar( ˆ̄β) = (Θ′Y ΘY )−1Θ′Y (INz ⊗ V ar(ūH,t)) ΘY (Θ′Y ΘY )−1 ,

aV ar( ˆ̃βSE) = aV ar(β̂∗SE) = (Θ′Y ΘY )−1V ar(ũt) .

Consider the special case in which ũt follows an AR(1)-process:

ũt = ρuũt−1 + υt ; 0 ≤ ρu < 1 ; υt ∼ N(0, σ2
υ) .(A.1)

Proposition 1. If ũt follows an AR(1)-process given by (A.1), ˆ̃βSE is asymptotically more

efficient than ˆ̃β whenever ρu > 0 and H > 1.

Proof. It suffices to show that aV ar( ˆ̃β) − aV ar( ˆ̃βSE) is positive definite. This will be the

case as long as V ar(ũt) = σ2
υ/(1 − ρ2

u) < maxevalV ar(ũH,t). V ar(ũH,t) is a matrix with

ρ
|h−v|
u σ2

υ/(1 − ρ2
u) in the h-row and v-th column. When ρu > 0, by the Perron-Frobenius

theorem this matrix has a unique positive dominant eigenvalue that is bounded from below

by the minimum row sum. The minimum row sum is (
∑H−1

h=0 ρ
h
u)σ

2
υ/(1−ρ2

u) which is strictly

larger than V ar(ũt) when ρu > 0 and H > 1. Therefore, maxevalV ar(ũH,t) > V ar(ũt)

when ρu > 0 and H > 1.

Proposition 2. If ũt follows an AR(1)-process given by (A.1), ˆ̄β is asymptotically more

efficient than β̂∗SE over a range of combinations of H and ρu, where H is sufficiently low

and ρu is sufficiently large. ˆ̄β is asymptotically as efficient than β̂∗SE when ρu = 0.
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Figure A.1: Asymptotic Efficiency of System Estimator ˆ̄β vs. Single-Equation Estimator β̂∗SE
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Notes: Results are for an AR(1) error term with persistence ρu. H is horizon length.

Proof. ˆ̄β is asymptotically more efficient than β̂∗SE if aV ar(β̂∗SE)− aV ar( ˆ̄β) is positive def-

inite, i.e. as long as V ar(ũt) = σ2
υ/(1 − ρ2

u) ≥ maxevalV ar(ūH,t).
ˆ̄β is as efficient as β̂∗SE

if V ar(ũt) = maxevalV ar(ūH,t). V ar(ūH,t) is a matrix with
∑min{h,v}

j=1 σ2
υρ

h+v−2j
u in the h-

th row and v-th column. When ρu = 0, maxevalV ar(ūH,t) = σ2
υ = V ar(ũt) for all H.

For ρu > 0, Figure A.1 shows the region in (H, ρu)-space in which maxevalV ar(ūH,t) <

σ2
υ/(1− ρ2

u) = V ar(ũt) (this range does not depend on σ2
υ).

B Bounding Limiting Distributions of gmin

B.1 Upper Bounds for the Cumulants of gmin

A Single Endogenous Variable When K = 1, R′(W ⊗ IH)R = Tr(W ) is a scalar. The

trace of a noncentral Wishart W ∼ W(Nz,S, D) is a linear combination of noncentral χ2

variables. While there is no tractable formula for its probability distribution, Mathai (1980)

provides an analytical expression for the n-th order cumulant of Tr(W ),

κn = 2n−1(n− 1)! (Nz Tr(Sn) + nTr(SnD)) .(B.1)

The mean is κ1 = Nz(1 + `), where ` = Tr(SD)/Nz is the concentration parameter. The

higher order cumulants are bounded by

κn ≤ 2n−1(n− 1)!
(
Nz Tr(Sn) + nNz`Tr(Sn−1)

)
.(B.2)
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We show in Appendix B.2 that an approximating distribution based on Imhof (1961) that

matches the mean and the upper bounds for the second and third cumulants is conservative

in the right tail relative to the distribution with strictly smaller cumulants. As a result,

the approximating distribution at the upper bounds with ` = `min(ξ) provides conservative

critical values for testing the null hypothesis that the instruments are weak using gmin.

Multiple Endogenous Variables When K > 1, gminNz is distributed as the minimum

eigenvalue of a matrix with elements that are traces of the H ×H subpartitions of a non-

central Wishart matrix W ∼ W(Nz,S, D). Analogous to Stock and Yogo (2005), we use

the distribution of γ′R′(W ⊗ IH)Rγ ≥ mineval{R′(W ⊗ IH)R} as a bounding distribution,

where γ is the eigenvector associated with the minimum eigenvalue of R′(SD ⊗ IH)R and

γ′γ = 1. We extend the results in Mathai (1980) to obtain an analytical expression for the

n-th order cumulant of the distribution of γ′R′(W ⊗ IH)Rγ,

κn = 2n−1(n− 1)! (Nz Tr (((γγ′ ⊗ IH)S)n) + nTr(((γγ′ ⊗ IH)S)nD)) .(B.3)

For the mean, we have the upper bound

κ1 = Nz Tr((γγ′ ⊗ IH)S) +Nz` ≤ Nz(1 + `) ,(B.4)

where ` = mineval{R′(SD⊗IH)R}/Nz = Tr ((γγ′ ⊗ IH)SD) /Nz is the minimum eigenvalue

of the concentration matrix. For the higher-order cumulants, we have the bounds

κn = 2n−1(n− 1)! (Nz Tr(((γγ′ ⊗ IH)S)n) + nTr(((γγ′ ⊗ IH)S)nD)(B.5)

≤ 2n−1(n− 1)! (Nzmaxeval{R′(Sn ⊗ IH)R}(B.6)

+nNz`maxeval{R′(Sn−1 ⊗ IH)R}
)
.

Appendix B.2 shows that the Imhof (1961) approximating distribution with the first three

cumulants at the upper bounds is conservative in the right tail relative to the distribution

with strictly smaller cumulants. Therefore, the approximating distribution at ` = `min(ξ)

yields conservative critical values for testing the null that the instruments are weak using

gminNz.

B.2 Conservative Imhof Approximations

In the special cases where H = 1 or S is diagonal, the bounds on the cumulants in B.1 are

those of a noncentral χ2 with noncentrality Nz` and Nz degrees of freedom. In the general

case, we use the approximation in Imhof (1961) for the cdf of quadratic forms in normal

44



variables,

Pr(F < x) ≈ Pr(χ2
h < (x− κ1)4ω + h) =

∫ x

κ1−h(4ω)−1

φ(z)dz ,where(B.7)

h = 8κ2ω
2 ; ω = κ2/κ3 ; φ(z) =

(
1 +

z − κ1

2κ2ω

)h/2−1

e
−h

2

(
1+

z−κ1
2κ2ω

)
(h/2)h/2−1ω

2h/2−2Γ(h/2)
.

This approximation matches the first three central moments of the true distribution of F .

The pdf φ(z) has a mode at zm = κ1 − (2ω)−1 if h ≥ 2, and at zero otherwise.

The critical value associated with the upper α-percentile is implicitly defined by α =∫∞
x(α)

φ(z)dz. To find the largest possible critical value among all possible distributions,

we solve the following optimization problem:

max
κ1,κ2,κ3

x(α) s.t. κn ≤ κ̄n for n = 1, 2, 3 .(B.8)

The Kuhn-Tucker conditions are1 ∫ ∞
x(α)

∂φ(z)

∂κn
dz = µn,(B.9)

together with µn ≥ 0, n = 1, 2, 3, the constraints and the complementary slackness condi-

tions, where µn are the multipliers times φ(x(α)) > 0. The partial derivatives are

∂φ(z)

∂κ1

=
1 + (z − κ1)2ω

2κ2ω

(
1 +

z − κ1

2κ2ω

)−1

φ(z) ,(B.10)

∂φ(z)

∂κ2

=
φ(z)

κ2

G1 ((z − κ1)4ω + h) ,(B.11)

∂φ(z)

∂κ3

=
φ(z)

κ3

G2 ((z − κ1)4ω + h) ,(B.12)

where

G1(y) = −1

2
(y − 2h(h− 2)/y + h) + 3/2(ln(y/2)− ψ(h/2))h ,(B.13)

G2(y) =
1

2
(y − h(h− 2)/y)− (ln(y/2)− ψ(h/2))h ,(B.14)

and ψ(x) = Γ′(x)/Γ(x) is the digamma function (the logarithmic derivative of the gamma

function Γ(x)). From Alzer (1997) (equation 2.2), we know that

1/h < ln (h/2)− ψ(h/2) < 2/h .(B.15)

1This follows from the implicit function theorem and Leibniz’s rule: 1 = −φ(x(α))∂x(α)∂y +
∫∞
x(α)

∂φ(z)
∂y dz ⇒ ∂x(α)

∂y =∫∞
x(α)

∂φ(z)
∂y dz/φ(x(α)) with φ(x(α)) > 0 for α ∈ (0, 1).
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For n = 1, the LHS of (B.9) is always positive to the right of the mode, which means

the constraint on the mean (n = 1) is always binding. The Alzer bounds imply that in

the right tail of any optimal distribution, the LHS of (B.9) is always strictly positive for

n = 2, 3, which means that the constraints for n = 1, 2 are also binding as long as α is

sufficiently small. In other words, the Imhof approximation matching the upper bounds

for the cumulants is a conservative approximation for the right tail of true distribution of

gminNz.

C Limiting Distributions of Robust Test Statistics

C.1 The AR Statistic with Multiple Outcome Variables

By the cyclic property of the trace,

Tr
(
u⊥H(b)PZ⊥u

⊥
H(b)′

(
u⊥H(b)MZ⊥u

⊥
H(b)′

)−1
)

=

Tr
((
u⊥H(b)MZ⊥u

⊥
H(b)′

)−1/2
u⊥H(b)PZ⊥u

⊥
H(b)′

(
u⊥H(b)MZ⊥u

⊥
H(b)′

)−1/2
)
.

Note that u⊥H(b)Z⊥′(Z⊥Z⊥′)−1 = ψ̂(b), where ψ is the regression coefficient in the regression

of u⊥H(b) on Z⊥. Let e(b) = u⊥H(b)− ψ(b)Z⊥. Using the idempotence of PZ⊥ it follows that,

under the null hypothesis (from which it follows that ψ(β) = 0),

u⊥H(β)PZ⊥u
⊥
H(β)′ =

(
ψ(β)Z⊥ + e(β)

)
PZ⊥

(
ψ(β)Z⊥ + e(β)

)′
= e(β)Z⊥′(Z⊥Z⊥′)−1Z⊥Z⊥′(Z⊥Z⊥′)−1Z⊥e(β)′

=
(
e(β)Z⊥′(Z⊥Z⊥′)−1/2

) (
e(β)Z⊥′(Z⊥Z⊥′)−1/2

)′
.

Observe that under Assumptions 2 and 3,

T 1/2 vec
((
u⊥H(β)MZ⊥u

⊥
H(β)′

)−1/2 (
e(β)Z⊥′(Z⊥Z⊥′)−1/2

)) d→ N(0, IHNz) .(C.1)

This implies that the diagonal entries in Tu⊥H(β)PZ⊥u
⊥
H(β)′

(
u⊥H(β)MZ⊥u

⊥
H(β)′

)−1
converge

in distribution to sums of Nz squared independent standard normal random variables, so

each diagonal element converges in distribution to a χ2
Nz

random variable. Taking the trace

of this matrix takes the sum of those H diagonal elements, which converges in distribution

to the sum of H independent χ2
Nz

random variables, which is itself a χ2
HNz

random variable.

We include a degrees of freedom adjustment in the expression in the text.

C.2 Derivation and Limiting Distribution of the KLM Statistic K(β)

To derive our test statistic, K(b), we differentiate AR(b) = T Tr
(
u⊥H(b)PZ⊥u

⊥′
H (b)Ξ−1

)
, with

respect to b (where Ξ denotes u⊥H(b)MZ⊥u
⊥′
H (b)), as in Kleibergen (2002). The (re-scaled)
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score is

− 1

2T

∂AR(b)

∂b
= R′ vec

(
Ξ−1u⊥HPZ⊥Y

⊥′
H − Ξ−1u⊥H

(
PZ⊥u

⊥′
H (ǔ⊥H ǔ

⊥′
H )−1ǔ⊥H v̌

⊥′
H

))
(C.2)

= R′ vec(Ξ−1u⊥H Y̌
′
H) .

where the dependence of u⊥H on b is suppressed for brevity. Henceforth, we maintain the

null hypothesis and let u⊥H = u⊥H(β) throughout. Consider the transformation η = v⊥H −
Σ′
u⊥Hv

⊥
H

Σ−1
u⊥H
u⊥H = Y ⊥H −ΘYQ

−1/2Z⊥−Σ′
u⊥Hv

⊥
H

Σ−1
u⊥H
u⊥H . By construction, η is orthogonal to u⊥H .

In particular, var(η) ≡ Ση = Σv⊥H
− Σ′

u⊥Hv
⊥
H

Σ−1
u⊥H

Σu⊥Hv
⊥
H

such that var
([
u⊥′H , η′

]′) ≡ Σ̌ =[
Σu⊥H

0

0 Ση

]
, and under Assumption 4.b,

(C.3) T−1/2
(
vec(Z⊥u⊥′H ), vec(Z⊥η′)

) d→ (vec(ΨZu), vec(ΨZη)) ∼ N (0, Q⊗ Σ̌).

The two summations, vec(Z⊥u⊥′H ) and vec(Z⊥η′), are therefore asymptotically independent.

By Assumption 4.a, under the null hypothesis (so u⊥H and v⊥H are orthogonal to Z⊥), Ξ/T =

ǔ⊥H ǔ
⊥′
H /T

p→ Σu⊥H
and u⊥HMZ⊥v

⊥′
H /T = ǔ⊥H v̌

⊥′
H /T

p→ Σu⊥Hv
⊥
H

. Given the
√
T -consistency of

these estimators,

T−1/2 vec
(
Z⊥
[
Y ⊥H −ΘYQ

−1/2Z⊥ − v̌⊥H ǔ⊥′H (ǔ⊥H ǔ
⊥′
H )−1u⊥H

]′)
(C.4)

= T−1/2 vec

(
Z⊥
[
Y ⊥H −ΘYQ

−1/2Z⊥ − Σ′u⊥Hv⊥H
Σ−1
u⊥H
u⊥H

]′)
− T−1/2 vec

(
Z⊥
[(
v̌⊥H ǔ

⊥′
H (ǔ⊥H ǔ

⊥′
H )−1 − Σ′u⊥Hv⊥H

Σ−1
u⊥H

)
u⊥H

]′)
d→ vec(ΨZη)− 0 = vec(ΨZη),

where the second term converges in probability to zero. Therefore, T−1/2 vec(Z⊥η′) and

T−1/2 vec(Z⊥
[
Y ⊥H −ΘYQ

−1/2Z⊥ − v̌⊥H ǔ⊥′H (ǔ⊥H ǔ
⊥′
H )−1u⊥H

]′
) have the same limiting behavior.

We use (C.3)-(C.4) to construct the limiting distribution of K(β) under the cases of

strong, weak, and non-identification. We proceed under Assumptions 2.a-2.c and Assump-

tion 4, and assume that all coefficients in ΘY are of the same order.

First, we consider the case of strong identification, implying that ΘY is a fixed nonzero

matrix. In that case, T−1/2 vec(Z⊥
[
Y ⊥H − v̌⊥H ǔ⊥′H (ǔ⊥H ǔ

⊥′
H )−1u⊥H

]′−Z⊥Z⊥′Q−1/2Θ′Y )
d→ vec(ΨZη),
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such that

T−1/2u⊥H Y̌
′
H = T−1/2u⊥HPZ⊥

[
Y ⊥H − v̌⊥H ǔ⊥′H (ǔ⊥H ǔ

⊥′
H )−1u⊥H

]′
= T−1/2u⊥HPZ⊥

[
Y ⊥H −ΘYQ

−1/2Z⊥ − v̌⊥H ǔ⊥′H (ǔ⊥H ǔ
⊥′
H )−1u⊥H

]′
+ T−1/2u⊥HPZ⊥Z

⊥′Q−1/2Θ′Y

d→ Ψ′ZuQ
−1/2Θ′Y .

(C.5)

The first term vanishes since it is equal to

T−1/2
(
T−1/2u⊥HZ

⊥′) (Z⊥Z⊥′/T)−1
(
T−1/2Z⊥

[
Y ⊥H −ΘYQ

−1/2Z⊥ − v̌⊥H ǔ⊥′H (ǔ⊥H ǔ
⊥′
H )−1u⊥H

]′) p→ 0 .

Therefore, T 1/2 vec(Ξ−1u⊥H Y̌
′
H)

d→ vec(Σ−1
u⊥H

Ψ′ZuQ
−1/2Θ′Y ) ∼ N (0,ΘY Θ′Y ⊗ Σ−1

u⊥H
), such that

(C.6) T 1/2R′ vec(Ξ−1u⊥H Y̌
′
H)
(
R′(Y̌H Y̌

′
H ⊗ Ξ−1u⊥Hu

⊥′
H Ξ−1)R

)−1/2 d→ N (0, IK) ,

since R′
(
Y̌H Y̌

′
H ⊗ Ξ−1u⊥Hu

⊥′
H Ξ−1

)
R

p→ R′
(

ΘY Θ′Y ⊗ Σ−1
u⊥H

)
R, which under the additional As-

sumption 2.d′, is invertible. Finally, it follows that K(β)
d→ χ2

K .

Next, we consider the case of weak identification, ΘY = C/
√
T , where C is a fixed full

rank KH ×Nz matrix. In this case, T−1/2Z⊥
[
Y ⊥H − v̌⊥H ǔ⊥′H (ǔ⊥H ǔ

⊥′
H )−1u⊥H

]′ d→ ΨZη +Q1/2C ′,

which implies that

u⊥H Y̌
′
H = u⊥HPZ⊥

[
Y ⊥H − v̌⊥H ǔ⊥′H (ǔ⊥H ǔ

⊥′
H )−1u⊥H

]′ d→ Ψ′ZuQ
−1(ΨZη +Q1/2C ′) ,(C.7)

Y̌H Y̌
′
H =

[
Y ⊥H − v̌⊥H ǔ⊥′H (ǔ⊥H ǔ

⊥′
H )−1u⊥H

]
PZ⊥

[
Y ⊥H − v̌⊥H ǔ⊥′H (ǔ⊥H ǔ

⊥′
H )−1u⊥H

]′
(C.8)

d→ (ΨZη +Q1/2C ′)′Q−1(ΨZη +Q1/2C ′).

Consequently,

(C.9) T vec(Ξ−1u⊥H Y̌H)
d→ vec(Σ−1

u⊥H
Ψ′ZuQ

−1(ΨZη +Q1/2C ′)) .

As a result of the independence of ΨZu and ΨZη, the conditional distribution of vec(Σ−1
u⊥H

Ψ′ZuQ
−1(ΨZη+

C ′)), given ΨZη, is

(C.10) N (0, (ΨZη +Q1/2C ′)′Q−1(ΨZη +Q1/2C ′)⊗ Σ−1
u⊥H

) .

Therefore, the conditional distribution given ΨZη of

(C.11) vec
(

Σ−1
u⊥H

Ψ′ZuQ
−1(ΨZη + C ′)

)(
ΨZη +Q1/2C ′)′Q−1(ΨZη +Q1/2C ′)⊗ Σ−1

u⊥H

)−1/2
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is N (0, IK) and does not depend on ΨZη, which implies that this random variable is also

unconditionally distributed N (0, IK). It follows that,

(C.12) T 1/2R′ vec(Ξ−1u⊥H Y̌H)
(
R′(Y̌H Y̌

′
H ⊗ Ξ−1u⊥Hu

⊥′
H Ξ−1)R

)−1/2 d→ N (0, IK) ,

since Y̌H Y̌
′
H

d→ (ΨZη + Q1/2C ′)′Q−1(ΨZη + Q1/2C ′) and T Ξ−1u⊥Hu
⊥′
H Ξ−1 p→ Σu⊥H

(note that

the limit of the variance in the denominator is O(1/T ) times that in (C.10) since the nu-

merator is T−1/2 times that in (C.9)). This implies that K(β)
d→ χ2

K .

Finally, we consider the case where the model is completely unidentified, and ΘY = 0.

As a result, T−1/2Z⊥
[
Y ⊥H − v̌⊥H ǔ⊥′H (ǔ⊥H ǔ

⊥′
H )−1u⊥H

]′ d→ ΨZη such that

u⊥H Y̌
′
H = u⊥HPZ⊥

[
Y ⊥H − v̌⊥H ǔ⊥′H (ǔ⊥H ǔ

⊥′
H )−1u⊥H

]′ d→ Ψ′ZuQ
−1ΨZη

(C.13)

Y̌H Y̌
′
H =

[
Y ⊥H − v̌⊥H ǔ⊥′H (ǔ⊥H ǔ

⊥′
H )−1u⊥H

]
PZ⊥

[
Y ⊥H − v̌⊥H ǔ⊥′H (ǔ⊥H ǔ

⊥′
H )−1u⊥H

]′ d→ Ψ′ZηQ
−1ΨZη,

(C.14)

It follows that T vec(Ξ−1u⊥H Y̌H)
d→ vec(Σ−1

u⊥H
Ψ′ZuQ

−1ΨZη). Using the same reasoning as under

the weak identification case, the distribution of vec(Σ−1
u⊥H

Ψ′ZuQ
−1ΨZη), conditional on ΨZη,

is N (0,Ψ′ZηQ
−1ΨZη ⊗ Σ−1

u⊥H
). This implies that, unconditionally,

(C.15) T 1/2R′ vec(Ξ−1u⊥H Y̌H)
(
R′(Y̌H Y̌

′
H ⊗ Ξ−1u⊥Hu

⊥′
H Ξ−1)R

)−1/2 d→ N (0, IK),

since Y̌H Y̌
′
H

d→ Ψ′ZηQ
−1ΨZη and T Ξ−1u⊥Hu

⊥′
H Ξ−1 p→ Σu⊥H

. As a result, K(β)
d→ χ2

K .

D Model Simulations: Additional Results

D.1 IRF Estimates in the Simulations

Figures D.1 and D.2 show the mean IRFs, together with 2.5% and 97.5% percentiles, across

simulations from the Smets and Wouters (2007) model. The figures show IRFs estimated

using a distributed lag specification, the quadratic (Almon) approximation as in Barnichon

and Mesters (2020), local projections with the predetermined control variables described in

the main text, and a VAR in the variables of the control set described in the main text. For

brevity, we only show the IRFs associated with the monetary policy shock for H = 20 and

T = 250, 5000. Results for the other specifications are available on request.
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Figure D.1: True and Estimated IRFs in Simulations, Small Sample (T=250)
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Notes: Figures show IRFs to a one s.t.d. contractionary monetary policy shock in data generated by the
Smets and Wouters (2007) model. Red lines show the true IRFs. Blue lines show the mean and 2.5% and
97.5% percentiles of the estimated IRFs across 5000 samples.

Figure D.2: True and Estimated IRFs in Simulations, Large Sample (T=5000)

(a) Distributed Lag
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Notes: Figures show IRFs to a one s.t.d. contractionary monetary policy shock in data generated by the
Smets and Wouters (2007) model. Red lines show the true IRFs. Blue lines show the mean and 2.5% and
97.5% percentiles of the estimated IRFs across 5000 samples.
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Table D.1: Mean parameter estimates, Nz = 3

H = 8 T = 250 T = 500 T = 5000
Estimator γb γf λ γb γf λ γb γf λ

β 0.15 0.85 0.05 0.15 0.85 0.05 0.15 0.85 0.05
OLS 0.47 0.47 0.00 0.48 0.48 0.00 0.48 0.48 0.00
2SLS 0.40 0.55 0.01 0.36 0.63 0.01 0.23 0.82 0.02
2SLS-Almon 0.40 0.67 0.00 0.34 0.73 0.00 0.22 0.84 0.01
SP-IV LP 0.39 0.56 0.01 0.36 0.63 0.01 0.22 0.82 0.02
SP-IV LP-C 0.40 0.55 0.02 0.36 0.63 0.03 0.20 0.81 0.04
SP-IV VAR 0.34 0.69 0.01 0.29 0.75 0.02 0.20 0.83 0.04
FGSP-IV LP 0.43 0.58 0.00 0.39 0.64 0.00 0.24 0.81 0.01
FGSP-IV LP-C 0.47 0.57 0.01 0.42 0.64 0.01 0.22 0.81 0.03
FGSP-IV VAR 0.40 0.67 0.00 0.34 0.74 0.01 0.22 0.81 0.03
H = 20 T = 250 T = 500 T = 5000
Estimator γb γf λ γb γf λ γb γf λ

β 0.15 0.85 0.05 0.15 0.85 0.05 0.15 0.85 0.05
OLS 0.47 0.47 0.00 0.48 0.48 0.00 0.48 0.48 0.00
2SLS 0.45 0.51 0.00 0.43 0.55 0.00 0.28 0.76 0.01
2SLS-Almon 0.44 0.61 0.00 0.39 0.67 0.00 0.27 0.80 0.01
SP-IV LP 0.44 0.51 0.00 0.42 0.56 0.00 0.28 0.76 0.01
SP-IV LP-C 0.44 0.51 0.01 0.43 0.55 0.01 0.27 0.76 0.02
SP-IV VAR 0.35 0.69 0.01 0.31 0.75 0.01 0.23 0.82 0.02
FGSP-IV LP 0.49 0.54 0.00 0.47 0.57 0.00 0.32 0.74 0.00
FGSP-IV LP-C 0.51 0.53 0.00 0.49 0.56 0.00 0.31 0.74 0.01
FGSP-IV VAR 0.42 0.64 0.00 0.36 0.71 0.00 0.27 0.79 0.01

Notes: The top row in each panel contains the true parameter values β = [γb, γf , λ]
′

of (2) in the Smets and
Wouters (2007) model. The other rows show mean estimates across 5000 Monte Carlo samples of size T and
with h = 0, . . . ,H − 1. All IV estimators use the monetary policy shock, government spending shock and
the risk premium shocks as instruments. 2SLS-Almon is the estimator proposed in Barnichon and Mesters
(2020). SP-IV is the estimator in (9) while FGSP-IV is the feasible generalized estimator in (25). LP and
LP-C denote implementations based on local projections discussed in Section 4.1, without and with controls,
respectively. VAR denotes the implementation with a vector autoregression discussed in Section 4.2.

D.2 Simulation Results Using Three Instruments (Nz = 3)

In this section, we present simulation results for specifications using three instruments. A

brief summary of these results (and comparison to the Nz = 1 results) is provided in the

main text. In general, the results are quite similar to those for a single instrument.
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Table D.2: Standard deviation of parameter estimates, Nz = 3

H = 8 T = 250 T = 500 T = 5000
Estimator γb γf λ γb γf λ γb γf λ

2SLS 0.09 0.09 0.03 0.08 0.09 0.03 0.06 0.05 0.02
2SLS-Almon 0.13 0.13 0.03 0.11 0.11 0.03 0.06 0.05 0.02
SP-IV LP 0.09 0.10 0.04 0.09 0.09 0.03 0.06 0.05 0.02
SP-IV LP-C 0.09 0.10 0.06 0.09 0.09 0.05 0.06 0.05 0.03
SP-IV VAR 0.11 0.13 0.05 0.11 0.11 0.05 0.06 0.05 0.03
FGSP-IV LP 0.11 0.12 0.04 0.09 0.11 0.03 0.06 0.05 0.02
FGSP-IV LP-C 0.10 0.10 0.05 0.09 0.08 0.05 0.06 0.04 0.03
FGSP-IV VAR 0.11 0.12 0.05 0.10 0.11 0.05 0.06 0.05 0.03
H = 20 T = 250 T = 500 T = 5000
Estimator γb γf λ γb γf λ γb γf λ

2SLS 0.04 0.04 0.01 0.04 0.04 0.01 0.04 0.04 0.01
2SLS-Almon 0.12 0.11 0.01 0.10 0.10 0.01 0.05 0.05 0.01
SP-IV LP 0.05 0.05 0.02 0.04 0.04 0.01 0.04 0.04 0.01
SP-IV LP-C 0.04 0.05 0.02 0.04 0.04 0.02 0.04 0.04 0.01
SP-IV VAR 0.09 0.10 0.02 0.09 0.10 0.02 0.05 0.04 0.02
FGSP-IV LP 0.03 0.03 0.01 0.03 0.03 0.01 0.04 0.04 0.01
FGSP-IV LP-C 0.03 0.03 0.01 0.03 0.03 0.01 0.04 0.03 0.01
FGSP-IV VAR 0.07 0.09 0.02 0.08 0.09 0.02 0.05 0.04 0.02

Notes: Rows show standard deviations across 5000 Monte Carlo samples of size T and with h = 0, . . . ,H−1.
All IV estimators use the monetary policy shock, government spending shock and the risk premium shocks as
instruments. 2SLS-Almon is the estimator proposed in Barnichon and Mesters (2020). SP-IV is the estimator
in (9) while FGSP-IV is the feasible generalized estimator in (25). LP and LP-C denote implementations
based on local projections discussed in Section 4.1, without and with controls, respectively. VAR denotes
the implementation with a vector autoregression discussed in Section 4.2.
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Table D.3: Empirical size of nominal 5% tests, Nz = 3

H = 8 H = 20
T = 250 T = 500 T = 5000 T = 250 T = 500 T = 5000

WALD 2SLS 80.70 77.50 56.00 99.80 99.70 91.60
AR 2SLS 50.90 27.90 5.70 99.80 90.60 10.60
AR 2SLS-Almon 3.50 1.30 0.00 8.00 6.30 1.30
WALD SP-IV LP 82.10 78.70 56.50 99.90 99.90 91.60
WALD SP-IV LP-C 73.50 60.40 17.50 100.00 99.70 76.60
WALD SP-IV VAR 39.20 28.30 13.10 86.10 76.40 54.20
AR SP-IV LP 7.10 6.60 5.10 14.40 8.50 4.90
AR SP-IV LP-C 7.30 6.20 5.10 17.40 9.80 5.20
AR SP-IV VAR 3.90 4.90 4.90 6.10 5.80 4.70
KLM SP-IV LP 6.40 5.30 4.80 7.90 6.60 5.30
KLM SP-IV LP-C 7.70 6.10 4.90 11.40 7.80 5.10
KLM SP-IV VAR 7.00 7.00 4.90 10.70 8.50 5.40

Notes: Empirical rejection rates of various nominal 5% tests of the true values of β = [γb, γf , λ]
′

in 5000
Monte Carlo samples from the Smets and Wouters (2007) model using the monetary policy shock, govern-
ment spending and risk premium shocks as the instruments. The 2SLS Wald test uses a HAR variance
matrix following Lazarus et al. (2018). AR 2SLS and AR 2SLS-Almon are the Anderson and Rubin (1949)
tests in Barnichon and Mesters (2020). WALD SP-IV is based on (23) with Σ̂u⊥

H
as in (41), AR is based on

(36), and KLM is based on (37). LP and LP-C denote implementations based on local projections discussed
in Section 4.1, without and with controls, respectively. VAR denotes the implementation with a vector
autoregression discussed in Section 4.2.
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