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1 Introduction

Behavioral responses to tax changes are of great policy interest. In the past much of this interest

was focused on hours of work, and a central question was how labor supply responds to tax

reform. In a set of influential papers, Feldstein (1995) emphasized that studies focusing on just

hours of work neglect many important margins that are distorted by taxes. By estimating how

taxable income reacts to changes in the marginal tax rate one captures a larger set of relevant

margins, like work effort, job location, tax avoidance and evasion. Inspired by Feldstein’s work

a large number of studies have produced a wide range of estimates.

Although the conventional estimates of the taxable income elasticity provide information

on how taxable income reacts to a marginal change in a linear budget constraint, they are less

useful for estimating the effect of tax reforms on taxable income. In a real world of nonlinear tax

systems with kinks in individuals’ budget constraints, tax reforms often result in changes in kink

points as well as in marginal tax rates for various brackets. There has been extensive research

on estimating the effect of such complicated changes in the tax systems on labor supply using

parametric structural models with piecewise linear budget sets, often estimated by maximum

likelihood methods. More recent labor supply studies have estimated a utility function which

can be used to predict the effect of taxes in the presence of piecewise linear budget sets. These

studies focusing on labor supply, however, not only ignore other margins of behavioral responses

to taxation but also rely on strong distributional and functional form assumptions when they

use parametric models.

The use of nonparametric models and methods allows one to avoid errors that can arise

from functional form misspecification. Nonparametric models of choice with nonlinear budget

sets is potentially important because these models are quite nonlinear with parametric results

potentially depending heavily on functional form specifications. In this paper we consider

the implications of utility maximization with nonparametric utilities and general heterogeneity

across individuals, i.e. in a nonparametric random utility model (RUM) like those of McFadden

and Richter (1991), McFadden (2005), Blomquist, Kumar, Liang, and Newey (2015), Blundell,

Kristensen, and Matzkin (2014), Manski (2014), Hausman and Newey (2016), Kline and Tartari

(2016), and Kitamura and Stoye (2018). A particular focus of this paper is the budget set

regression that is the conditional expectation of a choice variable given the budget set, under

RUM. This regression is the average over preferences and measurement and/or optimization

errors of the choice given the budget set. This regression can be used to identify policy effects

that are changes in averages resulting from changes within the range of budget sets observed

in the data.
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This regression is subject to a potentially severe curse of dimensionality because the con-

ditioning "variable," i.e. the budget set, is a high dimensional object. Blomquist and Newey

(2002, BN) showed that with piecewise linear, convex budget sets and scalar, monotonic hetero-

geneity this regression is only a three dimensional function. This paper shows that the result of

BN holds with general heterogeneity and nonparametric utility, i.e. for the RUM. This paper

also innovates by giving a more parsimonious specification for the budget set regression than

in BN that leads to more precise estimates. We provide corresponding regressors that are easy

to calculate and show that the approximation rate for these regressors does not depend on

the number of budget set segments or how that varies over individuals. We also show how to

check all of the restrictions that the RUM imposes on the budget set regression. The budget

set regression also allows for optimization and or measurement errors for the choice variable.

Furthermore we show that in practice nonconvexities should have little effect because they are

located at low taxable income values

This nonparametric specification avoids errors due to misspecified functional forms and/or

heterogeneity distributions. The importance of nonparametric specifications for labor supply

was shown by BN who found that the estimated effect of a Swedish tax reform was significantly

different for a nonparametric specification rather than a parametric specification. Allowance

for general heterogeneity is motivated by Kumar and Liang (2020) who used instrumental

variables to estimate average taxable income elasticities that vary widely across different groups

of individuals corresponding to different instruments. The allowance for measurement and

optimization errors was shown to be important by Burtless and Hausman (1978) and Blomquist

(1983) for labor supply. The way we allow for measurement and/or optimization errors is not

based on utility maximization as in Chetty (2012) but does allow for low probabilities for kinks,

as is often found in data.

For taxable income it is important to allow for productivity growth because over time

exogenous wage growth is a major determinant of individuals’ real incomes. Such growth may

be caused by factors such as technological development, physical capital, and human capital.

To nonparametrically separate out the effect of exogenous productivity growth from changes in

individual behavior is one of the hardest problems in the taxable income literature. We show

how this can be done using the budget set regression.

To evaluate the effect of taxes on taxable income we focus on changes in nonlinear tax

systems. Real-world tax systems are non-linear, and it is variations in non-linear tax systems

that we observe. Therefore, it is easiest to nonparametrically identify effects for changes in

nonlinear tax systems. We give estimators of the effect of increasing all slopes or intercepts

of budget segments on expected taxable income. We use Lasso to estimate the budget set
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regression and automatic debiased machine learning as in Chernozhukov, Newey, and Singh

(2022) to estimate the effects of changing all slopes or intercepts.

We give an application to Swedish data from 1993-2008 for third party reported taxable

labor income. This means that the variation in the taxable income that we observe for Sweden

is mainly driven by variations in effort broadly defined and by variations in hours of work and

not by variations in tax evasion.1

Budget sets may depend on choices of individuals making it important to allow for endoge-

nous budget sets. We show how endogeneity can be allowed for via control variables while

keeping a small dimension for the budget set regression. In the application we allow for en-

dogeneity that arises from spouses income by including a control variable in the budget set

regression. We also allow for endogeneity from the choice of locality by including dummy vari-

ables for each locality in the budget set regression. For Sweden we do not need to account for

endogeneity of the budget set due to choice of whether to own a house or not, unlike US data.

This choice only affects the lowest segment and we show that such endogeneity will not affect

the results.

As is common in the taxable income literature we do not model the extensive choice; see

e.g. Gruber and Saez (2002). We view extending the model to allow for the extensive choice as

important but beyond the scope of this paper. Also, we do not expect that extensive choices

that primarily affect those with small income will have much impact on the effects we consider

that are for averages over the entire distribution of taxable income.

In independent work Manski (2014) considered the identification of general preferences when

labor supply is restricted to a finite choice set, with the goal of evaluating tax policy. He finds

that tax policy evaluation is difficult when it requires estimation of preferences. BN and this

paper bypass estimation of preferences by focusing on policy effects that can be evaluated using

the conditional mean, including the effect of tax schedule changes on average taxable income.

Imposing the dimension reduction implied by utility maximization makes such policy evaluation

feasible when the policy is included within the range of budget sets in the data. Importantly, we

and BN also differ from Manski (2014) in allowing for measurement and/or optimization errors

in the outcome, which has long been thought to be important for labor supply and taxable

income; see Burtless and Hausman (1978).

Aaberge et al. (1995), van Soest (1995), Keane and Moffitt (1998), Blundell and Shephard

(2012), and Manski (2014) have considered labor supply when hours are restricted to a finite

set. Our taxable income setup could accommodate such constraints, though we do not do this

1Kleven et al. (2011) find that the tax evasion rate is close to zero for income subject to third-party reporting.
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for simplicity. As long as the grid of possible labor supply values was rich enough the expected

value of taxable income that we derive would be approximately correct. It appears to be harder

to incorporate the bilateral contracting framework of Blundell and Shephard (2012).

The previous literature on taxable income has produced a wide range of estimates. Earlier

studies used major tax reforms in the U.S. such as Economic Tax Recovery Act of 1981 and Tax

Recovery Act of 1986 as natural experiments and, using lower income groups as control groups

for the treated group of higher income taxpayers, estimated elasticities close to 1 or higher

(Lindsey, 1987; Feldstein, 1995; Eissa, 1995; Navratil, 1995; Feldstein and Feenberg, 1995).

To address the identification challenges of the natural experiment approach, e.g., highlighted

in Goolsbee (1999, 2000), subsequent research used panel data spanning multiple tax reforms

and employed synthetic tax changes as instruments to address the endogeneity of marginal tax

rate changes, finding more modest elasticities mostly ranging from 0.2-0.5 (Auten and Carroll,

1999; Gruber and Saez, 2002; Saez, 2003; Kopczuk, 2005; Giertz, 2007).

However, such synthetic tax changes were still dependent on prior year income, which could

be problematic if the error term was serially correlated or if elasticities were heterogeneous across

income groups. To circumvent these concerns, recent papers proposed more refined instruments

(Blomquist and Selin, 2010;Weber, 2014; Burns and Ziliak, 2017; Kumar and Liang, 2020).

Except for the Blomquist and Selin study, these latter studies find higher elasticties ranging

from 0.6 to 1.4

Our work is also related to a large literature that, following Burtless and Hausman (1978),

estimated the effect of taxes on labor supply using maximum likelihood techniques to model

labor supply choice over piecewise-linear budget constraints (Hausman 1980, 1981a; Hausman,

1985; Blomquist and Hansson-Brusewitz, 1990; Bourgiugnon and Magnac, 1990; Triest,1990;

Van Soest et al., 1990; Colombino and Del Boca, 1990, Heim, 2009).

The rest of our paper is organized as follows. Section 2 gives the model of individual behavior

we consider. Section 3 derives the budget set regression and gives regressors that can be used

to estimate it. Section 4 describes the effects we consider and automatic debiased machine

learners of them. Section 5 gives the application to Swedish data. Section 6 gives the stochastic

revealed preference results. Section 7 gives additional RUM theory and shows how that lessens

the importance of nonconvexities in the budget set. Section 8 concludes.

2 RUM Choice for Linear Budget Sets

Feldstein (1995) argued that individuals have more margins than hours of work to respond to

changes in the tax. For example, individuals could exert more effort on the present job, switch

to a better paid job that requires more effort, or could move geographically to a better-paid
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job. The choice of compensation mix (cash versus fringe benefits) and tax avoidance/evasion

are still other margins. The application we consider is for taxable earned income where tax

evasion is not a concern, but allowing for an effort margin seems useful especially for allowing

for productivity growth over time.

To describe the model let  denote consumption,  effort, and  hours of work. Also let 

denote nonlabor income and for a linear tax,  denote the tax rate,  = 1 −  the net of tax

rate for income, and () be the wage for effort level . Let (  ) denote an individual’s

utility function, assumed to be strictly quasi-concave, increasing in  and decreasing in  and

. The individual choice problem is

Max


(  )   = ()+  ≥ 0  ≥ 0  ≥ 0 (2.1)

This problem can be reformulated as a choice of consumption and taxable income  = ()

when the wage function is strictly monotonic increaseing in  Since () =  inverting gives

 = −1(). Noting that only  enters the constraint we can concentrate  out of the choice

problem by choosing  to maximize ( −1() ) and then maximizing over  and . Let

( ) = max≥0 ( −1() ) be the resulting concentrated utility function. The choice of

 and  will maximize this concentrated utility function subject to the linear budget constraint

by solving

Max


( )   = +  ≥ 0  ≥ 0 (2.2)

The solution gives taxable income () as a function of the net of tax rate  and nonlabor

income .

In the taxable income literature one usually starts with individual choice of consumption

 and taxable income  as given by equation (2.2) and specifies that ( ) is strictly quasi-

concave. We first specified utility as a function of effort to illustrate how the taxable income

specification allows for another margin of choice. Strict quasi-concavity of (  ) does not

necessarily imply strict quasiconcavity of ( ), but we simply follow the taxable income

literature by specifying that ( ) is strictly quasi-concave for each individual.

We allow for general heterogeneity that affects both preferences and wages. Let  denote

a vector valued random variable of any dimension that represents individual preferences. We

specify the utility function of an individual as (   ) and the wage rate as  = ( ). We

impose no restriction on how  enters the utility or wage function, thus allowing for distinct

heterogeneity in both preferences and the wage function (e.g. ability), with different components

of  entering  and (). The individual’s optimization problem for a linear budget set is now

to maximize (   ) subject to  = ( )+ As before we concentrate out hours using

(  ) = max ( 
−1( )  ). The choice of taxable labor income ( ) for an
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individual  for a linear budget set is then given by

( ) = argmax


(  )   = +  ≥ 0  ≥ 0

This is the same choice problem as before except that the concentrated utility function  now

depends on  and hence so does the taxable income function ( )

This specification allows for preferences to vary across individuals in essentially any way

at all. For example the effect of unearned income on  may vary with individuals analogously

to the way the effect of unearned income on labor supply varies with individuals in Burtless

and Hausman (1978). We do need to restrict  and (  ) so that probability statements

can be made but these are technical side conditions that do not affect our interpretation of 

as representing general heterogeneity and are reserved for the Appendix. Here we make the

following Assumption about (  ) and ( ):

Assumption 1: For each , (  ) is continuous in ( ), increasing in , decreasing

in , and strictly quasi-concave in ( ). Also ( )  ∞ and ( ) is continuously

differentiable in   0.

The strict quasi concavity of (  ) is essentially equivalent to uniqueness of ( ).

The continuity and monotonicity conditions are standard in the taxable income literature. Also,

we will use continuous differentiability for some of the results to follow.

This model is a RUM as discussed in the Introduction. The model here specializes the

RUM to (  ) that are strictly quasi-concave and ( ) that is smooth in  and ,

while leaving the effect of heterogeneity  on ( ) entirely unrestricted. Single valued,

smooth demand specifications are often used in applications and we follow that practice here.

In particular, smoothness has often proven useful in applications of nonparametric models and

it will here.

The analysis to follow will focus on the CDF of taxable income for a fixed budget set as 

varies. For a linear budget set this CDF is that of ( ) for fixed  and . Let  denote

the distribution of . The taxable income CDF  (|) for a linear budget set is given by

 (|) =
Z
1(( ) ≤ )() (2.3)

This CDF plays a pivotal role in RUM choice theory for nonlinear budget sets in Sections 3

and 7 to follow.

It is important to account for productivity growth when identifying the effects of taxes

on taxable income using variation over time as we do in the application below. We account

for productivity growth by assuming the existence of a function () such that the wage in
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period  for individual  with effort level  is  = ( )() This specification allows for

heterogeneity in the effect of productivity growth on individuals through the  in ( ). For

example, if ( ) = 1( 1)2 then the wage in period  would be 1( 1)2() with 2()

being an effect of productivity growth on wages that varies with individuals. This specification

is restrictive in specifying all individuals with the same effort level in two periods will have

the same wage growth rate over those two periods, i.e. that the productivity growth rate does

not depend on the individual. The function () captures exogenous productivity growth that

does not depend on individual behavior. We impose the condition that (̄) = 1 for some time

period ̄

With productivity growth and heterogeneity the individual’s optimization problem is:2

Max(   ) s.t.  = ( )()+ (2.4)

Here ( )() is the wage in period  for individual  that is determined both by effort, the

time period, and by heterogeneity  This utility maximization problem can be solved similarly

to previous one, by letting  = , inverting the wage function, and choosing hours of work to

maximize ( −1((()) )  ) over . Concentrating out hours of work gives the concen-

trated utility function ( () ). In a second step the individual solves Max( () )

s.t.  = +.

A feature of this problem is that the concentrated utility shifts over time. Our approach to

repeated cross section data depends on using a preference specification invariant to individuals

and time. A simple way to do that is to focus on taxable income net of productivity growth,

given by ̃ = (). Here the reduced-form maximization problem becomes Max( ̃ ) s.t.

 = ̃̃+ for ̃ = (). Thus, the productivity growth appears in the budget set, multiplying

the net of tax rate. From the tax authorities’ point of view the taxable income is  = ()̃.

However, to keep things stationary over time we study the behavior of ̃. Although the function

( ̃ ) does not shift over time, it depends on a base year ̄ and a normalization of (̄) to

one. If we use another base year we would have another concentrated utility function.

This way to account for productivity growth is similar to that used in log-linear models.

Suppose that ̃( ) = [()], where  is the net-of-tax elasticity that is the same for all

individuals. Taking logarithms gives ln  = ( + 1) ln() +  ln + ln . Here () enters as a

time effect and  can be identified in a regression involving the logarithm of the uncorrected

variables  and . This is, more or less, how productivity growth has been accounted for in

2Note that we are still considering an atemporal model of individual behavior. An individual considers a

sequence of one-period optimization problems. The purpose of the extension here is to show how to account for

exogenous productivity growth.
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previous models of taxable income. Including time effects in log-linear models corresponds to

the productivity growth specification we adopt here.

In a linear budget set, productivity growth and tax-rate changes have the same kind of

effect on net-of-tax rates. It can therefore be difficult to nonparametrically separate the two

kinds of effects. In a nonlinear budget set the situation is different. Consider an example with

two budget segments. The budget constraint can then be written as  = ̃()1 + 1 for

̃  ()−11 and  = ̃()2 +2 for ̃  ()−11. In this specification productivity changes

shift both slopes and kinks, a different effect than just a change in slopes. These effects are also

present for budget sets with many segments. Thus, productivity changes have different effects

on the budget sets than just changing slopes, so that it may be possible to separate out the

effect of productivity growth and tax rate changes in our estimates.

In the long run changes in tax rates can be swamped by productivity growth. For example,

over say a twenty-year period, if the annual productivity growth is 0.02, (20)(0) will be 1.5,

corresponding to an increase in the net-of-tax rate of a factor of 1.5. In the short run, changes

in tax rates can swamp short-run changes in (). For example, a change in the tax rate from,

say, 0.6 to 0.4 raises  by a factor of 1.5.

It would be interesting to know whether the productivity growth specification given here

is sufficiently rich in the way it allows productivity growth to differ across individuals. We

checked for this in the application by allowing productivity growth to vary between more and

less educated individuals. We found that allowing this observed heterogeneity does not impact

our tax and income effect estimates. More generally the use of a single budget set regression

to explain a time series of cross section relies on a stable utility function over time making it

difficult to allow more general heterogeneity than considered here.

3 The Budget Set Regression for Piecewise Linear Budget Sets

The budget set regression is the expected value of taxable income conditional on the budget

frontier. This regression can be used for estimating policy effects when the regression is stable

across different policy regimes. It can be used to predict the effect of tax schedule changes on

average taxable income when there is sufficient variation in budget frontiers to identify such

effects. In this Section we describe this regression when the budget frontier is piecewise linear

and continuous.

The budget set regression has many regressors including the intercepts and slopes of all the

segments. It can be difficult to estimate high dimensional regressions. Here we use restrictions

from utility maximization to reduce the dimension of the budget set regression. This dimension

reduction makes budget set regression feasible in practice.
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We focus first on increasing marginal tax rates and give generalizations that allow for mar-

ginal tax rates to decrease. We can describe a continuous, piecewise linear budget frontier as

one with  segments with slope  and intercept  for the  segment, ( = 1  ) By

continuity of the budget frontier the  segment ends at the kink  = (−+1)(+1−)
( = 1   − 1) The budget frontier can be thought of as a 2 + 1 vector of the form
 = ( 1 1      )

0. To describe the budget set regression, recall that  (|) is the
CDF of taxable income for a linear budget set. Define

̄( ) =

Z
 (|) (3.5)

(   ) =

Z
1(  )( − ) (|)

(   ) =

Z
1(  )( − ) (|)

The first object is the conditional mean of taxable income for a linear budget set with slope 

and intercept . The other objects are integrals over values of  below or above a possible kink

point  Note that all of these objects are known functions of the conditional CDF  (|) of
taxable income for a linear budget set. Thus, these objects depend only on  (|)

The budget set regression is given in the following result. Let () = [ |]

Theorem 1: If Assumption 1 and A1 are satisfied,
R |( )|() ∞ for all   0,

1      and  is independent of  then

() = ̄(     ) +

−1X
=1

[(       )− (+1 +1    )] (3.6)

= ̄(1 1  ) +

−1X
=1

£
(+1 +1    )− (       )

¤


This result shows the budget set regression depends only on a single three dimensional

function, the CDF of taxable income  (|) for a linear budget set. Based on this feature
we will give a three dimensional series approximation in this Section, which is much smaller

dimensional that the 2 + 1 dimensions of  In this way utility maximization reduce the

dimension of the budget set regression.

Theorem 1 generalizes Theorem 2.1 of BN by allowing general heterogeneity, whereas BN

assumed scalar . Theorem 1 shows that the BN decomposition of the budget set regression into

the sum of a two dimensional and a three dimensional function holds without the restriction of

scalar heterogeneity. Consequently, the empirical conclusions drawn by BN about the average

labor supply effect of the 1980 to 1991 Swedish tax reform are valid under nonparametric utility

and general heterogeneity as stated in Section 2.
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Theorem 1 innovates relative to BN in the budget regression depending only on a single

three dimensional function. In contrast BN showed that the budget set regression was the

sum of a two-dimensional function (of   ) and a three dimensional function ((  ))

i.e. that the expression following the first equality holds. Theorem 1 shows that there is a

cross function restriction where the two functions ̄(·) and (·) each depend on  (|) in
a known way. This more parsimonious specification makes the budget set regression easier to

estimate. Theorem 1 also innovates by allowing for zero hours of work, rather than the scalar

heterogeneity considered in BN.

The budget set regression of Theorem 1 allows for measurement and/or optimization errors

of multiplicative and/or additive forms. Allowing for such disturbances is consistent with the

fact that in most data sets there is no bunching at kink points of budget sets, as in Burtless and

Hausman (1978). To explain, let  ∗ denote an observed choice of an individual in the absence

of disturbances and assume that equation (3.6) is satisfied with  ∗ replacing  Suppose that

the observed  satisfies  = 1+ 2
∗ where 1 and 2 are disturbances with [1|] = 0 and

[2| ∗] = 1 Then by iterated expectations

[ |] = [1|] +[[2| ∗] ∗|] = 0 +[ ∗|] = ()

It is true that disturbances 1 and 2 having conditional means 0 and 1 would not generally

arise from optimization errors as modeled by Chetty (2012) but optimization errors need not

have that form. The type of errors allowed here are plausible in allowing random departures of

taxable income from utility maximization. A virtue of modeling the conditional mean rather

than the entire conditional distribution of taxable income is that such errors are allowed for.

We can use Theorem 1 to construct a linear in parameters approximation to the budget set

regression by specifying a linear in parameters approximation to the conditional CDF. To do

so let  be a positive integer and 1()  () be CDF’s chosen by the researcher. For

example, these CDF’s could be chosen to give more weight to different intervals of taxable

income values. They are used here to approximate the counterfactual distribution of taxable

income given a linear budget set but they could be based on the observed taxable income. For

example 1() could be the empirical CDF of taxable income in the data and () could be

empirical CDF’s of lower and upper parts of the data. The use of the data in this way will

not bias the budget set regression because all that is required to estimate the regression is a

sufficiently rich approximation.

Also let  := () and let 1()  () denote approximating functions such as splines

or power series. For example a linear approximation could specify

(1()  ())
0 = (1  )
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Let , ( = 2  ;  = 1 ) be coefficients of a series approximation to be specified

below and ( ) =
P

=1 (). An approximation to the conditional CDF can be

constructed as

 (| ) = 1() +

X
=2

( )[()− 1()] (3.7)

=

X
=1

( )() 1( ) = 1−
X

=2

( )

This could be thought of as a mixture approximation to the conditional CDF with weights

( ) ( = 1 ) that are linear in parameters. The normalization that the weights

sum to 1 is imposed by the formula for 1( ) This leads to a CDF approximation having

the important property that for all 

lim
−→∞ (| ) = 1

The conditional pdf could also be restricted to be nonnegative by requiring that ( ) ≥ 0
on a grid of values for . For computational simplicity we do not require that this nonnegativity

restriction hold. We are primarily interested in approximating the budget set regression and

the CDF approximation in equation (3.7) gives a linear in parameters approximation to the

budget set that can be estimated by linear regressions. Imposing nonnegative weights would

complicate estimation of the budget set regression.

We obtain an approximation to the budget set regression by plugging the CDF approxi-

mation into the respective formulas for ̄() and ( ) and these into the formula for

conditional mean in Theorem 1. Let

̄ =

Z
() () =

Z
1(  )( − )() ( = 1 )

Substituting the CDF approximation in the expression for the conditional mean () in The-

orem 1 give

( ) = ̄1 +

X
=2

(  )(̄ − ̄1)

+

X
=2

−1X
=1

[(  )−(+1 )][()− 1()]

= ̄1 +

X
=2

X
=1

()

() = ()(̄ − ̄1) +

−1X
=1

[()− (+1)][()− 1()]
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This has a linear regression form where the regressor with coefficient  is () Each

such regressor is a linear combination of the  approximating function evaluated at the last

segment () and the differences ()− (+1) ( = 1   − 1) for adjacent segments.
The dimension reduction is achieved by the regressors being linear combinations of differences

across adjacent segments.

For example with three segments and a linear approximation where (1()  ()) =

(1  ) there are three regressors for each  given by

̄ − ̄1 3(̄ − ̄1) + (1 − 2)[(1)− 1(1)] + (2 − 3)[(2)− 1(2)]

3(̄ − ̄1) + (1 −2)[(1)− 1(1)] + (2 −3)[(2)− 1(2)]

Also, the regressors for each  will include a constant and it is only necessary to include one

constant term in the regression, so the total number of regressors in this example is 2( −1)+
1 = 2 − 1

These regressors will vary across individuals through variation in the budget sets across

individuals. The regressors described here are specific to individual budget sets and so vary

with those budget set. These regressors may vary across individuals by the number of segments

 and by slopes and intercepts  ,  , and hence also by  and ()  = (2 ) For

each individual there will be ( − 1)( − 1) + 1 regressors with the form of those regressors

depending on the individual’s budget set.

This regression specification must be modified to account for productivity growth. As

discussed in Section 2 we allow for productivity growth by assuming that in period  the

individuals are maximizing utility over ̃ = () for a utility function of the form ( ̃ )

where  is drawn from the same distribution in each time period and for every individual and ()

is productivity growth. Consequently each individual in time period  will behave as if each of

their  is ̃ = () with corresponding kink points ̃() = (−+1)(̃+1−̃) = ()−1 

Also the budget set regression is that for ̃ which must be multiplied by () to obtain the

regression for  Consequently with productivity growth the budget set regression depends on
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 and for ̃() = (()) is given by

(  ) = (){̄1 +
X

=2

(̃() )(̄ − ̄1)

+

X
=2

−1X
=1

[(̃() )− (̃+1() )][(̃())− 1(̃())]}

= ()̄1 +

X
=2

X
=1

( )

( ) = (){(̃())(̄ − ̄1) +

−1X
=1

[(̃())− (̃+1())][(̃())− 1(̃())]}

Here the regressor ( ) depends on both the budget set variables  and the time period 

It is important to note that none of these regressors is constant over time even when () = 1

for some  Because the conditional mean of ̃ = () has been multiplied by () any

regressors for ̃ that are constant have been multiplied by ()

The budget set regression we have described can be theoretically justified by showing that

the specification provides an approximation rate to the true regression that is uniform in in-

dividual budgets sets. For simplicity we do this for specific choices of distributions () and

approximating functions () We expect that this approximation result would also apply to

other distributions and approximating functions. We consider () to be integrals of b-splines

that are positive and normalized to integrate to one and () that are also splines. Splines

are piecwise polynomial hthat are continuously differentiable to order one less the order of the

polynomial and b-splines have this form while being nonnegative and nonzero on a bounded set.

We also require that  and  be contained in bounded sets Y and X and that the conditional

pdf of taxable income for a linear budget set (|) be smooth. For simplicity we state the
result assuming there is no productivity growth with the understanding that the conclusion

also applies with productivity growth.

Theorem 2: If Y and X are compact, (|) is zero outside Y × X and is continuously

differentiable to order  on Y × X , and () ( = 1 ) and () ( = 1 )

consist of tensor product b-splines of order  on Y ×X then there exist a constant  and 

such that for all piecewise linear, concave budget frontiers with  ∈ X , ( = 1  )¯̄̄̄
¯()− ̄1 −

X
=2

X
=1

()

¯̄̄̄
¯ ≤ ()(1−)3

This result shows that the series approximation we have proposed does approximate the

expected value of taxable income for piecewise linear budget sets with increasing marginal tax
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rates. We emphasize that approximation rate is uniform in the number  of budget segments

and other aspects of the budget set under the conditions given here. Thus budget sets may

vary over individuals in quite general ways while maintaining low bias from using the budget

set regressions given here. The rate of approximation corresponds to a multivariate b-spline

approximation to a function and its derivative, where approximating the derivative is useful for

making the rate uniform in the number of budget segments.

We can also make allowance for nonconcave budget frontiers. For example, suppose that the

budget frontier is nonconcave over only two segments. As shown in Section 7, the distribution

over those segments will depend only on the slope and intercept of those two segments. Because

the budget set regression is a sum of integrals over different segments it would take the form

[ |] = ̄(     ) +

−1X
=1

[(       )− (+1 +1    )] + (̃−1 ̃−1 ̃  ̃)

where ̃ and ̃ − 1 index the segments where the nonconcavities occur. The  term represents

the deviation of the mean from what it would be if the budget frontier were concave. It can

be accounted for in the approximation by separately including series terms that depend just

on ̃−1 ̃−1 ̃  and ̃ . If the nonconcavities are small or few people have taxable income

where they occur then  would be small and including terms to account for  will lead to

little improvement. The regression averages over individuals and so mitigates the effect of

nonconcavities.

Endogeneity of budget sets is a potentially important problem to overcome. In the data

we consider spouse’s income is included in nonlabor income which creates endogeneity due to

correlation in couples’ preferences. Also, tax rates vary across locations creating endogeneity

due to correlation between preferences for location and the choice of taxable income. Control

variables can be used to account for endogeneity. A control variable is  such that  and 

are independent conditional on  and the conditional support of  given  equals the marginal

support of  In that case it follows as in Blundell and Powell (2006) and Hausman and Newey

(2016) that Z
[ | ]() = ()

where () is the marginal CDF of . This integral can be estimated by letting the functions

( ) depend on  and letting the regressor corresponding to coefficient  be

(  ) = (){(̃() )(̄−̄1)+
−1X
=1

[(̃() )−(̃+1() )][(̃())−1(̃())]}

A budget set regression with endogeneity controls is then obtained from regressing taxable

income on these budget set regressors to obtain coefficients , ( = 1  ;  = 1 )
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Integrating over the control variable then gives an approximation to the average taxable income

function obtained by integrating over the marginal distribution of preferences, i.e.

() ≈ ()̄1 +

X
=2

X
=1

̄( ) ̄( ) =

Z
(  )()

Although conditions for existence of a control variable are quite strong (see Blundell and

Matzkin, 2014), this approach does provide a way to allow for some forms of endogeneity.

4 Estimation of Budget Set Effects

It is common practice to measure behavioral effects in terms of elasticities. Often the object of

interest has been the elasticity with respect to the net of tax rate for a linear budget constraint.

A problem with nonlinear budget constraints is that this elasticity may not be identified. The

elasticity for a linear budget constraint would often be thought of as corresponding to ̄().

As discussed in Section 7, stringent conditions are required to identify this function. There it

is shown that the set of net of tax rates where this function is identified can be very small,

even empty. Therefore we must look for other kinds of elasticities to hope for identification.

Furthermore, since everyone generally faces a nonlinear budget set, and policy changes are not

likely to eliminate this nonlinearity, effects from changes in nonlinear budgets are important

object of interest.

For nonlinear budget sets the expected taxable income will be () = ( 1       1     ).

We consider the effect on expected taxable income of an increase in all slopes of the budget set

segments. When () is a differentiable function of the slopes this object is

0 = 

∙
( 1 +       + 1     )



¸
= 

⎡⎣ X
=1

( 1       1     )



⎤⎦ 
by the chain rule, where the expectation is over  It is plausible that this object could be

identified from variation in the overall slopes in the data. Such variation could arise from

changes in the size of taxes. Similarly one could consider a nonlabor income effect that is the

average effect of increasing each  

0 = 

⎡⎣ X
=1

( 1       1     )



⎤⎦ 
The 0 is the average effect of rotating the budget frontier and 0 the average effect of shifting

the budget frontier vertically, both while holding fixed the kink points. For policy purposes
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0 is like a change in a proportional tax rate, and 0 is like a change in unearned income.

Identification of 0 and 0 only requires variation in the overall slopes and intercepts of the

budget constraint across individuals and time periods. This is a common source of variation in

nonlinear budget sets due to variations in overall degree of taxation and in nonlabor income,

so it is plausible that effects of such changes should be identified.

One can also specify an elasticity object corresponding to 0 by multiplying  by a constant

̃ that summarizes the vector of net-of-tax rates in a single number and then dividing by ()

to obtain

 = ̃0()

The construction of ̃ can be done in many different ways. We use the averages of the net-

of-tax rates and virtual incomes for the segments where individuals are actually located. The

elasticity  is an aggregate elasticity which is the policy relevant measure as argued in Saez et.

al. (2012). For nonlabor income we stick with 0 as an income effect because there is more

ambiguity in how to construct an income elasticity.

The parameters of interest 0 and 0 are average derivatives of the budget set regression.

For computational purposes it is useful to work with corresponding difference quotients. Also,

to describe the estimators of these objects it is useful to work with slightly different notation

for the budget set regression than we have used previously. For this purpose let  denote

the vector consisting of all the budget set variables  and controls  adjusted for productivity

growth according to the time period  corresponding to . Also let 
 denote  with  added

to each  in  and 
 denote  with  added to each   Difference quotient versions of 0

and 0 are

0 = 

"
(

)− (− )

2

#
 0 = 

"
(

)− (− )

2

#


The budget set regressors described in Section 3 depends on slopes and intercepts of budget

sets in various ways and are quite high dimensional once control variables of various kinds

are included. For this reason we use Lasso regression which is known to have good prediction

properties for high dimensionsal regression while allowing for high multicollinearity among

regressors. Lasso regression estimators are biased by model selection and shrinkage, so to

reduce that bias for estimating the parameters of interest 0 and 0 we use automatic debiased

machine learning as in Chernozhukov, Newey, and Singh (2022, CNS henceforth). This method

corrects the shrinkage and model selection bias of Lasso in a way that is specific to the parameter

of interest 0 or 0

To describe the estimator let  denote the observation, so that the adjustment for produc-

tivity growth for observation  is captured in the vector , and let  denote the total number
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of observations. Let () denote a  × 1 dictionary of functions of  that includes the pro-

ductivity adjusted regressors we have described and their interactions with controls, where 

is determined by the number  of CDF’s and the number  of approximating functions in

the budget set regressors as well as the number of controls. As usual for Lasso we normalize

each regressor () to have sample mean 0 and sample variance 1 ( = 1  ) As in CNS

we use cross-fitting where averaging takes place over observations different than used in the

budget set regression. To describe the cross fitting let  ( = 1  ), be a partition of the

observation index set {1  } into  distinct subsets of about equal size. In the application

we use  = 5 (5-fold) partitioning as is also used in CNS and Chernozhukov et al. (2018). The

Lasso regression estimator ̂ constructed from the observations that are not in  is given by

̂() = ̄ + ()
0̂ ̂ = argmin



⎧⎨⎩
P

∈ [ − ()
0]2

− 
+ 2

X
=1

| |
⎫⎬⎭ 

where  is the total number of observations in  ̄ is the sample mean of  over  ∈ 

() each have sample mean 0 and variance 1 over  ∈  and  is a penalty degree. In the

application  is chosen by cross-validation over  ∈ 

The automatic debiased machine learner of CNS makes use of a bias correction term

constructed by a Lasso minimum distance procedure. To describe this bias correction term

let () denote any function of  and define ( ) to be either [(
) − (− )]2 or

[(
) − (− )]2 corresponding to  or  respectively. Thus, ( ) is the difference

quotient applied to the  dictionary function () Let ( ) = (( 1) ( ))
0

The bias correction term of CNS is constructed from observations not in  as

̂() = ()
0̂ ̂ = argmin


{−2̂ 0

 + 0̂+ 2

X
=1

¯̄

¯̄
} (4.8)

̂ =
1

− 

X
∈

( ) ̂ =
1

− 

X
∈

()()
0

where   0 is a positive scalar that specifies a degree of penalization. The  may be chosen by

a cross-validation method or a plug-in method as described in CNS.

An automatic debiased machine learner of an object of interest is straightforward to con-

struct from the Lassso regression ̂() and bias correction ̂() for  = 1   Let ( ̂())

be the difference quotient applied to the Lasso regression for each  An estimator ̂ of an object
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of interest and an asymptotic variance estimator ̂ are given by

̂ =
1



X
=1

X
∈
{( ̂) + ̂()[ − ̂()]} (4.9)

̂ =
1



X
=1

X
∈

̂
2

 ̂ = ( ̂)− ̂ + ̂()[ − ̂()]

Under regularity conditions given in CNS, for the true value 0 of the parameter of interest it

will be the case that
√
(̂ − 0)

−→ (0  ) ̂
−→ 

so that large sample confidence intervals and tests concerning 0 can be constructed from ̂ and

̂ in the usual way.

5 Application to Sweden

5.1 Data

We use data from HEK (Hushållens Ekonomi) provided by Statistics Sweden, which is a com-

bined register and survey data set. The data set contains repeated cross sections of approxi-

mately 17,000 randomly-sampled individuals from the population and members of their house-

holds each year. The response rate is approximately seventy percent. The register component

contains income, tax, and demographic data used by the authorities for taxation purposes. The

survey component primarily contains housing variables required to construct several housing-

related budget set variables such as the housing allowance, which are important components of

the budget sets.

We use data covering a period of sixteen years, from 1993 to 2008. In the estimation, we

limit the sample to married or cohabiting men between 21 and sixty years of age. This is the

economically most significant group with respect to labor income. We exclude those receiving

medical-leave benefits, parental benefits, income from self-employment, or student financial aid

above half of the average monthly gross labor income, which was 17,607 SEK in 2008. We use

this limit instead of zero, as that would result in a large loss of observations. Out of 102,630

observations, 81,717 observations remain after these sample restrictions.

Our labor income definition primarily includes third-party reported earned income and in-

come from self-employment. It excludes, however, medical-leave benefits and parental benefits,

unlike previous studies using Swedish data. Note that individuals with large amounts of income

from these sources are excluded from the sample.

To construct the individual budget sets, we use a micro simulation model, FASIT, devel-

oped by Statistics Sweden, which in principle captures all of the features of the Swedish tax
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and transfer system relevant for individuals. FASIT is used by, e.g., the Swedish Ministry of

Finance, to simulate the mechanical effects of various tax policies including potential future

policies. Single cross sections of this model have been previously employed by Flood et al.

(2007), Aaberge and Flood (2008), and Ericson et al. (2009). We construct the budget sets

by iteratively letting FASIT calculate net family incomes by varying individuals’ gross labor

incomes. When doing this, we set medical-leave compensation to zero as this is a component

that is difficult to predict for the individuals in the beginning of the year when planning how

much to work during the year.

We set non-labor income as the net income the family would receive if the husband had

no labor income. This component includes the spouse’s net labor income, family’s net capital

income, and various welfare benefits the family would receive if the husband had no labor

income. For capital incomes, we set capital gains and losses to zero for the same reason as we

set sick leave benefits to zero. Additionally, we include the implicit income from residence-owned

housing in nonlabor income.

Nonlabor income may be endogenous, so to correct for the endogeneity we construct a control

variable for nonlabor income using transfers received at zero labor income as an instrument.

This instrument includes, e.g., housing and child allowances and social assistance. Like the tax

system, the transfer system is beyond the control of individuals. The transfers that would be

received at zero labor income vary between individuals depending on demographics. Because

we control for such factors, most of the variation arises due to changes in the transfer system

between years and how these changes affect different individuals differently. The control variable

we form is the residual from a linear regression of nonlabor income on the instrument and the

demographic variables described below.

The data set contains many demographic background variables. We control for age (eight

groups), educational level (seven groups), socioeconomic occupational groups (eight groups),

county of residence (22 groups), whether the individual has children below age six, and whether

he was born abroad. These variables are all included as covariates in the budget set regressions.

Summary statistics of the sample used for estimation is reported in Table 1 of Appendix C.

We report the mean values along with standard deviations of gross labor income, some variables

characterizing the budget sets, key demographic variables, and transfers at zero labor income,

which is the instrument for nonlabor income. We report statistics for the entire sample, as well

as for the years 1993, 1998, 2003, and 2008 separately, to illustrate the development over time.

Figure 1 presents the variation in net-of-tax-rates in the estimation sample. After declining in

the early 1990’s the first segment and marginal net-of-tax-rates rose sharply in the late 1990’s

and early 2000’s, though their growth was notably slower in the late 2000’s. On the other hand,
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the last segment net-of-tax rate saw a more significant decline in the early 1990’s, followed by

modest fluctuations.

In a given time period the budget constraint varies across individuals for several reasons,

differences in local tax rates, differences in itemized deductions and different demographic char-

acteristics. As mentioned above we attempt to correct for endogeneity issues caused by the

differences in local tax rates by using county dummy variables as covariates

5.2 Regression Results

We use Lasso regression with a power series approximation for terms up to a fourth order using

the procedures described in Section 3. For the approximation we use three CDF’s () ( =

1 2 3), corresponding to the marginal empirical distribution of taxable income for the whole

sample, for the smallest third of the sample, and for the largest third of the sample. For

constructing () we use the sample CDF for a subsample of 5,000 observations evenly by

gross labor income rank. We use a power series approximation with () = 1()2(),

1() +2() ≤ 4 for 1() and 2() equal to nonnegative integers.

To account correctly for productivity growth we need to estimate it. Unfortunately there are

few good measures of the exogenous wage/productivity growth, as the productivity measures

available in the literature generally do not disentangle the change in wages due to behavioral

effects of tax changes. We will therefore use our data to estimate exogenous productivity

growth. To guard against using too much identifying information when doing this, we constrain

the annual productivity growth to be the same every year, i.e. () =  for some constant .

While a constant productivity growth assumption may lead to some misspecification, a more

refined correction of the budget constraints would use up much of the information in the data.

In particular we would lose much of the identifying power of changes in the overall tax rate

across years. We do not think there are wide swings in the productivity growth rate from year

to year so that the misspecification would not be very large for any individual year’s budget

constraints.

Marginal effects are evaluated at each of the sample individual budget sets and the net-

of-tax-rate elasticity is based on sample average marginal effects scaled by the sample mean

income and marginal net-of-tax rate. The elasticities are evaluated at the sample mean income

of 420,000 SEK and marginal net-of tax rate of .42. We also report the marginal effect of

nonlabor income, i.e., the change in gross labor income as net nonlabor income increases by

one SEK. For nonlabor income, we report the marginal effect rather than the elasticity because

the income elasticity is highly dependent on the scaling parameters. The natural scaling factor

for nonlabor income–the average marginal nonlabor incxome–is extremely high in our case
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compared to other studies that report income elasticities because the marginal tax rate is low

and nonlabor income is high. Nonlabor income is high because we include the spouse’s net

income and implicit income from residence-owned housing. The marginal income effect for

nonlabor income is therefore more informative.

Given the challenges associated with estimating any one productivity growth over the entire

sample period, we estimate specifications over a fine grid of productivity growth rates ranging

from 0.5% and 2% in steps of 0.1%. We can then select a preferred specification as one that

minimizes the root mean squared error (RMSE). Alternatively, we could select a specification

corresponding to plausible productivity growth estimates available from official sources. Pre-

vious estimates of productivity growth during the sample period are around 1%-2%, therefore

we focus on estimates corresponding to this range.

Table 1 reports the double/debiased machine learning estimates of the net-of-tax rate elastic-

ity and the marginal effect of virtual income for different productivity growth rates. Estimated

net-of-tax-rate elasticities decline monotonically with productivity growth rates and range from

a large and statistically significant estimate of 1.1 when productivity growth is 0.5% to a small

and imprecise estimate of -0.14 when the productivity growth is set to 2%.

The decline in estimated elasticities with productivity growth reflects that, overall, taxes

have decreased over the sample period at the same time as gross labor incomes have increased.

Using a specification that assumes a too low (high) productivity growth rate (such as assuming

no growth) would therefore result in a positive (negative) bias in the estimated elasticities.

Accounting for productivity growth appropriately is therefore important.

Table 1: Debiased Estimation of Taxable Income Effects
Growth Rate Slope Effect SE Income Effect SE

.5 1.151 .296 -4.98 4.80

.6 1.096 .291 -2.16 2.01

.7 1.034 .285 -2.10 1.93

.8 .978 .278 -4.95 4.77

.9 .928 .287 -5.41 5.21

1.0 .890 .288 -2.32 2.17

1.1 .830 .289 -2.48 2.32

1.2 .789 .300 -2.62 2.46

1.3 .705 .274 -2.75 2.59

1.4 .521 .176 -1.59 1.53

1.5 .363 .135 -1.70 1.64

1.6 .276 .154 -3.16 3.06

1.7 .181 .163 -2.14 2.05

1.8 .0580 .220 -6.72 6.61

1.9 -.000278 .235 -1.75 1.65

2.0 -.138 .311 -1.65 1.54
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Figure 2 plots the estimated net-of-tax-rate elasticities along with their 95% confidence

intervals and shows that for the more plausible range of 1%-2% productivity growth the net

of tax rate elasticities decline from a statistically significant estimate of 0.89 to an imprecise

estimate of -0.13. Marginal effects of nonlabor income for different productivity growth rates are

plotted in Figure 3, which shows that the income effect estimates are negative and imprecisely

estimated. In the more plausible range of productivity growth rates of 1%-2%, income effects

are between -1.7 to -2.3, though the confidence interval include zero. In this respect our findings

are quite similar to much of the previous literature that also estimates small and/or imprecise

income effects.

RMSE for the estimated specifications plotted in Figure 4 shows that after rising initially

across low productivity growth rates, it achieves a local minimum at a productivity growth

rate of 1.4%. It is worth noting that there is some empirical support from our data for a

1.4% productivity growth. Gross labor income increased by a factor of 1.23 during the sample

period, implying an average geometric annual growth rate of 1.4%. Most of the overall increase

in taxable income over this period can thus be attributed to exogenous productivity growth

and not to changes in the tax rate. Between years the changes in the taxes help us identify the

effect of the overall tax rate while the overall increase is attributed to productivity growth.

Our preferred estimate of net-of-tax-rate elasticity corresponding to 1.4% productivity

growth is 0.52 and is statistically significant; the income effect for this specification is -1.5–an

estimate that is not statistically significant.

An income effect of -1.5 is larger in magnitude than found or assumed in most taxable

income studies. Using similar data but a linear model, Blomquist and Selin (2010) estimate

a statistically significant negative income effect that is much closer to zero. Some studies just

assume there is no income effect. Our negative income effect is imprecise and not statistically

different from zero.

While we have so far focused on specifications based on power series terms in () up to

fourth order, we also estimated specifications with power series terms up to fifth order. The

results presented in Table 2 of Appendix D suggest that estimates of net-of-tax-rate elastic-

ities are qualitatively similar to those in Table 1 for specifications with productivity growth

rates smaller than 1.1%. Unfortunately, estimates of net-of-tax-rate elasticities for productivity

growth rates higher than 1.1% are highly imprecise and, therefore, not comparable to analo-

gous estimates in the more parsimonious fourth order specifications. Just like the fourth order

specifications, all income effects for the fifth order power series specifications are highly impre-

cise. All in all, because the RMSE for fifth order power series specifications remained largely

unchanged compared with the fourth order power series, we stick with the estimates from the
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more parsimonious fourth order power series specifications as our preferred estimates.

5.3 Instrumental Variable Estimates for Linearized Budget Sets

To assess the importance of appropriately accounting for a nonlinear budget set and productivity

growth, we have estimated some other specifications based on linearizing the budget set at

observed gross income levels. In these specifications, we regress taxable labor income against

the marginal net-of-tax rate and virtual income (the nonlabor income for the linearized budget

set). To account for the endogeneity of the marginal net-of-tax rate to the budget set, we

instrument it using three alternative instruments–net-of-tax rates of the first segment, the

last segment, and the mean net-of-tax-rates across all segments. To account for endogeneity of

virtual income we instrument it using the same instrument as in the control variable estimates

discussed above. We also control for county fixed effects, include year fixed effects, and the same

covariates as used in nonparametric regression estimates above. We estimate specifications

of gross labor income that are linear in the marginal net-of-tax rate, and in virtual income.

Estimates from specifications with logarithm of gross labor income are not reported because

they were qualitatively similar.

Such specifications are fairly common for taxable income estimation in repeated cross sec-

tions. The typical approach is, however, to use panel data like in Gruber and Saez (2002). This

would allow for linear individual effects by differencing and enable us to use instruments based

on lagged income. Note though that this standard approach does not allow for other individual

heterogeneity, such as in the net of tax elasticity, while our estimates above allow for general

individual heterogeneity. The linear specifications we consider here are meant only to provide

a comparison with our regression estimates but are not meant to be best possible estimates

based on the typical linearization method.

Table 2. Linear Instrumental Variables Estimates
(1) (2) (3)

Slope Elasticity 0.0431 1.338 0.0612

(0.700) (3.210) (0.718)

Income Effect -1.281 2.931 -1.222

(0.758) (8.296) (0.893)

Standard errors are in parentheses

The estimates based on instrumental variables linearization specifications are reported in

Table 2. Standard errors constructed using the delta method are reported in parenthesis. The

elasticities are evaluated at the sample mean income of 420,000 SEK. We report the same type
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of net-of-tax elasticity as before, but now for the linearized budget sets. We observe that the

estimated elasticity is sensitive to the instrument used.

While the estimated net-of-tax elasticity is very small for specifications in columns (1) and

(3), it is quite substantial for the specification with the last segment tax rate as instrument

in column (2), though none of the estimates are significant. Estimates of income effects also

vary substantially across the three models and are highly imprecise. Evidently, for our data,

using a more sophisticated method therefore matters a lot. The overall picture is that correctly

accounting for nonlinear budget sets and general heterogeneity are important in this data.

6 Slutzky Conditions for the Budget Set Regression

The estimator of the budget set regression is based on an approximation to the conditional CDF

of the taxable income for a linear budget set in connection with Theorem 1. This approximation

can be used to construct an estimator of that CDF. Under the RUM that CDF satisfies a Slutzky

condition described in this Section. This Slutzky condition can be checked from data and we

do so in this Section for our application.

McFadden (2005) derived restrictions on conditional CDF  (|) for a linear budget set
that are necessary and sufficient for a RUM. With choice over two dimensions ( and ) there

is a simple, alternative characterization of the RUM. The characterization is that the CDF

satisfy a Slutzky condition given in the following result. Let (|) =  (|) and
(|) =  (|) when these partial derivatives exist.

Theorem 3: If Assumptions 1, A1  and A2 are satisfied then  (|) is continuously
differentiable in  and  and

(|)− (|) ≤ 0 (6.10)

Also, if for all   0  (|) is continuously differentiable in , ,  the support of

 (|) is [ ] and is bounded,  (|)  0 on ( ) and equation (6.10) is

satisfied then there is a RUM satisfying Assumption 1.

In this sense, for two goods and single valued smooth demands, the revealed stochastic

preference conditions are that the CDF satisfies the Slutzky condition. This result will be used in

the analysis to follow and is of interest in its own right. Dette, Hoderlein, and Neumeyer (2011)

showed that each quantile of ( ) satisfies the Slutzky condition for demand functions

under conditions similar to those of Assumption A2. Hausman and Newey (2016) observed

that when a quantile function satisfies the Slutzky condition there is always a demand model
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with that quantile function. Theorem 1 is essentially those results combined with the inverse

function theorem, that implies that the CDF satisfies the Slutzky condition if and only if the

quantile satisfies the Slutzky condition.

The Slutzky condition can be checked by using the linear in parameters approximation

to the conditional CDF of  on which the budget set regression is based. It is straight-

forward to do this for a grid of values for  and  say 1   , and 1   The CDF

of taxable income for a linear budget set that corresponds to the budget set regression is

1() +
P

=2( )[()− 1()] The Slutzky condition for the CDF approximation at

the values of  and  is then

X
=2

∙
( )


− 

( )



¸
[()− 1()] ≤ 0 ( = 1  ;  = 1 ) (6.11)

These are a set of linear in parameters, inequality restrictions on the coefficients  of the weights

( ). A series approximation as above with coefficients satisfying these Slutzky inequalities

is an approximation to the expected value that approximately satisfies all the restrictions of

utility maximization. Because the only restriction imposed by utility maximization is that the

Slutzky condition is satisfied for  (|) we know that if this condition is satisfied on a rich grid
then the budget set regression is consistent with utility maximization.

To check to see if the Slutzky restrictions are satisfied we plugged in estimated post-Lasso

parameters and evaluated at individual-specific values of  and , given by the observed

marginal net-of-tax rate, marginal virtual income, and gross labor income for each individual

observation in our sample. Table 3 presents the sample mean and key percentiles of the distri-

bution of values obtained from evaluating equation (6.11) across all individuals in the data for

specifications with different productivity growth rates. In Table 3 the Slutzky condition holds

for a vast majority of individuals in the sample, with the value being negative not only at the

mean and median but also at the 95th percentile.

Table 3: Quantiles of estimated Slutzky conditions
Growth Rate Mean Median 75th percentile 95th percentile

0 -1.869 -1.713 -0.852 -0.128

.5 -1.638 -1.574 -0.812 -0.124

1.0 -1.291 -1.291 -0.670 -0.107

1.4 -0.660 -0.660 -0.343 -0.055

2.0 -0.299 -0.299 -0.155 -0.025

7 RUM Choice with General Nonlinear Budget Sets

So far we have focused on piecewise linear budget sets which is the most important kind of

budget set in practice. In this Section we give some properties of more general budget sets that
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also may occur. These properties are also helpful for understanding choice when part of the

budget frontier is nonconcave.

To describe choice in the setting of a general nonlinear budget frontier let () denote the

maximum obtainable consumption for income  allowed by a tax schedule that we will refer to

as the budget frontier. The set of points {(()) :  ≥ 0} will be the frontier of the budget
set B = {( ) : 0 ≤  0 ≤  ≤ ()}. Under the monotonicity condition of Assumption 1 that
utility is strictly increasing in consumption, the choice ( ) of taxable income by individual

 will lie on the budget frontier. This choice is given by

( ) = argmax (()  )

When the budget frontier  is concave the choice ( ) will be unique by strict quasi-concavity

of preferences. In general, when  is not concave the choice ( ) could be a set. Here we

will assume the set valued choices occur with probability zero in the distribution of . Piecwise

linear budget sets are a special case where () is piecewise linear.

In general the CDF of ( ) will depend on the entire frontier function . An important

simplification occurs around points where () is concave, i.e. where the marginal tax rate is

increasing. Let B̄ denote the convex hull of the budget set and ̄() = max()∈B̄  denote the

corresponding budget frontier. Note that by standard convex analysis results ̄() will be a

concave function. Let

() = lim
↓
£
̄()− ̄()

¤
( − ) () = ̄()− ()

denote the slope from the right () of ̄() and () the corresponding virtual income, where

the limit () exists by Rockafellar (1970, pp. 214-215). Also let  (|) = R
1(( ) ≤

)() denote the CDF of taxable income for a budget frontier .

Theorem 4: If Assumptions 1 and A1 are satisfied then for all  such that there is ∆  0

with ̄() = () for  ∈ [  +∆] we have  (|) =  (|() ())

Here we find that the CDF  (|) equals that for a linear budget set with the right slope
() and corresponding virtual income () for any value  where the frontier coincides with

the frontier of the convex hull on a neighborhood to the right of . The slope from the right

() and the neighborhood to the right of  appear here because of the weak inequality in the

definition of the CDF. This theorem is a distributional result corresponding to observations of

Hall (1973) and Hausman (1979) that linear budget sets can be used to characterize choices

when preferences are convex and the budget frontier is concave.
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This result is an important dimension reduction in the way the CDF depends on the budget

set. In principle  (|) can depend on the entire frontier , an infinite dimensional object.
When the frontier is locally concave to the right of , as in Theorem 4, the CDF depends only

on the slope () and virtual income () instead of on the entire budget set. Furthermore,

the CDF is that for a linear budget set. This result has a number of useful implications. It

shows that the dimension reduction for the regression in Theorem 1 also holds for the CDF of

taxable income. Also it limits the impact of a nonconcave budget frontier on the conditional

distribution of taxable income.

In many applications nonconcavities occur only at small values of income so that () and

̄() coincide for  above some realtively small income level. In that case the distribution of

taxable income will be determined by the concave budget frontier ̄() for most income levels so

nonconcavities have a small impact. Also, Theorem 4 could also be used to nonparametrically

quantify how the CDF depends on the budget set at higher values of  For example, one could

nonparametrically estimate the revenue effect of changing taxes on higher income earners. Such

an object would be of interest because most of the revenue often comes from those paying higher

taxes. We leave this use of Theorem 4 to future work.

Theorem 4 implies a revealed stochastic preference result for convex budget sets. As shown

by Theorem 3, for linear budget sets and preference satisfying the conditions of Assumptions

1 and A1, a necessary and sufficient condition for a RUM is that the CDF satisfy the Slutzky

condition. An implication of Theorem 4 is that this result is also true for convex budget sets.

The CDF of taxable income for convex budget sets is consistent with a RUM if and only if the

CDF satisfies the Slutzky condition for linear budget sets.

Theorem 4 can also be used to derive identification results for the CDF and conditional

expectation of taxable income for a linear budget set. Let S denote a set of budget frontiers
and () = {(() ()) :  ∈ S}. Then  (|) is identified for () ∈ () Also, the

conditional mean for a linear budget set
R
 (|) is identified for () ∈ ∩() For

taxable income this set may easily be empty due to productivity growth, so the conditional

mean for a linear budget set is not identified for any ()

In many applications the budget set may be nonconvex. It would be useful to know how

the CDF depends on the budget set in these cases. We can show that the CDF only depends

on () over the the values of  where () is not concave. For simplicity we show this result

for the case where () has only one nonconcave segment. Let [() ̄()] denote the interval

where () may not be concave and let ̆ = {() ̄() ()|∈[()̄()]} denote the interval
endpoints and the budget frontier over the interval.

Theorem 5: If Assumption 1 and A1 are satisfied then for all  such that ̄() = ()
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except possibly for  ∈ (() ̄()) and for  ∈ [() ̄()) we have Pr(( ) ≤ ) depends

only on ̆

This result shows that the CDF of taxable income depends on the budget frontier over the

entire nonconvex interval, for any point in the interval. Thus, for a piecewise linear budget

constraint the CDF would depend on the slope and virtual income of all the segments that

affect that nonconvex interval, when  is in that interval. This result motivates the additional

term that is added to the conditional mean when there is one interval

8 Conclusion

In this paper we develop a method to nonparametrically estimate the expected value of taxable

income as a function of a nonlinear budget set while allowing for general heterogeneity and op-

timization/measurement errors. We apply this approach to Swedish data and find a significant

elasticity .52 of an overall change in the tax rate.

This method could be extended to estimate the expected value of taxes. As with taxable

income, for concave budget frontiers the expected value of taxes will depend only on the CDF

of taxable income for a linear budget set. A straightforward calculation can be carried out to

derive the expected value of taxes, which could then be estimated by a procedure similar to

that described above for taxable income.

9 Appendix A: Proofs of Theorems 1-5

The following two technical conditions are referred to in the text and used in the proofs.

Assumption A1:  belongs to a complete, separable metric space and ( ) ( )

and ( ) are continuous in ( ).

Assumption A2:  = ( ) for scalar  and Assumption A1 is satisfied for  = ( ) for

a complete, separable metric space that is the product of a complete separable metric space for

 with Euclidean space for , ( ) = (  ) is continuously differentiable in  there

is   0 with (  ) ≥ 1 k( )()k ≤  everywhere,  is continuously

distributed conditional on  with conditional pdf (|) that is bounded and continuous in .

Before proving Theorems 1-5 we give a several useful Lemmas. First we state a result on

the derivatives of  (|) with respect to  and 
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Lemma A1: If Assumptions 1 and A2 are satisfied then ( ) is continuously distributed

for each   0 and  (|) is continuously differentiable in   and  and for the pdf

()() of ( ) at ,

 (|)


= ()()

 (|)
()

= −()()[
( )

()
|( ) = ]

Proof: This follows exactly as in the proof of Lemma A1 of Hausman and Newey (2016).



Next we give some other useful Lemmas.

Lemma A2: If Assumptions 1 and A1 are satisfied and () is concave then ( ) is

unique and (()  ) is strictly increasing to the left of ( ) and strictly decreasing to

the right of ( ).

Proof: For notational convenience suppress the  argument, which is held fixed in this proof.

Let ∗ = (). Suppose ∗  0. Consider   ∗ and let ̃ such that   ̃  ∗. Let (̃ ̃)

be on the line joining (() ) and ((∗) ∗). By concavity of (·), ̃ ≤ (̃), so by strict

quasi-concavity and the definition of ∗,

((∗) ∗) ≥ ((̃) ̃) ≥ (̃ ̃)  min{(() ) ((∗) ∗)} = (() )

Thus ((̃) ̃)  (() ) An analogous argument gives ((̃) ̃)  (() ) for

  ̃  ∗. Q.E.D.

Lemma A3: If Assumptions 1 and A1 are satisfied and the budget frontier  is concave

then for each , Pr(( ) ≤ ) =  (|() ()).

Proof: Consider any fixed value of  as in the statement of the Lemma and let () denote

the value of the budget frontier for any value  of taxable income. By concavity of () and

Rockafellar (1970, pp. 214-215), () exists and is a subgradient of () at . Define ̇ = ()

and ̇ = (). For any  let ̇() = ̇ + ̇( − ) = () + () denote the linear budget

frontier with slope () passing through (() ). Let ∗ = argmax (() ) where we

suppress the  argument for convenience. Also let ̇∗ = argmax (̇() ). We now proceed

to show that ∗ ≤  ⇐⇒ ̇∗ ≤ .

It follows by ̇ being a subgradient at  of () and () being concave that for all ,

̇() ≥ ().
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Therefore ̇(∗) ≥ (∗) so that

(̇(∗) ∗) ≥ ((∗) ∗) ≥ (() ) = (̇() )

Note that ̇() is linear and hence concave so that by Lemma A2, (̇() ) is strictly in-

creasing to the left of ̇∗ and decreasing to the right of ̇∗. Suppose that   ∗ Then   ̇∗,

because otherwise ̇∗ ≤   ∗ and the above equation contradicts that (̇() ) is strictly

decreasing to the right of ̇∗. Similarly, if   ∗ then   ̇∗, because otherwise ̇∗ ≥   ∗

and the above equation contradicts that (̇() ) is strictly increasing to the left of ̇∗

Next suppose ∗ = . Let ̈ be the slope of a line that separates the set weakly preferred

to (() ) and the budget set and let ̈() = ̇ + ̈( − ∗) so that (̇ ∗) ≥ (̈() )

for all . Then by Lemma A2 applied to the budget frontier ̈() (̇ ∗)  (̈() ) for

all  6= ∗. Also, by Rockafellar (1970, pp. 214-215) ̈ ≥ ̇. Then for any   ∗ we have

̇ + ̈( − ∗) ≥ ̇ + ̇( − ∗) = ̇()

so that

(̇() ) ≤ (̇ + ̈( − ∗) ) = (̈() )  (̇ ∗)

It follows that ̇∗ ≤ ∗ = . Thus, we have show that ∗ =  implies ̇∗ ≤  Together with the

implication of the previous paragraph this means that ∗ ≤  =⇒ ̇∗ ≤ 

Summarizing, we have shown that

∗ ≤  =⇒ ̇∗ ≤  and ∗   =⇒ ̇∗  

Therefore ∗ ≤  ⇐⇒ ̇∗ ≤ .

Note that ∗ is the utility maximizing point on the budget frontier () while ̇∗ is the utility

maximizing point on the linear budget frontier ̇() = () + ()( − ) = () + ()

Thus, ∗ ≤  ⇐⇒ ̇∗ ≤  means that the event ( ) ≤  coincides with the event that

argmax (() + ()  ) ≤  i.e. with the event the optimum on the linear budget set is

less than or equal to . The probability that the optimum on this linear budget is less than or

equal to  is  (|() ()), giving the conclusion. Q.E.D.

Lemma A4: If Assumptions 1 and A1 are satisfied then for all  such that there is ∆  0

with ̄() = () for  ∈ [  +∆] we have Pr(( ) ≤ ) = Pr((̄ ) ≤ ).

Proof: Note that ̄() ≥ () for all . For notational simplicity suppress the  argument

and let ( ) = (  ). Let

∗

= argmax  (() )  ̄

∗ 
= argmax 

¡
̄() 

¢

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Suppose first that ∗ =  Then for any  ∈ (  +∆]

(̄() ) = (() ) ≥ (() ) = (̄() )

By Lemma A2 we cannot have ̄∗   because then the above inequality is not consistent with

(̄() ) being strictly monotonically increasing to the left of ̄∗ Therefore ̄∗ ≤  Suppose

next that ∗   Then

(̄(∗) ∗) ≥ ((∗) ∗) ≥ (() ) = (̄() )

Then by similar reasoning as before ̄∗ ≤  Thus, we have shown that

∗ ≤  =⇒ ̄∗ ≤ 

Next, suppose that ∗   Then there is  ∈ (  +∆] with     ∗

(̄(∗) ∗) ≥ ((∗) ∗) ≥ (() ) = (̄() )

Again by Lemma A2 we cannot have ̄∗ ≤  because then ̄∗    ∗ and the above inequality is

not consistent with (̄() ) being strictly monotonic decreasing to the right of ̄∗. Therefore,

̄∗  , and we have shown that

∗   =⇒ ̄∗  

Therefore we have ∗ ≤  ⇐⇒ ̄∗ ≤  so the conclusion follows similarly to the conclusion of

Lemma A2. 

Proof of Theorem 1: Let () =  (|  ). By Lemmas A3 and A4 it follows (similarly

to the proof of Theorem 4 to follow) that the CDF of ( ) on (−1 ) is (). Therefore,

() =

−1X
=1

∙Z
1(−1    )() +  Pr( ( ) = )

¸
+

Z
1(−1  )()

Note that Z
1(−1  )() = ̄(  )−

Z
1( ≤ −1)()

In addition, by 0 = 0 we have
R
1( ≤ 0)1() = 0 so that

−1X
=1

Z
1(−1    )() +

Z
1(−1  )()

=

−1X
=1

Z
[1(  )− 1( ≤ −1)]() +

Z
1(−1  )()

= ̄(  ) +

−1X
=1

∙Z
1(  )()−

Z
1( ≤ )+1()

¸

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Also, it follows that

Pr(( ) = ) = +1()− lim
↑

() =

Z
1( ≤ )+1()−

Z
1(  )()(9.12)

=

Z
1( ≥ )()−

Z
1(  )+1()

Combining these results we have

() = ̄(  ) +

−1X
=1

[

Z
1(  )( − )()−

Z
1( ≤ )( − )+1()]

Noting that
R
1( ≤ )( − )+1() =

R
1(  )( − )+1() then gives the first

conclusion.

To show the second conclusion, note that by 0 = 0 we have ̄(1 1) =
R
1(  0)1()

Then it follows that

−1X
=1

Z
1(−1    )() +

Z
1(−1  )()

=

−1X
=1

Z
{1(  −1)− 1( ≥ )}() +

Z
1(  −1)()

= ̄(1 1) +

−1X
=1

∙Z
1(  )+1()−

Z
1( ≥ )()

¸


Combining this with the second equality in eq. (9.12) then gives

() = ̄(1 1) +

−1X
=1

∙Z
1(  )( − )+1()−

Z
1( ≥ )( − )()

¸


Noting that
R
1( ≥ )(− )() =

R
1(  )(− )() then gives the second conclu-

sion. Q.E.D.

Proof of Theorem 2: By Edmunds and Evans (1989) there exists  such that for each 

and there is () such that for  = ()(1−)3 and ( ) =
P

=1

P
=1 ()(),

sup
Z

¯̄
(|)− ( )

¯̄
+ sup

Z

¯̄
(|)− 

 ( )
¯̄
+ sup

Z

¯̄
(|)− 

 ( )
¯̄
≤ 

where the subscripts denote partial derivatives and Z = Y × X  Let

̃( ) = 1() +

X
=2

( )[()− 1()] = ( ) + [1−
X
=1

( )]1()
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Note that by
R
() = 1 for each  and by Y bounded,

sup
X

¯̄̄̄
¯1−

X
=1

( )

¯̄̄̄
¯ = supX

¯̄̄̄Z
[(|)− ( )]

¯̄̄̄
≤ sup

X

Z ¯̄
(|)− ( )

¯̄
 ≤ 

Also,

sup
X

¯̄̄̄
¯ 

X
=1

( )

¯̄̄̄
¯ = supX

¯̄̄̄




Z
[(|)− ( )]

¯̄̄̄
≤ sup

X

Z ¯̄
(|)− 

 ( )
¯̄
 ≤ 

and supX
¯̄̄



P
=1( )

¯̄̄
≤  similarly. Recall that ̄() =

R
(|) and ( ) =R

1(  )( − )(|). Define

̄() =

Z
 · ̃( ) ( ) =

Z
1(  )( − )̃( )

Note that for any pdf 1(),
R
1() ≤ supY  = , so for all  ∈ X ,

¯̄
̄()− ̄()

¯̄
=

¯̄̄̄
¯
Z

[(|)− ( )] + [1−
X
=1

( )]

Z
1()

¯̄̄̄
¯

≤
Z


¯̄
(|)− ( )

¯̄
 +

¯̄̄̄
¯1−

X
=1

( )

¯̄̄̄
¯
Z

1() ≤ 

Let ∆( ) = ( )− ( ). Note that by Y bounded there is  such that for all  ∈ Y
and any pdf 1() with support contained in Y,

¯̄R
1(  )( − )1()

¯̄
≤  Therefore,¯̄̄̄




∆( )

¯̄̄̄
=

¯̄̄̄
¯ 

Z
1(  )( − )[(|)− ( )] +





"
1−

X
=1

( )

#Z
1(  )( − )1()

¯̄̄̄
¯

≤ 

Therefore we have¯̄̄̄
¯̄−1X
=1

[(  )− (+1 )]−
−1X
=1

[(  )− (+1 )]

¯̄̄̄
¯̄

=

¯̄̄̄
¯̄−1X
=1

[∆(  )−∆(+1 )]
¯̄̄̄
¯̄ =

¯̄̄̄
¯̄−1X
=1

[
∆(̄  )


] ( − +1)]

¯̄̄̄
¯̄

≤ 

µ
sup
X

¯̄̄̄
∆(̄  )



¯̄̄̄
+ sup

X

¯̄̄̄
∆(̄  )



¯̄̄̄¶ −1X
=1

[ − +1 ++1 − ]

≤ [1 −  + −1] ≤ 
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To conclude the proof, note that

−1X
=1

[(  )− (+1 )] =

−1X
=1

[

Z
1(  )( − )[

( )− ( +1)]

=

−1X
=1

[

Z
1(  )( − )

X
=2

[(  )− (+1 )][()− 1()]

=

X
=2

−1X
=1

[(  )− (+1 )][()− 1()]

=

X
=2

X
=1



X
=1

[()− (+1)][()− 1()]

From these two equations we see that the expression in the statement of the theorem is

()− ̄()−
−1X
=1

[(  )− (+1 )]

The conclusion then follows by the triangle inequality, Theorem 1, and the above bonds

on
¯̄
̄()− ̄()

¯̄
and

¯̄̄P−1
=1 [(  )− (+1 )]−

P−1
=1 [

(  )− (+1 )]
¯̄̄
.



Proof of Theorem 3: Note that ( ) is differentiable by Assumption 1. Also, 

behaves like the negative of a price (increasing  increases utility), so that the Slutzky condition

for taxable income is

−( )


+ ( )
( )


≤ 0

By Assumption 1 and standard utility theory this inequality must be satisfied for all  and all

  0. Then by Lemma A1  (|) is differentiable in  and  and

 (|)


− 
 (|)



= −()()
½
[

( )


|( ) = ]−  ·[( )


|( ) = ]

¾
= ()()[−

( )


+ ( )

( )


|( ) = ] ≤ 0

where the inequality follows by ()() ≥ 0 This argument shows the first conclusion.
To show the second conclusion, for 0    1 let ( |) = −1( |) which inverse

function exists by  (|) strictly increasing in  on ( ) and [ ] being the support of

 (|). By the inverse function theorem, for all   0,

−( |)


+( |)( |)


= ()(( |))−1
½
 (( |)|)


−( |) (( |)|)



¾
≤ 0
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Therefore it follows by Hurwicz and Uzawa (1971) that for each  with 0    1 there is a

utility function (  ) with for all   0,

( |) = argmax


(  )   = +  ≥ 0  ≥ 0

Let  be distributed uniformly on (0 1) and define

( ) = (|)

Then

Pr((|) ≤ ) = Pr( ≤  (|)) =  (|)

Thus, the RUM (  ) has  (|) as its CDF. 

Proof of Theorem 4: Combining the conclusions of Lemmas A3 and A4 gives

Pr(( ) ≤ ) = Pr((̄ ) ≤ ) =  (|() ()) 

Proof of Theorem 5: For notational simplicity we suppress the  as before. Let ̂ =

() ̌ = ̄() denote the lower and upper bound respectively for the set where () is not

concave. Consider

̃∗ = argmax


(() ) s.t. ̂ ≤  ≤ ̌

By construction the CDF of ̃ depends only on ̂ ̌, and () for  ∈ [̂ ̌] We will show that
for  ∈ [̂ ̌) the CDF of ∗ = argmax(() ) coincides with that of ̃∗ which will then

prove the result. For the CDF’s to coincide it is sufficient to show that for  ∈ [̂ ̌) ∗ ≤  if

and only if ̃∗ ≤  Consider  ∈ [̂ ̌)
Suppose first that ∗ ≤ . If ∗ ≥ ̂ then ∗ is within the constraint set [̂ ̌] so that ∗ = ̃∗.

If ∗  ̂ then by Lemma A2, for all  ∈ (̂ ̌]

((∗) ∗)  ((̂) ̂)  (̄() ) ≥ (() )

so that ̃∗ = ̂ ≤  Therefore, ∗ ≤  =⇒ ̃∗ ≤ 

Next, suppose that ∗  . If ∗ ≤ ̌ then ̃∗ = ∗ so that ̃∗   Suppose ∗  ̌. Then

by Lemma A1 and   ̌, for all  ∈ [̂ ̌) we have

((∗) ∗)  ((̌) ̌)  (̄() ) ≥ (() )

so that ̃∗ = ̌   Therefore ∗   =⇒ ̃∗   Summarizing, for  ∈ [̂ ̌) we have
∗ ≤  ⇐⇒ ̃∗ ≤ , which proves the result. 
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10 Appendix B: Kinks and Nonparametric Compensated Tax

Effects

Kinks have been used by Saez (2010) and others to provide information about compensated tax

effects for small kinks or parametric models. In this section we derive the nonparametric form

of a kink probability with general heterogeneity and show how it is related to compensated

effects. We also consider in our nonparametric setting how the Slutzky condition is related to

a positive kink probability and the density of taxable income being positive.

Consider a kink ̄ for a piecewise linear budget frontier where the frontier coincides with that

of the convex hull in a neighborhood of the kink and let Π̄ denote the kink probability. Let −
and + be the slope of the budget frontier at ̄ from the left and right respectively. Consider 

between − and + and let () = −+ ̄(−−) be the virtual income for the linear budget set
with slope  passing through the kink. Assuming that (() ) is continuously distributed,

let

() =
 (̄|())


 () = 

∙
( )


− ̄

( )



¯̄̄̄
( ) = ̄

¸¯̄̄̄
=()

where the expectation is taken over the distribution of .

Theorem B1: If Assumptions 1, A1, and A2 are satisfied then

Π̄ =

Z −

+

()() and ()() = −(̄|()) + ̄ · (̄|()) (10.13)

The () in Theorem B1 is an average compensated effect of changing  for a linear budget

set. This compensated effect appears here because virtual income is being adjusted as  changes

to stay at the kink. The virtual income adjustment needed to remain at the kink corresponds

locally to the income adjustment needed to remain on the same indifference curve, as shown

by Saez (2010). The formula for Π̄ bears some resemblance to the kink probability formulas

in Saez (2010) but differs in important ways. Theorem B1 is global, nonparametric, and takes

explicit account of general heterogeneity, unlike the Saez (2010) results, which are local or

parametric and account for heterogeneity implicitly.

Theorem B1 helps clarify what can be nonparametrically learned from kinks. First, the

compensated effects that enter the kink probability are only for individuals who would choose

to locate at the kink for a linear budget set with  ∈ [+ −]. Thus, using kinks to provide
information about compensated effects is subject to the same issues of external validity as, say,

regression discontinuity design (RDD). As RDD only identifies treatment effects for individuals

at the jump point so kinks only provide information about compensated effects for individuals

who would locate at the kink.
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Second, the kink probability depends on both a compensated tax effect () and on a pure

heterogeneity effect (). Intuitively, a kink probability could be large because the compensated

tax effect is large or because preferences are distributed in such a way that many like to be at

the kink. Information about compensated effects from kinks depends on knowing something

about pure heterogeneity effects.

Third, the pure heterogeneity effect, and hence compensated effects, is not identified when

− and + do not vary in the data. One cannot identify the pdf () for  ∈ (+ −) because
observations will not be available for such  values. Because of this it may be impossible to

say anything about compensated effects from kinks. An example can be used to illustrate.

Suppose that the parameter  of interest is a weighted average (over ) of compensated effects

 =
R −
+

()()
R −
+

() Theorem B1 gives

 =
Π̄R −

+
()



Evidently  depends on the denominator
R −
+

(). If − and + are fixed then () is

not identified for  ∈ (+ −) so that () can be anything at all over that interval and

the denominator can vary between 0 and ∞ In this setting the kink probability provides no

information about 

If () is assumed to satisfy certain conditions then a kink probability can provide infor-

mation about  when − and + are fixed. We can continue to illustrate using the parameter

. As in Saez (2010), (−) and (+) may be identified from the pdf of taxable income to the

left and right of the kink respectively. If () is assumed to be monotonic for  ∈ (+ −) then
we have bounds on  of the form

Π̄
(− − +)max{(−) (+)}

≤  ≤ Π̄
(− − +)min{(−) (+)}



If () is assumed to be linear on  ∈ (+ −) then

 =
Π̄

(− − +)[(−) + (+)]2


Thus we see that assumptions about () can used to obtain information about  from the

kink.

In some data the kink may remain fixed while − and/or + varies. This could occur in

a cross section due to variation in local tax rates. In such cases it may be possible to obtain

information about () from the data as  varies. This information may then be combined

with kink probabilities to obtain information about compensated effects. For brevity we will

not consider this kind of information here.
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This example of a weighted average compensated effect  is meant to highlight the im-

portance of the pure heterogeneity term () in recovering compensated effects from kink

probabilities. Similar issues would arise for measures of compensated effects other than .

Nonparametrically recovering information about compensated effects from kink probabilities

generally requires assuming or knowing something about the pure heterogeneity term.

Theorem B1 can also be used to relate positivity of the kink probability Π̄ to the Slutzky

condition. One could specify a CDF  (|) for taxable income for a linear budget set and
derive the probability of a kink from equation (10.13). Then the Slutzky condition is sufficient

but not necessary for positivity of Π̄ because an integral can be positive without the function

being integrated being positive. In this sense the kink probability can be positive without all

the conditions for utility maximization being satisfied.

A similar thing happens for the pdf of taxable income for a smooth, concave budget frontier.

By Theorem 2 the CDF of taxable income for a smooth budget set is  (|() ()) By the
chain rule the pdf of taxable income implied by the model will be

 (|() ())


= (|() ()) + ()[(|() ())− (|() ())] (10.14)

where () = () One could specify a CDF  (|) for taxable income for a linear
budget set and derive the pdf from equation (10.14). The first term  is nonnegative because it

is a pdf. The () is nonpositive because it is the derivative of the slope of a concave function.

Then the Slutzky condition is sufficient for a positive pdf because it means that the second

term will be nonnegative and hence so will the sum. However, the Slutzky condition is not

necessary for positivity of the pdf of taxable income because the positivity of the pdf  can

result in positivity of the sum of the two terms even when the second term is negative. In this

sense the pdf of taxable income for a smooth concave budget frontier can be positive without

all the conditions for utility maximization being satisfied.

This analysis shows that a coherent nonparametric model, one with a positive pdf and kink

probabilities, can be constructed without imposing all the conditions of utility maximization. In

particular, the distribution of taxable income implied by a particular  (|) can be coherent
without the Slutzky condition for the CDF being satisfied. This analysis is consistent with

most of the comments of Keane (2011) about a previous literature concerning the relationship

between positive likelihoods and utility maximization. We do differ in finding that positive

kink probabilities are possible without a Slutzky condition, which could be attributed to our

nonparametric framework.

Proof of Theorem B1: Let  () be the CDF of ( ) By standard probability theory,

Π̄ =  (̄)−lim↑̄  () By Theorem 4  (̄) =  (̄|+ +) and lim↑̄  () = lim↑̄  (|− −)
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Furthermore, by Assumption A2 (− − ) is continuously distributed so that lim↑̄  (|− −) =
 (̄|− −) Define Λ() =  (̄|()) for  ∈ [+ −] We then have

Π̄ = Λ(+)− Λ(−)

By the chain rule, () = −+ ̄(−−) and Lemma A1 of Hausman and Newey (2016), Λ()
is differentiable and

Λ()


= (̄|())− ̄(̄|()) = −()()

The conclusion then follows by the fundamental theorem of calculus. 

11 Appendix C: The Swedish Tax System and Summary Sta-

tistics

In Sweden, it is the individual, and not the household, that is the basic tax unit, and the income

tax system is a so-called dual tax system, meaning that earned income and capital income are

taxed separately. Capital income is taxed at a flat rate of 30% and earned income is taxed by

a progressive tax schedule.

The shape of individuals’ budget constraints is determined by the income tax, the transfer

system, and the employee paid social security contributions. The earned income tax consists

of two parts, a proportional local tax rate that applies to all income and a federal income tax

that kicks in for income above a certain level.The local tax rate varies across communes, but

with a thick clustering around 31-32%. The average local tax has been almost constant during

the time-period our sample covers, increasing from 31.04% in 1993 to 31.44% in 2008. There is

some variation in the local tax rate across communes and there is a concern that this variation

causes endogeneity; to account for this we use county dummy variables as covariates.

In 1993 the federal income tax was 20% and kicked in at a level corresponding to roughly

the 75th percentile of the income distribution. In 1995 this federal tax was raised to 25%. In

1999 it was reduced back to 20% for incomes lower than incomes at around the 95th percentile,

but the 25% tax rate was kept for income above this level; thus, from 1999 there were two levels

for the federal income tax. After 1999 the kink points of the tax schedule have been changed

several times, implying further time variation in tax rates.

In 2007 an EITC was introduced in Sweden and further expanded in 2008 and later years.

The Swedish EITC differs in design in several respects from that in other countries; it is universal

in the sense that all citizens below 65 face the same tax credit schedule, also, in 2007 and 2008

there was no phase out of the credit. The EITC was gradually phased in up to an income

corresponding to the median wage of a white-collar worker in the private sector. Although
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those with higher incomes did not get a lower marginal tax, they did get the full credit lump 

sum, hence, for high income people there was no substitution effect, just an income effect.

There is also a fairly complex set of rules governing what deductions an individual can make. 

There are some standard deductions that are applied automatically by the tax authorities, but 

also itemized deductions that you can claim. These rules have changed over time, which also 

contributes to the time variation in net of tax rates.

Two important components of the transfer system are welfare payments and housing al-

lowances. These transfers are phased out as income increases thereby decreasing the slope of 

the budget constraint at low levels of income. For families with children the child allowances 

are important; these allowances are not income dependent and do not affect slopes.

Employee social security contributions to finance health care, pensions and unemployment 

benefits was introduced in 1993 at a rate of 0.95% of income and over the years gradually 

increased to 7% in 2000. These “contributions” are paid on income up to a ceiling, and zero 

above the ceiling.
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Appendix C Table 1: Summary Statistics 

 All Years 1993 1998 2003 2008 

Gross labor income 420.329 377.856 406.396 428.010 464.490 
1-st net-of-tax rate 0.687 0.702 0.644 0.716 0.734 
1-st virtual income 254.250 219.443 222.637 261.824 247.039 
Marginal net-of tax-rate 0.418 0.424 0.379 0.437 0.459 

Marginal Virtual Income 295.007 259.160 262.941 301.510 301.535 
Last net-of-tax rate 0.332 0.374 0.324 0.328 0.328 
Last virtual income 327.578 269.726 278.517 347.411 360.649 
Age 43.873 42.431 43.774 44.325 44.275 

Dummy children<6 Yrs 0.357 0.440 0.367 0.299 0.333 
Dummy foreign born 0.141 0.108 0.131 0.148 0.170 
Wife's net labor income 141.718 124.647 124.004 149.965 184.022 
Transfers at zero labor inc 21.754 23.222 19.767 18.785 20.454 

Observations 81717 5192 4473 5592 5086 
Notes: The table presents means of key variables. Gross labor income, virtual income, wife's net 
labor income, and transfers at labor income are expressed in 1,000 SEK. 
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Appendix D Table 2: Debiased Estimates of Taxable Income Elasticity 
(Budget Set Polynomial Degree 5) 

 (1)  (2)  
Productivity Growth Slope Elasticity Std. Err. Income Effect Std. Err. 

0.5 0.866 0.117 7.950 7.738 
0.6 1.952 1.113 -1.052 1.004 

0.7 0.822 0.131 -0.565 0.506 
0.8 0.709 0.122 8.737 8.523 
0.9 0.657 0.124 9.046 8.833 
1.0 0.611 0.134 1.664 1.662 

1.1 0.548 0.128 1.992 1.994 
1.2 1.358 0.828 2.335 2.342 
1.3 -1.971 2.417 2.708 2.717 
1.4 0.0220 0.411 1.885 1.918 

1.5 -0.0766 0.456 -2.623 2.547 
1.6 0.333 0.140 -1.649 1.561 
1.7 -0.243 0.547 -1.751 1.663 
1.8 -0.349 0.585 -1.730 1.636 

1.9 -0.431 0.623 -1.578 1.483 
2.0 2.277 2.140 -1.518 1.419 

Lasso used for debiasing using procedure in Chernozhukov et. al (2022). 
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