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Abstract  
We investigate the Bayesian approach to model comparison within a two-country framework 
with nominal rigidities using the workhorse New Keynesian open-economy model of 
Martínez-García and Wynne (2010). We discuss the trade-offs that monetary policy-        
characterized by a Taylor-type rule faces in an interconnected world, with perfectly flexible 
exchange rates. We then use posterior model probabilities to evaluate the weight of evidence 
in support of such a model when estimated against more parsimonious specifications that 
either abstract from monetary frictions or assume autarky by means of controlled 
experiments that employ simulated data. We argue that Bayesian model comparison with 
posterior odds is sensitive to sample size and the choice of observable variables for 
estimation. We show that posterior model probabilities strongly penalize overfitting which 
can lead us to favor a less parameterized model against the true data-generating process 
when the two become arbitrarily close to each other. We also illustrate that the spill-overs 
from monetary policy across countries have an added confounding effect. 
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1 Introduction

Bayesian methods have become a standard part of the toolkit in quantitative macroeconomics. They are

commonly used to estimate the parameters and assess the �t of a given model, but they are also widely

employed for comparison across competing models. We can think of a model as a parameterized probability

distribution (based on a given theory of how the economy works) that characterizes the data-generating

process (DGP) from which the observables that constitute our data are drawn. Hence, by model comparison

we mean the evaluation of k � 2 competing parameterized probability distributions� the models M1,...,

Mk� representing di¤erent theories based on the observed empirical distribution of the data. In other words,

model comparison provides guidance on which of the existing theories better accounts for the observed data.

Model selection is a related decision-theory problem that speci�es a loss function as a metric to judge

the di¤erences across models against the data and pick among competing theories. It is known that under a

0�1 loss function it is optimal to select the model with the highest posterior probability (see, e.g., Kass and
Raftery (1995)). Model averaging is another related notion that incorporates model uncertainty by averaging

across all possible k models using the weights to re�ect how likely each model is given the observed data

(see, e.g., Hoeting et al. (1999)). Selecting the incorrect model or assigning too large a probability, though,

can result in misleading inferences and even in the implementation of sub-optimal policies meant to correct

for the e¤ect of frictions or economic distortions that may not even be present in the �true�DGP underlying

the data. So, this begs the question, when are Bayesian model comparisons more prone to fail to detect the

true DGP (or its closest match among the available models)?

The Bayesian approach to model comparison consists in placing probabilities on a number of competing

models and evaluating the posterior probability of each model (see, e.g., Kass and Raftery (1995) and An

and Schorfheide (2007)). The signi�cance of posterior model probabilities for making comparison across

competing models is largely based on the desirable asymptotic properties of these posterior probabilities

derived under fairly general regularity conditions. Fernández-Villaverde and Rubio-Ramírez (2004) show

that, as the sample size grows arbitrarily large, the Bayesian parameter point estimates converge to their

pseudo-true values. They also show that the best model under the Kullback-Leibler distance criterion� the

model closest to the �true�DGP in the Kullback-Leibler sense� is the one with the highest posterior model

probability. Moreover, these asymptotic properties hold even if the models being compared are non-nested,

non-linear, and do not even include a model for the �true�DGP.

In this paper, we illustrate the less-desirable small sample properties of Bayesian posterior model prob-

abilities. We work with simulated data in controlled experiments and make our case using a standard

log-linearized two-country New Open-Economy Macro (NOEM) model with nominal rigidities as the �true�

DGP. We compare the NOEM model against three alternative (log-linear) speci�cations that either assume

�exible prices (instead of nominal rigidities), posit a closed-economy setting for each country (autarky) or

both. All three competing models are nested in the NOEM model and the dimensionality of their pa-

rameter space is lower. We consider these three alternative speci�cations because they evoke important

concerns for policy-making� such as the role of globalization (openness to trade) and monetary policy in the

presence/absence of nominal rigidities.

We design a number of experiments to illustrate how model comparison depends not only on the length of

the time series used for estimation, but also on the selection of the observable macro variables on which the

compared models are estimated. We show that in small samples the Bayesian posterior model probabilities
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are more likely to favor a more parsimonious speci�cation over the NOEM model (our �true�DGP) when the

simulated data are generated under a parameterization that brings the probability distribution of the DGP

close to that of some of the alternative model speci�cations (theories) under consideration.

In our particular illustrations, that means posterior model probabilities can favor a closed-economy

model whenever the degree of trade openness is low enough or can favor a model that abstracts from

nominal rigidities whenever monetary policy is near-optimal and the degree of price stickiness is low. More

generally, our work suggests that model comparison, model selection and model averaging can be distorted

in economically relevant ways whenever model comparison strongly penalizes the more richly parameterized

models. Furthermore, what the preferred model ends up being is not straightforward as their implied

probability distributions tend to be nonlinear in the parameters� and there may be more than one model

that appears empirically close to the �true�one.

The remainder of the paper proceeds as follows: Section 2 outlines the workhorse model of Martínez-

García and Wynne (2010), and describes its building blocks. Several alternative nested speci�cations are

proposed for model comparison, whereby monetary policy e¤ectiveness changes by removing features such

as household�s preference for imported varieties or rigidities in �rm price-setting behavior. In Section 3

we illustrate our �ndings showing that in small samples posterior model probabilities may fail to pick the

more-heavily parameterized NOEM model against the alternative nested speci�cations, even though the

NOEM model is the �true� DGP for the data. These confounding results also appear when we try an

alternative selection of observables. In Section 4 we discuss our �ndings, make recommendations for applied

work with these techniques, and draw policy implications for the class of open-economy models that we

investigate. Section 5 provides a brief summary of the technical insights gained from our exercise and its

policy implications, and concludes. We also provide a companion on-line Appendix for the interested reader

where further detail on the model and the implementation strategy is given (see Martínez-García and Wynne

(2014)).

2 Economic Model

We adopt the model of Martínez-García and Wynne (2010). This is a two-country, symmetric New Open-

Economy Macro (NOEM) model with complete asset markets and nominal rigidities in the spirit of Clarida

et al. (2002), subject to country-speci�c productivity and monetary shocks. The stylized model abstracts

from capital accumulation, and assumes a cashless economy and perfectly �exible exchange rates. Labor is

immobile across countries, but all varieties of goods produced in each country can be traded. The model

provides a tractable economic environment that departs from monetary neutrality and allows international

spill-overs to be transmitted through trade.

The model features two standard distortions in the goods markets� monopolistic competition in produc-

tion and constrained price-setting behavior subject to Calvo (1983) contracts and producer currency pricing

(as in Clarida et al. (2002)):

� The introduction of an optimal labor subsidy for �rms funded with lump-sum (non-distortionary) taxes
eliminates the mark-up distortion caused by monopolistic competition. It also ensures that the deterministic

steady state of the model is the same under either �exible prices or nominal rigidities. Hence, the key

assumption on which the non-neutrality of monetary policy hinges is price stickiness modelled à la Calvo
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(1983).

� The law of one price holds at the variety level because all prices are set in the producer�s own currency.
Deviations from purchasing-power parity (PPP) arise solely due to di¤erences in preferences that result in

the composition of the consumption basket varying across countries, with local households consuming a

larger share of the locally-produced varieties than of the imported ones (home bias). The degree of openness

to trade that allows for the endogenous propagation of country-speci�c shocks internationally is also directly

tied to the appetite of households for imported goods.1

Since the setup of the model we use is otherwise extensively discussed in Martínez-García and Wynne

(2010), here we shall put the emphasis instead on the key equations of its log-linearized representation and

their economic interpretation. The companion on-line appendix (i.e., Martínez-García and Wynne (2014))

provides further details on the building blocks of the model as well as on our approach to data simulation,

Bayesian estimation and Bayesian model comparison.

The workhorse (log-linearized) model.2 The basic structure of the New Keynesian model is given by

a log-linearized system of three-equations� which includes a Phillips curve, an IS curve, and an interest

rate-based monetary policy rule� that characterize the dynamics of output, in�ation, and the short-term

nominal interest rate. Goodfriend and King (1997), Clarida et al. (1999), and Woodford (2003) among

others contributed to the derivation of those equations from explicit optimizing behavior on the part of �rms

(price-setters) and households in the presence of nominal rigidities.

Clarida et al. (2002) extends the three-equation workhorse New Keynesian model to a two-country set-

ting. Building on that contribution, Martínez-García and Wynne (2010) show that the same basic structure

of three log-linearized equations can be generalized to describe the dynamics of output, in�ation, and the

short-term rate when a country is open to trade. The monetary policy rule remains focused on domestic

objectives even in the open-economy model in the environment presented by Martínez-García and Wynne

(2010)� but both the Phillips curve and the IS curve di¤er from their closed-economy counterparts due to

the interactions across countries that take place through trade and the resulting spillovers into in�ation and

aggregate demand. The model of Martínez-García and Wynne (2010) showcases for us the interconnected-

ness that arises through trade in goods, while keeping most of the simplicity and tractability of the workhorse

(closed-economy) New Keynesian model.

In the framework of Martínez-García and Wynne (2010), the open-economy Phillips curve can be written

for each country as follows,

b�t � �Et (b�t+1) + :::
�

"
(1� �)

 
'+

 
� � (� � 1) (1� 2�)
� � (� � 1) (1� 2�)2

!!bxt + � '+ � + (� � 1) (1� 2�)
� � (� � 1) (1� 2�)2

!!bx�t
#
; (1)

b��t � �Et
�b��t+1�+ :::

�

"
�

 
'+

 
� + (� � 1) (1� 2�)
� � (� � 1) (1� 2�)2

!!bxt + (1� �) '+ � � (� � 1) (1� 2�)
� � (� � 1) (1� 2�)2

!!bx�t
#
; (2)

1We distinguish here between the endogenous international propagation that comes from trade and the purely-exogenous
international propagation that arises� even in the absence of trade� from the speci�cation of correlated exogenous shock
processes in both countries. By endogenous international propagation we refer more precisely to the e¤ect that a shock
impacting the foreign country has on the domestic macro aggregates as a result of the domestic economic agents�response to
that shock.

2All variables are de�ned in logs as deviations from steady-state.
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where b�t and b��t denote Home and Foreign in�ation (that is, quarter-over-quarter changes in the consumption
price index), and bxt and bx�t de�ne the Home and Foreign output gaps or slack (that is, the deviations of
output from its potential under �exible prices). The composite coe¢ cient � �

�
(1��)(1���)

�

�
is the common

term on the slope of the open-economy Phillips curve, 0 < � < 1 is the subjective intertemporal discount

factor, and 0 < � < 1 is the Calvo price stickiness parameter. The di¤erences in slope coe¢ cients for

domestic and foreign slack that arise in (1) � (2) are related to the inverse of the Frisch elasticity of labor
supply ' > 0, the elasticity of intratemporal substitution between Home and Foreign goods � > 0, and the

share of imported goods in the consumption basket 0 � � � 1
2 .
3

Price stickiness breaks monetary policy neutrality in the short-run, establishing a Phillips curve relation-

ship between nominal (in�ation) and real variables (slack). The assumption that household preferences for

consumption goods are de�ned over imported as well as domestic varieties is what gives rise to the global

slack hypothesis in this framework� that is, to the idea that in a world open to trade the relevant trade-o¤

for monetary policy captured by the Phillips curve is between a country�s in�ation and global (rather than

local) slack. Not surprisingly, the structural parameters � and � feature prominently among the structural

parameters that determine the slope of the open-economy Phillips curve in (1) � (2). These parameters
characterize respectively the fraction of �rms that cannot update their prices in any given period (price

stickiness) and the import shares (openness), although the role each plays in the dynamics of the model is

di¤erent.

� The parameter � enters through the common term for the slope �. This structural parameter captures

the degree of price stickiness, and price stickiness is the key distortion that introduces monetary non-

neutrality. Under �exible prices (absent nominal rigidities), monetary policy has no real e¤ects. Therefore,

the real e¤ects of monetary policy in the model tend to be negligible as � becomes arbitrarily close to

zero� since a larger fraction of �rms becomes unconstrained to change prices every period.

� The parameter � appears in the composite terms that di¤erentiate the slope for domestic and foreign
slack. This structural parameter determines the import share (the extent of trade openness), and explains

deviations from PPP in the model. In a closed-economy setting or under autarky, there is no endogenous

mechanism for the international transmission of shocks. Even if trade were permitted in this model, an

analogous situation would arise with no endogenous international propagation of shocks if all imports were

excluded from the consumption basket� that is, when � = 0.4 Therefore, international propagation tends to

be attenuated as the import share � becomes arbitrarily close to zero.

The open-economy IS equations in (3)� (4) illustrate how the output gaps, bxt and bx�t , are tied to shifts
in consumption demand over time and across countries,

(1� 2�)Et [bxt+1 � bxt] � (1� �) (� � (� � 1) (1� 2�))
hbrt�brti� :::

� (� + (� � 1) (1� 2�))
hbr�t�br�t i ; (3)

(1� 2�)Et
�bx�t+1 � bx�t � � �� (� + (� � 1) (1� 2�))

hbrt�brti+ :::
(1� �) (� � (� � 1) (1� 2�))

hbr�t�br�t i ; (4)

3The inverse of the intertemporal elasticity of substitution is equal to 1 under the assumption of log-utility on consumption.
4 In that case, there would be no reason for these countries to trade with each other and in equilibrium there would be no

exchange of goods anyway because the households of one country would not demand imports from the other country.
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where the real interest rates in the Home and Foreign country are de�ned by the Fisher equation as brt �bit�Et [b�t+1] and br�t � bi�t �Et �b��t+1� respectively, andbit andbi�t are the Home and Foreign short-term nominal
interest rates. The natural real rates that would prevail under �exible prices are denoted brt for the Home
country and br�t for the Foreign country. Price stickiness introduces in the IS equations a wedge between
the real interest rate (the actual opportunity cost of consumption today versus consumption tomorrow) and

the natural real rate of interest that captures its distortionary e¤ects on aggregate demand as shown in

(3)� (4). However, the Calvo parameter �, which determines the degree of nominal rigidities present, does
not appear explicitly in the equations. In turn, the appetite for imported goods � plays a prominent role in

the open-economy IS equations as it a¤ects the contributions of the demand distortions arising in the local

and export markets to the output gap of each given country.

The Home and Foreign Taylor (1993)-type monetary policy rules complete the speci�cation of the NOEM

model. Monetary policy pursues the goal of domestic stabilization (even in a fully integrated world) and,

hence, solely responds to changes in the local economic conditions as determined by each country�s in�ation

and output gap. As is commonly done in the literature, we assume intrinsic or endogenous inertia in the

policy rules described in (5) � (6) resulting from policy-makers intentionally smoothing out their policy

response to changing economic conditions,

bit � �ibit�1 + (1� �i) [(1 +  �) b�t +  xbxt] + b"mt ; (5)bi�t � �ibi�t�1 + (1� �i) [(1 +  �) b��t +  xbx�t ] + b"m�t ; (6)

where b"mt and b"m�t are the Home and Foreign monetary policy shocks modelled with a bivariate normal

distribution with zero mean and positive covariance across countries. The policy parameters  � > 0 and

 x > 0 represent the sensitivity of the monetary policy rule to movements in in�ation and the output gap

respectively, while 0 � �i < 1 represents the policy smoothing parameter.

The natural rates brt and br�t can be expressed as functions of expected changes in Home and Foreign
potential output, i.e.,

brt � (1� �)
 
� � (� � 1) (1� 2�)
� � (� � 1) (1� 2�)2

!�
Et
hbyt+1i� byt�+ :::

�

 
� + (� � 1) (1� 2�)
� � (� � 1) (1� 2�)2

!�
Et
hby�t+1i� by�t� ; (7)

br�t � �

 
� + (� � 1) (1� 2�)
� � (� � 1) (1� 2�)2

!�
Et
hbyt+1i� byt�+ :::

(1� �)
 
� � (� � 1) (1� 2�)
� � (� � 1) (1� 2�)2

!�
Et
hby�t+1i� by�t� ; (8)

re�ecting the fact that real rates respond to expected changes in� rather than the level of� real economic

activity as measured by potential output. Potential output refers to the output that would have been

produced under �exible prices, and accordingly byt and by�t denote the corresponding Home and Foreign
potential output in the model. Home and Foreign potential output can be expressed solely in terms of real
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shocks since monetary shocks have no real e¤ects absent nominal rigidities, i.e.,

byt �

0@1 + (� � 1)
0@ 2� (1� �)
'
�
� � (� � 1) (1� 2�)2

�
+ 1

1A1Abat � :::
(� � 1)

0@ 2� (1� �)
'
�
� � (� � 1) (1� 2�)2

�
+ 1

1Aba�t ; (9)

by�t � � (� � 1)

0@ 2� (1� �)
'
�
� � (� � 1) (1� 2�)2

�
+ 1

1Abat + :::
0@1 + (� � 1)

0@ 2� (1� �)
'
�
� � (� � 1) (1� 2�)2

�
+ 1

1A1Aba�t ; (10)

where bat and ba�t denote the corresponding Home and Foreign productivity shocks in the model.
The natural rates of interest and potential output are invariant to monetary policy or the monetary policy

shocks. In turn, the natural rates only depend on productivity shocks that are modelled as a VAR(1) without

spill-overs but with positive covariance across countries of their innovations. Natural rates and potential

output summarize the dynamics of a competing, nested model that abstracts from nominal rigidities�

in e¤ect, a stylized International Real Business Cycle (IRBC) model without capital accumulation. The

model presented here also nests naturally another competing class of models which assume a closed economy

whenever we set the import share � equal to zero. We include all those nested variants in our Bayesian

model comparison exercise.

Moreover, byt = byt + bxt and by�t = by�t + bx�t are respectively the actual Home and Foreign output vari-
ables. Domestic terms of trade (de�ned as the price of imports relative to the price of exports) is pro-

portional to the output di¤erential across countries, ctott � �
1

��(��1)(1�2�)2

�
(byt � by�t ), capturing the rel-

ative scarcity of Home- versus Foreign-produced goods. The domestic trade balance btbt � byt � bct �
�
�
�+(��1)(1�2�)
��(��1)(1�2�)2

�
(byt � by�t ) is proportional to the output di¤erential across countries illustrating the net

movement in goods that takes place across borders whenever relative scarcity of Home- versus Foreign-

produced goods arises in order to intratemporally smooth consumption.5 For further details on the trade

features of this class of open-economy New Keynesian models, the interested reader is referred to Martínez-

García and Søndergaard (2009).

Model Solution. We can replace (7)� (10) into (1)� (6) to express the system of equations that charac-

terizes the model as follows,

M bZt = NEt
h bZt+1i+Qb"t; (11)

5The terms of trade and the trade balance are related within the model as follows,btbt � (� + (� � 1) (1� 2�)) �ctott:
Hence, the so-called Harberger�Laursen�Metzler (HLM) e¤ect arises naturally within this model: an improvement in a country�s
terms of trade raises current income, but current consumption increases less than current income causing private savings to
increase and improving the trade balance (given a marginal propensity to consume less than unity).
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where

bZt =
�b�t; b��t ; byt; by�t ;bit�1;bi�t�1;bat�1;ba�t�1�0 ;b"t = (b"at ;b"a�t ;b"mt ;b"m�t )

0
;

and M , N and Q are conforming matrices. For reasonable parameter values, the matrix M is invertible and

(11) can be re-written as, bZt = �Et h bZt+1i+	b"t; (12)

where � = M�1N and 	 = M�1Q. Blanchard and Kahn (1980) provide conditions under which a unique

stable solution exists for (12). Although it is not easy to derive analytically the parameter restrictions that

guarantee existence and uniqueness, numerical experiments show that the policy parameter  � is key and

also that the lower bound on  � above which the model attains determinacy depends on the policy parameter

 x. In an open-economy model with interest rate smoothing in the monetary policy rule, the Taylor principle

(i.e.,  � > 1) remains broadly consistent with satisfying the Blanchard-Kahn condition for determinacy for

a wide range of plausible values of the structural parameters of the model. We parameterize the model for

simulation to ensure existence and uniqueness of the solution, and we accordingly set the range of priors for

estimation to avoid as much as possible the regions of the parameter space that result in indeterminacy or

no-solution.

We partition bZt into two blocks with bZ1t = (b�t; b��t ; byt; by�t )0 and bZ2t = �bit�1;bi�t�1;bat�1;ba�t�1�0. Assuming
the Blanchard-Kahn condition is indeed satis�ed and imposing lim

J!+1
�JEt

h bZ1t+Ji = 0, we solve (12) to

characterize the solution of the NOEM in state space form as follows,

bZ2t = A1 (�) bZ2t�1 +B1 (�)b"t; (13)bZ1t = C1 (�) bZ2t +D1 (�)b"t; (14)

where A1 (�), B1 (�), C1 (�) and D1 (�) are conforming matrices, and � is the vector of structural parameters

of the model that enter those matrices. Fernández-Villaverde et al. (2007) explore the link between Dynamic

Stochastic General Equilibrium (DSGE) models and state space representations like this one. The solution

in (13)� (14) shows that in�ation and output in both countries, bZ1t, can be characterized as linear functions
of a vector of state variables, bZ2t, and structural shock innovations, b"t. Since the vector of structural shock
innovations, b"s, is normally distributed, then the Gaussian state-space representation of the solution in
(13) � (14) implies that in�ation and output are also normally-distributed processes (see Hamilton (1994)
for further discussion on the Gaussian state-space model).

Model Simulation. We use the same benchmark parameterization of the model described in Martínez-

García and Wynne (2010) with only a small modi�cation: in our exercise, we assume log-utility on con-

sumption and accordingly set the elasticity of intertemporal substitution to one. We explore the sensitivity

of standard Bayesian model comparison with respect to the value of the parameters � and  � replacing in

each case the parameterization used in Martínez-García and Wynne (2010) with points along an interval

that spans for each the region of interest of the parameter space. We provide further details on the choice of

parameter values and intervals in the companion on-line appendix (i.e., Martínez-García and Wynne (2014)).

These two parameters� one structural �, one policy  �� are crucial in the model for di¤erent reasons.
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The structural parameter � de�nes how close the countries are to autarky and, as we have indicated before,

it plays a signi�cant role in the speci�cation of the open-economy Phillips curves and IS equations. The

structural parameter � indicates the degree of nominal rigidity and this friction is the reason why monetary

policy has real e¤ects in the model. The parameter � directly a¤ects the overall slope of the open-economy

Phillips curve, in a similar way as in the closed-economy case. However, we recognize that the distortion that

arises is conditional not only on the structure of the economy (for instance, the degree of integration through

trade � or the size of the nominal rigidity �) but� most importantly� on monetary policy. Since the policy

parameter  � determines the tolerance for in�ation of the domestic policy-makers in this environment, it

has a direct in�uence on how much slack accumulates� measured by the output gap. It also a¤ects how

close monetary policy is to attain the optimal allocation under �exible prices. We choose to focus on this

policy parameter here rather than directly on �.

We use the log-linear approximation of the workhorse model of Martínez-García and Wynne (2010)�

henceforth, the NOEM model� as our DGP and simulate data at each point of the relevant interval of the

parameter space for each of the two parameters under consideration. We keep in all cases the realization of

the shocks invariant and all other structural parameters unchanged at their benchmark values. We simulate

the full model over 11; 000 periods, and drop the �rst 1; 000 observations of each series to exclude any e¤ect

of the initial conditions on the simulation. We also select three sub-samples of 160 observations each, which

correspond to 40 years of quarterly observations� a plausible upper bound length for many time series of

international macro data which often can be much shorter than that. The simulation is implemented with

code written for Dynare (see, e.g., Adjemian et al. (2011)). Working with simulated rather than actual

data allows us a more precise assessment of the Bayesian posterior mode probabilities and their sensitivity

to implementation, as we always know the true DGP.

Model Estimation. The 10; 000-period long simulated sample allows us to illustrate the asymptotic

behavior of the posterior model probability, while the simulated sub-samples of 160 observations illustrate

the small sample inference problems that could arise in the data. Bayesian estimation and model comparison

is implemented with the Dynare software too. We assume a uniform prior over all competing models: the

NOEM model (the true DGP, M1), a variant with �exible prices and openness to trade (M2), a variant with

nominal rigidities and autarky derived under the assumption � = 0 (M3), and a variant with �exible prices

and � = 0 (M4).

The system of equations that characterizes M1 and the variants M2, M3, and M4 as special cases of the

speci�cation for the NOEM model (M1) can be found in the companion on-line appendix (i.e., Martínez-

García and Wynne (2014)). The solution for each model variant k = 1; 2; 3; 4 �ts into the Gaussian state-

space representation form given in (13)� (14) where Ak (�), Bk (�), Ck (�) and Dk (�) are the corresponding

conforming matrices for each. The set of structural parameters � is common to all models, but not all of the

parameters a¤ect the dynamics in each of the k speci�cations and this is re�ected in the matrices Ak (�),

Bk (�), Ck (�) and Dk (�) accordingly. We compute the marginal density of each model with a Laplace

approximation after estimating these four nested variants of the model including the true DGP (M1). The

Laplace approximation works rather well in practice, in particular for highly-peaked, unimodal posterior

densities.

As is conventionally done in the Bayesian literature, rather than imposing �non-informative�priors on

the structural parameters we choose fairly �informative�priors to incorporate other sources of information

and to re�ect current views on the structural parameters themselves. The prior mean is set to match the
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true parameter value of the DGP used to simulate the data (which corresponds with the parameterization

indicated above). For the parameters of interest � and  � (and also for �), the mean of the prior is set to

vary along the interval that we evaluate. The shape and the dispersion of the prior distributions are �xed in

all our experiments.6 The same priors for the parameters are used in the estimation of the four competing

models that we compare. All our choices on the prior distributions are summarized in Table 1. Further

discussion on the rationale behind the selection of prior distributions can be found in the companion on-line

appendix (i.e., Martínez-García and Wynne (2014)).

[Insert Table 1 about here.]

3 Findings

Sample Size of Observables for Estimation. The key features of the NOEM model, the DGP for the

simulated data (modelM1), that distinguish it from the competing modelsM2, M3, andM4 are openness to

trade and monetary non-neutrality due to the presence of nominal rigidities. Conventional practice would be

to include a selection of nominal and real variables for both the Home and Foreign country in the estimation

in order to facilitate the empirical assessment of these four models. We also require that the observables be

measured variables in all competing models. In order to avoid stochastic singularity in Bayesian estimation,

we must have the same number of observable variables as structural shocks. Since we have monetary and

productivity shocks that are country-speci�c in all models considered, we choose to estimate all competing

theories with four observable variables: Home and Foreign output as well as Home and Foreign in�ation.

However, we argue that a standard choice of variables such as the one postulated here� while reasonable ex

ante� has implications for Bayesian model comparison that are worth considering further.

Monetary policy under �exible prices and a zero import share � = 0 (model M4) or with �exible prices

and open to trade (model M2) has no real e¤ects, therefore in�uencing nominal variables only. Home and

foreign in�ation o¤ers insights only on the di¤erences in the implementation of monetary policy across

countries. In other words, nominal variables do not help us distinguish between autarky (M4) and openness

to trade (M2) under �exible prices. The economies represented by models M2 and M4 are already at their

respective potential and the output gap is naturally zero� but they still di¤er in the allocations they attain.

As can be inferred from equations (5)� (6), productivity shocks from both countries endogenously in�uence

the potential attained by each in M2 but not in M4 where only local productivity shocks matter. Still,

potential output comoves across countries in model M4 if solely because of the exogenous covariance of the

productivity innovations� so comovement by itself does not rule out an autarky solution. Naturally, a lower

import share � in model M2 tends to result in output allocations that are increasingly more similar between

models M2 and M4, making it harder to tell them apart based on the selected macro observables.

The optimal monetary policy for the workhorse closed-economy New Keynesian model with nominal

rigidities is to set in�ation at zero.7 This policy prescription seemingly carries over to the open-economy

model under autarky. The optimal monetary policy for the case with nominal rigidities and a zero import

6 In keeping the priors invariant, we tie our hands to facilitate model comparison and preclude the priors themselves from
becoming a source of additional degrees of freedom to �ne-tune the estimation and the computation of posterior model proba-
bilities.

7Assuming, as Martínez-García and Wynne (2010) do, that an optimal labor subsidy for �rms funded with lump-sum
(non-distortionary) taxes is set to eliminate the mark-up distortion.
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share � = 0 (model M3) is to set in�ation to zero in both countries ensuring that the economy attains

the same allocation as under �exible prices and autarky (model M4). Therefore, a more aggressive policy

response to in�ation� a higher value of  � to keep in�ation at bay� should result in allocations that are

increasingly more similar between models M3 and M4, making it harder to tell them apart based on the

observed nominal and real macro data.

Setting the in�ation rate on domestic consumption to zero in both countries for the NOEM model with

trade (model M1) is not necessarily going to attain the same allocation as under �exible prices and trade

(model M2). One way to illustrate this point is through closer inspection of the in�ation rate. We can

express the Home and Foreign in�ation rate of consumption goods b�t � b�Ht + ��ctott and b��t � b�F�t � ��ctott
respectively, where b�Ht and b�F�t denote Home and Foreign in�ation of the locally-produced goods (that is,

quarter-over-quarter changes in the output price index) and �ctott represents changes in the terms of trade.
Setting monetary policy to bring down in�ation to zero in both countries (i.e., b�t � b��t � 0) does not ensure
that the rate of in�ation on the locally-produced goods b�Ht and b�F�t becomes zero as well, except in the case

where � = 0 (model M3 with nominal rigidities or model M4 under �exible prices).

As noted before, the terms of trade capture the relative scarcity of Home- versus Foreign-produced goods,

so the in�ation rate on consumption goods can be further re-written as follows,

b�t � b�Ht + �
 

1

� � (� � 1) (1� 2�)2

!
(�byt ��by�t ) ; (15)

b��t � b�F�t � �
 

1

� � (� � 1) (1� 2�)2

!
(�byt ��by�t ) ; (16)

which implies that in�ation and the growth di¤erential across countries must be related in equilibrium.8

We cannot assume that optimal monetary policy implies that (�byt ��by�t ) � 0 because output is driven by
country-speci�c shocks which generally do not produce identical growth rates for both countries in every

period. As a result, in the NOEM model with trade (model M1), a monetary policy set to bring down con-

sumption in�ation towards zero would generally not attain a zero in�ation rate on the locally-produced goodsb�Ht and b�F�t � so long as local �rms are subject to price stickiness and cannot all adjust their prices, there

will be some loss relative to the �exible price case. However, the distortion that remains from implementing

such a monetary policy tends to diminish the smaller the value of the import shares � is.

Based on that, setting in�ation at zero in both countries under the NOEM model speci�cation (model

M1) should result in an allocation that is increasingly close to the allocation attained under �exible prices

and trade (model M2) as the import share � becomes arbitrarily close to zero (as we assume for models

M3 under price stickiness and M4 under �exible prices). Therefore, a more aggressive policy response to

in�ation� a higher value of  � to keep in�ation at bay� should result in allocations that are increasingly

more similar between all models�M1, M2, M3, and M4� as the import share � becomes arbitrarily close

to zero, making it harder to tell them apart based on any of the observed macro data that we have.9

8 In the model, the in�ation di¤erential is the same whether measured in terms of consumption or the output of the
locally-produced goods� i.e. b�t � b��t � b�Ht � b�F�t . It is worth noting as well that the model implies growth dif-
ferentials across countries should be re�ected in the di¤erentials between the in�ation rates calculated on consumption

and output (akin to the CPI and the GDP de�ator respectively), i.e. b�t � b�Ht � �
�

1
��(��1)(1�2�)2

�
(�byt ��by�t ) andb��t � b�F�t � ��

�
1

��(��1)(1�2�)2
�
(�byt ��by�t ).

9The fact that we include in�ation among our observables, however, may help distinguish the models with price stickiness
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Experiment with the Policy Parameter  �. To investigate Bayesian model comparison, we evaluate the

implications of increasing the similarity between all four competing models with the selection of observables

indicated before. We simulate data and compare all four models on an interval that spans  � between 0 and

6 under the benchmark parameterization that sets the import share in the consumption basket � at a low

value of 0:06 in order to increase the similarity between all four competing models as tolerance for in�ation

declines� that is, as  � increases while keeping the Calvo-parameter � unchanged at 0:75. All the posterior

model probabilities from this experiment are summarized in Figure 1.

[Insert Figure 1 about here.]

As expected, posterior model probabilities favor the true DGP (the NOEM model,M1) as the sample size

gets asymptotically large� which is what we �nd with a long sample of 10; 000 simulated observations. Inter-

estingly, the international transmission mechanism is weak enough that under reasonable parameterizations

of the monetary policy rule the closed-economy model M3 can still appear as the preferred one. Moreover,

we show that the more parsimonious model M3 may get the upper hand in samples of 160 simulated ob-

servations based on the computed posterior model probabilities� see sub-sample 3 in Figure 1� whenever

monetary policy is more aggressive.

The crucial di¤erence between these two models is that M1 (the true model) features nominal rigidities

that result in monetary policy non-neutrality and is open to trade, while monetary policy remains neutral

in M3 but there is no endogenous transmission of shocks across countries as households� in each do not

demand imported varieties of goods from each other. Therefore, if we were to wrongly conclude on the basis

of the evidence available that M3 is preferred by the data, we may also wrongly conclude that a loosening

of monetary policy has no real e¤ects and spillovers on the economic activity of the other country (when it

actually does!).

The implications of that policy mistake, of course, would only become obvious if the policy change were

to be implemented and take e¤ect. This may result in an incorrect identi�cation of the source of business

cycle �uctuations as endogenous international spillovers would be attributed in theM3 model to the country-

speci�c shocks and, in particular, to the exogenous covariance of the innovations. It would be too late to �nd

out ex post that the expected dynamic implications of this policy shock were predicated on a misspeci�ed

model that did not take into account households�true preferences for imported varieties from other countries

and the potential impact that intratemporal smoothing consumption through trade can have.

Experiment with the Structural Parameter �. A smaller share of imported goods in the consumption

basket under the NOEM model (model M1) shuts down the key channel for the endogenous international

transmission of shocks, resulting in an allocation closer to autarky (as in model M3). Therefore, a lower

value of � should result in allocations that make it increasingly more di¢ cult to distinguish between models

M1 and M3. Similar to what we did for the policy parameter, we simulate data and compare all four

alternative models on an interval that spans � between 0 and 1
2 . All the posterior model probabilities from

this experiment are summarized in Figure 2.

[Insert Figure 2 about here.]

from those under �exible prices if in�ation is set to zero under �exible prices. However, more generally, �exible prices only imply
that the output gap ought to be zero but it does not constraint in�ation. If we adopt the same monetary policy speci�cation
as for the NOEM model, this pins down a non-zero in�ation rate that becomes increasingly less informative about the presence
of nominal rigidities in the model as the allocation of all four models becomes more similar.
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While the asymptotic results validate the true DGP (the NOEM model,M1) when we look at a long sam-

ple of 10; 000 observations, we see that again it is possible to argue in favor of the more parsimonious closed-

economy model M3 in 160-observations samples based on the computed posterior model probabilities� see

Figure 2� whenever the import shares are small enough. As before, we would be missing out the endoge-

nous transmission mechanism that comes from trade by selecting model M3. The crucial di¤erence from the

policy-makers point of view between these two models is thatM1 (the true model) de�nes the relevant trade-

o¤ for monetary policy to be between domestic in�ation and global slack (the global slack hypothesis) while

model M3 represents the standard closed-economy view which postulates that the monetary policy trade-o¤

that arises from nominal rigidities is between domestic in�ation and domestic output. Selecting the wrong

model in this case would result in an incorrect identi�cation of the sources of business cycle �uctuations and

how they are transmitted across countries, as we argued before. However, it can also lead policy-makers to

ignore the role and consequences of foreign factors in the dynamics of in�ation when setting monetary policy

or in evaluating a policy change.

One of the major concerns for us would be that model comparison in small samples may contribute to

such policy mistakes. However, we also recognize that this is a selection error that could have easily been

avoided just by looking at trade itself. Since model M1 implies non-zero imports while model M3 imposes

zero imports, both predictions are incompatible and so one of the two models can be easily refuted in the

data. Therefore, more generally we expect that the selection of observables for estimation can presumably

help us avoid some of these mistakes.

Selection of Observables for Estimation. In the benchmark implementation described so far, we make

model comparisons based on Home and Foreign output, as well as Home and Foreign in�ation. Now we

experiment with the selection of an alternative set of four observables replacing Foreign output with the

terms of trade for Bayesian estimation. Guerron-Quintana (2010) shows that Bayesian estimation and

structural identi�cation can be sensitive to the selection of observables, and not too surprisingly we �nd that

posterior model probabilities are also sensitive to our selection of observables in small samples.

Using terms of trade data as an observable is meant to reveal further information about the trade channel

for the international transmission of shocks. Figures 3 and 4 replicate the experiments behind Figures 1 and

2 respectively� everything remains the same in our implementation and estimation, except for the fact

that we are using now a di¤erent set of observables to estimate each model. The evidence con�rms that

the posterior model probabilities are unperturbed by the alternative combinations of observables used for

estimation when arbitrarily large samples are available. However, we see that the information content of the

terms of trade can work to either revert or worsen the erroneous preference documented earlier toward the

more parsimonious, closed-economy models that may arise in small samples.

[Insert Figures 3 and 4 about here.]

Using terms of trade data as an observable, we also investigate in Figure 5 a range of values for the

parameter � that determines the degree of price stickiness present in the economy. In this case, posterior

model probabilities favor the true DGP (the NOEM model, M1) as the sample size gets arbitrarily large�

but, interestingly, we �nd that 10; 000 quarterly observations (2; 500 years of data!) may not be large enough

to pick the true DGP if � is too low. We also show that the international transmission mechanism is weak

enough that under reasonable parameterizations of the stickiness parameter �, the closed-economy model
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M3 can become the preferred one in small samples (see sub-sample 2 in Figure 5). Moreover, we also show

that the �exible price speci�cations M2 and M4 may get the upper hand as well in sub-samples of 160

observations when � is low� see sub-samples 1 and 3 in Figure 5.

The crucial di¤erence between these two alternative models (M2 andM4) and modelM1 (the true model)

is that the true DGP features nominal rigidities that result in monetary policy non-neutrality, while monetary

policy is neutral whenever prices are �exible. Therefore, if we were to wrongly conclude on the basis of the

evidence available that either M2 or M4 are preferred by the data over M1, we may also wrongly conclude

that a loosening of monetary policy has no real e¤ects on economic activity (when it actually does!). The

implications of that policy mistake, of course, would only become obvious if a policy change were to be

implemented and take e¤ect by which time it would already be too late to �nd out that this policy choice

was predicated on a misspeci�ed model.

[Insert Figures 5 about here.]

Common sense suggests that one may want to experiment with a number of possible combinations of

observable variables as a robustness check. In practice, though, the selection may be already signi�cantly

limited due to data problems (quality) and due to availability limitations. However, exploring alternative

sets of observables whenever that is feasible is only a practical recommendation that can help us determine

how robust the support for a particular model is� it does not say anything about the deeper question of how

we should choose the model favored by the data whenever alternative combinations of observables produce

contradictory evidence (that is, when they produce signi�cantly di¤erent posterior model probabilities). It

does not o¤er us further guidance on how to select the appropriate set of observables for a given model

either.

In our exercise, however, we have the advantage� uncommon in applied macroeconometrics work� to

know the true DGP underlying the data and so we can dig a little deeper into these results based on

simulated data. The macro observables that are common to all four models are all ultimately related to two

core variables per country that characterize the dynamics of the NOEM model� in�ation and the output gap

(which given a speci�cation for potential output can be related to the observable measure of output), whose

dynamic path is characterized by a solution of the form presented in (13)�(14). Not surprisingly, as di¤erent
models become more similar in the path they imply for output and in�ation, they also appear closer when we

use an alternative set of observables that are in e¤ect linear combinations of output and in�ation themselves

together with the structural shock innovations. Naturally, if Bayesian model comparison methods fail to

select the correct speci�cation in small samples with the standard selection of observables that includes the

core variables, they may tend to produce false signals in small samples with other alternative selection of

observable variables� as we have seen here.

Variable selection, in this case, could contribute to attenuate the problem or simply help us detect whether

a selection problem exists (when it gives di¤erent predictions with alternative observables), but it cannot

in general avoid the problem entirely for us. In other words, when model speci�cations become arbitrarily

close, the selection of observables for estimation cannot help us consistently avoid the preference toward

more parsimonious speci�cations that we have found in our small sample experiments.

13



4 Discussion

We have a collection of k � 2 models each of which is fully-described with a parameterized joint probability
density over the vector of observable (endogenous) variables Z, i.e.

Mi = ffi (z j �i) : �i 2 �ig ; 8i = 1; :::; k; (17)

where �i is the vector of unknown parameters of model Mi, �i is the parameter space and di = dim (�i) its

dimension, fi (z j �i) is the parameterized probability density, and z is a given realization of the vector of
observable variables Z.

The likelihood function for model Mi, given n observations of the observable variables zn = (z1; :::; zn),

is the probability of zn occurring under the probability density that describes model Mi given the vector of

parameters �i, i.e. Li (�i) � fi (z
n j �i). We refer to the log-likelihood function for model Mi as li (�i) and

represent it as follows,

li (�i) � ln fi (zn j �i) =
Xn

j=1
ln fi (zj j �i) ; 8i = 1; :::; k: (18)

We assign prior probabilities, Pr (Mi), to all model speci�cations i = 1; :::; k, and also prior probabilities to

the parameters �i that characterize each model, fi (�i).

The marginal likelihood mi � fi (z
n jMi) of any model Mi, i = 1; :::; k, is referred to as the model

evidence, and it is de�ned by the expectation taken over the likelihood function Li (�i) � fi (z
n j �i) with

respect to the prior distribution of the parameters fi (�i), i.e.

mi � fi (z
n jMi) =

Z
�i

fi (z
n j �i) fi (�i) d�i; 8i = 1; :::; k: (19)

The posterior probability for model Mi can be calculated using Bayes�Theorem as,

Pr (Mi j Zn = zn) =
fi (z

n jMi) Pr (Mi)Xk

p=1
fp (zn jMp) Pr (Mp)

=
mi Pr (Mi)Xk

p=1
mp Pr (Mp)

; 8i = 1; :::; k; (20)

where the marginal likelihood mi providing evidence for modelMi times the prior assigned to that particular

model is normalized with respect to the model evidence times the model prior of all k (� 2) models under
consideration.

The Bayesian posterior odds for model M1 versus the alternative model Mi, i = 2; :::; k, summarize the

relative support that the data provides for one speci�cation over the other with the ratio of their posterior

probabilities, i.e.,
Pr (M1 j Zn = zn)

Pr (Mi j Zn = zn)
=
m1

mi

Pr (M1)

Pr (Mi)
; 8i = 2; :::; k: (21)

The posterior odds in favor of modelM1 against an alternative speci�cationMi, i = 2; :::; k, can be expressed

as the product of the prior odds Pr(M1)
Pr(Mi)

in favor of M1 times the corresponding Bayes Factor de�ned by the

ratio B1i = m1

mi
, as can be seen in (21). The marginal likelihood is key to calculate the Bayes Factor� which

is the quotient of the marginal likelihoods of the two alternative models. Therefore, marginal likelihoods are

also crucial to derive the Bayesian posterior odds in (21) conventionally used for Bayesian model selection.
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Though there are alternative approaches to compute the Bayes Factor and the Bayesian posterior odds�

such as the (generalized) Savage-Dickey density ratio discussed by Verdinelli and Wasserman (1995)� the

method based on the marginal likelihood remains the most common in applied macro-econometrics work

with Bayesian techniques. We rely on the computation of the marginal likelihood in all our experiments

as well. Here we review some aspects of the estimation and the computation of the marginal likelihoods

that can directly a¤ect the assessment of competing models based on Bayesian posterior odds, with special

emphasis on understanding what contributes to explain the false signals in model selection that we have

encountered in our experiments with small samples.

Interpreting Our Findings: The Role of Sample Size. After specifying the priors over the models

and over the model parameters, the practical di¢ culty in calculating posterior probabilities or posterior

odds is computing the marginal likelihood de�ned in (19). Only in very special cases we can calculate the

marginal likelihood analytically� most notably for the exponential likelihood family with conjugate priors,

as in the case of Gaussian linear models (see, e.g., Zellner (1971)). In practice, analytical solutions are often

intractable and computational methods are needed.

Among the di¤erent methods available to approximate the marginal likelihood, we can list: (a) asymp-

totic approximations (Laplace�s method, Schwarz Criterion, BIC); (b) numerical integration (e.g., Gaussian

quadrature), importance sampling and annealed importance sampling (see, e.g., Geweke (1989), Neal (2001));
(c) posterior distribution simulations (e.g., Markov Chain Monte Carlo (MCMC) methods like the Metropolis-

Hastings algorithm and the Gibbs sampler); and (d) variational inference (see, e.g., Corduneanu and Bishop

(2001)), expectation propagation (see, e.g., Minka (2001)).

We use the Laplace approximation to compute the marginal likelihood of a given speci�cation and

derive the Bayesian posterior odds for model comparison. Asymptotic approximation methods such as

Laplace�s method rely on normal asymptotic approximations of the marginal likelihood. These methods

work well in most familiar problems, are accurate, easy to compute and fast. They provide adequate

approximations especially for well-behaved posterior densities that are highly-peaked and unimodal, since

asymptotic approximations rely on a normal density to approximate the posterior density.

The Gaussian state space representation in (13)� (14) implies that the likelihood of the model, Li (�i) =
fi (z

n j �i), is characterized by a normal distribution under the DGP as well as under any of the alternative
speci�cations we propose for model comparison. Hence, in our case the likelihood of the models we investigate

is known to be Gaussian. The speci�cation of the prior distributions for the model parameters then plays

an important role to retain the highly-peaked and unimodal shape on the posterior density and, therefore,

to ensure that the Laplace approximation is reasonably accurate.

In our illustrations of Bayesian model comparison, the choice of the Laplace approximation method ap-

pears reasonable on grounds of computational accuracy. For other models, however, approximation methods

may not attain accurate estimates of the marginal likelihood. In that case, alternative ways to compute the

marginal likelihood should be pursued in order to avoid model selection errors due to inaccurate estimates

of the marginal likelihood. An evaluation of the advantages and disadvantages of alternative methods to

compute the marginal likelihood� especially when models are less well-behaved than the ones considered

here� goes beyond the scope of this paper. We leave it for future research.

Apart from the reasonable accuracy attained in our exercise, we also discuss this asymptotic approxima-

tion method in greater detail here to gain further insight on the role of sample size and the penalization of
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over�tting that is inherent in Bayesian posterior odds calculations.

Laplace�s Approximation Method: Accuracy and Sample Size. The Laplace�s (or Gaussian) method which

we apply in our experiments with Bayesian model comparison is based on the idea that asymptotically the

posterior distribution can be approximated with a multivariate Gaussian distribution (see, e.g., Kass et al.

(1988)). Let b�i be the posterior mode which is de�ned as the vector of parameters �i that maximizes
the posterior probability fi (�i j zn) that characterizes model Mi. The posterior probability is proportional

to the likelihood function times the model parameters�priors, i.e. fi (�i j zn) / fi (z
n j �i) fi (�i)), so the

optimization required to derive the posterior mode can be de�ned as,

b�i = argmax
�i

fln (fi (zn j �i) fi (�i))g ; (22)

where hi (�i) � ln (fi (zn j �i) fi (�i)) is a log-transformation that also maximizes the posterior probability.
The �rst-order conditions of the maximization problem in (22) imply that 5hi

�b�i� = 0.
Expanding hi (�i) as a quadratic function around b�i we obtain that,

hi (�i) � hi

�b�i�+5hi �b�i���i � b�i�� 1
2

�
�i � b�i�0H �b�i���i � b�i� ; (23)

where H
�b�i� = �D2hi (�i) is the negative Hessian of second derivatives of hi (�i) evaluated at b�i. Replacing

the �rst-order conditions from (22) and exponentiating (23) yields an approximation of fi (zn j �i) fi (�i) that
has the form of a normal density with mean b�i and covariance matrix H �b�i��1. Integrating that expression
we obtain the Laplace approximation of the marginal likelihood, i.e.,

lnmi � ln
�
fi

�
zn j b�i��+ ln�fi �b�i��+ di

2
ln (2�)� 1

2
ln
���H �b�i���� � lnmijLaplace ; (24)

where di is the dimension of the parameter space �i of model Mi for any i = 1; :::; k.

Kass et al. (1988) and Kass et al. (1990) show that, under certain regularity conditions, errors in this

approximation are bounded by OP
�
n�1

�
where n is the number of observations used in the estimation.

We can also obtain an OP
�
n�1

�
approximation of the marginal likelihood with b�MLE

i being the maximum

likelihood estimator (MLE) and H
�b�MLE

i

�
being the observed information matrix (that is, the negative of

the Hessian matrix evaluated at the MLE estimator, b�MLE

i ) in (24). The inverse of the Fisher information

matrix (i.e. the inverse of the expected information matrix which converges as n grows to the inverse

of the asymptotic covariance matrix) can also be used in (24), but at the expense of incurring a greater

approximation error in the computation of the marginal likelihood of order OP
�
n�

1
2

�
.

Thus, when Laplace�s method is applied to both the numerator and denominator of the Bayes Factors

B1i =
m1

mi
in (21) to compare M1 against any other alternative speci�cation Mi, i = 2; :::; k, the resulting

approximation of the Bayes Factors retains an approximation error of order OP
�
n�1

�
(or of order OP

�
n�

1
2

�
if the Fisher information matrix is used).10 For many problems for which the sample size n is moderate and

the likelihood is reasonably approximated by that of a normal distribution, the Laplace method produces

accurate and easy to compute approximations of the marginal likelihood and the Bayes Factors.11

10See, e.g., the discussion on page 778 of Kass and Raftery (1995) of the approximation error of the Bayes Factors of nested
models under the Laplace method.
11The Gaussian state-space representation of the solution implies the normality of the likelihood for the models investigated in
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Hence, the Laplace approximation to computing marginal likelihoods seems reasonable in our illustrations

in part because the Gaussian state-space representation of the solution ensures the normality of the likelihood

and the posterior densities are expected to be well-behaved and single-peaked. It is reasonable also because

the sample sizes more relevant to us are su¢ ciently large so that the approximation error is negligible and the

computed Bayes Factors adequately accurate. In providing guidance on the sample size required to attain

an adequate approximation with the Laplace method, we follow the recommendations of Kass and Raftery

(1995).

Kass and Raftery (1995) warn us that sample sizes of less than 5di observations may be insu¢ cient

to attain an accurate approximation of the marginal likelihood with the Laplace method, where di is the

dimension of the parameter space of modelMi. In turn, sample sizes greater than 20di should be large enough

to ensure the method works well in most cases in which the likelihood function itself is not too di¤erent from

that of a normal distribution. However, we must recognize that a sample size of 20di observations appears

increasingly out of reach in practice for most heavily parameterized medium- and large-scale DSGE models.

In the experiments reported in this paper, the most parameterized speci�cation is the DGP (model M1)

which includes 12 parameters (not counting the calibrated intertemporal discount factor, �). All other

speci�cations have fewer than 12 parameters. We set the small sample size in our experiments to n = 160

quarterly observations (40 years of quarterly data). This implies that all models under consideration are

above the threshold of 5di observations suggested by Kass and Raftery (1995) and, in fact, come close to

the 20di threshold in our case.

We are neither interested in very long sample sizes that should lead to the correct outcome in model

selection but are generally not available for applied work, nor in the very short samples where the posterior

densities are still largely dominated by the priors we place on the model parameters. In turn, we examine in

our experiments a sample range in between those which is more realistic for applied work (given the length

of data that is generally available) and relevant. Our notion of a small sample size in practice satis�es the

following broad criteria:

(a) The sample size is large enough so that the Laplace approximation works well given an expected ap-

proximation error of order OP
�
n�1

�
(or of order OP

�
n�

1
2

�
) and surpasses the lower threshold recommended

by Kass and Raftery (1995).

(b) The sample size is large enough so that there is enough data to overwhelm the priors.

(c) The sample size is not too large so that the penalization for over�tting that we highlight in this paper

still has bite to tilt the posterior odds in favor of the most parsimonious speci�cation (and at the expense of

selecting the wrong model).

Under this notion of a small sample, the Laplace method su¢ ces for our purpose of providing an accurate

assessment of the problem of false signals in Bayesian model selection� a problem that arises, as can be seen

in our illustrations, whenever very large sample sizes of observations are not available for the estimation and

a problem that otherwise would be masked by the priors for very short sample sizes.

Laplace�s Approximation Method: Over�tting Penalization and Sample Size. Apart from the appropri-

ateness of the Laplace method given the notion of a small sample that we investigate here, this asymptotic

approximation also helps us shed some light on the role that sample size n and the dimensionality of the

this paper. Sample size is a determinant factor on the appropriateness of the normal approximation for the posterior distribution.
Slate (1994) provides guidance on the sample size requirements needed to obtain posterior normality and guarantee the accuracy
of the Laplace�s method for the exponential distribution family. The normal, gamma, and beta among other well-known
distributions belong to the exponential family.
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parameter space di of a given model Mi, i = 1; :::; k, play on the calculations of the marginal likelihood, the

Bayes Factors and the Bayesian posterior odds for model comparison.

As the sample size n grows, the di¤erent terms of the Laplace approximation to the marginal likelihood

grow at di¤erent rates. The log-likelihood function should grow proportionally to n, the size of the penal-

ization for over�tting that arises from the Hessian term ln
���H �e�i���� increases at the rate of di ln (n) which

also depends on the dimensionality of the parameter space, while the remaining approximation terms are

invariant with sample size but depend on the choice of priors and the dimensionality di.

More generally, the di¤erent terms of the Laplace approximation of the marginal likelihood in (24) grow

with sample size n as indicated here,

lnmijLaplace � ln
�
fi

�
zn j e�i��| {z }
O(n)

+ ln
�
fi

�e�i��| {z }
O(1)

+
di
2
ln (2�)| {z }
O(1)

� 1
2
ln
���H �e�i����| {z }
O(di lnn)

: (25)

For any given sample size for which this approximation holds, there is a penalty for the dimensionality of the

model di that comes from the last two terms in the right-hand side of (25) and varies with n. When Laplace�s

method is applied to both the numerator and denominator of the Bayes Factors B1i = m1

mi
, i = 2; :::; k using

(25), the resulting approximation to compare the model evidence ofM1 against that of any other alternative

speci�cation Mi, i = 2; :::; k can be expressed as follows,

lnB1ijLaplace �
�
l1

�e�1�� li �e�i��| {z }
O(n)

+
�
ln
�
f1

�e�1��� ln�fi �e�i���| {z }
O(1)

+ :::

�
(d1 � di)

2
ln (2�)

�
| {z }

O(1)

� 1
2

�
ln
���H �e�1����� ln ���H �e�i�����| {z }

O((d1�di) lnn)

:
(26)

Similarly, this can be extended to approximate the Bayesian posterior odds de�ned in (21).

At moderate sample sizes for which the Laplace approximation seems appropriate, the penalty for over-

�tting can become the deciding factor to understand why Bayesian model comparison may favor parsimony

even at the expense of selecting the wrong model. As the sample size n keeps growing, the di¤erences in

the log-likelihood function
�
l1

�e�1�� li �e�i�� should grow proportionally to n while the size of the penalty
increases at the rate of (d1 � di) lnn. Hence, the over�tting penalty embedded here is a relatively harder
threshold to meet in samples of moderate length such as the ones we explore in all our illustrations whenever

the probability densities that characterize each competing model are arbitrarily close to each other.

In other words, for moderate sample sizes it might occur that the Bayesian posterior odds favors the less

parameterized model if the log-likelihood di¤erences between the models under comparison are too small

to outweigh the over�tting penalty found in (25). Otherwise, researchers would require unrealistically large

sample sizes to be able to consistently identify the correct model when the correct speci�cation is more

heavily parameterized than the alternative. That explains mechanically why in our experiments we validate

the asymptotics in Fernández-Villaverde and Rubio-Ramírez (2004) but still �nd that the more parsimonious

model could be the one picked up against the more complex true speci�cation (even when using 40 years of

quarterly data for that!).

BIC�s Approximation Method: An Alternative Trade-o¤ Between Accuracy at a Given Sample Size and the
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Role of Priors for Model Selection. A more e¢ cient, but (in general) less accurate asymptotic approximation

is obtained by: (a) using a consistent, likelihood-based estimator e�i to evaluate the approximation (naturally,
the MLE estimator, e�i = b�MLE

i can used for this); (b) retaining only those terms in equation (24) that

increase with the sample size n, i.e. dropping ln
�
fi

�e�i�� + di
2 ln (2�) which do not increase with n; and

(c) using the fact that for large n, the determinant
���H �e�i���� is proportional to ndi . This approximation is

called the Schwarz criterion and takes the form,

bmi � li

�b�MLE

i

�
�
�
di
2

�
ln (n) ; (27)

where li
�e�i� = ln

�
fi

�
zn j e�i�� is the log-likelihood function evaluated at the value of the estimator e�i.

The right-hand side in (27) is equal to the Schwarz criterion for model selection where di is the dimension

of the parameter space �i of model Mi for any i = 1; :::; k. This approximation was �rst derived by Schwarz

(1978) (see also Akaike (1978)).

Kass and Wasserman (1995) show that under regularity conditions similar to those for the Laplace

approximation, the Schwarz criterion satis�es that,

mi = bmi +OP (1) ; (28)

where e�i is a consistent, likelihood-based estimator (or simply the MLE estimator b�MLE

i as indicated before).

Moreover, the relative error of the approximation tends to zero in probability, i.e. jbmi�mij
jmij !

P
0. Notice that

minus twice the Schwarz criterion is the Bayesian Information Criterion (or BIC). Hence, the BIC provides

an OP (1) approximation for the marginal likelihood as well. The Schwarz criterion and by extension the

BIC are in e¤ect OP (1) approximations to the marginal likelihood.

The BIC approximation is appealing for model comparison in a number of respects that we highlight

here:

First, it does not depend on the prior assigned to the vector of parameters. So this procedure can be

applied to compute the marginal likelihood even when the priors fi (�i) are di¢ cult to set precisely or are

debated in the literature. This is an important consideration in applied work where we often don�t have

strong reasons to favor one particular prior distribution over others.

Second, the BIC is related to the Minimum Description Length (MDL) stochastic complexity measure

proposed by Rissanen (1987). In recent years, MDL has received much attention in the literature on statistical

model selection as it allows for a uni�ed treatment of model selection and statistical inference. The MDL

measure provides a quanti�cation of the goodness of �t that can be attained with a given probability

distribution to account for the statistical regularities observed in the data. From the work of Rissanen

(1996) and Qian and Künsch (1998) it follows that the MDL-proposed measure of stochastic complexity of

the observed data relative to a given parameterized model can be expressed as minus the maximum log-

likelihood plus a model complexity term that is determined by the Fisher information matrix and the MLE

estimator of the model parameters. In this sense, the BIC approximation we consider here is minus the MDL

measure of stochastic complexity. Hence, our �ndings using the BIC can be interpreted in light of what the

MDL principle stands for as well.

Third, the Laplace and the BIC approximations should be asymptotically equivalent for large sample
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sizes, i.e.

lnmijLaplace
n!1�! li

�e�i�� �di
2

�
ln (n)| {z }

=Schwarz criterion=� 1
2BIC

; (29)

under some conditions. The BIC approximation may be viewed as a rough approximation to the log of the

marginal likelihood. We say that BIC and the Laplace method are asymptotically correct, though, because

they both select a model whose posterior probability is a maximum whenever n becomes su¢ ciently large.

Moreover, as indicated by (29), the BIC and Laplace methods must agree on the selected model as sample

size n becomes arbitrarily large.

Fourth, the BIC approximation to the Bayes Factor B1i that compares model M1 against the alternative

model Mi for any i = 2; :::; k, i.e.,

BIC1i = �2
�
l1

�e�1�� li �e�i�� �d1 � di
2

�
ln (n)

�
(30)

satis�es, as shown by Kass and Raftery (1995), that as n!1,

� 1
2BIC1i � lnB1i

B1i
!
P
0; 8i = 2; :::; k: (31)

In contrast to the Laplace approximation, the relative error of exp
�
� 1
2BIC1i

�
in approximating the Bayes

Factor B1i is generally of order OP (1).12 For the moderate and large sample sizes n for which this result

holds, the error bounds of the approximation would not increase with the sample size itself. This is a rough

approximation, but one that should give us a reasonable indication of the evidence for the sample sizes that

we use in our illustrations of Bayesian model comparison in this paper.

Under some conditions applying to nested models such as the ones considered in our work, the BIC

approximation under unit information priors is accurate to order OP
�
n�

1
2

�
(see Kass and Wasserman

(1995) and Kass and Raftery (1995)).13 Thus, if one is willing to consider these priors as suitable, then the

BIC (and the Schwarz criterion) can be thought as providing a reasonably good approximation to the log of

the Bayes Factors that is comparable in terms of the accuracy attained for moderate and large sample sizes

to that of the Laplace method using the Fisher information matrix.

Fifth, the BIC approximation is quite intuitive and easy to interpret retaining the penalization for

12We can re-write the posterior model probability in (20) corresponding to model Mi for any i = 2; :::; k in terms of Bayes
Factor with respect to model M1, Bi1, as follows,

Pr (Mi j Zn = zn) =
Bi1m1 Pr (Mi)Xk

p=1
Bp1m1 Pr (Mp)

=
e� lnB1i Pr (Mi)Xk

p=1
e� lnB1p Pr (Mp)

; 8i = 2; :::; k;

where in the second equality we use the fact that Bi1 = 1
B1i

for all i = 2; :::; k. Then, it is possible to use the approximation
result in (31) to express the posterior model probability in terms of the BIC as de�ned in (30), i.e.

Pr (Mi j Zn = zn) � e�
1
2
BIC1i Pr (Mi)Xk

p=1
e�

1
2
BIC1p Pr (Mp)

/ e�
1
2
BIC1i = e

1
2
BICi1 :

Posterior model probabilities and the BIC are related up to an approximation of order OP (1) as well, and should be asymp-
totically equivalent (under weak conditions).
13The unit information prior is a data-dependent prior, (typically multivariate Normal) with mean at the MLE estimator,

and precision equal to the information provided by one observation.
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over�tting indicated before with the Laplace approximation in (25). The BIC approximation contains a term

evaluating how much better (or worse) one model with parameters set to their consistent, likelihood-based

estimates �ts the data relative to an alternative model also evaluated with parameters at their consistent,

likelihood-based estimates (i.e. l1
�e�1� � li

�e�i�) and another term that punishes the added complexity of

one model over the other (i.e.
�
d1�di
2

�
ln (n)).14

This con�rms the simple interpretation given before of one of the plausible explanations of the false

signals problem that we have illustrated in the experiments described in the previous section. It suggests

posterior model probabilities can favor the wrong model speci�cation in part because of the penalization of

complexity that comes with it, as can be inferred from (30).

Other Considerations in Evaluating Bayesian Posterior Odds for Model Comparison. Our

discussion thus far provides a qualitative interpretation of the reported �ndings, but one that is ultimately

dependent on the accuracy of the approximation of the marginal likelihood used. We have argued that

using the Laplace approximation is reasonable given the characteristics of the solution to the models we

are investigating and the fact that we explore moderate and large sample sizes for which the approximation

should hold. We conclude that unless we have an arbitrarily large sample size, standard Bayesian posterior

odds may still favor parsimony even when the true model speci�cation is more complex. This is well-

understood on the basis of the Laplace approximation. What we do not have from this is a quantitative

rule to determine the sample size that would be needed to accurately and consistently select the true model

overcoming the penalization for over�tting. We are unable to be much more speci�c than this since assessing

the sample sizes required to avoid the problem of false signals is likely to be model-dependent, and to vary

for di¤erent families of probability distributions.

Finally, we discuss a number of related points regarding the implementation of the Bayesian estimation

of a model (such as parameter identi�cation, the choice of priors, the selection of observables, etc.) that

can a¤ect the �t of the competing speci�cations under comparison and consequently also lead to erroneous

model selection for small sample sizes.

Parameter Identi�cation. Identi�cation can refer to the mapping from the deep parameters of the model

to the reduced-form parameters that characterize a unique solution as in (13) � (14). As indicated before,
Blanchard and Kahn (1980) provides conditions under which such a unique stable solution exists. In this

regard, the conventional practice is to set the range of the prior distributions to avoid or minimize the draws

of that come from regions of the parameter space for which no solution exists or where indeterminacy arises.

Although the unique solution is linear, the reduced-form parameters are generally non-linear functions of

the deep parameters� re�ecting the cross-equation restrictions implied by the model.

Identi�cation also refers in our context to the mapping from the solution to the observable data, and the

conditions under which a unique likelihood function Li (�i) = fi (z
n j �i) exists. Identi�cation problems in

this latter sense arise if distinct parameter values do not result in di¤erent probability distributions of the

14The BIC is part of a family of competing penalized likelihood functions that also includes the Akaike Information Criterion,
the Deviance Information Criterion (DIC) or the Takeuchi Information Criterion (TIC). These functions di¤er mostly on the

penalty they impose for over�tting. The AIC has a �xed penalty that does not grow with ln (n), i.e. li
�e�i� � di where di

is the dimensionality of the parameter space. Although it can be shown that AIC is optimal in the sense of minimizing the
Kullback-Leibler (KL) divergence, when it comes to model selection it is not consistent asymptotically unlike the BIC. For
sample sizes of 8 or more observations, BIC has a higher penalty for over�tting than the Akaike Information Criterion (AIC).
Hence, since a sample size of less than 8 observations is unrealistic, we can say nonetheless that BIC penalizes complex models
more than other well-known model selection criteria such as AIC.
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data, i.e. �i is identi�ed if fi
�
zn j �(1)i

�
= fi

�
zn j �(2)i

�
implies that �(1)i = �

(2)
i for all zn (see, e.g., Hsiao

(1983), pp. 226-227). If identi�cation fails to hold, no estimation procedure can pin down uniquely the

vector of parameters �i irrespective of the sample size. Bayesian estimation only circumvents the problem by

using priors and, as Canova and Sala (2009) point out, may end up concealing the problems of identi�cation

that way.

It is recognized that lack of identi�cation leads to wrong inferences and can signi�cantly a¤ect our

estimates of a model (see, e.g., Ríos-Rull et al. (2012), and Martínez-García et al. (2012)). The lack

of identi�cation can also be a problem for Bayesian model selection, as we need to compute the marginal

likelihood of models to derive their posterior odds with a badly-shaped likelihood function due to lack of

identi�cation. The issue is rarely addressed in applied work where identi�cation is not usually explicitly

veri�ed before estimation. We argue that checking identi�cation of the model should be standard practice

given the potential problems derived from lack of identi�cation.

Several methods already exist to check identi�cation in linearized models using: (i) the autocovariogram

(Iskrev (2010), Andrle (2010));15 (ii) the spectral density (Komunjer and Ng (2011) and Qu and Tkachenko

(2012)); and (iii) Bayesian indicators (Koop et al. (2013)). For a review and methodological comparison of

these techniques, the interested reader is referred to Mutschler (2014).

Variable Selection. Guerron-Quintana (2010) illustrates how the set of observables chosen for estimation

a¤ects the way in which the structural parameters enter into the log-likelihood function and, therefore,

conditions the model estimation via likelihood-based methods. Our experiments show that the dangers

that Guerron-Quintana (2010) warned us about in regards to estimation also play a role in Bayesian model

comparison as di¤erences in the set of observables can a¤ect the di¤erences in the log-likelihood functions

across models that we can tease out from the data. Our simulations indicate that the selection of observables

might help with model comparison in small samples, but it does not necessarily resolve the problem that

arises when more parsimonious speci�cations are preferred over the more heavily parameterized ones that

characterize the true DGP of the observed data.

All our experiments were conducted after estimating the competing model speci�cations on the same

set of observables to maintain comparability. We suggest, however, that data not included in the set of

observables can be used for cross-validation. For instance, we use output and in�ation to estimate the four

models under consideration in the experiments plotted in Figures 1 and 2. Trade data� while not directly

used in the estimation� can serve for cross-validation of the model selection implied by Bayesian posterior

odds given that preference for a closed-economy speci�cation would be inconsistent with a non-zero trade

series.

One could argue that model selection could be re�ned in the same way� e.g., Bayesian estimation and

model comparison is not warranted with closed-economy models when there are open-economy alternatives

if the data suggests non-zero trade (irrespective of whether we actually end up using the trade data for

the estimation or not). In practice when none of the models available describes the exact DGP underlying

the observed data unlike in our experiments. We, nonetheless, suggest that even in those circumstances

performing Bayesian model comparison with di¤erent sets of observable variables can o¤er additional insights

about the robustness of the evidence in favor of a given model against the alternatives.

15For the implementation of the local identi�cation procedure of Iskrev (2010) adopted by the software package Dynare and
their implementation of an optional Monte Carlo exploration of the state space of model parameters, see Ratto and Iskrev
(2011).
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Prior Selection. In this paper we assume �non-informative�prior probabilities on the models, i.e. Pr (Mi) =
1
k for all i = 1; :::; k, and we keep invariant the distribution of priors on parameters f1 (�i) across all model

speci�cations. The set of structural parameters that characterizes each competing model is a subset of the set

of parameters for the true model (the DGP), i.e. �i � �1 for all i = f2; 3; 4g. In fact, the set of parameters for
each competing modelMi can be described simply as�i =

�
�1 2 �1 : �1l = 0 for some l = 1; :::; l where 1 � l < d1

	
.

Our experiments make the illustration simpler because the distributions of all competing models fi (z j �i)
for all i = f2; 3; 4g are in e¤ect limiting cases of the distribution of the true model f1 (z j �i). We then merely
choose points on an interval that parameterize the true DGP (modelM1) closer and closer to the probability

distribution of at least one of the alternative (more parsimonious) models to highlight the importance of the

penalization for over�tting that arises even with moderate sample sizes.16

We ignore very short samples where the posterior distribution may still be dominated by the priors, and

base our investigation on moderate sample sizes for which the Laplace approximation works reasonably well.

We view this as most relevant for applied work, and do not explore the role of priors (and prior selection)

further in our current analysis. We leave that for future research.

Nested versus Non-nested Models in Bayesian Model Comparison. When the distributions of the true

model and a competing one become arbitrarily close to each other, for a given sample size the di¤erences in

the log-likelihood function ought to be smaller between the two models. Then, the penalty for over�tting ends

up dominating our results and favoring the more parsimonious one over the more heavily-parameterized one

(even if that is the true model). Bayesian model comparison through posterior model probabilities embodies

a strong preference toward the lowest dimensional model (Occam�s razor) and our experiments show that as

a consequence we may fail to �nd support for the true (more complex) model in small samples in spite of

the good asymptotic properties demonstrated in Fernández-Villaverde and Rubio-Ramírez (2004).

Our illustrations, however, are largely based on comparisons between nested model speci�cations. When

competing models are non-nested and can be represented by probability distributions that do not overlap,

then the posterior probability of the true model converges more quickly to the true one. This fact follows

from standard asymptotic theory, as noted in Kass and Wasserman (1995). In those instances, we expect

the severity of the false signals problem highlighted in this paper to be lessened. The simple logic behind

this is that the more dimensions along which two models di¤er, the easier it becomes to �nd a way to tell

them apart.

5 Concluding Remarks

In this paper we compare models with Bayesian posterior model probabilities working with a stylized speci�-

cation of an open economy model that generates a short-run relationship between global slack and domestic

in�ation� the open-economy New Keynesian model of Martínez-García and Wynne (2010). Using a standard

parameterization of the model, we generate arti�cial data which we then use to estimate four competing

models (including the true model from which the data is simulated and three nested, simpler variants) with

standard Bayesian techniques. We �nd that Bayesian model comparison based on posterior model prob-

16We use two di¤erent ways of accomplishing this because when we compare closed-economy versus open-economy models
we do so by bringing the import share closer and closer to zero. In the case where we are comparing the NOEM model against
the Interational Real Business Cycle model we do not alter the degree of price stickiness but in turn bring the two distributions
closer together by choosing to implement an increasingly more aggressive monetary policy that is closer to the optimal policy.

23



abilities is sensitive to the choice of observables and to sample size. While asymptotically the posterior

probability of the true model converges to one, we show that in small samples (of moderate length) the

posterior model probabilities penalization for over�tting may lead us to favor a more parsimonious model

instead.

It has been argued in the literature that when the evidence favors the more parsimonious model, the costs

in terms of �t cannot be too large as the probability distribution of the preferred model and the true model

must be close. We believe, though, that this has consequences that go beyond our ability to �t the data.

Selecting the wrong model (model selection) or accounting for model uncertainty (through model averaging)

on the basis of posterior model probabilities that seemingly support the wrong speci�cation a¤ects our ability

to use these models for things that we care about such as policy analysis or forecasting.

That is particularly important, for example, when we think that Bayesian model comparison may have

trouble to �nd support in the data for frictions in the goods market� nomimal rigidities� if monetary policy

is near optimal, even when those frictions are a feature of the economy. This can a¤ect how we evaluate

the costs of alternative monetary policies or how we forecast the future path of standard aggregate macro

variables as the trade-o¤s that policy-makers would face hinge on whether those frictions are present or not.

In our view, a strong preference for parsimonious models is not always and everywhere a desirable

feature� even if they �t the data well. We see the primary contribution of our paper as illustrating how

these �wrong choices�can occur in small samples and why it matters. We caution that variable selection

may not help us eliminate the problem of false signals in model selection with small samples. We leave it

for future research to investigate the small sample properties of other criteria for model comparison.
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Appendix of Tables and Figures

Table 1 - Prior Distributions

Structural parameters Prior Density Domain Prior Mean Prior Std. Dev.

Non-policy parameters

� Fixed � 0:99 �
' Gamma R+ 2 2

� Gamma R+ 1:5 1

� Beta (0; 0:5) 0:06, range: (0; 0:5) 0:01

� Beta (0; 1) 0:75, range: (0; 1) 0:07

Policy parameters

�i Beta (0; 1) 0:78 0:1

 � InvGamma R+ 0:33, range: (0; 6) 2

 x InvGamma R+ 1:29 2

Shock parameters

�a Beta (0; 1) 0:95 0:05

�a InvGamma R+ 0:7 2

�a;a� Beta (0; 1) 0:25 0:18

�m InvGamma R+ 0:38 2

�m;m� Beta (0; 1) 0:5 0:22

Note: This table reports only the prior mean and prior standard deviation for each model parameter. For any plausible choice of
these two moments of the prior there is a mapping onto the prior distribution parameters v and s that matches both of them and
fully characterizes the prior distribution itself. For the Normal distribution, the mean is �=v and the variance is �2=s2. For the
Beta distribution, the mean is �=v=(v+ s) and the variance is �2=vs=((v+ s)2(v+ s+1)). For the Gamma distribution, the mean is
�=vs and the variance is �2=vs2. For the Uniform distribution, the upper and lower bound of the support are v and s respectively,
while the mean is �=(v+ s)=2 and the variance is �2=(v� s)2=12. For the Inverse Gamma distribution, the mean is �=s/(v-1) and
the variance is �2=s2=((v � 1)2(v � 2)).
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M1 ­ NOEM Model (True) ­ Sticky Prices, Open to Trade
M2 ­ Flexible Prices, Open to Trade
M3 ­ Sticky Prices, Closed to Trade
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FIGURE 1. Posterior Model Probabilities with respect to the Monetary Policy Response to
Inflation

Note: The model is simulated over 10000 periods with code written for Dynare version 4.2.4 and Matlab version
7.13.0.564. The long sample refers to the 10000 observations while the three sub-samples are selected to cover
the same three sub-periods including 160 observations each. The set of observables include Home and Foreign
in�ation, Home and Foreign Output. This �gure plots the computed Bayesian posterior model probabilities for
an interval over the parameter  � . The code for the simulation is available upon request from the authors.
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M2 ­ Flexible Prices, Open to Trade
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M4 ­ Flexible Prices, Closed to Trade

FIGURE 2. Posterior Model Probabilities with respect to the Degree of Openness

Note: The model is simulated over 10000 periods with code written for Dynare version 4.2.4 and Matlab version
7.13.0.564. The long sample refers to the 10000 observations while the three sub-samples are selected to cover
the same three sub-periods including 160 observations each. The set of observables include Home and Foreign
in�ation, Home and Foreign Output. This �gure plots the computed Bayesian posterior model probabilities for
an interval over the parameter �. The code for the simulation is available upon request from the authors.
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FIGURE 3. Posterior Model Probabilities with respect to the Monetary Policy Response to
Inflation (with ToT Data)

Note: The model is simulated over 10000 periods with code written for Dynare version 4.2.4 and Matlab version
7.13.0.564. The long sample refers to the 10000 observations while the three sub-samples are selected to cover
the same three sub-periods including 160 observations each. The set of observables include Home and Foreign
in�ation, Home Output and terms of trade. This �gure plots the computed Bayesian posterior model probabilities
for an interval over the parameter  � . The code for the simulation is available upon request from the authors.
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FIGURE 4. Posterior Model Probabilities with respect to the Degree of Openness (with ToT
Data)

Note: The model is simulated over 10000 periods with code written for Dynare version 4.2.4 and Matlab version
7.13.0.564. The long sample refers to the 10000 observations while the three sub-samples are selected to cover
the same three sub-periods including 160 observations each. The set of observables include Home and Foreign
in�ation, Home Output and terms of trade. This �gure plots the computed Bayesian posterior model probabilities
for an interval over the parameter �. The code for the simulation is available upon request from the authors.
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FIGURE 5. Posterior Model Probabilities with respect to the Degree of Price Stickiness (with
ToT Data)

Note: The model is simulated over 10000 periods with code written for Dynare version 4.2.4 and Matlab version
7.13.0.564. The long sample refers to the 10000 observations while the three sub-samples are selected to cover
the same three sub-periods including 160 observations each. The set of observables include Home and Foreign
in�ation, Home Output and terms of trade. This �gure plots the computed Bayesian posterior model probabilities
for an interval over the parameter �. The code for the simulation is available upon request from the authors.
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