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Abstract
This paper contributes to the GMM literature by introducing the idea of self-instrumenting
target variables instead of searching for instruments that are uncorrelated with the errors, in
cases where the correlation between the target variables and the errors can be derived. The
advantage of the proposed approach lies in the fact that, by construction, the instruments have
maximum correlation with the target variables and the problem of weak instrument is thus
avoided. The proposed approach can be applied to estimation of a variety of models such as
spatial and dynamic panel data models. In this paper we focus on the latter and consider both
univariate and multivariate panel data models with short time dimension. Simple Bias-
corrected Methods of Moments (BMM) estimators are proposed and shown to be consistent
and asymptotically normal, under very general conditions on the initialization of the processes,
individual-specific effects, and error variances allowing for heteroscedasticity over time as well
as cross-sectionally. Monte Catlo evidence document BMM’s good small sample performance
across different experimental designs and sample sizes, including in the case of experiments
where the system GMM estimators are inconsistent. We also find that the proposed estimator
does not suffer size distortions and has satisfactory power performance as compared to other
estimators.
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1 Introduction

Analysis of linear dynamic panel data models where the time dimension (7°) is small relative
to the cross section dimension (n), plays an important role in applied microeconomic research.
The estimation of such panels is carried out predominantly by the application of the Generalized
Method of Moments (GMM) after first-differencing.! This approach utilizes instruments that are
uncorrelated with the errors but are potentially correlated with the target variables (the included
regressors). A number of well-known GMM estimation methods have been proposed, including
Anderson and Hsiao (1981 and 1982), Arellano and Bond (1991), Ahn and Schmidt (1995), Arellano
and Bover (1995), Blundell and Bond (1998), and Hayakawa (2012), among others. Unlike the
likelihood-based methods in the literature (Hsiao et al., 2002, and Hayakawa and Pesaran, 2015),
the GMM methods apply to autoregressive (AR) panels as well as to AR panels augmented with
strictly or weakly exogenous regressors. However, the GMM approach is subject to a number of
drawbacks. Specifically, the first-difference GMM methods by Arellano and Bond (1991) can suffer
from the weak instrument problem when the dependent variable is close to being a unit root process
or when the variance of individual effects is relatively large. To overcome this problem the system
GMM approach by Blundell and Bond (1998) utilizes additional moment conditions, but these
additional conditions are valid only under strong requirements on the initialization of the dynamic
processes. In particular, as shown in Section 2, the system GMM approach does not allow for initial
observations to differ from the long-run means in a systematic manner.

This paper contributes to the GMM literature by introducing the idea of self-instrumenting
target variables instead of searching for instruments that are uncorrelated with the errors, in cases
where the correlation between the target variables and the errors can be derived. This idea has wide-
ranging applications for robust estimation and inference in a number settings, including dynamic
short-T" panels. It differs from the wide variety of the bias-corrected estimation methods in the
literature, which correct a first-stage estimator for small-T" bias (see, for example, methods based on
exact analytical bias formula or its approximation, Bruno, 2005, Bun, 2003, Bun and Carree, 2005
and 2006, Bun and Kiviet, 2003, Hahn and Kuersteiner, 2002, Hahn and Moon, 2006, Juodis, 2013,

and Kiviet, 1995 and 1999; simulation-based bias-correction methods by Everaert and Ponzi, 2007,

!Other approaches in the literature include the likelihood-based methods (Hsiao et al., 2002, and Hayakawa and
Pesaran, 2015), X-differencing method (Han et al., 2014), factor-analytical method (Bai, 2013), and bias-correction
methods mentioned below.



and Phillips and Sul, 2003 and 2007; the jackknife bias corrections by Dhaene and Jochmans, 2015,
and Chudik, Pesaran, and Yang, 2016; or the recursive mean adjustment correction procedures,
Choi et al., 2010).2 In contrast to the bias-correction methods, our approach is not based on
correcting for a bias of an estimator, but instead it is based on correcting the ‘bias’ of the moment
conditions before estimation. One could also consider the application of bias-correction techniques
to BMM estimators, but our Monte Carlo results show that such post estimation bias-corrections
are not required.

The advantage of the proposed approach lies in the fact that, by construction, the instruments
have maximum correlation with the target variables and the problem of weak instrument is thus
avoided. The proposed approach can be applied to estimation of a variety of models, where the
underlying model is sufficiently specified so that the correlation between the instruments and errors
can be derived, such as spatial and dynamic panel data models. In this paper we focus on the latter
and consider both univariate and multivariate panel data models with short time dimension.

Simple Bias-corrected Methods of Moments (BMM) estimators are proposed and shown to be
consistent and asymptotically normal, under very general conditions on the initialization of the
processes, individual-specific effects, with (possibly) heteroscedastic error variances over time as
well as cross-sectionally. We refer to the proposed estimators as BMM to distinguish them from
traditional GMM estimators, which are based on moment conditions derived from instruments that
are orthogonal to the errors. Monte Carlo experiments document BMM’s good small sample per-
formance in comparison with a number of GMM alternatives. The inference based on the BMM
estimator appears more reliable compared with any of the GMM alternatives considered. In addi-
tion, the BMM estimator is valid also in designs where the stricter requirements of the system-GMM
approach are not satisfied, albeit it is less efficient asymptotically in designs where such require-
ments hold. However, in practice it is not known whether conditions regarding the initialization of
dynamic processes are satisfied, and it seems desirable to consider estimation procedures that are
robust to violation of such restrictive assumptions.

The remainder of this paper is organized as follows. Section 2 sets up the baseline panel AR(1)

model. Section 3 presents the main idea, proposes a BMM estimator of AR(1) panels, and establishes

2Most of these bias-correction techniques do not apply to short-7 type panels where the error variances are
heteroskedastic (over ¢ and t), with the exception of Juodis (2013), and possibly the simulation-based bias-correction
method of Everaert and Ponzi (2007). A comparative analysis of BMM and bias correction estimators is a welcome
addition to the literature but lies beyond the scope of the present paper.



its consistency and asymptotic normality when T is fixed and n — oo. Section 4 briefly discusses
identification of AR(1) coefficient under alternative GMM estimators in the literature. Section 5
extends the BMM estimator to panel VAR(1) models, and to panel data models with higher order
lags. Section 6 presents Monte Carlo (MC) evidence, and the last section concludes and discusses
avenues for future research. Some of the mathematical proofs are provided in an appendix. Further

theoretical and Monte Carlo results are presented in an online supplement.

Notations: Generic positive finite small and large constants that do not depend on the cross
section dimension are denoted by ¢ and K, respectively. All vectors are column vectors denoted by
bold lowercase letters. Matrices are denoted by bold uppercase letters. Let A be a p x ¢ matrix,
then ||A| = [tr (A’A)]l/2 is the Frobenius norm of matrix A, Vec(A) is a pg x 1 vector formed
from stacking the ¢ columns of A. —, and —4 denote convergence in probability and distribution,

respectively, and ~ denotes asymptotic equivalence in distribution for a fixed T, and as n — oc.

2 Panel AR(1) model and assumptions

We begin with a simple panel AR(1) model to set out the main idea behind the BMM estimator.

Specifically, consider the following dynamic panel data model
Yit = O + ¢yi,t71 + Uit for ¢ = 17 27 w1, (1)

where {a;,1 <i < n} are unobserved unit-specific effects, u;; is the idiosyncratic error term, and
yi¢ are generated from the initial values, y; —p,, for m; >0, and t = —m; + 1, —m; +2...,1,2, ..., T

Using (1) to solve for the initial observations y;g, we obtain

Yio = " Yi,—m, + <1jj¢> + D ouie (2)
(=0

It is assumed that available observations for estimation and inference are y;;, for ¢ = 1,2, ..., n, and
t =0,1,2,...,7. For the implementation of the proposed estimator we require T' > 3, although
under mean and variance stationarity identification of ¢ could be achieved even if T' = 2, namely

if the panel covers three time periods.

ASSUMPTION 1 (Parameter of interest) The true value of ¢, denoted by ¢, is the parameter



of interest, and it is assumed that ¢ € ©, where © C (—1,1] is a compact set.?

In the case where |¢p| < 1, and m; — oo, then E (yi) = E (i) /(1 — ¢) for all t. We set
w; = a;/ (1 — ¢) and refer to p; as the long-run mean of y;, even if m; is finite. However in the
unit-root case (¢ = 1), p; is not defined and to avoid incidental linear trends we set a; = 0.

Taking first differences of (1), we obtain

Ayis = ¢Ay; 11 + Augy, (3)

fort =2,3,...,T, and i = 1,2, ...,n; but Ay;; is given by

m;—1
Ayt =b; — (1 —¢) Z dlui g + i, (4)
0=0
where
bi = —=¢"" [(1 = @) Yi,—m;, — ] = =" (1 = @) (Yi,—m; — 1) - (5)

The relations (4) and (5) show how the deviations of starting values from the long-run means, given
by (Yi,—m; — ps), affect Ay;1.

The contribution of the first term in (4) to Ay, is given by b;, and consequently it is clear that
the initialization of the process will be unimportant for |¢| < 1, E'|yi —m, — ;] < K, and m; large.
We aim for a minimal set of assumptions on the starting values and individual effects, since in
practice such assumptions are difficult to ascertain, and they could have important consequences
for estimation and inference when m; and 1" are both small.

We consider the following assumptions on the errors, u;;, and the starting values, y; —m,.

ASSUMPTION 2 (Idiosyncratic errors) For each i = 1,2,...,n, the process {ug, t = —m; + 1,
—m;+2, ..., 1,2,....,T} is distributed with mean 0, E (ulzt) = U%t, and there exist positive constants
c and K such that 0 < ¢ < 0% < K. Moreover, 63, = n 'Y." 0% — &7 as n — oo, and

sup; B |u,~t\4+€ < K for some € > 0. For each t, u; is independently distributed over i. For each i,

w; 18 serially uncorrelated over t.

ASSUMPTION 3 (Initialization and individual effects) Let by = —¢™ [(1 — @) Yi,—m, — o). 1t

3Our theory applies for all finite values of ¢ so long as T and m; are fixed as n — co. We focus on —1 < ¢ < 1,
since we believe these values are most relevant in empirical applications.



is assumed that <2 = n~! Yoy c? — 2 as n — oo, where g? =F (b?), fori=1,2,...,n, and
sup; E |bi|*T¢ < K for some € > 0. In addition, b; is independently distributed of (bj,ujt) for all
i # 37,47 =12,.,n,and allt = —m; +1,-m; +2,...,1,2,...,T, and the following conditions
hold:

E (Auyb;)) =0, fori=1,2,....,n, and t =2,3,...,T. (6)

Remark 1 Assumption 2 does not allow the errors, wu;, to be cross-sectionally dependent, as is
customary in the GMM short-T panel data literature, and together with Assumption 3 ensures also
that Ay is cross-sectionally independent. When errors are weakly cross-sectionally correlated, in
the sense defined in Chudik, Pesaran, and Tosetti (2011), then the BMM estimators proposed in
this paper remain consistent, but the inference based on them will no longer be valid. See Section

S.1 in the online supplement for further discussion.
Remark 2 Assumption 2 allows errors to be unconditionally heteroskedastic across both i and t.

Remark 3 Assumption 3 allows for E (b;) to vary across i, and therefore, in view of (3)-(4),

E (Ayit) can vary across both i and t.

2.1 Assumptions underlying GMM estimators

It is important to compare our assumptions on the individual effects and the starting values with
those maintained in the GMM literature. Under Assumptions 2 and 3, initial first-differences, Ay;1,
given by (4) have fourth-order moments and the following moment conditions, which are key to our

estimation method, hold
E (AyisAuy) =0, fori=1,2,...n, s =1,2,..,t —2, and t = 3,4, ..., T. (7)

The same moment conditions are also utilized by Anderson and Hsiao (1981, 1982). However, the
subsequent GMM estimators advanced by Arellano and Bond (1991), Arellano and Bover (1995),
and Blundell and Bond (1998) require stronger conditions on the initial values and the individual
effects as compared to (7). The first-difference GMM approach considered by Arellano and Bond

(1991) assumes

E (yisAui) =0, for i =1,2,...,n,s =0,1,2,....t —2,and t = 2,3, ..., T, (8)



which imply (7) but are not required for the moment conditions in (7) to hold. It is clear that
estimator based on (8) will depend on the distributional assumptions regarding the individual
effects, whereas an estimator based on (7) need not depend on the distributional assumptions
regarding the individual effects.?

In addition to (8), the system GMM approach considered by Arellano and Bover (1995) and

Blundell and Bond (1998) also requires that®

EAyit—1 (i +ui)] =0, fori=1,2,...,n; and t =2,3,...,T. (9)

These additional restrictions impose further requirements on the errors and the initial values. To

see this, first note that iterating (3) from ¢ = 1 and using (4) we have

mi—l t—2
Agir = ¢ b tuin — (1= 0) > ¢lui_o| +> ¢ Auigy. (10)
(=0 (=0

Since for all 4, u;’s are assumed to be serially uncorrelated, then condition (9) is met if

m;—1 t—3
¢'2E [bi (i + wir)) + 02 E (uinai) + (6= 1) 6" Y ¢ (awui o) + Y 0B (iAuip 1) =0,
=0 =0

fori=1,2,...n; and t = 2,3,...,7. In the case where m; — o0, the first term vanishes and the
moment conditions (9) will be satisfied if E (ujz;) =0, for all ¢ and ¢t < T — 1. If m, is finite it is
further required that E [b; (a; + wi)] = 0, unless ¢ = 0. Now using (5) and noting that |¢| < 1, we

have®

Ebi (o +ui)] = —¢™ (1= ¢) E[(Yi,—m, — 1) (0 + wir)]

= —¢" (1= &) E(Yi,—m, — ;) o] .-

4Suppose that |¢| < 1, and consider the case where m; is finite, namely, 0 < m; < K, and consider the following
initial values y;,—m; = p; + vi, where E (v;) = 0, and E (v;Aus) = 0, for ¢« = 1,2,...,n, and t = 3,4,....,T. v;
measures the extent to which the initial values y;,—m,; deviate from the long-run means, p;. Under this specification
of initial values, Ay;, for t = 0,1,...,T and all ¢ does not depend on y,;, and estimator based on (7) will not depend
on the distributional assumptions about p,.

"The complete set of moment conditions is E [Ay;s (i +ui)] = 0, for i = 1,2,...,n, s = 1,2,...,t — 1, and
t=2,3,...,T. The set of conditions in (9) contains the T'— 2 moment conditions in the system GMM approach that
are not redundant.

SNote that by assumption F (ujri;) = 0 = E (witlfi,—m, ), for t = 2,3, ...




Therefore, when m; is finite for the validity of the moment conditions (9) it is also required that
Ep; (Yi,—m; — ;)] =0, fori =1,2,...,n. (11)

This condition requires that for each i, individual effects are uncorrelated with the deviations of
initial values from their equilibrium values (long-run means p,). These restrictions might not hold
in practice. For example, condition (11) is invalidated if some processes start from zero (y; —m, = 0),
but the individual effects differ from zero (u; # 0).

It is true that by imposing additional conditions on individual effects and starting values it
might be possible to obtain more efficient estimator of ¢. However, it is also desirable to seek
estimators of ¢ that are consistent under reasonably robust set of assumptions on starting values,
individual effects, and error variances. Seen from this perspective, Assumption 3 is more general
than the moment conditions assumed in the existing GMM literature.

When comparing GMM and BMM estimators, it is also worth noting from (10) that if |¢| < 1
and {y;; } are initialized in a distant past (with m; — o), then Ay;; will no longer depend on «; and
renders the BMM and Anderson-Hsiao IV estimators invariant to the individual effects. However,
this is not the case for the GMM estimators that make use of lagged values of y;; in construction
of their moment conditions. As a result, the performance of such GMM estimators can be affected
by the size of Var («;) relative to the other parameters of the model, in particular Var (u;), see

Blundell and Bond (1998) and Binder et al. (2005) for further discussions.

3 BMM estimation of short-7" AR(1) panels

Following the GMM approach we consider the first-differenced version of the panel AR model
(3), but instead of using (valid) instruments for Ay; ;1 that are uncorrelated with the error terms,
Au;t, we propose a self-instrumenting procedure whereby Ay; ;1 is ‘instrumented’ for itself, but the
population bias due to the non-zero correlation between Ay; ;1 and Au; is corrected accordingly.
The advantage of using Ay; ;1 as an instrument lies in the fact that by construction it has maximum
correlation with the target variable (itself), so long as we are able to correct for the bias that arises
due to Cov (Ay;1—1, Auyr) # 0. To summarize, GMM searches for instruments that are uncorrelated

with the errors but are sufficiently correlated with the target variables. Instead, we propose using



the target variables as instruments but correct the moment conditions for the non-zero correlations
between the errors and the instruments. Both approaches employ method of moments, but differ
in the way the moments are constructed.

Using Ay;;—1 as an instrument, we obtain under Assumptions 2 and 3,
E (AuigAy; 1) = —07;_y, fori=1,2,..,n, and t =2,3,..,T — 1. (12)

To solve for a%t, we note that F (Auit)Q = a?t_l + O'?t and E (Au; ¢ +1Ay) = —a?t. Hence, a%t_l =

E (Auit)Q + E (Au;41Ay;t), and we obtain the following quadratic moment (QM) condition,
E (AuiAyii-1) + E (Aug)? + E (Augg41Ayi) = 0, (13)

fori=1,2,...,n,and t = 2,3,...,T — 1. It is useful to note that the solution U?’t_l =F (Auit)z +
E (Au;t+1Ay;) depends on the set of assumptions considered, and different solutions could be
obtained under different (stricter) conditions. In this paper, we focus on the general set of conditions
summarized by Assumptions 2 and 3, although other conditions can be obtained if one is prepared
to make stronger assumptions such as O'?t = a%tfl = O'?. Another possibility is to assume covariance
stationarity of y;;, which will lead to a linear moment condition solution, discussed in Remark 5
below.”

We use the QM condition (13) alone to obtain an estimator of ¢. We propose averaging (13)
over ¢ and ¢, which will deliver an exactly identified moment estimator. It is clearly possible to
use other weights, as done in the GMM literature, to combine individual moment conditions in
(13). But to keep the analysis simple and to focus on the main contribution of the paper, we
shall not consider optimally weighting the moment conditions in (13), or augmenting them with

Anderson-Hsiao type moment conditions.

Averaging moment condition (13) over ¢, and substituting (3) for Au; and Aw; 41, we obtain

E[M;r(¢)] =0, fori=1,2,...,n, (14)

TCovariance stationarity requires strong restrictions on the initialization of the dynamic processes, in addition to
time-invariant error variances.



where

T—1
1
Mir (¢) = T [(Ayit — 0AYi1-1) Ayii—1 + (Ayir — dAYi-1)" + (Ayigs1 — OAYir) Ayar | -
=2
(15)
The BMM estimator is then given by
4 — v min |17, 16
Gnr = argmin | Myt ()] (16)
where ||.|| denotes the Euclidean norm, © C (—1,1] is a compact set for the admissible values of ¢
defined by Assumption 1, and
1 n
= LS Mo (o). 7)
i=1

To derive the asymptotic properties of g?)nT, let ¢ denote the true value of ¢, assumed to lie

inside O, and note that under ¢ = ¢, (3) yields Ayir = ¢gAyit—1 + Auir, and (15) can be written

as
T_1 [Auis — (¢ — ¢p) Ayz‘,t—ﬂ Ayit-1
1
Mir(¢) = 7—5 + [Aui — (¢ — ) Agig—1]®
t=2
+ [Aui 1 — (¢ — do) Ayit] Ay
where
T-1
T _9 Z (Aus Ay + Auj + A 1Ayit) | (19)
t=2
and
Air = (¢ — ¢9)* Qi — (¢ — ¢o) (Qir + Qfp + 2Hir) , (20)
in which
1 T-1 1 T-1
Qir = Z Ayli1s Qi = g D Ayh and Hip = 5 3 " AuiAyigr. (21)
=2 t=2

We have one unknown parameter ¢ and one moment condition (14). Suppose there exists g?)nT such



that M, (&nT) = 0. Then (18) evaluated at ¢ = ¢,,1 yields

(ébnT - ¢0> [(&nT - ¢0> QTLT - BTLT:| = - 77LT7 (22)
where
Vor = % ; Vir (23)
Qnr = % ; Qir, (24)
and
Bur == 3" (Qur +Qjp + 2Hir). (25)
i—1

Using results (A.5)-(A.6) of Lemma A.1 in the appendix, under Assumptions 1-3, we have (for a

fixed T')
Qur = E (Qur) + 0y (™) and Bur = E (Bur) + O, (n™*/2), (26)
where
_ 1 &
E (Qur) =~ Z; E (Qir) > 0. (27)

In addition, using result (A.7) of Lemma A.2 in the appendix, we have
Var = Oy (n7172). (28)

We now use (22) to show that there exists a unique y/n-consistent estimator of ¢. Suppose that
<}5nT is a y/n-consistent estimator of ¢. Then we establish that such an estimator is in fact unique.

Using (22), we have
. 2 _ . _ _
Vi ($ur = 80) Qur = Vi (ur — 00 ) Bur = —VVar. (29)
. 2 _
But, if there exists a \/n-consistent estimator, then \/n (gbnT — ¢0) Qnr = 0)p (nfl/ 2), and hence

Bur /i (bur = 60) = —v/aVur + 0, (n~Y2). (30)

10



Also, using (26) the above can be written as
E (Bur) Vi (?pnT . ¢0) = —VVur + 0, (ml/?) .
where by (28), /nVar = O, (1). If

Br=lim B (Bur) #0, (31)

n—oo n

it then follows that the /n-consistent estimator, gAbnT, must be unique. It also follows that
Vn (@J’ - %) ~ Br'nVr.

Finally, using result (A.8) of Lemma A.2 in the appendix, we have \/nV,r —4 N (0, Sr), where
Sr = limp—eon 'Y E(V%), and it follows that /n (g?)nT - ¢0> —q N (0,27) with Xp =
B*Sr.

The key condition for the existence of a y/n-consistent estimator of ¢ is given by Bz # 0, which

can be written more fully as

n—oo

_ 1 —
Br = lim - ZE (Qir + Qf + 2H;r)
i=1

where

T-1 T-1

Qr = (T-27'Y Ay}, QhFr=T-27"> Ay}
t=2 t=2
T—1

Hyp = (T-27") AuyAy;y .
=2

It is easily seen that condition B # 0 is satisfied when Ay;; is a stationary process (for m; — oo,

oit = 02 and |¢| < 1). In this case we have

_ 1-9Y\ o
Br=2—~
T <1 ¢)Gn>0,

where 62 = n~1 Y"1 | 02, In the non-stationary case (with m finite) By # 0 even if ¢ = 1 so long

as o is sufficiently variable over the observed sample.

11



The following theorem summarizes the main results established above.

Theorem 1 Suppose y;t, fori=1,2,...n, andt =—-m+1,—m~+2,....1,2,....T, are generated by
(1) with starting values y; —m, and the true value of the parameter of interest ¢. Let Assumptions
1-3 hold, and suppose By # 0 and n™* S E (VfT) — S7 > 0, where Br is given by (31) and Vir
is defined in (19). Consider the BMM estimator ¢,p given by (16). Let T be fized and n — cc.

Then, the unique \/n-consistent estimator QASnT satisfies
Vi (Gur = @) —a N (0,21),

where

Sr — B2 (32)

Remark 4 When By =0, from (22) we have,

(éSnT - ¢0>2 Qur = Var + @nT - %) Op (n_l/Q) ) (33)

/4 _consistent estimator Onr-

and, given that Q.7 — Qr > 0 as n — o0, there exists a unique n
As noted earlier a leading case when Br = 0, is the unit root case (¢ = 1) under error variance

homogeneity over t.

It is illustrative to consider By for T = 3. In the appendix, we derive under Assumptions 2 and

3,
By=65-61+(1—9)°61 + (1+¢%) (1 — ¢) 1. (34)

where
Yo=(1-9¢) lim _ > o~ -2 iy - > 5 oo~ )] (35)

If ¢ = 1, then By = 63 — 5% # 0 if 53 # 3. In general, By # 0 if 52 # 53, for all values of |¢| < 1,
unless |¢| < 1, and

(1—¢) (1+¢*) ¥y = 62 — ¢)57 — 53.

Therefore, time variations in the average error variances, 7, can help identification under the

BMM quadratic moment condition, particularly if ¢ is close to unity. Identification conditions for

12



the GMM estimators are discussed in Section 4 below, with exact conditions in the case of T' = 3

derived in Section S.3 of the online supplement. As can be seen from these results the GMM

estimators do not benefit from time variations in 2.

The variance term in (32), X7, can be estimated consistently by

~ ~=2 (1 L
Xpr = Byr (n Z ‘/;,2nT> ) (36)

i=1

where

. Z (QzT + Qi + 2ﬁi,nT) , (37)

oul)}
3
3

ﬁmT = (T - 2)71 ZtT;; AU Ay; i1, Aty = Ay — &nTAyw_l, (At depends on n and T', but

we omit subscripts n, T to simplify the notations), and
Vint = —57—= (AU Ayi g1 + AGZ, + Aty 111 Ayst) - (38)

Consistency of 3,7 is established in Proposition 1 in the appendix.

Remark 5 In the case of covariance stationary panels (¢ < 1 and m; — o0), we have Ayy; =
S 20 Aui g, where E (u%) = o7 and therefore E (Ay?) = 202/ (1 + ¢) is time-invariant. Un-
der these restrictions we have 0 = (149¢)F (Ain,tfl) /2, E(AuyAyit—1) = E(Aui11Ay5),
and using (12) the quadratic moment condition, (13), simplifies to the following linear moment

condition:

1
E (AyiAyii—1) + 3 1-9)E (Ayzz,t—l) =0,

which yields the associated BMM estimator

5 doic Zt 2 <2AyztAyzt 1+ Ayzt 1) (39)
" Zz 1 Zt 2 Ayzt 1

Note that in this case ¢ is identified even T = 2. Interestingly enough, the above linear BMM
estimator is identical to the first difference least square (FDLS) estimator proposed by Han and
Phillips (2010).8 As discussed by Han and Phillips (2010), ¢,, given by (39) has standard Gaussian

asymptotics for all values of ¢ € (—1,1] and does not suffer from the weak instrument problem.

8We are grateful to Kazuhiko Hayakawa for drawing our attention to this fact.
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Hence the BMM estimator reduces to FDLS estimator under covariance stationarity. However,
when T is fixed the covariance stationarity assumption is rather restrictive for most empirical
applications in economics, where typically not much is known about the initialization of the dynamic

processes over i, and the heteroskedasticity of error variances over t.

Remark 6 It is possible to augment the QM condition (13) with additional moment conditions to
improve asymptotic efficiency. In addition, considering the moment conditions for individual time
points t separately as opposed to averaging them across t can also lead to an improved asymptotic
efficiency, but it will result in a larger number of moment conditions. It is, however, unclear whether
this will necessarily lead to improved performance in finite samples of interest. How to choose the
set of moments or how best to combine a possibly large set of moment conditions are both very
important ongoing research problems in the literature. Solving these problems is not within the
scope of the present paper, which focuses on simple estimation procedures that perform well for all

values of n and T and is not subject to the weak instrument problem.

Remark 7 When the AR panel data model (1) is augmented with strictly exogenous regressors,
namely

Vit = @ + ¢Yir—1 + B'xit + ui, fori=1,2,...,n, (40)

where X;;: s a k— 1 X 1 vector of strictly exogenous regressors, and y; are generated from the initial
values, Y —m,; for m; > 0, and t = —m; +1,—m; +2...,1,2,....T, then it is possible to augment
the QM moment condition (13) with standard orthogonality conditions for the strictly exogenous

regressors X;. In particular, condition (15), which in the context of ARX model (40) is given by

. (Ayit — ¢AY; 11 — B'Axit) Aysp—1
1
Mi(%) (¢’ B) = T -9 Z + (Ayit - ¢Ayi,t—1 - ﬂ/AXit)Q ’ (41)
t=
+ (Ayi 41 — OAYs — B'AX; 141) Ayt

can be augmented with the following k—1 standard orthogonality conditions given by (self-instrumenting

AXit)
T-1
M(z)(qﬁﬁ)—LZ(A‘—gbA- —,BIA-)A' (42)
T\ T _9 Yit Yit—1 Xt Xt -
t=2

There are k unknown parameters, ¢ and (3, and k moment conditions in (41)-(42) which can be
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used to derive BM M estimators of ¢ and (3.

Remark 8 When x;; are weakly exogenous and the objective of the analysis is impulse-response
analysis or forecasting, then one could employ a panel VAR model in zy = (yit, X};)', which we will
consider below in Section (5). It is also possible to derive the conditional model (40) from the joint
distribution of y;z and X;:. In cases where the joint distribution is given by a VAR model, then the
conditional model (40) can be obtained only under very restrictive conditions derived in Section S.2
of the online supplement. Specifically, 0;; = Q;;Z-thy,it must be time invariant, where wgy iy =

E (ux,ituy,it) ) Q_l

!/
cait = FE (umtu’ ), and w;; = (uy,ity u;,it> are the idiosyncratic innovations in

T, it
the panel VAR representation of z; = (yit,xgt)'. Finally, in cases where a VAR specification is
considered as too restrictive for the analysis of zi, one could follow the GMM literature and use

Ax;i—s 5 = 1,2... as instruments for Ax; and augment the resultant moment conditions with the

quadratic moment condition given by (13).

4 Alternative GMM estimators

In order to better place the proposed BMM method in the GMM literature, we consider the
sufficient correlation requirements of three alternative GMM estimators.” We begin with Anderson
and Hsiao (1981, 1982), who considered an IV estimator, where Ay, ;_; is instrumented by Ay; ;—a.

This estimator is based on the following moment conditions
AH: FE [(Ayzt - gf)Ayi’t,l) Ayiytfg] = O, for t = 3, 4, ceey T. (43)

A sufficient and necessary condition for ¢ to be identified from the population moment conditions
in (43) is E (Ay;1—1Ayit—2) # 0, for some ¢t € {3,4,...,7}. This condition holds when |¢| < 1,
but not if ¢ = 1.19 In contrast to the BMM estimator, the AH estimator does not exploit the
heteroskedasticity of errors over ¢ for identification of ¢.

Consider next the moment conditions proposed by Arellano and Bond (1991), where Ay, ¢—; is

9See Bun and Kleibergen (2013) for a related discussion.
0Exact conditions for identification of ¢ from the moment conditions that underlie alternative GMM estimators
are provided in Section S.3 of the online supplement, in the case where T" = 3.
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instrumented by the levels y; s, for s < ¢ — 1, namely

AB:  E[(Ayit — ¢Ayit—1)yis) =0 for s =0,1,...,t —2, and t = 2,3, ..., T (44)

As discussed in Section 2, AB conditions are stricter than AH conditions. A necessary condition
required for ¢ to be identified from the population moment conditions AB is |¢| < 1. Similarly
to AH, the AB estimator is not identified when ¢ = 1, and the AB moment conditions does not
take advantage of time variations in 0%. To overcome this problem, Arellano and Bover (1995) and

Blundell and Bond (1998), considered additional moment conditions given by

BBZ E [Ayi,t—l (yit — ¢yi,t—1>] = 0, for t = 2, 3, ...,T, (45)

which do identify ¢ even if ¢ = 1, regardless of the values of o2 > 0. The better identification of ¢
is achieved at the expense of more restrictive conditions on the initialization of the AR processes
discussed in Section 2. See condition (11), in particular. Note that AB and BB estimators can be

implemented for T > 2.

5 VAR panel data models

5.1 VAR(1) panel data models

The analysis of Section 3 can be readily extended to panel VAR models. Consider the k£ x 1 vector

of variables z;; = (i1, ;)" and suppose that it is generated by the panel VAR(1) model,

Zit = o + Pz 1 + 1y, (46)

fort = —m; +1,-m; +2,...,1,2,...,T, and ¢ = 1,2,...,n, with the starting values given by z; _,
for m > 0, where ¢; is a k x 1 vector of individual effects, ® is a k x k matrix of slope coefficients,
Wit = (Uite, Wity - uikt)' is a k x 1 vector of idiosyncratic errors, k is finite and does not depend on n.
Similarly, to the univariate case, it is assumed that available observations are z;, for i = 1,2, ..., n,
and t =0,1,2,...,7; T > 3. We consider the following assumptions for the multivariate case which

are direct extensions of Assumptions 1-3:
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ASSUMPTION 4 (Parameters of interest) The true values of the k X k elements of ® = (¢,,),
denoted by ®g = (¢98), are the parameters of interest, and it is assumed that ® € O, where O is

a compact set of real-valued k x k matrices with the largest eigenvalue within or on the unit circle.

ASSUMPTION 5 (Idiosyncratic errors) For each i = 1,2,...,n, the process {u;, t = —m; + 1,
—mi+2, ...,1,2,...,T} is distributed with mean 0, E (w;u},) = Qjt, and there exist positive constants
c and K such that 0 < ¢ < ||| < K. Moreover, Q, = n~! Yo Qi — Q; as n — oo, and

‘4+6

sup; ;¢ E |uiji < K for some € > 0. For each t, u; is independently distributed over i. For each

1, Uy s serially uncorrelated over t.

ASSUMPTION 6 (Initialization and individual effects) Let by = & [o; — (I — @)z ;] =
(bi1, biz, ..., bix)". It is assumed that f)bm =n1 S Dy — D, as n — oo, where D;; = E (b;b)),
and sup; s |bis|*T¢ < K, for some € > 0. In addition, b; is independently distributed of (b;, u;-t>l,
foralli #3j,4,j5=1,2,...,n, and allt = —m;+1,—m;+2,...,1,2,...., T, and the following conditions
hold:

E (Auyb)) =0, fori=1,2,..,n, and t =2,3,...,T. (47)

Taking first-differences of (46), we have
Az = PAz; ;1 + Augy. (48)
Self-instrumenting Az;;_1, we obtain
E (AuitAz;t_l) =—Q; 1. (49)

Similarly to Section 3, we use E (Au;Aul,) = Q-1 + Qi and E (Au;41A2i) = —Q; to obtain

the following QM conditions,
E (AuitAzgyt_l) + F [AuitAu;t} + F (Aui7t+1Az;t) = 0, (50)

fori=1,2,...,n,and t =2,3,...,T — 1. (50) is a multivariate version of (13).

Averaging moment conditions (13) over ¢, we obtain (similarly to (14))

E[M;r (®)]=0, fori=1,2,...n, (51)
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where

T-1 T-1
M;r (<I>> = T 5 Z Azzt — <I>Azzt 1) AZ” 1 —|— Z Azit — ‘I>AZ,‘7,5_1) (Azit — ‘I>AZ,‘7,5_1),
t=2 t:2
T-1
+ﬁ tz:; (Azi7t+1 - (IZ‘AZ#) Azgt. (52)

The BMM estimator of ® is given by

A

P, = arg glel(% HMnT ((I))” ) (53)

where © is a compact set of admissible values of @ defined in Assumption 4, and M,,r (®) =
n~t3" M, (®). To derive the asymptotic properties of &,,1, let ® denote the true value of

® € O, and note that under ® = P, (48) yields Az = ®oAz; ;1 + Auy, and (52) can be written

as
M;r (®) = Air + Vi, (54)
where
1 T-1
Vir = T3 (AuitAz;’t_l + AuiAuj, + Au; 1Az (55)
t=2
Air = (@ — ®0) Qir (2 — ®o)' — (P — Do) (Qir + Qfr — Hir) + Hip (2 — ®)’,
and
1 T-1 1 T-1 1 T-1
QiT = m ; AziytflAZ'Ii,t—b QTT = m ; AzitAz;t, HiT = m 2 AuitAZ{i,t—l'

We have k? unknown parameters in @ and k? moment conditions in (51). Suppose there exists
&, such that M, 1 (@nT) = 0. Then (54) evaluated at ® = &, vields the following multivariate

version of (22),

A ! _ A / A _ . _ _
(B1r-®0) Qur (Bur—®0) — Fur (Bur—0) — (Sur—@0) (A,r + Qur + Q) = ~Vour,
(56)
where Qur = n " 300, Qir, Q=17 300 Qi Hyr = 07t 300 Hyr, and Vir = n= 1 300 Vi,

Similarly to the univariate case, we show that there exists unique /n-consistent solution. Suppose
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that ®,,7 is a \/n-consistent estimator of ®. Then the first term (56) is O, (n~1), and we obtain,

using (56),
VnH,r (@nT - <I>o>/ +vn (@nT - <I>0) (A + Qur + Q) = VaVar + 0, (n—1/2) ’

Also, since by Lemma A.4, \/nV,r = O, (1), then the \/n-consistent estimator is unique, if it

exists. Vectorizing above equations, we have!!

Vit (1 @ Hyr) RVee (@r—@0 ) + v/ [(Bur + Qur + Q) @ 1] Vee (@10

= Vec(vnVur) + 0, <n*1/2> ,

~ I A~
where R is k? x k? re-ordering matrix uniquely defined by Vec |:(‘I)nT—‘I)0> } = RVec (‘I’nT—'I’()).

Let

BnT —n1! Z P’iT; and BiT = (Ik &® HiT) R+ (HiT +Qir + Q;}) ® 1. (57)
=1

Using Lemma A.3 in appendix, we have B,,; = E (BRT) + O, (n_l/z). Let

By = lim n’lzn:E (Bir) - (58)

n—oo
i=1
(58) is a multivariate version of (31). Similarly to the univariate case, we require that B is invertible
for \/n-consistency. Assuming Br is invertible, it then follows that the \/n-consistent estimator,

A

®,,7, must be unique. Finally, using (A.14) of Lemma A.4, we obtain

A

\/’EV&C (‘I)nT — @0) —d N (0, B;lsTB;1’> ’
where Sy = limy oo n ! Y1 E [Vee (Vir) Vec (Vir)'].

Remark 9 If By # 0 is a singular matriz, then some elements of &, can not be \/n-consistent.

1/4

If Br = 0 and Qr = lim,_o Q.71 is positive definite, then there exists a unique n'/*-consistent

estimator.

"'Note that for any p x p generic matrices A and X, we have Vec(AX’') = (I, ® A) Vec(X’), and Vec(XA) =
(A’ ®1L,) Vec(X).
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The following theorem summarizes our results for the case where B,,7 is nonsingular for all n,

and as n — oo.

Theorem 2 Suppose z;, for i = 1,2,...n, andt = —m; +1,—m; + 2,...,1,2,....,T, are gen-
erated by (46) with starting values z; ;. and the true value of the parameters of interest ®g.
Let Assumptions 4-6 hold, and suppose Br = lim,_,oon ™! Zg‘:lE(BiT) is nonsingular, and
St = lim, ,oon ! i E [Vec (Vir) Vec (ViT)I], where Bir is defined in (57) and Vr is de-
fined in (55). Consider the BMM estimator, ®,r, defined by (53), and let T be fized as n — co.

Then, the unique \/n-consistent estimator <]A:>nT satisfies

-

vnVec (@nT—'fI)o) —q N (0,37),

where

>r = B;'SrBLY.
Similarly to the univariate case, X7 can be consistently estimated by'?
N ~—14 ~—1
where B,,7 = n~1 Zznzl Bi,nTa

Binr = (Ik ® I:Iz',nT) R+ (ﬂi,nT + Qir + Q:FT) ® I,

IA{mT =(T - 2)_1 ZtT:_Ql AﬁitAz;’t_l, Aty = Az — @nTAzm_l, (At depends on n and T, but

we omit subscripts n,T" to simplify the notations),

SnT = (:L i Vec (Vi,nT) Vec (\A/'@nT)/) ,
=1

and
T-1
¥ ]‘ A / ~ / N /
Vinr = T3 Z (At Az, | + At Auj + Ady 1AzZ]) .
t=2

12Consis‘cency of f.‘.nT in the multivariate case can be established in the same way as in the univariate case in
Proposition 1 in appendix.
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5.2 Panel VAR(p) models

The BMM procedure can be readily extended to higher order panel AR or panel VARs. Consider
the panel VAR model of order p, VAR(p):

P
Z;t = Oy + Z Dyz; ¢+ Uy, (59)
/=1

fort = —m;+1,—m;+2,...,1,2,...,T and ¢ = 1,2, ...,n, with the starting values given by z; _,, —p+1,
Zi —m;—p425 s Zi,—m,; for m; > 0, and some p > 1. Suppose that available observations are z;, for
1=1,2,...,n,and t =0,1,2,...,7; T > p+ 2. The number of time periods required is p + 3. Using
the first-differenced form of (59) and self-instrumenting Az;;_; we obtain the following quadratic

matrix bias-corrected moment conditions
E (AuyAz),_,) + E (AuyAu)) + E (Aui,tHAz;t) ~ 0. (60)
Self-instrumenting the higher order lags we have
E (AuyAz;, ;) =0, for £ =2,3,..,p. (61)
Averaging the above moment conditions over ¢, and using Au; = Az — 272:1 ®yz; ¢, we have
E M (®)] =0, fori=1,2,..,n, (62)

where ® is the k& x pk parameter matrix of interest defined by ® = (®1, ®2,...,®,), Mir (®) =

)

(MY (@), M7 (@),.. M7 (@),

T—1 p
1
Mz(jl) (®) = — Z <Azit - Z ‘I’gzi7t_g> Az;t_l (63)

t=p+1 =1
1 T-1 P P l
+T—7p—1 Z (AZit - Z q)@Zi,tg) (Azit — Z @gzi7t€>
t=p+1 =1 =1
1 T—1 p
+T—7p—1 Z (Azi,tﬂ - Z q’ezi,tﬂ—z) Az,
t=p+1 =1
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and

T-1 D

/ 1

M (@) = 7 D (A = @ezi,t_a Az, , for (=23, .p.
t=p+1 /=1

The BMM estimator of ® can now be computed as
(I)nT = arg glel(% HMnT ((I))H ’ (64)

where as before M7 (®) = n~! > | M;r (®), and © is a compact set of admissible values of ®
such that all roots of the characteristic equation ’Ik — 1(3:1 ®,z| = 0 lie outside or on the unit
circle. Note that there are k?p unknown coefficients in @, and the same number, k%p moment
conditions in (63) and (64).

The BMM estimator, ®,7, has the same asymptotic properties as in the case of the VAR(1)
specification and the same lines of proof applies here. The proof can be simplified by using a
VAR(1) companion form of (59).

It is also possible to extend the BMM procedure to accommodate unbalanced panels and time
effects. Consistent estimation of average error covariances, €2, for t = 1,2,...,T, is also possible.

For details see Sections S.4 and S.5 of the online supplement.

6 Monte Carlo Evidence

We now provide some evidence on the small sample performance of the BMM estimator as compared

to a number of key GMM estimators proposed in the literature.

6.1 Data generating process (DGP)

The dependent variable is generated as
Yit = & + QYig—1 + Uit (65)

fori=1,2,...n,and t = —m; + 1,—m; + 2, ...,T. We consider two values for ¢, namely ¢ = 0.4,

and 0.8. Individual effects are generated as
o = o+ wy, (66)
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where w; ~ IIDN (0,02). The processes are initialized as
Yi,—m; = Kill; + Vi, (67)

where p; = i/ (1 —¢), ki is generated as k; ~ IIDU (0.5,1.5) so that E(k;) = 1, and v; ~
IIDN (p,,1). We consider two options for y,,, namely u, = 0 and 1. We set a = 02, = 1, which
ensures that V (a;) = 1.

DGP (65)-(67) implies (also see (4))

mi—l

Ayir = — (1= ) ¢™ [(ki — 1) gty + vi] +uin — (L= ) > ¢'ui e (68)
(=0

The times at which the processes are generated, namely —m,; before the initial observation g,
are allowed to differ across i and are generated as m; ~ IIDU [1,4]. The idiosyncratic errors,
uit, are generated as non-Gaussian processes with heteroskedastic error variances, namely u; =
(et —2) 0ia/2 for t < [T/2], and uy = (ey — 2) o/2 for t > [T/2], with o2, ~ I1DU (0.25,0.75),
0% ~ IIDU (1,2), and ey ~ I1Dx?(2), where [T/2] is the integer part of 7/2. o2, and 0% are
generated independently of e;;. This ensures that the errors have zero means, and are conditionally
heteroskedastic, in particular, V (uit| 0jq) = 02, for t < [T'/2], and V (u;| o) = 02 for t > [T/2].
We set T = 3, 5, 10, 20, and n = 250, 500, 1,000, and run each experiment with 2, 000 replications.'?

Besides the parameter of interest ¢, the key parameters of the MC design is p,,. This parameter

affects the relative performance of BMM and IV/GMM estimators. It is easily seen that

Uy

1—¢

Ep; (Yi,—m — ;)] =

AH, BMM and AB estimators are valid for all values of x,,. But, as it is already shown in Subsection
2.1, the validity of the BB estimator requires p,, = 0. See condition (11).

Finally, since our theory suggests that the BMM estimator should work even for n and T
larger, in addition to small values of T' = 5,10,20, we also consider its performance when 7T is
large. But to save space we provide results for BMM estimator for values of 7' = 100, 250, 500, and

n = 250, 500, 1000 in the online supplement.

13Results for experiments with larger values of n, namely n = 2000, 5000, and 10,000 are provided in the online
supplement.
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6.2 Estimation methods
6.2.1 BMM estimator

We implement the BMM estimator given by (16) with its variance estimated using (36).

6.2.2 Alternative GMM estimators

As alternatives to the BMM estimator we also included the IV estimator due to Anderson and
Hsiao (1981, 1982), the first-difference GMM methods based on the moment conditions considered
by Arellano and Bond (1991), and the system GMM methods based on the moment conditions
considered by Arellano and Bover (1995) and Blundell and Bond (1998).

Anderson and Hsiao (1981, 1982), hereafter AH estimator makes use of the following moment

conditions

FE [Ayi,t—l (Ayzt - ¢Ayz’,t—1)] = 0, for t = 3, 47 ceey T. (69)

The resultant estimator is obtained by averaging the above moment conditions over ¢, which leads
to the AH estimator given by equation (8.1) of Anderson and Hsiao (1981). A consistent estimator
of the asymptotic variance of the AH estimator is provided in Section S.6 of the online supplement.

The first-difference and system GMM methods are based on a larger set of moment conditions
and are thus overidentified. For both of these estimators, we consider two sets of moment conditions
— a full set and a subset, with the latter aimed at lowering the number of moment conditions,
and thus possibly improving the small sample performance of these estimators at the expense of
asymptotic efficiency. Specifically, the first set of first-difference moment conditions proposed by

Arellano and Bond (1991) and denoted as "DIF1" consists of

DIF1: E|yis (Ayit — ¢Ay;i+—1)] =0, for s =0,1,...,t —2, and t = 2,3, ..., T, (70)

which gives h = 3,10, 45,190 moment conditions for 7" = 3,5, 10, 20, respectively. The second set

of moment conditions, denoted as "DIF2", is a subset of DIF1 and consists of

DIF2: Ely;t—2—¢ (Ayit — ¢Ayis—1)] =0, with £ =0 for t =2, and £ = 0,1 for t = 3,4, ..., T, (71)

which gives h = 3,7,17,27 moment conditions for T" = 3,5, 10, 20, respectively. Hence, for T' = 3,
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DIF1 and DIF2 are the same, but differ for 7" > 3.
We also consider the system-GMM estimators (Arellano and Bover (1995) and Blundell and

Bond (1998)) and augment DIF1 and DIF2 moment conditions with

E [Ayi,t—l (yzt - (Z)yi,t—l)] = Oa for t = 2> 3> ceey T7 (72)

and denote the estimators based on the augmented sets of moment conditions as "SYS1" and
"SYS2", respectively. As discussed in Section 2, additional moment conditions in (72) have been
proposed to deal with the mentioned deficiency of the first-difference GMM methods in the case of
a highly persistent dependent variable at the expense of stricter requirements on the initialization
of dynamic processes. For SYS1, we have h = 5, 14, 54, 209 moment conditions for T' = 3, 5, 10, 20,
respectively, while for SYS2 we have h = 5,11,26,56 moment conditions for T = 3,5, 10,15,
respectively.

We implement one-step, two-step and continuous updating (CU) versions of DIF and SYS type

GMM estimators, based on each of the four sets of moment conditions outlined above.*

First-difference and system GMM inference In addition to the conventional standard errors,
we also consider Windmeijer (2005)’s standard errors with finite sample corrections for the two-step
GMM estimators and Newey and Windmeijer (2009)’s alternative standard errors for the CU-GMM
estimators. For the computation of optimal weighting matrix, a centered version is used except for

the CU-GMM.

6.3 Monte Carlo findings

Here we focus on reporting the results for the more challenging case of ¢ = 0.8, and relegate the
findings for the experiments with ¢ = 0.4 to the online supplement.

First we consider the experiment where the deviations of the initial values from the long-run
means have zero means (u, = 0), labeled as Experiment 1. As noted already, all the estimators
considered are valid asymptotically, and any observed differences across them must be due to small
samples and the fact that they differ in asymptotic efficiency. Table la reports findings for the

bias and RMSE (both x100) of estimating ¢, and Table 1.b shows the results for size and power

""We use the Matlab code provided to us by Hayakawa and Pesaran (2015). See Section 4.1 of Hayakawa and
Pesaran (2015) where a more detailed description of these methods is provided.
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of the tests. As to be expected, the performance of all estimators improve with n, although there
are significant differences in the small sample performances of the different estimators, with the
AH estimator doing quite poorly when T' < 10, which has also been documented in the literature.
Similarly, the first-difference GMM methods, which rely on lagged levels as instruments, are not
doing that well when T is small, although they clearly beat the AH estimator in terms of the bias
and RMSE. The BMM and system-GMM estimators are the best performing. Despite the fact that
the system-GMM estimators are asymptotically more efficient than the BMM estimator, for 7' = 3
and all values of n considered the BMM estimator performs better in terms of RMSE. For larger
choices of T' (or larger choices of n reported in Table Sla of the online supplement), it becomes
clear that the BMM estimator is asymptotically not the most efficient, since it does not exploit
the additional restrictions, (11), that underlie the system-GMM estimators. In terms of bias, the
BMM estimator performs quite well in comparison with the system GMM estimators whose bias
seems to vary considerably across estimators and sample sizes.

Size and power of tests based on the different estimators at the 5% nominal level are reported
in Table 1b. The BMM estimator achieves good size (close to 5%) for all choices of n and T'. The
size of the AH estimator is also good, but its power is very low, as to be expected based on the
RMSE findings. The tests based on the first difference GMM estimators are in majority of cases
oversized, but the size distortions decrease in n and eventually disappear for a sufficiently large
n > 1,000 (reported in Table S1b in the online supplement for n = 2,000, 5,000 and 10,000). The
size distortions of the system-GMM methods appear to be more serious, and in a few cases (for
T > 5) the reported rejection rates exceed 50%.'% These are serious small sample problems, which,
as in the case of the first-difference GMM methods, eventually disappear once n becomes sufficiently
large. The power of the BMM estimator is quite good compared with the GMM estimators, but
the power comparisons are rather complicated because of the size distortions of the first-difference
and system GMM estimators. For T' = 3, and n = 1000 the power of the tests based on the BMM
estimator is 58.9, about five-fold increase over the first-difference GMM methods, and it is matched
only by CU-GMM estimators, which are slightly oversized.

Next we consider the experiment with non-zero values of u, (Experiment 2, u, = 1), whilst

keeping all other design parameters unchanged. As noted earlier, not all of the moment conditions

5The use of standard errors proposed by Windmeijer (2005) and Newey and Windmeijer (2009) to overcome the
size distortion of the system-GMM estimators help but do not fully resolve the problem unless n is sufficiently large.
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for the system GMM hold under this scenario, and the system GMM estimators are no longer
consistent. This is confirmed by the large biases reported for the system GMM estimators in Table
2.a, and the substantial size distortions reported for these estimators in Table 2.b.'6 The remaining
estimators, BMM, AH and the first-difference GMM methods are robust to the choice of p, and
continue to perform well. In fact, increases in u,, can result in an improved correlation between
the target variable Ay; ;1 and its instruments (be it lagged differences, or lagged levels), and we
see that the gains in RMSE and bias are quite large for the first-difference GMM estimators, but
very minor for the BMM estimator, which is not subject to the weak instrument problem and
was previously performing well anyway.!” As in Experiment 1, the BMM estimator need not be
asymptotically the most efficient, but its performance appears very good in small samples. For
T = 3,5, its RMSE again outperforms the first-difference GMM estimators by a large margin.
The tests based on the BMM estimator continue to perform well in terms of size, whereas the
performance of the first-difference GMM estimators is mixed, with severe over-rejections reported
for selected larger values of T', with the exception of the 1-step estimator based on the restricted set
of moment conditions "DIF2". Such deterioration in inference as T is increased is therefore likely
to be due to the proliferation of moment conditions resulting from an increase in 7. In terms of
the power findings, we again see that the tests based on the BMM estimator are substantially more
powerful compared with the first-difference GMM methods for smaller values of T' < 10, where
majority of the first-difference GMM methods do not show very large size distortions. All of the
system GMM methods are, not surprisingly grossly oversized and therefore the power comparisons
are not meaningful. We conclude from Experiment 2, where only the BMM, AH, and the first-
difference GMM estimators are asymptotically valid, that the BMM estimator can significantly
outperform its main competitors.

Overall, the MC findings show that the BMM estimator is robust and outperform its ‘cousin’
AH estimator by a large margin. The system GMM estimators are not robust to p,, # 0, and are
thus more restrictive. In the case of Experiment 1 (with p,, = 0) where all estimators are valid, the

BMM estimator is not the most efficient asymptotically, but it performs comparably well for the

16The bias and size distortions of the System-GMM estimators do not vanish even for larger values of n. See Tables
S2a and S2b in the online supplement.

"The improvement in the performance of the first-difference GMM estimators is in line with Hayakawa (2009)
and Hayakawaa and Nagata (2016), who investigate the effects of mean-nonstationarity on the first-difference GMM
estimators.
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choices of n and T considered, and in some instances better than the first-difference and system
GMM methods. It is also remarkable that, in contrast to the first-difference and system-GMM
estimators, the size of the tests based on the BMM estimator is reliable for all choices of n and T" in
all experiments considered. Hence, we conclude that the BMM estimator works well, regardless of
whether p,, is zero or not, albeit it could be less efficient for some choices of n and 7. However, in
practice it is not known whether conditions required for the system GMM estimators regarding the
initialization of dynamic processes are satisfied, and violation of these conditions can cause large
biases and wrong inference.

The important parameter that affects the performance of the BMM estimator is the magnitude
of By given by (31). The BMM estimator will not perform well in designs with By close or equal
to zero. As highlighted in Remark 4, Br is zero in the leading unit root case with homoskedastic
errors. The performance of the BMM estimator when ¢ = 1 is documented in Table S5 in the
online supplement.

Finally, it is worth noting that BMM and AH estimators remain applicable also when T is large,
whereas the first-difference and system GMM methods deteriorate and eventually become infeasible
as T increases, unless the proliferation of moment condition is somehow controlled. To demonstrate
that the BMM and AH estimators remain applicable regardless whether T is small or not in relation
with n, we also report selected results for 7' = 100, 250,500 in an online supplement (Table S6).
These experiments confirm that the BMM estimator continues to perform well for large values of T,
and also that the power of the tests based on the AH estimator will improve with an increase in 7.
However, when both n and T are large, alternative estimators developed in the literature that allow
for slope heterogeneity and unobserved common factors, both of which are likely to be important
in practice, can be applied. Therefore the main appeal of the BMM estimators developed in this
paper is, in our view, for panels where the more general large-n, large-T' estimators break down

due to small time dimension.

7 Conclusion

This paper proposes the idea of self-instrumenting target variables instead of searching for instru-
ments that are uncorrelated with the errors, in cases where the correlation between the target

variables and the errors can be derived. In this paper this idea is applied to the estimation of
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short-T" dynamic panel data models, and a simple bias-corrected methods of moments (BMM) es-
timators are proposed. The BMM estimators are applicable under less restrictive conditions on
the initialization of the dynamic processes and the individual effects as compared to the leading
first-difference and system-GMM methods advanced in the literature. It is, however, acknowledged
that the BMM estimators can be less efficient asymptotically when the stricter requirements of the
first-difference and system GMM estimators hold. The robustness of the BMM estimators is likely
to be an advantage in practice where it is not possible to know if the stronger requirements of the
GMM estimators are met, and thus avoid possible estimation bias and incorrect inference.

The idea of self-instrumenting opens new exciting research avenues. This idea could be con-
sidered in other settings, including spatial panel data models. The idea can also be exploited to
estimate unknown parameters of a known distributional functional form of slope coefficients in
short-T" autoregressive or vector autoregressive panels with heterogenous slope coefficients. Last
but not least, we have also left the topic of combining the new moment condition proposed in this

paper with the existing moment conditions considered in the GMM literature to future research.
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A Appendix

This appendix is organized as follows. Section A.1 derives B given by (34) and (35), as well as a number of
results used in Section 4. Section A.2 provides lemmas for the univariate case. Section A.3 provides lemmas

for the multivariate case. Additional propositions and proofs are given in Section A.4.

A.1 Derivation of Bs

Recall that .
_ 1
Br = lim =Y E(Bir), (A1)

n—oo N,
1=1

where

T-1

1

BiT = 7T — 2 ( E Ayz»27t71 + Ay'?t + 2AuitAyi,t1> )
t=2

and Big = Ayfl + AleQ + 2Aui2Ayi1. But FE (AuigAyil) = —0'221, and

FE (Ayi22) = F (¢2Ayi21 + AU?Q + 2¢Au,~2Ayi1)
= ¢’E (Ayfl) + (‘7?2 + (7?1) — 2¢0%
= ¢°E (Ayfl) +(1—2¢) 0 + 0%, (A.2)
Hence
B(Ba) = B(82)+ 6B (808) + (1 - 26)0% +oh — 207
= (1+ ¢2) E (Ay}) + (07 — 07)) — 2607, (A.3)

We derive E (Bs) in terms of 67 = limy, oo n ™t 31" | 0%, for t = 1,2, and lim,, oo n ™' >0 E (yio — )%,

and lim,, 0o ™t 31| E [ui1 (yio — p;)]- Note that Ay;1 = uin — (1 — ¢) (yio — ;). Hence
E(Ay3) =04 +(1—6)° E (yio — 1:)° — 2 (1 — ¢) E [ugn (yio — p:)] -
Using this result in (A.3), we have

E(Bis) = (0h—0h)+(1—-¢) 0}
+(14+¢°) {1 0)° B (o — 1)° = 2(1 = 6) Elur (oo — )] }

which in view of (A.1), yields

where

1y RN
Yo =(1-9) nhjgo n Z E (yi0 — ;)" — thjgo n ZE [uir (yio — )] »
i=1 i=1

as required.
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A.2 Lemmas for the univariate case

Lemma A.1 Suppose y;, fori =1,2,...n, andt = —m; + 1,—-m +2,...,1,2,....T, are generated by (1)
with starting values y; —m. Let Assumptions 1-8 hold. Consider

n

_ 1< _ 1
Qnr = - ;Qn’, and B, = - Z (Qir + Qi +2H;7) ,

i=1
where Qir = (T —2) ' S A2y, Qip = (T —2) ' 0, Ay, and Hir = (T — 2) 7 3005, A Ayig.
Suppose that T is fized. Then, we have

Qur = E (Qur) + 0, (n1/?), (A.5)

Bur = E (Bur) + Oy (n™"/2) . (A.6)

Proof. Under Assumptions 1-3, the fourth moments of u;; and b; are bounded, and hence, using Loéve’s

inequality,'® for each i the fourth moment of Ay;; :

m;—1 t—2
Ayir = ¢ b 4+ un — (1 — ) Z dtui _g| + Z ¢ A, 4y,
=0

£=0

is also bounded, for all values of |¢| < 1 and m; > 0. Since T is fixed, it follows that the second
moment of Q;7 = (T — 2)7! tT:_Ql Ay7, , must be bounded, and hence there must exist K such that
ElQir—F (QZ-T)]2 < K. Consider next the cross-sectional average of Q;7—F (Q;r). We have E [Q;,7 — E (Qir)] =
0 by construction, and also Q;r — E (Q,r) is independently distributed across i, since, under Assumptions

1-3, Ay, is independently distributed across i. Hence,

Var {nl Y Qir—E <Qn>]} <n Y EQir — E(Qir))” < %

i=1 =1

and therefore =237, Qi —n~t 37 E(Qir) = O, (n~Y/2). This completes the proof of (A.5).
Result (A.6) is established similarly. Note that

_ 1 & 1 & 1 _ B B
Bnr =~ @ -~ p 2— Hir = Qx g 2H, .
T n;QT+n;QzT+ n; T=Qunr +Qrp+ T
The order of Q7 — E (Qnr) is given by (A.5). Using the same arguments as in the proof of (A.5), we have
2 —E(Qfr) =0, (n,m) ,and H,r — B (H,r) = 0, (nq/z) .

Hence, Byr — E (Bur) = Qur — E (Qnr) + Q)r — E(Q)7) +2 [Hor — E (Hyr)] = O, (R71/2), and result
(A.6) follows. This completes the proof. m

Lemma A.2 Suppose y;, fori=1,2,...n, andt = —m; +1,—m; +2,...,1,2,.... T, are generated by (1)

with starting values y; —p,;. Let Assumptions 1-3 hold. Consider

1 n
Var = - Z; Vir,
P

'8See equation (9.62) of Davidson (1994).
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where Vip = ﬁ tT:_Ql (AuitAyw_l + Au, + Aui7t+1Ayit). Suppose that T is fized. Then, we have

Vor = O, (n_l/Q) . (A7)
If, in addition, St = lim, .o n~! Z:;l E (VfT), and T is fized as n — oo, then

VnVur —4 N (0,S7) . (A.8)

Proof. Under Assumptions 2 and 3, Vir is independently distributed of Vjr for all ¢ # j, 4,5 = 1,2,...,n.
In addition, (using (13))

T-1
FE (V; ) = — Z FE (AuitAyi,t_l + Auft + Aui7t+1Ayit) =0. (Ag)

t=2

Also, by Assumptions 2 and 3, sup, , £ |ui1¢|4Jre < K, and sup,; F |bi\4+6 < K, for some € > 0, and hence,

using Loéve’s inequality,'® we have sup; , B | Ay | < K. Using Loéve’s inequality again, we have

2+¢€/2 2+4€/2

FE |AuitAyi7t_1 + Aui + Aui,t+1Ayit| S K (E ‘AuitAyiﬁt_l‘Q—H/Q + E |Auft| + E |Aui,t+1Ayit|2+e/2) .

But sup;, E |Au? 2he/2 _ sup;, B |Auy | < K, as well as sup, ; E | Ay Ay 11T/ < K, and
2+e/2
sup; , |Aui7t+1Ayit|Q+€/2 < K. Hence, supy E |Auj Ay i1 + Audy + Aug g1 Ay ¢/

Loéve’s inequality again, we have

< K, and using

sup E (MT|2+E/2) < K. (A.10)

It follows also that sup, F (VfT) < K, and given that V;p is independently distributed over i, we have

n

E(VZ) = n_ziiE(ViTVjT) =n"2Y E (Vi) < K

L £ : n’
=1 j=1 =1

and result (A.7) follows. To establish (A.8), we note that (A.10) holds, and therefore the Lyapunov con-
dition holds (see Theorem 23.12 of Davidson, 1994). Hence, noting also that n =1 i E (VfT) — St by
assumption, we obtain v/nV,r —4 N (0, St), as required. m

A.3 Lemmas for multivariate case

Lemmas A.3 and A.4 below are direct extensions of Lemmas A.1 and A.2, respectively, to the multivariate

case.

Lemma A.3 Suppose z, fori=1,2,...,n, andt = —m; +1,—m; +2,...,1,2,....T, are generated by (46)

with starting values z; _,,. Let Assumptions 4-6 hold. Consider

Q.r = i; Qir, and B,y =n"" ZBiT,

i=1

where Qup = (T —2)~" tT:_gl Aziy 1Az, o, Bip = (I @ Hip) R+ (Hip + Qir + Q) ® I,
Hyp = (T—2)" ;‘F:_Ql AuyAz;, ,, Qf = (T — 2)~! 32_21 Az Azl,, and R is the unique k? x k? re-

it

See equation (9.62) of Davidson (1994).
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ordering matriz defined by Vec(X) = RVec(X') for any k x k matriz X. Suppose that T is fixred. Then, we
have

Q’nT =F (QWLT) + Op (n71/2) ’ (All)
Bur = B (Bur) + 0, (n7172). (A.12)
Proof. Lemma A.3 can be established using the same arguments as in the proof of Lemma A.1. =

Lemma A.4 Suppose z;, fori=1,2,...n, andt = —m; +1,—m; +2,...,1,2,..., T, are generated by (46)

with starting values z; —p,,. Let Assumptions 4-6 hold. Consider
1 n
Vor =~ 21 Vir,
i

where Vip = (T —2)7" tT:_Ql (AuyAz], | + AugAuj, + A, 1 Az),). Suppose that T is fized. Then, we
have
Vor =0, (n*W) . (A.13)

If, in addition, St = lim,_con !> " | E [Vec (Vir) Vec (ViT)/] , and T is fized as n — oo, then
VnVec (\_/'nT) —q N(0,S7). (A.14)
Proof. Lemma A.4 can be established using the same arguments as in the proof of Lemma A.2. =

A.4 Propositions and Proofs

Theorems 1 and 2 are established in the main text. This section presents propositions for the consistency of

EnT .

Proposition 1 Suppose conditions of Theorem 1 hold, and consider Sor defined by (36), namely
~ ~=2 (1 L
EnT - BnT (n Zl %?nT) s

where Bpr = n7'Y0 (QiT + Qi + QﬁmT); Hipr = (T-2)7" tT:_gl Aty Ay -1, Aty = Ay —

G AYit—1,

T-1

. 1 R R .

Vit = T_39 E (A Ay -1 + AW, + Adij g 410Y3)
t=2

and éSnT is the \/n-consistent BMM estimator given by (16). Let T be fized as n — oo. Then,

EnT —>p ZT, (A15)
where Y is defined in (32)

Proof. Using Theorem 1, we have ¢A>nT = ¢g+ Op (n’l/z), and therefore At;; = Ay — ¢,,pAYit—1 is

consistent, namely Ad;; — Auy = Ay — ((ES,LT — ¢ ) Ayi -1 =0y (n_1/2). This implies }AIi,nT is consistent,
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which in turn implies §nT — Bur —p 0. But, using result (A.6) of Lemma A.1, we have B,r —p E (BnT),
and F (BnT) — Brp. Therefore B, —p By. Since By > 0 by assumption, it follows that

~—2 _
B,r —p B32 (A.16)
Next consider n=! 3 | V2 1., and note that

Vi = {(Vi,nT - ViT) + ViTr = (VznT -V )2 +2 (VznT - ViT) Vir + Vi,

where V;r = (T — 2)_1 3“2—21 (AuitAyi,t—l + Au?, + Aui7t+1Ayit). Using Ady, ¢ — Aty i = Op (nil/Q), we
have V; ,,v — Vir = O, (n_1/2). Noting also that Vi = O, (1), we then have

nt Z (Vi,nT -V )2 —, 0, and ™! Z (f/mT — ViT) Vir — 0. (A.17)
3 i=1

Finally, to obtain the limiting property of n~! Dy V2., note that by assumption Vir is independently
distributed over 7. Also, as established in (A.10), we have sup; F \ViT|2+E/2 < K for some ¢ > 0. It follows
that n=' Y1 | [VZ — E (V4)] —, 0, and therefore (noting that n=' """ | E (V;2) — Sr by assumption)

we have

n 'S Vi =y S (A.18)
i=1

Result (A.15) now follows from (A.16), (A.17), and (A.18). m
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S Online Supplement to "A Bias-Corrected Method of Moments
Approach to Estimation of Dynamic Short-7' Panels" by A.
Chudik and M. H. Pesaran

This supplement provides additional theoretical results and further Monte Carlo (MC) findings. Section
S.1 considers the implications of relaxing the assumptions that errors and initial values are cross-sectionally
independent. Section S.2 derives conditional model for y;; when z; = (yit,xgt)/ is given by a panel VAR
model. Section S.3 derives conditions under which the autoregressive parameter of interest, ¢, is identified
for the set of alternative GMM moment conditions considered in the paper. To simplify the derivations we
focus on the case where T' = 3, and the order of the underlying AR process is one. Section S.4 extends
the BMM procedure to unbalanced panels with time effects. Section S.5 discusses consistent estimation
of Q, for t = 1,2,...,T. Section S.6 derives consistent estimator of asymptotic variance of Anderson and
Hsiao (AH) estimator. Section S.7 reports MC results for ¢ = 0.4, as well as for large values of n, namely
n = 2,000, 5,000, 10,000, and T" = 3,5, 10, 20. It also considers properties of BMM and AH estimators when
both n and T are large, and when ¢ = 1. Section S.8 presents rejection frequency plots for selected MC

experiments.

S.1 Relaxing cross-sectional independence of errors and initial values

Assumption 2 requires errors to be cross-sectionally independent. This assumption can be relaxed as follows.

ASSUMPTION S1 (Cross-sectionally correlated errors) For each i =1,2,...,n, the process

{uig, t=—m; +1,—m; +2,...,1,2,.... T} is distributed with mean 0, E (“2215) = 02, and there exist positive
constants ¢ and K such that 0 < ¢ < 0% < K, for alli,t, and sup; , &/ |uit\4+€ < K for some € > 0. For each
t, u;s is independently distributed over i. For each i, u; is serially uncorrelated over t. In addition, there

exist constants 0 < 6, <1 and 0 < 6, < 1 such that the following conditions hold:

S}ltpz |E (uiruje)| = O (né") ; (S.1)
7, =1
and
sup [ (i) | = O (n*), (52)
i, j=1

~2 2 2
where 45, = uj, — 03,.

Cross-sectional dependence of initial values could also be allowed, as postulated in the following assump-

tion, which replaces Assumption 3.
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ASSUMPTION S2 (Initialization and individual effects in the cross-sectionally correlated case) Let b; =
=" (1 = @) Yi,—m,; — ). It is assumed that sup, F |bi|4+€ < K, for some € > 0. In addition, the following
conditions hold:

E (Auiby)) =0, fori=1,2,...,n, and t = 2,3,...,T, (S.3)

and there exist constants 0 < §, < 1 and 0 < §, < 1 such that

s_utp Z |E (uirujibibs)| = O (n‘s“’) , (S4)
bt 4

and

sup Z E (5125?) =0 (n°), (S.5)
it
where BZQ = b? — g? and g? =F (bf)

Remark 10 Assumption S1 allows w;; to be weakly cross-sectionally correlated such that conditions (S.1)
and (S.2) of Assumption S1 hold. These conditions rule out the presence of strong unobserved common
factors in errors (strong in a sense that the cross-section arithmetic average of Euclidean norm of loadings
is bounded away from zero as n — 00),5! but it allows for more general processes than commonly used
spatial processes in the literature. For example, condition (S.1) allows for the largest eigenvalues of the n xn
covariance matrices of error vectors uy = (U1, Uat, ..., Une)', denoted as Qp = F (uzu}), to diverge as n — oo
but at a rate slower than n, whereas commonly used spatial processes in the literature typically assume that

these eigenvalues are all bounded. For further discussion, see Section 2 of Pesaran and Tosetti (2011).

Remark 11 Assumption S1 is sufficient for

n
Tty ul =, 57, (S.6)
i=1
as n — 00, at any point in time t = —Mupmin + 1, —Mmin + 2, ..., 1,2, ..., T, as well as
n
nt Zuituit/ —, 0, (S.7)
i=1
asn — oo, for any t #t', t,t' = —Mmin + 1, —Mmin + 2, ..., 1,2, ..., T, where muyin = min{mq, ma,...,m,},

and as before 67 = limy—oon™ 'Y i, 0%. This is established in Lemma S1 below. Conditions (S.6) and

(S.7) are required for the consistency of the BMM estimator.

S1See Chudik, Pesaran, and Tosetti (2011) for definitions and discussions of the concepts of strong factors, and
weak and strong cross-sectional dependence.
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Lemma S1 Under Assumption S1, we have

n
w3 ud =3+ 0, (n0 02 (S.8)
i=1
for t = —mumin + 1, —Miupin + 2, ..., 1,2, .., T, where My, = min{my,ma,...,m,}, 62, =n"*>._ 0%, and

n~t En:uituit’ =0y (n(‘s”_lw) , (5.9)
i=1

fort £t t,t' = —mupin + 1, —mpin +2,...,1,2, ..., 7.

Proof. Note that
n n
n~! Z uf =n"t Z AR (S.10)
i=1 i=1

_ _ n ~ ~ . . .
where 62, =n~ '3 " | 0%, 0% = u} — o7, and E (42) = E (u) — 02, = 0 by construction. Taking variance

of the first term on the right side of (S.10), and using condition (S.2) of Assumption S1, we have
Var <n1 Zﬂft> = n ) N E(ai,),
i=1 i=1 j=1

n
< n1 sgp Z |E (ﬁzztﬂgt” ,
j=1

= 0>,

fort=—m+1,-m+2,...,1,2,...,T. Hence

n
WS = 0, (n6 )

i=1

fort=—m+1,-m+2,..,1,2,....,T, and result (S.8) follows.
Consider next n=* Y7 | uguy for any t # t/, t,t' = —mmin + 1, —Mumin + 2,...,1,2,...,T. We have
E (ujpuz) = 0 for t # ', and

n n n
Var | n~! g Wit Wip! = n2 E g E(Uituit’ujtujt’)v
i=1 i=1 j=1

n n

= n? Z Z E (upuje) B (wpugy ),

i=1 j=1

S3



where E (ujuppvjiujy) = E (uyuj) E (wypuge) follows from the independence of u;; and u;y for ¢ # .

Using condition (S.1) of Assumption S1, and the boundedness of variances o2, we obtain

Kn™! sup Z |E (wiruje) E (wipuje)|,

(2

n=2 Z Z E (uiuje) B (uipwjer)

i=1 j=1

IA

= 0™ ,7 (S.11)

fort # ¢, t,t' = —mupin + 1, —Mumin + 2, ..., 1,2, ..., T, where by Cauchy-Schwarz inequality

1/2 1/2
n n n
DB (wiuje) B (wipuge)| < B (wiruje))? D LB (wivuen)]”
j=1 j=1 j=1
1/2 1/2
< K Zp?jt szzjt/
j=1 j=1
= O(n‘sp ,

piji = E (uguje) / (040ji) is the correlation coefficient of u; and wj;, sup; , 03, < K by Assumption S1,

, but (due to bounded error vari-

|pije| <1 by definition, and therefore sup;, Y71 p3;, < supy 25—y |0
ances) sup, ; Z;;l |pijt| = O (n’#) is implied by condition (S.1) of Assumption S1. Result (S.9) now follows
from (S.11), as required. m

Assumptions S1-S2 can be used to replace Assumptions 2-3, respectively. It can be established that
the presence of cross-sectional correlation has no consequence for the consistency of the BMM estimator,
so long as ¢ = max {d,,0,,d,,0,} < 1. The inference on ¢, however, is no longer valid in the presence of

cross-sectional error dependence.

S.2  Derivation of conditional model for y; when z; = (y;,x),) is given by a
panel VAR model

Suppose z;; = (yit,x;t)' is given by a panel VAR(1) model given by equation (46) in the paper, which we

reproduce below for convenience,

Ziy = o; + Pz, 11 + gy, (5.12)

fort=—-—m;+1,-m; +2,...,1,2,...,T, and ¢ = 1,2, ..., n, with the starting values given by z; _,, for m > 0,
where ; is a kx 1 vector of individual effects, ® is a kx k matrix of slope coefficients, w;; = (w1, uint, --- uikt)/

is a k x 1 vector of idiosyncratic errors, k is finite and does not depend on n. Individual equations for y;;
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and x;; in (S.12) are

Yit = QiytP11¥it—1+ ¢;,$Xz',t—1 + Uy it (S.13)

Xit = Qg+ Quy¥it—1+ PuaXit—1 + Uy it, (S.14)

/

o ARV _ / . " .
where a; = (@i, o), Wi = (uy,it, 0, ;) , and @ is partitioned as:

/
& — ¢11 ¢y$
d)xy @ZECE
Let
!
Wyy,it  Wey it

I
E(uiuj,) = Qi = ;
w:vy,it wa,it

for all ¢ and t. Using linear projection of u, s on u, i, we have
Uy, it = agtuw,it + Nyt (S.15)
where 6;; = ;ml’itwwy?it, and cov (1;;, Uy ) = 0. Then using (S.15) and (S.14) in (S.13), we have

Yit = iy + On¥is—1 + @uXie—1 + 05 (Xit — Qi — PuyYii—1 — PuaXig—1) + 04,

= (O‘iy - ogtaiw) + (¢11 - 9;t¢$y) Yit—1 T (¢;L - Ogt‘l’ww) Xit—1 1 Nigs (S.16)

where cov (1;;,%is) = 0 for all 4,¢t and s, and recall that n,, is serially uncorrelated. It is clear that the

conditional model (46) will have homogeneous slopes only if 8;; = 0 for all ¢ and t.

S.3 Identification of ¢ under alternative GMM conditions when 7' = 3

We consider three sets of alternative GMM conditions advanced in the literature for identification of ¢, given
by equations (43)-(45) in the paper, and reproduced below for convenience. To simplify the analysis we set
T = 3 and note that the IV estimator proposed by Anderson and Hsiao (1981, 1982) for T' = 3 can be
written as

The moment conditions proposed by Arellano and Bond (1991) can be written as:

AB:  Eyio (Ayiz — ¢Ayi1)] =0, E [yio (Ayis — ¢Ayi2)] = 0, and E [yi1 (Ayss — ¢Ay2)] = 0. (S.18)
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Finally, we consider the moment conditions of Arellano and Bover (1995) and Blundell and Bond (1998):
BB:  E[Aya (yi2 — ¢yn)] =0, E[Ayn (yis — ¢yi2)] = 0, and E[Ay;o (yiz — ¢yi2)] = 0. (S.19)

S.3.1 Identification of ¢ under AH

In view of (S.17), consistent estimation of ¢ by the AH estimator requires that E (Ay;2Ay;1) # 0. But
E (AyinAyir) = ¢E (Ayj) + E (AyaAuig) = 6E (Ayi)) — o3,
and Ay;1 = w1 — (1 — ¢) (yi0 — p;). Hence,
E(Ayh) =oh + (1= 0) E (yio — 1)° = 2(1 = ) E uir (yi0 — 1)) (.20)

and

E(Ayahyn) = 6{o%+(1-0)" F(yio— m)* —2(1— ) F[uis (yio — )]} — o

= —(1-¢) o +6(1—0) E(yio — 1) —26(1 — ¢) E [uin (yio — ;)] -

Therefore, E (Ay;2Ay;1) = 0 if ¢ = 1, irrespective of whether 02, = ¢%,. Otherwise, E (Ay;2Ay;1) # 0, in

general.

S.3.2 Identification of ¢ under AB

In view of (S.18), for identification of AB estimator it is necessary that
Aup = wiE (yinAyiz) + w2 E (yioAyi2) + w3 E (yioAyin) # 0,

for some constants wy,ws, and ws3. To derive A4p, in addition to Assumptions 2-3, following the literature
we also assume that E (u;:yi0) = 0, for t = 1,2, and E (u;144;) = 0. Consider the three terms in the Asp,
separately. We have

E (yi1Ayiz) = E (Ayin Ayiz) + E (yioAyiz) ,

where (noting that E (y;0Au;2) = 0 by assumption)

E (yioAyiz) = E [yio (pAyi1 + Auiz)] = ¢F (yioAyir) - (S.21)
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Using Ayi1 = w1 — (1 — ¢) (yio — p;), and noting that E (y;ou;1) = 0 by assumption,

E (yioAyin) = E{yio [uin — (1 — @) (yio — p)l} = — (1 — &) E [yio (yio — )] - (S.22)

In addition,

E (AyinAyin) = E [Ayi (Ayi + Aug)] = 0E (Ayd) — o3y

Hence,

Aap = wi[E(AyiiAyi2) + E (yioAyi2)] + wo B (yioAyiz) + wsE (YioAyir)

= w1 [¢E (Ay}) — o] + (w1 + wa) B (yi0Ayiz) + w3 E (yioAyir)

and using (S.21),
Aap = w1 [¢E (Ayh) — ofi] + [(w1 +w2) ¢ + ws] E (yioAyir) -

Using (S.22), we have
Aup = w1 [¢E (Ayh) — ofi] = [(w1 +w2) ¢ +ws] {(1 = ) E [yio (yio — 1;)]} -
But (using (S.20) and noting that E (u;1yi0) = 0 and E (u;1p,;) = 0),

OE (Ay;y) —of = ¢{‘7?1 +(1-9)°E(yio — Mz‘)z} — o}

= —(1=¢)ohi + (1 - ¢)" E(yio — m)”.
Hence, overall

Asp = —[(w1+w2)o+ws](1—9)E [yio (yio — 11;)]

o {= (1= )% +6(1-0)" Eyo— )’}

It now follows that Aap = 0, if ¢ = 1, no matter what weights are chosen, and irrespective of whether

0?2 =0%. If |¢| <1, Aap # 0 for a suitable choice of {w1,ws,ws}.

S.3.3 Identification of ¢ under BB

In view of (S.19) for identification of BB estimator it is necessary that

App = wiE (Ayinyi1) + wo B (Ayioyiz) + w3 E (Ayiryie) # 0, (5.23)
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for some constants wy, we and ws. To derive Agpg, in addition to Assumptions 2-3, following the literature

we also assume that E (u;iy:0) = 0, and F [i; (yio

individual terms in (S.23). We have

E (Ayiyin) = E (Ay3) + E (Ayayio) ,

and using Ay = w1 — (1 — ¢) (yio — p;), and assuming E (u;1y;0) = 0, we obtain

Also

E (Ayioyio) = E (Ay}) + E (Ayisyin) = E (Ayd) + 0E (Ayaya) + E (Auizyir)

E(ynAyn) = FE (Ayz'21) + E{[uir — (1 = ¢) (yio — 11;)] yio}

= E(Ayd) — (1= ) E [yio (yio — 11)]

where (using condition (6) of Assumption 3, and E (u;y:0) = 0, for ¢t = 1,2), and

Hence,

Furthermore,

E (Aujpyn) = E[Auip (Ayin + vio))

E (Ayiyie)

E (Auioyio) + E[Auio (uin — (1 — @) (yio — 1;))]

_ 2
= —0;1-

E (Ayisyi2) = E (Ayh) + 0F (Ayinyin) — 0.

= E[Ayi1 (¢yi1 + ui2)] = ¢E (Ayayin) + E (Ayinuiz)
= ¢E(Ayiyi) + E ([un — (1 — ¢) (yio — p1;)] wiz)

OFE (Ayi1yin) -

Using (S.24), (S.25) and (S.26) in (S.23), and setting wg + w3 = @3, we have

App = (w1 + ¢@3) {E (Ay})) — (1 — ) E [yio (yio — )]} +wa2 [E (Ayi) —ofi] .

But (see (A.2))

E (Ay7122) — 0} =¢°E (Ayizl) — 2007, + 0%y,

S8
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(S.24)

(S.25)

(S.26)

(8.27)
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and (see (S.20) and recall that by assumption F [u;1 (yio — ;)] = E (wiryio) — F (wiip;) = 0),
E (Ayi21) = 0?1 +(1- ¢)2 E (yio — Mi)Q . (5.29)

Using the above results in (S.27) we now have

Agpp (w1 + ¢@3) E (Ayy) — (1 — ) (w1 + ®3) E [yio (Yio — ps)]
+wa [¢2E (Ayi21) — 2¢07 + 0122] :

= (w14 oD3 +w20”) B (Ayd) +ws (07 — 2005,) — (1 — ¢) (w1 + ¢@3) E [yio (yio — 1))
and upon using (S.29), and after some algebra we have

App = [w1—¢(1—@)ws+ dws] i) +waoiy — (1 — ) [w1 + ¢ (w2 +w3)] E [yio (yio — ;)]

(w1 + ¢ (w2 +w3) +w2d”] (1—0)° E (yio — )°,

which can be written equivalently as

Aps = wi[oh = (1=)Elyo (o~ p)) + (1= 0)° B (o — o)’
ez 0% = 6 (L= @)%t = 6 (1= ) Elyao (yio — 1)) + 6 (1+6) (1 = 6)° E (o — pr)”
s (0% = (1= 6) B [yio (wio — 1)) + (1= 8)° E (3o — 0’|

When ¢ = 1, then it is clear that Agp = (w1 + w3) 031 +w20122, therefore, in general, Agp # 0 for all values

of |¢| < 1.

S.4 Extension to unbalanced panels with fixed and time effects

Extending the panel VAR(p) model, (59), to include time effects we have:

P
Zit = o + 0y + Z Dz ¢+ Uy, (5.30)

=1
fori =1,2,..,n, and t = —m; + 1,—m; + 2...,,1,2,...,T, with the starting values given by z; _p,, —p+1,
Zi —m;—p+2, - Zi,—m, for m; > 0, and some p > 1. Suppose that available observations are z; for

i = 1,2,...,n, and possibly only some t € {0,1,2,..T}. Hence the panel of available observations is

potentially unbalanced.’? To deal with unbalanced panels, additional notations are required. Let 7; C

S2When panel is unbalanced, it is assumed that the identity of missing observations is purely random (independent
of model parameters and errors).
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{p+1,p+2,..,T — 1} denote an indexed set for which observations Az; 41, Az, Az; 1, ...,Az; 4, are
all available (for a given 7). Assume that 7; is non-empty for all i = 1,2,...,n, and let T ={71, 75, ..., T, }.
In addition, for a given ¢, denote the index set of available observations on Az; as Ny C {1,2,...,n}, and
the cardinality of A; and 7;, by #N; and #7;, respectively. Further, suppose that inf; N; — oo, and T is
fixed as n — oo.

Define demeaned first-differences

Aiit = AZ“ - Azt, where Ait #M Z AZzt
’LENt

The BMM estimator of @ can be computed as
P, = arg in M.z (@), (5.31)

where M7 (®) = n=2 Y7, Myz, (@), My7, (®) = {MST) (@), M3 (®),... MY (®)], and the individual

elements M7, (®) are given by

p
Mz(}[) (®) = ‘ (Azit - Z i’ﬂi,t—é) Az (5.32)

' teT; =1
1 P p '

#T Az — Z Pz | | Azir — Z Dz

' teT; =1 =1
1 ( XP:
+ Az — ‘r’gZi7t+1_@> Az,
#Tz teT; (=1
and
ME? (@)= #T Z (Azzt Z‘i’/zl t— /) Az gy for £=2.3,.

teT; =1

S.5 Consistent estimation of Q,, for t =1,2,....T

Consider the panel VAR(p) data model given by (59) and suppose that Auy = Az — 25:1 DPyz; ¢ is
consistently estimated by Ku\lt = Az;; — 25:1 @[Zi’t,g, where (in represents a consistent estimator of ®,.
Consider the following average error covariance matrices

Q, = lim n~ ZQ“,

n—oo
=1

where Q;; = E (u;;ul,). It is then easily established that Q, for t = 1,2, ..., T, can be consistently estimated
by

= 1 e —

Qpt = - Z Au; i1 Au,y, for t =2,3,...,T,

i=1

S10



i=1

and
I I —
= E Z (Aul 2) E Z Aui73Aui72.
S.6 Consistent estimation of the asymptotic variance of the Anderson and Hsiao

estimator
Denote the AH estimator given by equation (8.1) of Anderson and Hsiao (1981)
n T
~AH ; Ay Ay
Gl = iz Ly BVl (S.33)
Dlim1 2i=3 AVii 1 AYi o

A consistent estimator of the asymptotic variance of (ESnT is given by
n 2
) (3.34)

~AH\ 7?1 .
VA A
i=1

where

AH 1 s rAH = AH
=0T =2 DY Ay Ayiga, Vi = T3 ; Ayi -2 AU, (5.35)

BTLT
i=1 t=3

S AH
and AuAT = Ayi —dp Ayi i1 (AG4H depends on n and T, but subscripts n and 7' are omitted to simplify

the notations).
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S.7  MC findings

This section presents additional MC findings, not reported in the paper. List of the experiments, based on

the choices of parameters ¢ = 0.4,0.8, and p,, = 0,1 is provided in the following Table.

Table: List of Monte Carlo experiments based on ¢ =0.4,0.8, and p, = 0.1.

Parameters Parameters
Exp. ¢ Ly, Tables Exp. ¢ I Tables
1 0.8 0 l.a-b in the paper for n < 1000 3 0.4 0 S3a-b for n < 1000
Sla-b for n > 1000 S3c-d for n > 1000
2 0.8 1 2.a-b in the paper for n < 1000 4 0.4 1 S4a-b for n < 1000
S2a-b for n > 1000 S4c-d for n > 1000

Notes: ¢ is the autoregressive parameter of interest. p, governs the mean of the deviations of the initial values from
;, respectively. Detailed description of the design is provided in Subsection 6.1.

In addition to experiments listed in the Table above, we report MC findings for the performance
of the BMM estimators in experiment with ¢ = 1 in Table S5. Results for the BMM estimator and

large values of T' = 100, 250, 500 in experiment with ¢ = 0.8 are presented in Table S6.
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S.8 Rejection frequency figures

This sections presents rejection frequency plots for the BMM, and GMM estimators in the case
of Experiment 1, and the sample size combination T' = 10 and n = 1000. Figures S1-S2 compare
the rejection frequencies based on the BMM estimator with the first-difference GMM estimators,
using the DIF1 and DIF2 moment conditions, respectively, and Figures S3-S4 compare the rejection
frequencies based on the BMM estimator with the system GMM estimators, using SYS1 and SYS2

moment conditions, respectively.
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Figure S1: Rejection frequency of the tests based on the BMM and the first-difference GMM
estimators based on DIF1 moment conditions in Experiment 1 (¢ = 0.8, u, = 0), for sample size

n = 1000 and T = 10.53

53 Two-step GMM estimators use Windmeijer (2005)’s standard errors and the continuous updating GMM estima-
tors use Newey and Windmeijer (2009)’s standard errors.
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Figure S2: Rejection frequency of the tests based on the BMM and the first-difference GMM
estimators based on DIF2 moment conditions in Experiment 1 (¢ = 0.8, p,, = 0), for sample size

n = 1000 and T = 10.54

St Two-step GMM estimators use Windmeijer (2005)’s standard errors and the continuous updating GMM estima-
tors use Newey and Windmeijer (2009)’s standard errors.
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Figure S3: Rejection frequency of the tests based on the BMM and the system GMM estimators

based on SYS1 moment conditions in Experiment 1 (¢ = 0.8, u,, = 0), for sample size n = 1000

= BM M
= Two-step system GMM based on SYS1

= One-step system GMM based on SYS1
= CU system GMM based on SYS1

5% horizontal line

and T = 10.5°

55 Two-step GMM estimators use Windmeijer (2005)’s standard errors and the continuous updating GMM estima-

tors use Newey and Windmeijer (2009)’s standard errors.
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Figure S4: Rejection frequency of the tests based on the BMM and the system GMM estimators

based on SYS2 moment conditions in Experiment 1 (¢ = 0.8, u,, = 0), for sample size n = 1000

and T = 10.56

S6Two-step GMM estimators use Windmeijer (2005)’s standard errors and the continuous updating GMM estima-
tors use Newey and Windmeijer (2009)’s standard errors.
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