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This paper investigates the impact of oil price shocks on house prices in the largest urban 
centers in Texas. We model their dynamic relationship taking into account demand- and 
supply-side housing fundamentals (personal disposable income per capita, long-term 
interest rates, and rural land prices) as well as their varying dependence on oil activity. 
We show the following: 1) Oil price shocks have limited pass-through to house prices—
the highest pass-through is found among the most oil-dependent cities where, after 20 
quarters, the cumulative response of house prices is 21 percent of the cumulative effect 
on oil prices. Still, among less oil-dependent urban areas, the house price response to a 
one standard deviation oil price shock is economically significant and comparable in 
magnitude to the response to a one standard deviation income shock. 2) Omitting oil prices 
when looking at housing markets in oil-producing areas biases empirical inferences by 
substantially overestimating the effect of income shocks on house prices. 3) The empirical 
relationship linking oil price fluctuations to house prices has remained largely stable over 
time, in spite of the significant changes in Texas’ oil sector with the onset of the shale 
revolution in the 2000s. 
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1. Introduction 

 

 Texas accounts for a large share of total fossil fuel extraction in the U.S. and is a major oil 

production center globally. While Texas has a large, highly diversified economy, the oil and gas industry 

has left its mark on the state’s economy over many decades by creating hundreds of thousands of high-

paying jobs and attracting much CAPEX.1 The oil and gas sector continues to rapidly evolve and innovate, 

with Texas being very much at the forefront of many of the advances that have shaped the industry. 

More recently, the development of enhanced recovery techniques—notably hydraulic fracturing 

(“fracking”) and multi-stage drilling—has helped reach fossil fuel deposits in shale formations and has 

massively expanded the stock of economically viable reserves (notably of shale oil, but also of natural gas 

as a byproduct). For those reasons, Texas is an important testing ground for investigating the impact of 

exogenous fluctuations in real oil prices on the economic outcomes of oil-producing regions/countries. 

 In this paper, we explore the behavior of real house prices and housing fundamentals in response 

to real oil price shocks in Texas. While housing typically is one of the largest assets on a household’s 

balance sheet (Emmons and Ricketts (2017)), this economically significant relationship has received only 

limited attention in the literature thus far.2 Our empirical analysis of the spillover effects of real oil prices 

into real house prices across areas of varying degrees of oil-dependence complements the related 

contributions of Boxall et al. (2005), and more recently, of Muehlenbachs et al. (2015), Larson and Zhao 

(2017), and Kilian and Zhou (2018) largely focused on the impact of oil and gas on housing demand while 

modeling its effects on housing supply simultaneously (as suggested in Grossman et al. (2017)).  

 A broader strand of the literature recognizes that real oil price fluctuations and, to some extent, 

oil price uncertainty have significant effects on overall economic activity (Hamilton (2008), Torres et al. 

(2012), Pinno and Serletis (2013), Csereklyei et al. (2016), Kehrig and Ziebarth (2017)) and influence 

energy consumption and urbanization over time (Jones (1999), Gentry (1994), Medlock and Soligo (2001), 

Liddle (2013), and Claudy and Michelsen (2016)).3 We contribute to this literature partly with a tractable 

 
1 Texas is the second largest state economy in the U.S. both in terms of population and output and its economy is more 
diversified than that of other major oil-producing U.S. states (such as Oklahoma or North Dakota). At its lowest point in 2002:Q2, 
Texas accounted for under 19 percent of total U.S. oil production, but its share rose to nearly 36 percent by 2016:Q2 when our 
sample ends. The state is also one of the major oil producers in the world (in the top-7 of largest producers in 2016:Q2). 
2 Abhyankar et al. (2013), among others, explore the impact of oil price fluctuations on financial asset prices focusing instead on 
the relationship between oil price shocks and the stock market. 
3 The aggregate effects of real oil price shocks can have significant production- and expenditure-switching consequences. In oil-
producing areas in particular, an oil price increase that leads to a rise in the energy costs of production would tend to drag down 
non-oil production and investment while stimulating oil-related economic activity. To the extent that the degree of 
substitutability for energy is low (at least in the short run), increases in oil prices would tend to cast down aggregate demand 
while boosting oil-related incomes and consumption demand in oil-producing areas. 



2 

model of real house prices and a novel dataset to explicitly take account of the effect that real oil price 

shocks have on the demand- and supply-sides of the housing market.  

 To empirically explore the relationship between real oil prices and real house prices, we develop 

a new panel dataset covering all 25 Metropolitan Statistical Areas (MSAs) in Texas at a quarterly 

frequency over the 1975:Q1-2016:Q2 period. The panel contains real house prices and real personal 

disposable income per capita for each MSA as well as rural land prices for each MSA’s nearby rural land 

markets. We adopt a block-partitioned panel VARX (pVARX) framework to model jointly the time series 

and cross-sectional variation across Texas MSAs. This empirical model incorporates two common 

factors—U.S. real long-term interest rates and real oil prices, our variable of interest—that are largely 

viewed as exogenous from the point of view of each individual MSA and treated as such in the 

specification. We also recognize that the response to real oil price fluctuations depends on each MSA’s 

reliance on oil, assessing that with data on their nearest crude oil proved reserves. In doing so, we take 

into account the impact of technologically-enabled oil supply shifts since the 2000s from tapping Texas 

abundant shale oil reserves.  

 In our findings, we highlight the impact of exogenous and common real oil price fluctuations on 

local housing prices across Texas’ MSAs. We show the following key results:  

 First, the cross-sectional variation in economically viable crude oil reserves across Texas is an 

important part of our identification strategy that provides a rough guide of the value of the crude oil 

reserves underground. The impact of exogenous real oil price shocks varies considerably between more 

oil-wealth-dependent and less oil-wealth-dependent areas—the response of real house prices to real oil 

price shocks more than scales up in MSAs adjacent to areas where the concentration of the wealth 

endowment of crude oil reserves is the highest. Nonetheless, we find that the response of real house 

prices (and to a larger extent of real rural land prices) is comparable in magnitude to that of a real income 

shock even among many MSAs that are not heavily oil-wealth-dependent.  

 Second, we provide evidence of significant effects of real oil price shocks on personal disposable 

income per capita and a pass-through of up to 31 percent onto real rural land prices and 21 percent on 

real house prices after 20 quarters mostly among the most oil-dependent MSAs. Shocks to real personal 

disposable income per capita—capturing non-oil-related discretionary real income shocks—pull both real 

rural land prices and real house prices upwards, with a sizeable pass-through over time (78 percent on 

real house prices and 76 percent on real rural land prices over the same 20-quarter horizon).  

 Third, our findings indicate that real oil price shocks differ from (non-oil-related) discretionary 

real income shocks partly because—while also raising personal disposable income per capita—real oil 
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price shocks operate more strongly through supply-side forces in the housing market.4 Hence, omitting 

the spillovers into real house prices from real oil prices tends to bias upwards our empirical inferences 

about the effect of discretionary real income shocks.  

 Finally, while tapping into shale formations has proven to be a major structural break for 

production in Texas and the U.S., our findings show that the dynamic empirical relationship linking real oil 

prices to local real house prices has remained largely stable since the mid-1970s. We interpret this as 

indicating that the shale revolution has been felt in real house prices across Texas MSAs mostly because 

the resulting boom in the wealth endowment of economically viable reserves has shifted, concentrating 

more now around the major shale formations in the state.  

 The remainder of the paper is organized as follows. In section 2, we describe our panel dataset 

and lay out the empirical strategy for the paper. Section 3 reports our evidence on the estimated (block-

partitioned) pVARX model and panel Granger causality test results. We use panel techniques to exploit 

the rich cross-sectional nature as well as the time series dimension of the MSA data we have for Texas. 

We explore the implications of our empirical model and assess the robustness of the results in Section 4. 

The last section of the paper discusses the implications from our main findings and concludes.  

 

2. Data and Methodology 

 

 We model the dynamics of real house prices and key supply-side—real rural land prices (from the 

nearest rural land markets)—and demand-side—real personal disposable income per capita—housing 

market fundamentals on a panel with Texas’ 25 Metropolitan Statistical Areas (MSAs). We also include 

two common factors—U.S. real long-term interest rates and our variable of interest, real oil prices—

which operate both through the demand- and the supply-side of the housing market but are viewed as 

exogenous and largely determined in integrated financial and global commodity markets. We incorporate 

the cross-sectional variation in oil-dependence among MSAs into our model specification with data on 

the MSA’s nearest economically viable crude oil proved reserves.  

 Our dataset covers the period after the collapse of Bretton Woods in 1971 and the first Arab oil 

embargo—the 1973 oil crisis—starting in 1975:Q1 and ending in 2016:Q2 (including the period of the 

 
4 Similarly, the work of Helsley and Capozza (1989) and Hardie et al. (2000), among others, suggests that rural land prices affect 
land conversion and, therefore, impact urbanization (housing supply) and growth too. The impact of real oil prices on real rural 
land prices, though, is tied to how mineral rights are owned (Brown et al. (2016, 2019), Boslett et al. (2019), Covert and Sweeney 
(2019)). Mineral rights severance, which is quite common in Texas but not ubiquitous, potentially limits the estimated effect of 
real oil prices on real rural land values. Our findings, nonetheless, point out that real rural land prices are quite sensitive to real 
oil prices and, in areas heavily dependent on oil wealth, an important supply-side channel affecting real house prices. 
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shale revolution that took off in the 2000s) with a total of 166 quarterly observations. All the nominal 

series—house prices, rural land prices, real personal disposable income per capita, and oil prices—are re-

expressed in real terms deflated with the seasonally-adjusted quarterly U.S. headline CPI series from the 

U.S. Bureau of Labor Statistics to avoid the confounding effects of inflation (Hamilton (1996)). To be 

consistent, U.S. real long-term interest rates are computed as the nominal U.S. long-term interest rate 

net of long-term expected headline CPI inflation. All the data we use in this paper is publicly available.5  

 Real house prices (𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖). We employ Federal Home Loan Mortgage Corporation (Freddie Mac) 

house price indexes, as they provide a broad measure of the fluctuations in single-family house prices 

across MSAs. These are weighted, repeat-sales indexes that measure changes in market prices using 

repeat-sales or refinancings on the same physical properties to control for differences in the quality of 

the houses comprising the sample. These indexes are based on mortgage transactions on single-family 

properties with conforming, conventional mortgages purchased or securitized by Freddie Mac itself or by 

the Federal National Mortgage Association (Fannie Mae). We average the monthly Freddie Mac series to 

quarterly frequency and then seasonally-adjust them with the standard Census X12/X13 procedure. The 

resulting quarterly nominal house price indexes are then deflated with U.S. headline CPI (Figure 1.A).  

 Real rural land prices (𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖). We use the rural land prices across Texas’ thirty-three rural land 

market areas and seven regional land markets computed by the RECENTER at Texas A&M University 

based transaction values from the Farm Credit Bank of Texas. The RECENTER rural land prices are 

quarterly median values adjusted to a standardized distribution of acreages (without distinguishing 

among the varying uses and conditions of the land), expressed in dollars per acre and seasonally-adjusted 

using a simple four-quarter moving average. While we don’t have urban land prices per se, rural land 

prices provide a quantifiable measure of the opportunity cost of turning rural land into urban land for 

urban development across Texas.6 It should be noted that mineral right ownership can be sold separately 

from land ownership—this is a practice common in Texas, yet transactions prices would incorporate the 

 
5 We obtain some of the data via the Federal Reserve Bank of St. Louis’ FRED database and the Federal Reserve Bank of Dallas’ 
Database of Global Economic Indicators (Grossman et al. (2017)), or through Haver Analytics. The boundaries of Texas’ MSAs and 
rural land market areas/regions, the geographic location and supplementary information about the major oil and gas formations 
in the state as well as all primary sources and a description of our own calculations are documented in detail in the companion 
on-line appendix which can be found with the complete dataset at: https://bit.ly/2mlnK6t.  
6 Rural land prices signal land scarcity and are a factor for urban development. The price of urban land, though, is only partly a 
function of the price of rural land but also depends on construction and other costs, the value of accessibility (commute time), 
and the expected future rent increases associated (Helsley and Capozza (1989), Hardie et al. (2000)). Nonetheless, the existing 
empirical evidence suggests a statistically-significant dynamic relationship linking real land prices to housing supply and real 
house prices (Ozanne and Thibodeau (1983), Manning (1988), Potepan (1996), Clapp et al. (2001), Ooi and Lee (2006), Hwang 
and Quigley (2006), Cunningham (2006), Davis and Heathcote (2007), Davis and Palumbo (2008), Anari and Gilliland (2014), 
Oikarinen (2014)) which we proxy for in our model with the RECENTER rural land price data.  

https://bit.ly/2mlnK6t
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value of mineral rights in those cases where fee simple ownership of the land is sold. We use RECENTER 

rural land prices per acre as the best available indicator of geographical variation and overall rural land 

market conditions across Texas (a gauge of the costs of opening up rural land for urban development). 

Finally, the RECENTER rural land price series are deflated with U.S. headline CPI (Figure 1.A).  

 Real personal disposable income per capita (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖). Personal disposable income (PDI) is a key 

determinant of housing demand.7 The U.S. Bureau of Economic Analysis reports annual total personal 

income (including royalties from oil and gas) by MSA and annual personal current taxes for the state of 

Texas. We impute an annual value for each MSA’s current personal taxes proportional to the share of 

personal income accounted for by the MSAs relative to the state’s total. Each MSA’s total personal 

income minus imputed personal current taxes divided by its corresponding annual total population from 

the U.S. Bureau of Economic Analysis is our imputed measure of annual PDI in per capita terms. We 

construct a quarterly indicator of economic conditions in each MSA based on the geometric mean of: (a) 

the MSA’s quarterly total nonfarm employment (seasonally-adjusted) from the Texas Workforce 

Commission/U.S. Bureau of Labor Statistics; and (b) imputed quarterly PDI per capita for Texas based on 

national accounts and population data from the U.S. Bureau of Economic Analysis. We use this quarterly 

indicator by MSA and the standard Chow-Lin method to convert each MSA’s annual PDI per capita to 

quarterly frequency. The resulting series is then deflated with U.S. headline CPI (Figure 1.A).  

 Real long-term interest rate (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖). Real long-term interest rates impact mortgage rates, 

housing affordability, and the demand for housing. Real long-term rates also affect the cost of financing 

for developers and, therefore, the demand of rural land for urban development and ultimately the supply 

of urban housing. To compute the U.S. real long-term interest rate, first, we use the quarterly simple 

average of the daily 10-year Treasury constant maturity rate (yield in percent per annum) from the Board 

of Governors of the Federal Reserve System (H.15 Selected Interest Rates). Second, we construct a 

consistent long-term inflation expectations series based on the forecast of the annual average rate of 

headline CPI inflation over the next 10 years from the Federal Reserve Bank of Philadelphia’s Survey of 

Professional Forecasters extended back to 1975:Q1 with Blue Chip Economic Indicators survey data and 

with the Board of Governors of the Federal Reserve System FRB/US-model long-term inflation 

expectations series ZPI10. Finally, the U.S. real long-term interest rate is computed by netting out long-

term inflation expectations from the 10-year nominal yield based on Fisher’s equation (Figure 1.B).  

 
7 On the demand-side of the housing market, the real estate literature documents a strong correlation between affordability 
determinants (income, long-term interest rates) and house prices (Fortura and Kushner (1986), Mankiw and Weil (1989), 
Manning (1986), Quigley (1999), Case and Shiller (1989, 1990), Hort (1998), and Zhang et al. (2014)). 
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 Real oil price (𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖). We use U.S. Energy Information Administration and Dow Jones & 

Company’s data on the West Texas Intermediate (WTI)–Cushing, Oklahoma–crude oil spot price (dollars 

per barrel). The non-seasonally-adjusted series is reported at monthly frequency and converted to 

quarterly frequency by simple averaging. All remaining seasonality is removed by implementing the 

standard Census X12/X13 procedure on the quarterly WTI oil price series. Then, the resulting series 

deflated with U.S. headline CPI is our main variable of interest (Figure 1.B).8  

 Share of Crude Oil Proved Reserves by MSA (𝑅𝑅𝑅𝑅𝑂𝑂𝑂𝑂𝑅𝑅ℎ𝑎𝑎𝑎𝑎𝑂𝑂𝑖𝑖𝑖𝑖−𝑃𝑃). We take account of the cross-

sectional variation on oil-wealth-dependence by MSA and capture its geographical shifts over time with 

data on economically viable crude oil reserves. Specifically, we use annual data from the U.S. Energy 

Information Administration on crude oil (black oil, excluding lease condensate) proved reserves by 

Railroad Commission of Texas (RRC) district (excluding offshore), expressed in thousands of barrels (bbl). 

Proved reserves as of December 31 of the report year are the estimated quantities of all liquids defined 

as crude oil which geological and engineering data demonstrates with reasonable certainty to be 

recoverable in future years from known reservoirs under existing economic and operating conditions. We 

convert the annual series to quarterly frequency using the quadratic sum interpolation method and re-

express the series in millions of barrels (bbl) per day (b/d). Finally, we compute the nearest crude oil 

proved reserves by MSA apportioning the reserves on the adjacent RRC districts. We incorporate the 

share of each MSAs adjacent reserves over total onshore Texas reserves into the model expressed in 

percentages and instrumented by means of lags (𝑅𝑅 ≥ 1)—specifically, we set 𝑅𝑅 = 8 quarters (Figure 2).  

 This indicator shows great disparity across Texas MSAs with much of the crude oil reserves 

concentrated in parts of the state only—notably around the Eagle Ford and the Permian basin. The series 

also highlights two large structural shifts since 1975:Q1—first, the gradual and ongoing decline of East 

Texas (Houston, Longview, Tyler) share of crude oil reserves since at least the mid-1970s and, second, the 

significant boost from shale oil to MSAs adjacent to the Eagle Ford (Victoria, San Antonio) and the 

Permian basin (San Angelo, Midland, Odessa but less so around Lubbock) since the late 2000s.   

 
8 We recognize that in many parts of Texas the role of natural gas prices could be equally important. Historically, oil and natural 
gas prices moved together even though their market structures are different. However, the relationship between them broke 
down over the shale revolution period (Brown and Yücel (2008)). The development of enhanced recovery techniques suitable for 
the Barnett shale (Fort Worth basin in North Texas) in the late 1990s contributed to a substantial expansion in proven natural gas 
reserves in the 2000s—yet shale gas production gains were limited by the drag on U.S. natural gas prices from the resulting pent-
up supply of shale gas. Eventually the oil and gas industry shifted its focus towards shale oil supported by the rising oil prices (and 
declining natural gas prices) of the late 2000s which made the efforts to tap into shale oil profitable and encouraged further 
technological improvements and efficiency gains. Natural gas production and shale gas in particular continue to be very 
important for Texas even now partly as a byproduct itself from the ongoing boom in shale oil production. We leave the 
exploration of the role of natural gas—and more recently of shale gas—for future research.  
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Figure 1. Quarterly Database for Texas MSAs from 1975:Q1 to 2016:Q2 
A. Real House Prices, Real Rural Land Prices, and Real Personal Disposable Income Per Capita 

 
B. Real U.S. Long-Term Interest Rate and Real WTI Oil Price 

 
Sources: U.S. Energy Information Administration, Dow Jones & Company, U.S. Bureau of Economic Analysis, U.S. Bureau of Labor 
Statistics, Texas Workforce Commission, Federal Home Loan Mortgage Corporation (Freddie Mac), Real Estate Center 
(RECENTER) at Texas A&M University/Farm Credit Bank of Texas, Board of Governors of the Federal Reserve System, Federal 
Reserve Bank of Philadelphia, Haver Analytics, and authors' calculations.   
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Figure 2. Nearest Proven Crude Oil Reserves Share by Texas MSA from 1975:Q1 to 2016:Q2 

 

 
Sources: U.S. Energy Information Administration, the Texas Railroad Commission, Haver Analytics, and authors' calculations. 
Note: The shares plotted in this figure are lagged eight quarters.  
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personal disposable income per capita (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖), and the real oil prices (𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖) are all re-expressed in log-
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 We consider a battery of panel unit root tests in order to establish the stationarity properties of 

the data. The Fisher-type tests (Choi (2001)), the Levin et al. (2002) test, the Breitung (2000) test, and the 

Im et al. (2003) test that we use all share the null hypothesis that all the panels contain a unit root. The 

tests are based on an autoregressive model specification akin to the fundamental Augmented Dickey-

Fuller (ADF) regression with a maximum number of lags which we set to four. The Fisher-type test 

implements a univariate unit-root test—either the ADF test of Dickey and Fuller (1979, 1981) or the 

Phillips and Perron (1988) test (PP test)—for each panel individually, and then combine the p-values from 

the individual tests to produce an aggregate. In contrast, all the other tests are constructed using the full 

panel rather than a combination of univariate tests. If the number of panels N is fixed, then the Fisher-

type tests are asymptotically consistent against the alternative that at least one panel is stationary.  

 The Breitung and the Levin-Lin-Chu (LLC) panel tests assume that all panels have a common 

autoregressive parameter in the fundamental ADF regression. The Breitung and LLC tests are 

recommended for small-sized and moderately-sized panels (as in our case) against the alternative 

hypothesis that all the series are stationary. Breitung and Das (2005) also show that the Breitung test is 

optimal when all panels have the same autoregressive parameter, although it also has power in the 

heterogenous parameter case. The Im-Pesaran-Shin (IPS) panel test relaxes the assumption of a common 

autoregressive parameter for all panels and allows explicitly for heterogeneity across panels (even with 

serial correlation in the error terms). The alternative hypothesis for the IPS test is that there is at least 

one panel that is stationary—that is, some (but not all) the panels may display unit roots.  

 Table 1 reports the p-values achieved for all panel unit root tests: Fisher-type ADF and PP tests, 

the Breitung test, the LLC test, and the IPS test. We reject the unit root null in favor of stationarity when 

the p-value is less than or equal to a specified statistical significance level (0.01 (1%), 0.05 (5%), and 0.1 

(10%)). When the p-value is larger than the specified significance level, we fail to reject the null and this 

suggests that the data is consistent with a unit root. All our evidence is summarized in Table 1.  

 We investigate the panel of all 25 MSAs in Texas and find that the first-differences on real 

personal disposable income per capita (∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖), real rural land prices (∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖), and real house 

prices (∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖) are all stationary when including panel-specific fixed-effects. In other words, the 

empirical evidence in Table 1 strongly supports the stationarity hypothesis of those three endogenous 

variables in first-differences. This finding holds true over the full sample from 1975:Q1 till 2016:Q2 and is 

robust for the 1975:Q1-2001:Q4 subsample which excludes the shale revolution period entirely and also 

for the 1975:Q1-2008:Q4 subsample which excludes only the shale oil production boom that followed.  
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 We also find empirical support for the stationarity of the common exogenous factors. First 

differences on real WTI oil prices (∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖) are stationary based on standard univariate ADF and PP 

tests. The evidence on the real U.S. long-term interest rate (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖) including a trend component is 

rather weak across tests and sample/subsample periods. We choose to include first differences of the 

real U.S. long-term interest rate (𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖) in our benchmark model instead as the evidence of 

stationarity is shown to be a lot stronger and more robust in this case.  

 

Table 1. Panel Unit Root Tests for Texas MSAs 
   Tests (P-values) 

   Fisher-Type Tests Panel Unit Root Tests 
 

Variable 
Deterministic 

Terms 

 

Panel 
 

ADF 
 

PP 
Breitung 

(2000) 

Levin et al. 

(2002) 

Im et al. 

(2003) 

Endogenous Variables      

• ∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 Const. 25 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 

• ∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 Const. 25 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 

• ∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 Const. 25 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 

Exogenous Variables      

• ∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 Const. 1 0.00*** 0.00*** -- -- -- 

• 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖 Const. 1 0.49 / 0.12 / 0.26 0.56 / 0.21 / 0.35 -- -- -- 

• 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖 Trend 1 0.03** / 0.18 / 0.08* 0.10* / 0.35 / 0.21 -- -- -- 

• ∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖 Const. 1 0.00*** 0.00*** -- -- -- 

Note: *, **, and *** denote statistical significance at the 10, 5, and 1 percent significance level, respectively. Reported p-values 
correspond to the lowest p-value achieved among competing specifications including from zero lags up to four lags. The 
deterministic terms included in the specification are either panel-specific fixed effects (Const.) or panel-specific linear time trends 
(Trend). For each test, we report the range of p-values in the following order: the full sample (1975:Q1-2016:Q2) followed by the 
subsample going from 1975:Q1 till 2001:Q4 and the subsample going from 1975:Q1 till 2008:Q4 (unless they all coincide up to 
rounding on the second decimal point).  
 

2.2 Empirical Framework 

 

 For our econometric analysis, we adopt the panel VARX (pVARX) framework with exogenous 

explanatory variables and fixed effects first proposed by Holtz-Eakin et al. (1988). Classical ordinary least 

square equation-by-equation estimation methods for panel models with fixed effects do not produce 

unbiased estimates due to the well-known Nickell bias (Nickell (1981)). One approach to deal with this 

bias is to use generalized method of moments (GMM) estimators instead (Hansen (1982)), as we do here. 

We use the GMM estimator proposed by Anderson and Hsiao (1982) and popularized by Love and 

Zicchino (2006) and Abrigo and Love (2016), among others.  
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 Our dataset permits a fully balanced panel-specification across panels (that is, across the 25 Texas 

MSAs) over the full sample period from 1975:Q2 to 2016:Q2 as well as for the two subsamples of 

1975:Q2-2001:Q4 and 1975:Q2-2008:Q4. Given the stationarity results from Table 1, we define the 

vector of endogenous local housing market variables as  𝑌𝑌𝑖𝑖𝑖𝑖 = (∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖,∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖,∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖) and the 

vector of exogenous common factors as 𝑋𝑋𝑖𝑖 = (∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖).  

 We treat real oil prices and real long-term interest rates (the common factors) as exogenously 

given from the perspective of how local Texas housing markets operate. We model the dynamics of the 

(1 × 2) vector of common factors 𝑋𝑋𝑖𝑖 with a simple one-panel pVAR model of order 𝑅𝑅 given as: 

𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑖𝑖−1Ψ1 + 𝑋𝑋𝑖𝑖−2Ψ2 + ⋯+ 𝑋𝑋𝑖𝑖−𝑝𝑝Ψ𝑝𝑝 + Γ + 𝜖𝜖𝑖𝑖, ∀ 𝑡𝑡 ∈ {1,2, … ,𝑇𝑇} (1) 

where the (2 × 2) matrices Ψ1,Ψ2, … ,Ψ𝑝𝑝 and the (1 × 2) matrix of intercepts Γ are parameters to be 

estimated. The scalar 𝑅𝑅 indicates the number of lags which we set to be bounded at 𝑅𝑅 ≤ 4. By 

assumption, the innovations satisfy that: 𝑬𝑬[𝜖𝜖𝑖𝑖] = 0,𝑬𝑬[𝜖𝜖𝑖𝑖′𝜖𝜖𝑖𝑖] = Ω and 𝑬𝑬[𝜖𝜖𝑖𝑖′𝜖𝜖𝑠𝑠] = 0 for all 𝑡𝑡 > 𝑂𝑂. 

 We posit that the dynamic relationship between the endogenous variables across MSAs, {𝑌𝑌𝑖𝑖𝑖𝑖}𝑖𝑖=1𝑁𝑁 , 

is subject to shifts due to the exogenous fluctuations in the common factors, 𝑋𝑋𝑖𝑖, due to exogenous 

fluctuations in the real oil price and/or the real long-term interest rate. We then adopt the canonical 

(homogeneous) pVARX model of order 𝑞𝑞 including MSA-specific fixed effects and exogenous variables 𝑋𝑋𝑖𝑖 

in order to describe the dynamics of the endogenous variables {𝑌𝑌𝑖𝑖𝑖𝑖}𝑖𝑖=1𝑁𝑁 , i.e., 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑌𝑌𝑖𝑖𝑖𝑖−1𝐴𝐴1 + 𝑌𝑌𝑖𝑖𝑖𝑖−2𝐴𝐴2 +⋯+ 𝑌𝑌𝑖𝑖𝑖𝑖−𝑞𝑞𝐴𝐴𝑞𝑞 + 𝑋𝑋𝑖𝑖−1𝐵𝐵�1𝑖𝑖𝑖𝑖 + 𝑋𝑋𝑖𝑖−2𝐵𝐵�2𝑖𝑖𝑖𝑖 + ⋯+ 𝑋𝑋𝑖𝑖−𝑞𝑞𝐵𝐵�𝑞𝑞𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖 + 𝑂𝑂𝑖𝑖𝑖𝑖 

∀𝑖𝑖 ∈ {1,2, … ,𝑁𝑁}, ∀ 𝑡𝑡 ∈ {1,2, … ,𝑇𝑇} 
(2) 

where 𝑌𝑌𝑖𝑖𝑖𝑖  is the (1 × 3) vector of dependent endogenous variables; 𝑋𝑋𝑖𝑖 is the (1 × 2) vector of 

exogenous covariates; and 𝑢𝑢𝑖𝑖 and 𝑂𝑂𝑖𝑖𝑖𝑖 are (1 × 3) vectors of MSA-specific fixed-effects and idiosyncratic 

errors, respectively. The (3 × 3) matrices 𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑞𝑞 and the possibly time-varying (2 × 3) panel-

specific matrices 𝐵𝐵�1𝑖𝑖𝑖𝑖,𝐵𝐵�2𝑖𝑖𝑖𝑖, … ,𝐵𝐵�𝑞𝑞𝑖𝑖𝑖𝑖 are to be estimated. The lag order of the pVARX specification in (2) is 

bounded at 𝑞𝑞 ≤ 6. By assumption, the innovations satisfy that: 𝑬𝑬[𝑂𝑂𝑖𝑖𝑖𝑖] = 0,𝑬𝑬[𝑂𝑂𝑖𝑖𝑖𝑖′ 𝑂𝑂𝑖𝑖𝑖𝑖] = Σ and 𝑬𝑬[𝑂𝑂𝑖𝑖𝑖𝑖′ 𝑂𝑂𝑖𝑖𝑠𝑠] =

0 for all 𝑡𝑡 > 𝑂𝑂. Moreover, the innovations in (1) and (2) are uncorrelated with each other as well 

(contemporaneously and at all leads and lags).  

 The inclusion of MSA-specific fixed effects in (1)-(2) allows us to take care of all (time-invariant) 

location-specific characteristics not explicitly accounted for in the specification. We model the cross-

sectional and time series variation of the matrices 𝐵𝐵�1𝑖𝑖𝑖𝑖,𝐵𝐵�2𝑖𝑖𝑖𝑖, … ,𝐵𝐵�𝑞𝑞𝑖𝑖𝑖𝑖 in (2) as reflecting varying degrees of 

oil-wealth-dependence across Texas MSAs. In turn, we assume that there is no cross-sectional variation 

or time-dependence on the sensitivity to real long-term interest rates of the endogenous variables of 

model (2). We describe the sensitivity to real oil price fluctuations across MSAs with varying degrees of 
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oil-dependence as an interaction between oil price changes and the share of pre-existing proved crude oil 

reserves (reserves that are economically viable at a given point in time). We favor this data as a gauge of 

the potential oil-related wealth of a given area because it is less subject to vary with current real oil price 

changes than actual production would. The share of crude oil reserves across local areas largely depends 

on the geology of the terrain which is exogenously given—although shifting patterns can arise in the 

share of crude oil reserves over extended periods of time (Figure 2) due to depletion of existing reserves 

(East Texas) and technological advancements (notably the shale oil boom in the Eagle Ford shale and the 

Permian basin). We instrument oil-wealth-dependence using pre-existing shares of crude oil reserves 

adjacent to each MSA lagged eight quarters (𝑅𝑅𝑅𝑅𝑂𝑂𝑂𝑂𝑅𝑅ℎ𝑎𝑎𝑎𝑎𝑂𝑂𝑖𝑖𝑖𝑖−𝑃𝑃, 𝑅𝑅 = 8).9  

 We define a transformed vector of exogenous variables 𝑋𝑋�𝑖𝑖𝑖𝑖 = (𝑅𝑅𝑅𝑅𝑂𝑂𝑂𝑂𝑅𝑅ℎ𝑎𝑎𝑎𝑎𝑂𝑂𝑖𝑖𝑖𝑖−𝑃𝑃 ∙

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖) (with 𝑅𝑅 = 8) to incorporate the interaction between real oil prices in first 

differences and the pre-existing share of nearest crude oil reserves. The lagged share of crude oil reserves 

(𝑅𝑅𝑅𝑅𝑂𝑂𝑂𝑂𝑅𝑅ℎ𝑎𝑎𝑎𝑎𝑂𝑂𝑖𝑖𝑖𝑖−𝑃𝑃) is divided by 100 to re-express it in units rather than percentages. Then, we estimate a 

simplified variant of the canonical model (2) where we replace the exogenous component �𝑋𝑋𝑖𝑖−𝑗𝑗𝐵𝐵�𝑗𝑗𝑖𝑖𝑖𝑖�𝑗𝑗=1
𝑞𝑞

 

with �𝑋𝑋�𝑖𝑖𝑖𝑖−𝑗𝑗𝐵𝐵𝑗𝑗�𝑗𝑗=1
𝑞𝑞

 where the corresponding (2 × 3) matrices 𝐵𝐵1,𝐵𝐵2, … ,𝐵𝐵𝑞𝑞 are the re-defined coefficients 

to be estimated. We explore the presence of structural breaks in the coefficients 𝐵𝐵1,𝐵𝐵2, … ,𝐵𝐵𝑞𝑞 resulting 

from the onset of the shale revolution in the 2000s—although, in a preview of our later discussion of the 

findings, the evidence does not provide much support for the hypothesis that these coefficients are 

unstable over our sample period.  

 We estimate the pVARX model in (1)-(2) by blocks. The procedure involves first transforming the 

data with the forward mean-differencing transformation—the so-called Helmert transformation—

introduced by Arellano and Bover (1995) in order to remove the panel fixed-effects. The Helmert 

transformation subtracts the average of all available future observations which we denote with a 

superscript 𝑅𝑅.10 Since past realizations are not included in this transformation, the Helmert transformed 

variables remain valid instruments. Stacking observations over panels and then over time, the GMM 

estimator for (1)-(2) is generically given by 𝐶𝐶 = �(�̅�𝑅𝐻𝐻)′𝑍𝑍 𝑊𝑊 �𝑍𝑍′(�̅�𝑅𝐻𝐻)�
−1

((�̅�𝑅𝐻𝐻)′𝑍𝑍 𝑊𝑊 �𝑍𝑍′𝑌𝑌𝐻𝐻). The 

exogenous block in (1) implies 𝑅𝑅𝑖𝑖𝑖𝑖𝐻𝐻 = ((𝑅𝑅𝑅𝑅𝑂𝑂𝑂𝑂𝑅𝑅ℎ𝑎𝑎𝑎𝑎𝑂𝑂𝑖𝑖𝑖𝑖−𝑃𝑃 ∙ ∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖)𝐻𝐻,∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖𝐻𝐻), �̅�𝑅𝑖𝑖𝑖𝑖𝐻𝐻 =

 
9 The contemporaneous real oil price shocks propagate for at most four quarters and ought to be uncorrelated with (and 
unpredictable based on) any prior information—including that from the lagged (eight quarters or more) shares of proved crude 
oil reserves adjacent to each MSA. Similarly, the contemporaneous shocks from (2) can only propagate for at most six quarters 
and, therefore, should be uncorrelated with the lagged (eight quarters or more) shares for the same reason. 

10 For any given variable 𝑔𝑔𝑖𝑖𝑖𝑖, the corresponding Helmert transformation 𝑔𝑔𝑖𝑖𝑖𝑖𝐻𝐻 is given by 𝑔𝑔𝑖𝑖𝑖𝑖𝐻𝐻 = � 𝑇𝑇−𝑖𝑖
𝑇𝑇−𝑖𝑖+1

 �𝑔𝑔𝑖𝑖𝑖𝑖 −
1

𝑇𝑇−𝑖𝑖
∑ 𝑔𝑔𝑖𝑖𝑖𝑖𝑇𝑇
𝑖𝑖=𝑖𝑖+1 � . 
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�𝑋𝑋�𝑖𝑖𝑖𝑖−1𝐻𝐻 𝑋𝑋�𝑖𝑖𝑖𝑖−2𝐻𝐻 … 𝑋𝑋�𝑖𝑖𝑖𝑖−𝑝𝑝𝐻𝐻 �, and 𝐶𝐶′ = [Ψ1′ Ψ2′ … Ψ𝑝𝑝′]. The vector of 𝑚𝑚 ≥ 𝑅𝑅 instruments 𝑍𝑍 contains 

𝑚𝑚 lags of the two exogenous variables. Similarly, the local housing market block in (2) is characterized by 

𝑅𝑅𝑖𝑖𝑖𝑖𝐻𝐻 = �∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝐻𝐻 ,∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝐻𝐻 ,∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝐻𝐻�, �̅�𝑅𝑖𝑖𝑖𝑖𝐻𝐻 = �𝑌𝑌𝑖𝑖𝑖𝑖−1𝐻𝐻 𝑌𝑌𝑖𝑖𝑖𝑖−2𝐻𝐻 … 𝑌𝑌𝑖𝑖𝑖𝑖−𝑞𝑞𝐻𝐻 𝑋𝑋𝑖𝑖−1𝐻𝐻 𝑋𝑋𝑖𝑖−2𝐻𝐻 … 𝑋𝑋𝑖𝑖−𝑞𝑞𝐻𝐻 �, 

and 𝐶𝐶′ = [𝐴𝐴1′ 𝐴𝐴2′ … 𝐴𝐴𝑞𝑞′ 𝐵𝐵1′ 𝐵𝐵2′ … 𝐵𝐵𝑞𝑞′]. The set of instruments 𝑍𝑍 in this case includes the 𝑞𝑞 

lags of the two exogenous variables as well as 𝑙𝑙 ≥ 𝑞𝑞 lags of the three endogenous variables in model (2). 

We use Hansen (1982)’s robust conforming weighting matrix 𝑊𝑊 � . The lags of the Helmert transformed 

variables selected for inclusion in the model (𝑅𝑅 and 𝑞𝑞, respectively) are instrumented by lags of the 

variables in levels (that is, untransformed). In our analysis, we set the number of instruments to be 𝑚𝑚 = 4 

for the exogenous variables in (1) and 𝑙𝑙 = 6 for the endogenous variables in (2), respectively.  

 The block-partitioning aspect of our estimation strategy is aimed at imposing block-specific 

restrictions on the dynamics of the model. First, we use distinct sets of instruments for the endogenous 

local housing variables and for the exogenous common factors in order to achieve more efficient GMM 

estimates. This also implements a more parsimonious strategy that limits the problem of lag proliferation 

in the instruments and the specification (Roodman (2009)).  

 Second, our specification also establishes that the propagation of exogenous real oil price shocks 

(and shocks to real long-term interest rate) into local real house prices occurs only through the spillovers 

estimated via fluctuations in the exogenous variables as shown in the pVARX form in (2). Furthermore, 

the partitioning also allows us to impose cross-equation restrictions on the dynamics of the model 

preventing developments in local housing markets across Texas MSAs from having a spurious impact on 

the real U.S. long-term real interest rate or on globally-determined real oil prices. We argue that those 

restrictions provide a plausible description of the relationship between local real house prices and real 

long-term interest rates and global oil market prices.  

 Finally, the proposed partitioning introduces restrictions on the variance-covariance matrix of the 

shock innovations that permit us to identify shocks to real oil prices and real personal disposable income 

per capita that are exogenous through an appropriate Cholesky ordering on the local housing market 

block and the common factors block in (1)-(2).11 This ensures that the innovations of the housing 

variables are uncorrelated with the innovations on the common factors. As an important corollary, this 

identification scheme is also useful to better understand what makes real oil price shocks different from 

 
11 We should note here that the exogenous real oil price shocks in our framework do not necessarily have a structural 
interpretation and likely reflect a varying combination of global oil supply and global demand shocks. However, given that the 
propagation of these shocks goes though fluctuations in the real price of oil, these reduced-form exogenous shocks still help us 
assess the response of real house prices to the mix of demand and supply shocks that drives real oil price fluctuations. 
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real personal disposable income per capita shocks—that are orthogonal to real oil price shocks—in how 

they impact the dynamics of local real house prices (and their demand- and supply-side determinants).  

 

3. Model Estimation 

 

 To explore the effects of exogenous real oil price shocks on real house prices, taking stock of the 

cross-sectional heterogeneity within Texas, we the two-block system approach given by the specification 

in (1)-(2) above. In this section, we discuss the selection of the appropriate lag structure for the model, 

and then proceed with the estimation results. We also explore the stability properties of the estimated 

model. Our benchmark specification in (1)-(2) is estimated using the full sample, but we also consider two 

alternative specifications: (a) the case where we impose zero-restrictions on the matrices 𝐵𝐵1,𝐵𝐵2, … ,𝐵𝐵𝑞𝑞 in 

order to investigate how omitting real oil price fluctuations alters our perception of the dynamics in the 

local real estate block of the model (that is, in (2)); and (b) we re-estimate the model with two 

subsamples that exclude the onset of shale gas in the early 2000s and the heyday of the shale oil boom in 

Texas since the late 2000s in order to assess the hypothesis of parameter instability in the model 

specification resulting from the shale revolution.  

 

3.1 Model Selection 

 

 We choose the optimal lag order and moment condition separately for each block of the model 

given by (1)-(2). For systems that are just-identified or overidentified (that is, whenever 𝑅𝑅 ≤ 𝑚𝑚 = 4 

and/or 𝑞𝑞 ≤ 𝑙𝑙 = 6), the overall coefficient of determination (CD) can be computed to evaluate the 

proportion of variation explained by the pVARX model (Abrigo and Love (2016)). For overidentified 

systems (that is, whenever 𝑅𝑅 < 𝑚𝑚 = 4 and/or 𝑞𝑞 < 𝑙𝑙 = 6), apart from the overall CD, we can also deploy 

Andrews and Lu (2001)’s set of moment and model selection criteria for GMM estimation based on 

Hansen’s (1982) J-statistic. These are viewed as the counterpart of well-known maximum likelihood-

based model selection criteria: MBIC can be viewed as the GMM counterpart of the Bayesian information 

criteria (BIC), MAIC as the counterpart of the Akaike information criteria (AIC), and MHQIC as the 

counterpart of the Hannan-Quinn information criteria (HQIC).  

 Our key findings from this battery of tests is reported in Table 2 below. Based on the 

overidentified model selection criteria by Andrews and Lu (2001), a first-order pVAR is the preferred 

model for the exogenous block in (1) since this has the smallest MBIC, MAIC, and MHQIC. The p-value of 
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the Hansen (1982) J-statistic fails to reject the joint null hypothesis that the instruments are valid 

instruments, i.e., uncorrelated with the error term. Therefore, we retain 𝑚𝑚 = 4  and adopt 𝑅𝑅 = 1 for (1). 

We would reach a similar conclusion had we used the long-term real interest rate in levels with or 

without a trend instead in this block of the model.  

 

Table 2. Lag Selection Criteria: Hansen’s (1982) J-statistic and Andrews and Lu (2001) 
 

Lag 
 

IV 
 

CD 
𝐽𝐽-statistic 

P−value 

 

MBIC 
 

MAIC 
 

MHQIC 

Local Housing Market Block      

  𝑞𝑞 = 1 𝑙𝑙 = 6 0.59 / 0.61 0.00 / 0.00 259.40 / 185.31 542.06 / 447.84 441.80 / 352.58 

        2 𝑙𝑙 = 6 0.63 / 0.66 0.00 / 0.00 159.37 / 140.83 385.50 / 350.85 305.29 / 274.64 

        3 𝑙𝑙 = 6 0.66 / 0.70 0.00 / 0.00 66.23 / 31.87 235.83 / 189.39 175.67 / 132.23 

        4 𝑙𝑙 = 6 0.74 / 0.76 0.00 / 0.00 -18.10 / -13.45 94.96 / 91.57 54.86 / 53.46 

        5 𝑙𝑙 = 6 0.75 / 0.77 0.00 / 0.00 -18.76 / -8.81 37.78 / 43.70 17.72 / 24.64 

        6 𝑙𝑙 = 6 0.77 / 0.75 -- -- -- -- 

Common Factors      

  𝑅𝑅 = 1 𝑚𝑚 = 4 -0.09 / -0.09 0.21 / 0.26 -42.85 / -40.97 -8.35 / -9.35 -22.37 / -22.16 

        2 𝑚𝑚 = 4 -0.10 / -0.10 0.72 / 0.78 -33.61 / -32.34 -10.61 / -11.26 -19.96 / -19.79 

        3 𝑚𝑚 = 4 -0.02 / -0.03 0.72 / 0.30 -17.40 / -13.69 -5.90 / -3.15 -10.58 / -7.42 

        4 𝑚𝑚 = 4 0.24 / 0.26 -- -- -- -- 

Note: The table reports the three selection criteria proposed by Andrews and Lu (2001): MBIC, MAIC, and MHQIC. The Hansen’s 
(1982) J-statistic on the validity of overidentifying restrictions is reported indirectly in terms of p-values. The overall coefficient of 
determination (CD) that accounts for the variation explained by the model is also included. For each, we report the values for the 
full sample that ends in 2016:Q2 followed by the values for the subsample going from 1975:Q1 to 2001:Q4. The results are fairly 
similar for the subsample that ends in 2008:Q4 (available upon request). We only report here the findings for the common factor 
specification where the U.S. real long-term interest rates are given by ∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖. The results using the level (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖) with 
and without a time trend are available upon request, but qualitatively point to the same lag and instrument (IV) specification.  
 

 For the local housing markets block specified in (2), the smallest MBIC, MAIC, and MHQIC values 

for overidentified models are obtained when we set 𝑞𝑞 to be equal to 5. However, for all overidentified 

specifications where 𝑞𝑞 < 6, the p-value of the Hansen (1982) J-statistic rejects the joint null hypothesis 

that the instruments are valid. For the just-identified specification (that is, whenever 𝑞𝑞 = 𝑙𝑙 = 6), the 

overall CD reaches its highest value whenever just-identified and 𝑞𝑞 = 6. We therefore retain 𝑙𝑙 = 6  and 

adopt 𝑞𝑞 = 6 for (2). We should note that these model selection results are robust whether we consider 

the full sample or the subsamples that exclude the onset of shale gas or the later shale oil boom period.  
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3.2 Model Estimation 

 

 We fit a first-order pVAR for the exogenous common factor block in (1) and a sixth-order pVARX 

specification with exogenous common factors interacted with the pre-existing share of crude oil reserves 

for the local housing market block in (2). Our findings on the first-order pVAR used to estimate the 

dynamics of 𝑋𝑋𝑖𝑖 = (∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖) over the full sample and the subsample that excludes the shale 

revolution (1975:Q1-2001:Q4) are reported in Table 3. Table 4 documents the estimation of the local 

housing market block in (2) over the full sample period (column (A)), for the subsample that excludes the 

period of the shale revolution (column (B)), and for an alternative specification estimated over the full 

sample that sets the local housing market spillovers from real oil prices to zero (column (C)).12 

 As seen in Table 3, the evidence suggests that there is little explanatory power for the lagged 

common factors on the equation for the real long-term interest rate in first differences. The alternative 

specifications that consider the real long-term interest rate in levels with and without trend also tend to 

validate the hypothesis that the real long-term rate is well-described as a unit-root process without any 

spillovers. As a result, we retain the variable ∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖 in our preferred benchmark specification of the 

model. The findings in Table 3 also indicate that real oil prices in first differences appear to follow a 

simple first-order autoregressive process. All of this implies that changes in the real long-term interest 

rate are purely transitory and show neither own-persistence nor significant spillovers from real oil prices, 

while the growth rate in real oil prices displays some degree of own-persistence that we need to take into 

account for in our subsequent empirical analysis.13  

 Table 4 provides the full set of estimates for the pVARX(6) model for the local housing market 

block in (2). The coefficient estimates for the subsample that excludes the shale revolution period 

(column (B)) are fairly similar to those we obtain over the full sample (column (A)). Hence, this evidence 

suggests that, once we account for the interaction of real oil price fluctuations with the share of pre-

existing crude oil reserves, the shale revolution has not led to significant parameter instability—a 

structural break—in the dynamic relationship linking real oil prices to real house prices. In Table 4, we 

also consider a scenario whereby spillovers from real oil prices into real house prices are omitted (column 

(C)). The direct implication of this assumption is that real oil price shocks do not have any effect on real 

 
12 The findings in Table 3 and Table 4 when we exclude only the shale oil boom years starting in 2009:Q1 are similar to those 
reported here and available upon request. The results in Table 4 are robust if we replace ∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖 in the vector of exogenous 
common factors with the level of the long-term interest rate and a time trend (∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖, 𝑡𝑡) instead. 
13 The exogenous common factors pVAR(1) model given in (1) is, in practice, like estimating a VAR(1) process for the exogenous 
common factors. The GMM estimates we report here are also very similar to the OLS (seemingly unrelated regressions) estimates 
or the conditional maximum likelihood estimates on the VAR(1) specification. 
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house prices. We find that this particular omission tends to bias somewhat our coefficient estimates and, 

therefore, also our empirical inferences about the propagation of shocks (notably because it magnifies 

the response elicited by fluctuations in personal disposable income per capita).  

 

Table 3. pVAR(1) Model of the Exogenous Common Factors 
 ∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 ∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖 

 1975:Q1-2016:Q2 1975:Q1-2001:Q4 1975:Q1-2016:Q2 1975:Q1-2001:Q4 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖−1 0.24*** 0.26*** 0.00 0.01* 

∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖−1 1.01 1.36 0.05 0.03 

 ∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖 

 1975:Q1-2016:Q2 1975:Q1-2001:Q4 1975:Q1-2016:Q2 1975:Q1-2001:Q4 

First Alternative Specification    

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖−1 0.25*** 0.27*** 0.00 0.00 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖−1 0.17 -0.07 1.00*** 1.00*** 

Second Alternative Specification    

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖−1 0.31*** 0.30*** 0.00 0.00 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖−1 -2.05 -0.18 0.98*** 0.87*** 

𝑡𝑡 -0.08 -0.00 -0.00 -0.01 

Note: *, **, and *** denote statistical significance at the 10, 5, and 1 percent significance level, respectively. GMM estimates for 
the benchmark pVAR(1) are reported for the full sample (1975:Q1-2016:Q2) and for the subsample that excludes the shale 
revolution (1975:Q1-2001:Q4). The results for the subsample ending in 2008:Q4 are similar to those reported here and available 
upon request. The first alternative specification only satisfies the stability condition for the full sample. Initial weight matrix: 
Identity. GMM weight matrix: Robust. Instruments: lags(1/4) for (∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅 ∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10) and, alternatively, lags(1/4) for (∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10) with or without the deterministic time trend.  
 

 Our coefficient estimates in all three scenarios (columns (A), (B), and (C)) reported in Table 4 

suggest that the estimated spillovers from lagged real rural land prices on real personal disposable 

income per capita and real house prices are rather modest. Moreover, the impact of real oil price 

fluctuations interacted with pre-existing crude oil reserves appears weak and mostly statistically-

insignificant. All of this indicates that real rural land prices—proxying for supply-side factors in the 

housing market—play only a limited role in the transmission of real oil price shocks into real house prices.  

 In short, our estimates suggest that the shale revolution has had a limited effect on the dynamic 

relationship given in (2), that ignoring the spillovers from real oil prices may lead us to overstate the 

impact of demand-side fundamentals (particularly real personal disposable income per capita shocks), 

and that the supply-side channel via real rural land prices appears weaker than the demand-side channel 

through real personal disposable income per capita and partly through real long-term interest rates too.  
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Table 4. pVARX(6) Model of Local Housing Variables with Spillovers from Exogenous Common Factors 
 ∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 

 (A) (B) (C) (A) (B) (C) (A) (B) (C) 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−1 0.29*** 0.24*** 0.31*** -0.10* -0.07 -0.08 -0.06*** 0.01 -0.04*** 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−2 0.15*** 0.11*** 0.16*** 0.13** 0.08 0.12** 0.03** 0.04*** 0.03*** 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−3 -0.06** -0.05* -0.06** 0.00 -0.11* 0.01 -0.01 -0.02 0.00 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−4 -0.14*** -0.04 -0.15*** -0.04 -0.06 -0.03 0.07*** 0.07*** 0.07*** 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−5 -0.09*** -0.10*** -0.09*** -0.02 -0.12* -0.01 0.01 0.01 0.00 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−6 -0.04 -0.05* -0.03 -0.10* -0.20*** -0.11** -0.04*** -0.02* -0.04*** 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−1 0.01*** 0.01*** 0.01*** 0.11*** 0.14*** 0.11*** 0.00 0.01** 0.00 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−2 0.01** 0.01** 0.01*** 0.23*** 0.21*** 0.24*** 0.00 0.00 0.00 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−3 0.00 0.01 0.01 0.03 0.05** 0.03 0.00* 0.00 0.00* 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−4 -0.01* -0.00 -0.01* -0.42*** -0.40*** -0.41*** 0.00** 0.00 0.00* 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−5 0.01* 0.00 0.01** 0.14*** 0.15*** 0.14*** 0.00 0.01 0.00 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−6 0.00 0.00 0.00 0.09*** 0.11*** 0.09*** 0.00 0.00 0.00 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−1 -0.01 -0.02 -0.03 0.43*** 0.64*** 0.44*** 0.50*** 0.39*** 0.50*** 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−2 -0.12*** -0.06** -0.15*** 0.15 0.18 0.15 0.20*** 0.26*** 0.18*** 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−3 0.14*** 0.15*** 0.14*** -0.20* -0.30** -0.22* 0.28*** 0.33*** 0.28*** 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−4 0.11*** 0.08*** 0.16*** 0.01 -0.13 0.03 -0.23*** -0.24*** -0.23*** 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−5 -0.04 -0.13** -0.03 0.23** 0.37*** 0.23** 0.04* -0.00 0.05** 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−6 -0.06* -0.03* -0.05 0.31*** 0.30** 0.30*** 0.01 0.02 0.02 

Common Factors          

𝑅𝑅_∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖−1 0.19*** 0.15** -- 0.06 -0.10 -- 0.03*** -0.00 -- 

𝑅𝑅_∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖−2 0.08** 0.01 -- 0.03 0.11 -- 0.10*** 0.11*** -- 

𝑅𝑅_∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖−3 0.11*** 0.16*** -- 0.05 0.11 -- 0.02 0.00 -- 

𝑅𝑅_∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖−4 -0.07* -0.05 -- 0.01 -0.07 -- 0.02 0.01 -- 

𝑅𝑅_∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖−5 0.10*** 0.27*** -- 0.01 0.10 -- 0.04*** 0.07*** -- 

𝑅𝑅_∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖−6 0.04 0.04 -- 0.18*** 0.12 -- 0.01 0.00 -- 

∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖−1 -0.40*** -0.33*** -0.36*** -0.08 0.12 -0.04 -0.13*** -0.26*** -0.12*** 

∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖−2 -0.06 -0.12** -0.03 0.44*** 0.58*** 0.45*** 0.22*** 0.24*** 0.24*** 

∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖−3 0.15*** 0.14*** 0.17*** 0.64*** 0.69*** 0.63*** 0.11*** 0.21*** 0.12*** 

∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖−4 0.32*** 0.32*** 0.34*** 0.16 -0.04 0.17 -0.12*** -0.11*** -0.11*** 

∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖−5 -0.16*** -0.22*** -0.16*** 0.69*** 0.75*** 0.70*** 0.21*** 0.21*** 0.22*** 

∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖−6 -0.17*** -0.25*** -0.17*** 0.24 0.34* 0.28 -0.11*** -0.19*** -0.11*** 

Note: *, **, and *** denote statistical significance at the 10, 5, and 1 percent significance level, respectively. Notice also that 
𝑅𝑅_∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅 ≡ 𝑅𝑅𝑅𝑅𝑂𝑂𝑂𝑂𝑅𝑅ℎ𝑎𝑎𝑎𝑎𝑂𝑂 ∙ ∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅. GMM estimates for the benchmark pVARX model (column (A)), the benchmark model 
excluding the shale revolution (from 2002:Q1 onwards) years (column (B)), and the model excluding spillovers from real oil prices 
(column (C)). The results for the subsample ending in 2008:Q4 are similar and available upon request. Initial weight matrix: 
Identity. GMM weight matrix: Robust. Instruments: lags(1/6) for ( ∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅 ∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅) and, if included, lags(1/6) for 
(𝑅𝑅𝑅𝑅𝑂𝑂𝑂𝑂𝑅𝑅ℎ𝑎𝑎𝑎𝑎𝑂𝑂 ∙ ∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅 ∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10).   
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 Finally, we should point out that we also check the stability condition of the estimated block-

system in (1)-(2). Hamilton (1994) and Lütkepohl (2005) show that stability requires all eigenvalues of the 

companion matrix of the estimated model to be inside the unit circle. Exploring the eigenvalues confirms 

that the estimates reported in Table 3 and Table 4 are all stable for our preferred benchmark. Given that 

the estimated benchmark model satisfies this stability condition, the pVARX specification is invertible and 

has an infinite-order vector moving-average (VMAX) representation including the exogenous variables.14  

 

3.3 Panel Granger Causality 

 

 Panel Granger causality is based on performing Wald exclusion tests for each equation of the 

underlying pVARX model for (1)-(2). A variable 𝑦𝑦𝑖𝑖𝑖𝑖  is said to “Granger-cause” another variable 𝑔𝑔𝑖𝑖𝑖𝑖 if, given 

all the lags for 𝑔𝑔𝑖𝑖𝑖𝑖, we find that the lags of 𝑦𝑦𝑖𝑖𝑖𝑖  are jointly statistically significant in the equation for 𝑔𝑔𝑖𝑖𝑖𝑖. 

The panel VAR-Granger causality Wald test evaluates the null that the coefficients of all the lags are zero 

(the excluded lagged variables do not Granger-cause the dependent variable of the corresponding 

equation) against the alternative that at least one coefficient is not equal to zero.15 The Granger causality 

test results for our benchmark model over the full sample are summarized in Table 5.  

 Table 5 shows that the p-value is above the conventional statistical significance thresholds for the 

common factor equations in (1). With this evidence, we can say that there is no empirical support neither 

for the hypothesis that real long-term interest rates Granger-cause real oil prices nor for the hypothesis 

that real oil prices Granger-cause real long-term interest rates. This is consistent with the estimates in 

Table 3 which also show that the spillovers in the exogenous common factor block of the model are 

statistically insignificant.  

 In turn, Table 5 shows that real oil prices fluctuations interacted with the share of pre-existing 

crude oil reserves—as well as real long-term interest rates—Granger-cause real house prices and real 

personal disposable income per capita across MSAs in Texas. However, real oil price changes interacted 

with the share of pre-existing reserves does fail to Granger-cause real rural land prices while real rural 

land prices only weakly Granger-cause real personal disposable income per capita and real house prices 

at the 10 percent statistical significance. These findings are consistent with the results in Table 4 which 

also shows weak real oil price spillovers into real house prices via real rural land values.  

 
14 Given that the estimated benchmark model satisfies this stability condition, the pVARX specification is invertible and has an 
infinite-order vector moving-average (VMAX) representation including the exogenous variables. 
15 Notice that by construction, given the block-partitioned specification of (1)-(2), the lags of the local variables in  𝑌𝑌𝑖𝑖𝑖𝑖 =
(∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖,∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖,∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖) do not Granger-cause the exogenous common factors in 𝑋𝑋𝑖𝑖 = (∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖). 
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 Still, the results in Table 5 clearly show that real oil price changes do affect the local housing 

markets in Texas—and house prices in particular—even after we account explicitly for demand-side 

forces like personal disposable income per capital and supply-side forces like rural land prices that are 

themselves also affected to some degree by real oil price fluctuations. In addition, our evidence shows 

that most of the variables in the local housing block strongly Granger-cause each other at the 1 percent 

statistical significance level. This provides further support for the variables included and the pVAR 

structure adopted here as it clearly helps us to capture the dynamic endogenous relationships among the 

variables in 𝑌𝑌𝑖𝑖𝑖𝑖 = (∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖,∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ,∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖) and the role played by the exogenous common 

covariates in 𝑋𝑋�𝑖𝑖𝑖𝑖 = (𝑅𝑅𝑅𝑅𝑂𝑂𝑂𝑂𝑅𝑅ℎ𝑎𝑎𝑎𝑎𝑂𝑂𝑖𝑖𝑖𝑖−𝑃𝑃 ∙ ∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖).  

 

Table 5. Panel Granger Causality Tests 
Equation Excluded Variables Chi-square Statistic Degrees of Freedom Prob > Chi-square 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−1, … ,∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−6 18.27 6 0.01*** 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−1, … ,∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−6 36.06 6 0.00*** 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 𝑅𝑅_∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖−1, … , 𝑅𝑅_∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖−6 45.50 6 0.00*** 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖−1, … ,∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖−6 111.17 6 0.00*** 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−1, … ,∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−6 11.00 6 0.09* 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−1, … ,∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−6 68.64 6 0.00*** 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 𝑅𝑅_∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖−1, … , 𝑅𝑅_∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖−6 9.00 6 0.17 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖−1, … ,∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖−6 51.61 6 0.00*** 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−1, … ,∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−6 91.02 6 0.00*** 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−1, … ,∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−6 11.78 6 0.07* 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 𝑅𝑅_∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖−1, … , 𝑅𝑅_∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖−6 67.82 6 0.00*** 

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖−1, … ,∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖−6 235.24 6 0.00*** 

Common Factors     

∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 ∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖−1 0.53 1 0.47 

∆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅10𝑖𝑖 ∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖−1 1.32 1 0.25 

Note: *, **, and *** denote statistical significance at the 10, 5, and 1 percent significance level, respectively. Notice that 
𝑅𝑅_∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅 ≡ 𝑅𝑅𝑅𝑅𝑂𝑂𝑂𝑂𝑅𝑅ℎ𝑎𝑎𝑎𝑎𝑂𝑂 ∙ ∆𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅. The panel Granger tests reported are computed as Wald tests of the excluded variables for 
benchmark pVARX model by blocks given by (1) and (2). The test statistics are computed based on the full sample estimates for 
the benchmark specification reported in Table 3 and Table 4.  
 

4. Empirical Findings 

 

 In this section, we evaluate the dynamic relationships modeled in (1)-(2) tracing out the effects of 

shocks—particularly shocks to real personal disposable income per capita and to real oil prices—on the 

endogenous local housing market variables. Our block-partitioning of the system (1)-(2) already imposes 
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key identifying restrictions and requires that residual innovations 𝜖𝜖𝑖𝑖  and 𝑂𝑂𝑖𝑖𝑖𝑖 for all 𝑖𝑖 = 1, 2, … , N be 

uncorrelated at all leads and lags. Apart from that, we rely on a recursive structure for our pVARX 

specification to impose additional identifying restrictions on the residual innovations of each block. That 

is, we orthogonalize the residual innovations of each block with a Cholesky decomposition (Sims (1980)).  

 The Cholesky decomposition is not unique and critically depends on the ordering of the variables 

in each block—what we do here is to impose a plausible ordering with which to recover block-exogenous 

shocks to real personal disposable income per capita and to real oil prices. This is useful because we are 

particularly interested in disentangling the effects of discretionary real income shocks that are otherwise 

orthogonal to real oil prices from the effects of real oil price shocks: (a) for the exogenous common factor 

block, our Cholesky identification assumes that real oil price shocks can impact real long-term interest 

rates contemporaneously but not the other way around; and (b) for the local housing market block, we 

assume that real house prices can respond contemporaneously to real rural land price shocks and to real 

personal disposable income per capital shocks, real rural land prices respond contemporaneously to real 

personal disposable income per capita shocks but not to real house price shocks, and real personal 

disposable income per capita responds contemporaneously only to its own shocks.16  

 Because common factors are included as common exogenous covariates into the local housing 

market system in (2), identified innovations to real oil prices obtained from the estimated system in (1) 

can propagate into (2) interacted with pre-existing crude oil reserve and affect the dynamics of the local 

housing market variables. The same can be said of exogenous innovations to the real long-term interest 

rate estimated with (1). Also, we should note that fluctuations in the common factors propagate into the 

housing block in (2) with a lag of at least one quarter.  

 

4.1 Impulse Response Functions 

 

 Real oil price shocks as well as real personal disposable income per capita shocks tend to 

dissipate fairly quickly, as seen in the impulse response functions (IRFs) plotted in Figure 3. Real oil price 

shocks, however, are an order of magnitude larger than exogenous shocks to real personal disposable 

income per capita (that are orthogonal to real oil price shocks in our benchmark specification). This 

difference in the magnitude of the impact of each shock is nonetheless consistent with the fact that real 

 
16 We also consider an alternative ordering whereby real rural land prices respond contemporaneously to both real personal 
disposable income per capita and real house prices, while real house prices only respond contemporaneously to real personal 
disposable income per capita shocks. The results we obtain are largely unchanged, and available upon request.  
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oil prices are also similarly more volatile unconditionally than real personal disposable income per capita 

is in the data. Moreover, the dynamic responses of the (non-oil) discretionary real income shocks and the 

real oil price shocks that we have identified (and illustrated for the full sample in Figure 3) are robust to: 

(a) alternative orderings of the variables in the local housing block (keeping the assumption that real 

personal disposable income per capita responds contemporaneously to own shocks alone), and (b) to a 

subsample that excludes the period since the onset of the shale revolution or the shale oil boom years.  

 Hence, the question is how do exogenous shocks to real oil prices and to personal disposable 

income per capita propagate into local housing variables and, through the lens of the model, whether the 

relationship between real oil prices and real house prices has remained stable as shale oil upended the oil 

and gas industry in the 2000s. Figure 4 provides us with a broad overview of the propagation mechanism 

of (non-oil) discretionary real income shocks and real oil price shocks across Texas.  

 

Figure 3. Real Personal Disposable Income Per Capita Shocks vs. Real Oil Price Shocks 

 
Note: The IRFs reported are computed for the benchmark pVARX model by blocks given by (1) and (2). The estimates are based 
on the full sample 1975:Q2-2016:Q2 whose estimates are reported in Table 3 and Table 4. The confidence intervals for the IRFs 
are estimated using 500 Monte Carlo simulation and bootstrap resampling methods.   
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Figure 4. Real Personal Disposable Income Per Capita Shocks vs. Real Oil Price Shocks 
A. Real Personal Disposable Income Per Capita Response to Real Income Shocks and to Real Oil Price Shocks 

 
B. Real House Prices and Real Rural Land Prices Response to Real Income Shocks and to Real Oil Price Shocks 

 
Note: The propagation dynamics reported in this figure are based on the estimated benchmark pVARX model by blocks given in 
(1)-(2) and its corresponding cumulative IRFs. The estimates are from the full sample as given in Table 3 and Table 4. Panel A 
reports the point-estimate of the cumulative IRF of real personal disposable income per capita in response to exogenous real 
income shocks and to real oil price shocks propagated into the local housing block under the benchmark estimates for equation 
(1). Panel B similarly reports the cumulative IRFs on real house prices and real rural land prices propagated in response to real 
income shocks and real oil price shocks.   
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 We label the median of the distribution of the share of pre-existing crude oil reserves across 

Texas MSAs (which comes at an average of 0.8 percent over the full sample) as low oil-dependence, the 

upper quartile of the distribution (at an average of 3.0 percent) as moderate oil-dependence, and the 90-

percentile of the distribution (at an average of 18.7 percent) as high oil-dependence. As can be seen from 

Figure 4.A, the point-estimate response of real personal disposable income per capita to a real oil price 

shock is rather modest for local MSAs of low or moderate oil-dependence. For the most oil-dependent 

areas, in turn, the estimated real oil price shock shifts real income upwards over the medium-term (3-5 

years) by approximately the same order of magnitude as the estimated exogenous (non-oil) real income 

shock (albeit its impact is more gradual during the first year).  

 The evidence in Figure 4.A suggests that the income effects of real oil price shocks display 

strongly non-linear features. Indeed, real income effects boosting housing demand are shown to be 

modest in most local areas except those around which most of the pre-existing and economically viable 

crude oil reserves in the state are concentrated. The impact of an exogenous real oil price shock on the 

long-term real interest rate is quite limited, although not trivial (increasing long-term real rates by about 

17 basis points over the medium-term). The implication of all of this is that real oil price shocks operate 

on the demand-side of the local housing market predominantly through their impact on personal 

disposable income per capita—most heavily in local areas strongly tied to oil—and less so through its 

small increase of the long-term real interest rate tightening financial conditions.  

 Figure 4.B shows that exogenous (non-oil) real income shocks tend to pull up real house prices 

and adjacent real rural land prices—more gradually for real rural land prices than for real house prices 

earlier on, but by a similar magnitude over the medium-term (3-5 years). Interestingly, the impact of real 

oil price shocks on real rural land prices and to a lesser extent on real house prices is quite significant 

even in local areas of low or moderate oil-dependence and comparable in magnitude with the response 

triggered by an exogenous (non-oil) real income shock. We recognize that that the strength of their 

response to real oil price shocks is partly a matter of scale—real oil price shocks are an order of 

magnitude larger than personal disposable income per capita shocks (as seen in Figure 3).  

 We show in Table 4 that the estimated spillovers of lagged real oil price fluctuations into rural 

land prices appear somewhat weak and the transmission of lagged real rural land prices into real house 

prices and real personal disposable income per capita is even weaker. However, unlike what happens 

with (non-oil) real income shocks, the cumulative effects of real oil price shocks on real rural land prices 

over the medium-term (3-5 years) tend to be about twice larger than the cumulative effects on real 

house prices. Our findings also indicate that the strong response of real rural land prices arises mostly 
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from lagged real house prices and, to a varying degree, lagged long-term real interest rates and real 

personal disposable income per capita spillovers. 

 We interpret the evidence in Figure 4 as suggesting that real rural land prices are partly being 

pulled up by rising real house prices as the housing demand shifts to varying degrees reflecting the impact 

of real house price shocks on real personal disposable income per capita and real long-term interest rates 

(particularly so in those local areas more dependent on oil where income effects can be quite large, as 

seen in Figure 4.A). However, the model also suggests that real oil price shocks play an important role on 

the supply-side of housing and, ultimately, influence the demand of rural land for urban development.  

 At this point, we should recall that the rural land price data available to us does not identify if 

mineral rights are included in the land transactions or not. Though mineral severance is quite common in 

Texas, it is by no means ubiquitous. The price for rural land ought to be higher when mineral rights are 

included since the owner of the mineral rights can lease the drilling rights to oil companies receiving 

royalty payments in return (Brown et al. (2016, 2019)).17 We expect the issue with mineral rights, though, 

to have only a limited impact on our model estimates because our benchmark incorporates what can be 

viewed as a proxy for mineral rights values—the interaction between oil price changes and the share of 

pre-existing proved crude oil reserves (a measure of the value of the adjacent oil wealth underground). 

 Given that interpretation of the interaction term in (2), we can then argue that real oil price 

shocks have a role on the supply-side of the housing market as well—not just because they provide a 

modest boost to the demand for rural land and support for real rural land prices, but because the costs of 

urban development in oil-producing areas depends also on the implications of mineral rights ownership. 

While the value of mineral rights is likely excluded from many rural land transactions, our empirical model 

explicitly incorporates an interaction between real oil prices and pre-existing crude oil reserves to allow 

us to take account of the mineral-rights-value-channel’s influence on the housing supply separately from 

that of real rural land prices. Indeed, our findings suggest that the effects of real oil price shocks matter 

for urban development and partly contribute to the strong response in real rural land prices in Figure 4.B.  

 Hence, the evidence shows clear structural differences in the propagation of real (non-oil) 

income shocks and real oil price shocks into real rural land prices and real house prices. Accordingly, in 

oil-producing regions like Texas, we would argue that it would be an error to confound real oil price 

shocks as discretionary real income shocks.  

 

 
17 Lacking ownership of the mineral resources underground has been shown to drag house prices down given that drilling can 
damage roads and crop land, and cause water, air, and noise pollution (Boslett et al. (2019)). 
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4.2 The Shale Revolution 

 

 Arguably one of the most significant breakthroughs over the past 15 years was the technological 

advancements that made commercially-viable the extraction of gas and then of oil from shale rock 

formations (Wang and Krupnick (2015)). Prior to that, drilling had targeted primarily reservoir rock, 

typically sandstones, to which oil and gas had migrated from the shale rock where it was formed from 

organic matter deposited millions of years ago. Improvements in multi-stage drilling and “fracking”—

injecting a mixture of water, sand, and chemicals underground at high pressure to open small cracks to 

release the oil and gas—made it viable to tap shale rock for gas which ben expanding in the early 2000s. 

By 2009, it had become cost-effective to begin extraction of shale oil as well. Horizontal drilling—sinking a 

well straight down, then sideways—exposed a much greater area of resource-bearing rock. The latest 

automated rigs are able to drill long lateral sections in horizontal wells, moving to new well sites faster. As 

a result, drilling and completing wells continues to become more cost-effective to operate.  

 The large amounts of shale oil uncovered during the shale revolution period have turned on its 

head the conventional wisdom that U.S. oil production was inexorably on a declining path and world oil 

production was nearing its peak. Even after the dramatic fall in oil prices of late 2014, the oil and gas 

industry continues to adapt and thrive under shifting conditions. In a turnaround with few parallels in the 

history of the industry, U.S. crude oil production bounced back from a post-WWII bottom of 4.76 million 

barrels (bbl) on average daily in 2008:Q3 to 10.5 million ten years later. Of the additional 5.74 million 

barrels gained by 2018:Q2, 3.18 million (55.40 percent of the total U.S. gains) are accounted for by Texas 

production (excluding offshore) alone—mostly shale oil coming from the Eagle Ford shale (Western Gulf 

basin of Southern Texas) and the Permian basin (Western Texas), in particular.  

 We interpret the impact of the shale revolution as a structural break that has ushered a new era 

where global oil supply appears to be more elastic in response to real oil price fluctuations. The 

hypothesis here is that new technologies have made it possible to tap into shale oil in an economically 

viable way, expanding oil supply significantly in oil-producing areas of Texas and, therefore, accentuating 

the impact of oil price shocks on disposable income and/or on rural land prices. We adopt a sample 

splitting approach to assess changes in the propagation of real oil price shocks over time. We plot in 

Figure 5 the response of real house prices to real oil price shocks over the full sample (1975:Q1-2016:Q2) 

and over the subsample period excluding the shale revolution (1975:Q1-2001:Q4).18  

 
18 We find similar results, available upon request, if we exclude only the shale oil boom years (1975:Q1-2008:Q4). 
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 We have already discussed the limited effect of the shale revolution on the characteristics of the 

model and the estimates reported elsewhere (particularly in Table 3 and Table 4). As can be seen in 

Figure 5 below, the impact on real house prices and real rural land prices is somewhat more accentuated 

in the short-term while differences tend to dissipate over the medium-term (3-5 years). In the end, 

however, the estimated propagation path for real house prices and even for real rural land prices is fairly 

similar with or without including the shale revolution period.  

 

Figure 5. Real House Price (Level) Response to a Real Oil Price (First Difference) Shock 

 
Note: The propagation dynamics reported in this figure are based on the estimated benchmark pVARX model by blocks given in 
(1) and (2) and its propagated cumulative IRFs. The estimates are for the full sample (1975:Q1-2016:Q2) and for the subsample 
that excludes the shale oil boom years (1975:Q1-2001:Q4), as given in Table 3 and Table 4. We report the cumulative IRFs on real 
house prices propagated in response to oil shocks in both periods.  
 

4.3 The Spillovers from Real Oil Prices 

 

 Real oil price shocks and long-term interest rates are exogenous common factors in the local 

housing market block in (2). Our premise is that ignoring spillovers from real oil prices can bias our 

inferences about the role that housing demand determinants such as personal disposable income per 

capita play in the housing market. We explore that hypothesis in Figure 6 where we compare the point-

estimate propagation of exogenous (non-oil) real income and real oil price shocks over the full sample 
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(1975:Q1-2016:Q2) for two alternative specifications: our estimated benchmark model in (1)-(2) against 

an alternative specification that imposes zero-restrictions on the matrices 𝐵𝐵1,𝐵𝐵2, … ,𝐵𝐵𝑞𝑞 omitting real oil 

price spillovers (where we retain the lag 𝑞𝑞 equal to 6).  

 The implications of the zero-restrictions on the {𝐵𝐵𝑖𝑖}𝑖𝑖=16  matrices are quite stark in Figure 6—

omitting the spillovers of real oil prices means that real oil price shocks get woven into real income 

shocks. The consequence of this is twofold: (a) we omit the important role played by real oil price shocks 

on real house prices; and (b) the empirical inferences we draw about real income shocks (no longer 

orthogonal to real oil prices) are biased accordingly.  

 First, we observe that omitting the spillovers from real oil prices in (2) amplifies somewhat the 

response of personal disposable income per capita to the estimated real income shock (Figure 6.A). 

 Second, omitting the spillovers from real oil prices also accentuates the pass-through of the 

estimated real income shocks into real house prices (Figure 6.B). This upward bias in the pass-through is 

apparent in the short-term, but it strengthens over the medium-term (3-5 years ahead). We find similar 

results when looking at the pass-through of real income shocks into real rural land prices. 

 Third, the pass-through of real oil price shocks into real house prices in the benchmark model 

reaches about 21 after 20 quarters but only among the most oil-dependent areas while less than 5 

percent for low and moderate oil dependence areas (Figure 6.B). The pass-through onto real rural land 

prices house prices is somewhat more robust reaching 31 and 8 percent, respectively. In turn, the 

omission of spillovers from real oil prices increases the estimated pass-through into real house prices 

particularly over the medium-term (from 78 to 88 percent after 20 quarters). Simultaneously, albeit in a 

more muted way, this also boosts the real personal disposable income per capita pass-through on real 

rural land prices (from 76 to 92 percent after 20 quarters).  

 In summary, confounding real oil price shocks and real income shocks together by omitting 

spillovers from real oil prices muddles the waters and significantly biases our understanding of 

discretionary real income shocks—notably it over-estimates the pass-through of real income shocks into 

real house prices and real rural land prices.  
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Figure 6. Real Personal Disposable Income Per Capita Shocks vs. Real Oil Price Shocks With and Without 
Oil Spillovers 

A. Real Personal Disposable Income Per Capita Response to Real Income Shocks and to Real Oil Price Shocks 

 
B. Pass-Through of Real Income Shocks and Real Oil Price Shocks into Real House Prices 

 
Note: The propagation dynamics reported in this figure are based on the estimated benchmark pVARX model by blocks given in 
(1) and (2) and its corresponding cumulative IRFs using the full sample. The estimates are given in Table 3 and Table 4. Panel A 
reports the point-estimate of the cumulative IRF of RPDI per capita in response to exogenous real income shocks and to oil 
shocks propagated into the housing block under the benchmark and the alternative where we preclude any spillovers from the 
common factors. Panel B reports the ratio of the cumulative IRF of the real land price relative to either the cumulative response 
of RPDI to real income shocks or the cumulative response of oil prices to oil shocks for the benchmark model and the alternative 
without spillovers.   
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5. Concluding Remarks 

 

 Texas is the leading oil-producing state in the U.S. and one of the largest oil producers in the 

world. With a novel dataset of Texas metropolitan statistical areas’ (MSAs) housing and land market data 

over the period spanning from 1975:Q1 to 2016:Q2, we investigate the dynamic relationship between 

real house prices and real oil price shocks controlling for other MSA-specific or common factors—

personal disposable income per capita, real rural land prices, real long-term interest rates, and pre-

existing crude oil reserves on the ground.  

 We adopt a block-partitioned panel VAR framework to investigate the dynamic relationship. We 

also implement a block-recursive Cholesky decomposition to identify exogenous real oil price shocks as 

well as exogenous non-oil-related real income shocks. Exploiting the significant regional heterogeneity 

across Texas MSAs in our dataset we find empirical support for the view that spillovers from real oil prices 

play a significant role in local house prices, particularly among the most oil-sensitive MSAs. We find that 

the response of real house prices (and to a larger extent of rural land prices) is comparable in magnitude 

to that of a real income shocks even among many MSAs with varying degrees of oil-dependence.  

 We argue that in oil-producing areas, real oil price shocks are quite distinct from (non-oil) 

discretionary real income shocks. We show that, in oil-producing areas, confounding real income shocks 

with real oil prices shocks by omitting the spillovers from real oil prices leads to biased empirical 

inferences. To be more precise, it tends to suggest that real income shocks induce a larger increase in 

personal disposable income per capita over the medium-term (3-5 years) while increasing their estimated 

pass-through into real house prices (and more so into real rural land prices) by a sizeable margin. 

 Finally, we also consider explicitly the stability of these empirical relationships in light of the 

historic turnaround that the oil and gas industry in the U.S. (and in particular in Texas) has experienced 

since the shale revolution ignited in the early 2000s. Interestingly, we only find rather weak evidence that 

the shale revolution has empirically altered the dynamic relationship between real oil prices and real 

house prices whether we include the years of the shale revolution or not. 
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