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1 Introduction

Most dynamic models in macroeconomics are in the class of nonlinear rational expectations models, which

are complex and rich in structure, and do not exhibit a closed-form, analytical solution. A solution, if it

exists, can be obtained only through numerical techniques. A strand of literature has focused on solution

methods that use the �rst order conditions (FOCs) of the optimization problem, such as Judd (1992), Maliar

and Maliar (2005), and Maliar et al. (2011). These methods, however, can still be time consuming or rely

on the assumption that the decision rules are smooth, which may limit their applicability. Moreover, there

may be problems with convergence, depending on the initial guess (see den Haan and Marcet (1990)).

Coleman (1990) and Baxter (1991) suggest methods which explicitly use Euler equations and a grid

to approximate the decision rules. This type of approach is particularly useful as it does not rely on the

assumption of the smoothness of decision rules. Therefore it can be useful for models with occasionally

binding constraints, such as the irreversible investment model or heterogeneous-agents incomplete-markets

models in the spirit of Aiyagari (1994). However, speed can be a major concern, as these models can become

very sophisticated.

We suggest a method that addresses this issue by generalizing the time iteration method of Coleman

(1990), which makes use of policy function iteration on the Euler equation of a simple real business cycle

(RBC) model. With time iteration, the aim is to solve a �xed-point equation of the form c = F (c), where

c is the optimal policy function and F is derived from the intertemporal Euler equation. This method has

been shown to be (theoretically) equivalent to value function iteration (VFI) by Coleman (1990) in an RBC

model and in a multidimensional model with occasionally binding constraints by Rendahl (2015).

Our main contribution is to enhance Coleman (1990)'s method to solve dynamic optimization problems

with occasionally binding constraints. We call this the generalized time iteration (GTI) method.1 In order

to explain the implementation more clearly, we start with an RBC model with labor-leisure choice and

investment constraints.

In order to solve the problem, we �rst use Carroll (2006)'s endogenous grid method (EGM). The main idea

behind the EGM is to assume that the future endogenous state variable is �xed and the current endogenous

state variable is unknown. This is unlike the conventional approach where the current state variable is given

and we solve forward to �nd the optimal state variable tomorrow.2

Second, we consider a change of variables in the resource constraint to de�ne a new state variable in

this RBC model, which we call "market resources" (i.e. the sum of output and capital after depreciation).

This helps solve for current-period capital and labor after convergence is achieved, rather than after every

iteration. This dramatically reduces computation time by avoiding a number of extra root-�nding procedures.

One advantage of using a policy function-based method like ours is that such a switch of state variables is

feasible when there are multiple choice variables.3 While a more general applicability of Carroll (2006)'s

method has been explored in VFI-based techniques, the literature has not focused much on the advantages

1The MATLAB programs are available here:
http://aysekabukcuoglu.weebly.com/uploads/1/0/1/8/10189079/gti_codes.zip
2For instance, in an illustration based on the standard stochastic neoclassical growth model, a solution under EGM involves

de�ning decision rules as a function of next period's capital as opposed to the conventional method that de�nes them over the
current period's capital.

3This would not be possible under a VFI based method, as shown by, Barillas and Fernandez-Villaverde (2007) who extends
Carroll (2006)'s EGM to include labor-leisure choice.
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of policy function iteration (PFI) based techniques.4

We compare the speed and accuracy gains from GTI to those of the standard improvement algorithm

discussed in Howard (1960). The standard PFI is a high threshold to pass in terms of both speed and

accuracy. It makes use of each new computed policy function after considering the value of using that policy

forever, usually taking a smaller number of steps for convergence than the standard VFI (See Ljungquist

and Sargent (2012) and Santos and Rust (2003)).

While we obtain comparable results on accuracy, signi�cant di�erences arise in the implementation of GTI

and PFI, although both methods are based on �xed-point iteration. In particular, PFI tends to su�er from

the curse of dimensionality, whereby GTI provides notable speed advantages. Also, unlike Euler equation-

based techniques (such as in den Haan and Marcet (1990)), convergence is achieved under GTI without an

educated guess for the policy function of future capital holdings.5

Our main illustration of GTI is based on an irreversible investment model with labor-leisure choice, where

the additional static choice variable produces more complex solutions and the bene�ts of the faster GTI

solution algorithm are more apparent.6 Other useful applications include the potential use of this solution

method in workhorse heterogeneous-agent macroeconomic models that allow for incomplete markets. As a

more general application, we include a two-country model in the spirit of Aiyagari (1994) and with progressive

labor income taxes. This model extends the one in Kabukçuo§lu (2017) by including a labor-leisure choice.

The speed and accuracy results of GTI can be seen further in this exercise. An earlier application in a

relatively simple Bewley-type economy was studied by Guerrieri and Lorenzoni (2017).

Our �nal comment pertains to the comparative performance of the GTI in relation to Carroll (2006)'s VFI-

based methods. When applying his approach, Carroll (2006) incorporates liquidity constraints in the absence

of a labor-leisure choice. Barillas and Fernandez-Villaverde (2007) generalize Carroll (2006)'s endogenous

grid point method in an RBC model with a labor-leisure choice (albeit with no inequality constraints) and

compare the performance of the generalized EGM against the standard VFI, documenting its advantages in

terms of speed. Although the VFI is a natural benchmark in their case, it is not a very di�cult benchmark

to outperform in terms of speed as the curse of dimensionality is an even more serious problem with VFI.

The current work, therefore, also contributes to the literature by documenting the advantages of time

iteration, particularly in terms of speed, in the presence of multiple choice variables and occasionally binding

constraints�an issue which has not been addressed.

1.1 Related Literature

There is a vast literature on both local and global solution methods, including perturbation, projection,

and value function iteration methods (see, e.g., the literature survey of Fernandez-Villaverde et al. (2016)).

A model solution can be obtained with global methods but can also be approximated with perturbation

methods (�rst-order, second-order, or even higher-order perturbations). Martínez-García (2018) provides a

general introduction to the �rst-order perturbation method, while Schmitt-Grohe and Uribe (2004) show

4Other papers that enhance Carroll (2006)'s EGM based on a value function iteration method include Hintermaier and
Koeniger (2010) and Fella (2014) which suggest related solution methods for models with occasionally binding constraints
and a decision on durables and non-durables, and White (2015) which considers the theoretical characterization of EGM with
multi-dimensional states and controls.

5Speci�cally, this is the policy function for k′′ in our model. Convergence is not guaranteed when applying den Haan and
Marcet (1990)'s parameterized expectations approach, even when making use of an educated guess.

6See also Rendahl (2015) with an application of irreversible investment with no labor-leisure choice.
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how to solve the model using a second-order approximation to the policy function. Andreasen et al. (2018)

discuss second- and higher-order approximations and establish the stability of the solution with a pruned

state-space system. More directly related to our paper, the perturbation method can also be used in the

presence of occasionally binding constraints with the technique of Guerrieri and Iacoviello (2015) (in short,

OccBin). Holden (2016) and Holden (2019) develop a more general procedure that improves on OccBin

by having some guaranteed convergence properties (if a solution exists) and some extensions to implement

higher-order perturbation solutions.

The key advantage of perturbation methods is its tractability and �exibility when the model has a large

number of state variables, as shown by Aruoba et al. (2006). However, perturbation methods are local

approximations and, therefore, are better suited to approximate the policy function when focusing on small

perturbations around the deterministic steady-state. Needless to say, the approximation is less reliable when

shocks are large or when the economy appears to be far from the steady-state. A second- or higher-order

perturbation method can help approximate the nonlinear features of the policy function (cf., Balke et al.

(2017)). Even so, higher-order approximations generally have di�culties handling problems in which the

policy function has kinks, such as those that arise from occasionally biding constraints.

Furthermore, the available class of perturbation-based methods depends in general on the existence of

a deterministic steady-state in which the constraint always binds, which is not generally a property of

the model. Furthermore, with the OccBin method, being under the occasionally binding constraint is like

imposing an MIT-type shock because the economy gets there completely unexpectedly and agents act as if

the economy will not return to the constraint again in the future. All of these limitations of the di�erent

perturbation-based approaches mean that using them imposes some strong constraints on the features of

the model under which the policy function can be consistently recovered. The approach proposed in this

paper has the advantage of providing a global solution method that overcomes the major limitations of the

perturbation method noted here.

Occasionally binding constraints can be better handled with projection methods. For this, the approach

consists in projecting the policy function of the model onto some basis functions (Judd (1992)). The basis

can be chosen globally (being nonzero and smooth for most of the domain, i.e., the spectral method) or

locally (being zero for most of the domain, i.e., the �nite-element method). One commonly used basis

function is the Chebyshev polynomial, but linear splines can often be a convenient and reliable choice with

which to approximate policy functions that have kinks. Christiano and Fisher (2000) instead prefer the use

of an adapted version of the parameterized expectations approach (PEA), such as in den Haan and Marcet

(1990). This appears to dominate the projection methods (spectral methods but also some �nite element

methods) on the basis of speed and accuracy, even though convergence cannot be guaranteed when using

PEA. Furthermore, the projection methods su�er from the curse of dimensionality. For that reason, Malin

et al. (2011), among others, advocate the use of the Smolyak collocation method in order to simplify the

computational burden of projections in multidimensional cases.

GTI allows for a �exible computation of the policy function with and without kinks. In the remainder of

the paper, we show that this strategy is e�cient in terms of time and computational resources. In particular,

it maintains accuracy in models with and without kinks when compared to conventional PFI.

The time iteration method we study in this paper is related to the VFI method and closely to the PFI.

These methods are popular because they can deal with kinks in policy function as well as with rich economic

models (e.g. heterogeneous-agents models). However, the standard applications of these methods are also
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subject to the curse of dimensionality and the choice of grids, in particular, is crucial to determine the

computational complexity involved in solving the model. There are several popular methods for choosing

the grid points that simplify the computation and can improve the accuracy in recovering the policy function:

the quadrature method by Tauchen and Hussey (1991), the randomized grid method by Rust (1997), and

the EGM of Carroll (2006) generalized by Barillas and Fernandez-Villaverde (2007).

Our key contribution in this paper is to combine time iteration with the EGM in the presence of occa-

sionally binding constraints. Hence a more e�cient algorithm allows us to speed up the computation of the

solution, while its accuracy remains comparable to that of conventional PFI.

More recently, the envelope condition method (ECM) by Maliar and Maliar (2013) helps reduce the cost

of standard VFI. This approach utilizes the envelope condition as opposed to the �rst order conditions that

are used in standard VFI or EGM. The application of ECM in an RBC model with labor-leisure attains

high speed and accuracy results that are comparable to the EGM by Carroll (2006).7 In light of this, we did

consider experiments with a variant of ECM that iterates over policy functions�a technique which can be

more directly compared to GTI.8

Accordingly, we �nd the following results. First, ECM yields highly desirable accuracy and speed results

in a model with smooth policy functions. Moreover, higher order polynomials used in policy and value

function approximation enhance both the speed and accuracy of ECM. Second, in a model with kinks, the

accuracy of ECM deteriorates, as one needs to use di�erent approximation methods to better handle the

kinks. We consider this an interesting issue to be addressed in future work.

In the next section, we introduce the GTI method and describe the algorithm for the solution of an RBC

model with investment irreversibility. In section 3, we explain the solution under PFI and list the steps of

the algorithm. Sections 4 and 5 present the results and compare the performance of these methods under

various parameter values, respectively. Section 6 studies an application of GTI in a heterogeneous-agents

incomplete-markets framework. In section 7, we conclude.

2 The Generalized Time Iteration Method (GTI)

2.1 A Real Business Cycle Model with a Constraint on Investment

Following Christiano and Fisher (2000) and Guerrieri and Iacoviello (2015), we consider a model with a

constraint on investment. The expected life-time utility of a representative household is given by

U = E0

∞∑
t=0

βt[u (ct) + h(1− lt)] (1)

where β ∈ (0, 1) is the discount factor, ct is consumption, and lt ∈ [0, 1] is labor supply (and hence, 1− lt is
de�ned as leisure). We assume u′ > 0, u

′′
< 0 and h′ < 0, h

′′
< 0 and both functions are continuously

di�erentiable.9 The single aggregate output in the economy, yt, is produced using aggregate capital, kt, and

aggregate labor, lt, according to a constant returns to scale production function, yt = eztF (kt, lt). The total

7The mathematical properties and di�erent applications of ECM, including a method that is based on policy function
iteration, are studied in Arellano et al. (2016).

8These results are not presented in the current paper due to space constraints and are available upon request.
9GTI can only be applied in models with utility functions that are separable in consumption and leisure.
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factor productivity (TFP), zt, is governed by an n-state (n < ∞) �rst-order Markov process de�ned with

an n× n transition probability matrix, Π = [πij ], where πij = Pr (zt+1 = zj |zt = zi). All elements of Π are

non-negative and each row sums up to 1. In any given period, the decisions are made after observing the

shock zt.

Capital depreciates at rate δ ∈ [0, 1] in each period. Hence the resource constraint for the social planner's

problem can be written as

ct + kt+1 = eztF (kt, lt) + (1− δ) kt. (2)

We also have the investment constraint

kt+1 − (1− δ) kt ≥ φiss (3)

which encompasses a case with irreversibility under φ = 0. Setting φ > 0, however, ensures that the

constraint is occasionally binding under a standard calibration. The planner's problem is to maximize (1)

subject to (2) and (3) , the law of motion for TFP shocks, and the initial conditions k0 and z0.

Equilibrium Conditions. The solution can be characterized by the Kuhn-Tucker conditions,

u′(ct)− λt = βEzt+1|zt [u
′(ct+1) [ezt+1Fk(kt+1, lt+1) + 1− δ]− (1− δ)λt+1] (4)

u′(ct)e
ztFl(kt, lt) = h′(1− lt) (5)

ct + kt+1 = eztF (kt, lt) + (1− δ)kt (6)

kt+1 − (1− δ) kt − φiss ≥ 0 (7)

λt ≥ 0 (8)

(kt+1 − (1− δ) kt − φiss)λt ≥ 0 (9)

and the initial conditions, transversality condition and law of motion for TFP shocks. Notice that the

multiplier λt is state-dependent and thus, the investment constraint is occasionally binding.

2.2 The Generalized Time Iteration (GTI) Method

In this section, we show how to solve this model based on GTI. This approach requires that we use (4)-(9)

to obtain the solutions for consumption, c∗t , labor, l
∗
t , capital, k

∗
t , and the multiplier, λ∗t . Hence, GTI follows

closely on Coleman (1990)'s time iteration where one considers iteration over policy functions using the

optimality conditions.

Furthermore, to enhance speed, we use Carroll (2006)'s EGM and a switch of variables into market

resources. This means that instead of de�ning the grid points over kt and zt and �nding kt+1 that satis�es

(4)-(9), we de�ne the grid points over kt+1 and zt to �nd kt, solving the problem algebraically. But in order

to avoid solving for kt during every iteration, we rede�ne variables in terms of market resources, mt, and

deal with solving for kt only in the �nal step. Accordingly, the resulting kt values are often o� the grid,

which is the basic idea of the EGM.

We rede�ne the endogenous state variable in terms of current period market resources

mt = ct + kt+1 (10)
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and next period market resources,

mt+1 = ezt+1F (kt+1, lt+1) + (1− δ) kt+1. (11)

This rede�nition enables us to sidestep the burden of using a nonlinear equation solver to �nd this period's

capital and labor in every iteration. Therefore, we only solve for the decision rules for kt (and lt) once, in

the �nal step. This idea was introduced by Carroll (2006) in a model without labor-leisure choice, and such

a switch of variables could be feasible under VFI. With the introduction of an additional choice variable,

however, this type of a switch is still feasible under GTI but not VFI.

As we consider the transformation into market resources, the time-invariant decision rules we aim to

solve for are c∗t = g̃c(m
∗
t , zt), l

∗
t = g̃l(m

∗
t , zt), k

∗
t+1 = g̃k(m∗t , zt), and λ

∗
t = g̃λ(m∗t , zt), which will eventually

help us �nd the actual functions c∗t = gc(k
∗
t , zt), l

∗
t = gl(k

∗
t , zt), k

∗
t+1 = gk(k∗t , zt), and λ

∗
t = gλ(k∗t , zt) using

(4)-(9) .

We start with an initial guess for two functions, kt+2 = g̃k(mt+1, zt+1) = gk(kt+1, zt+1) and λt+1 =

g̃λ(mt+1, zt+1) = gλ(kt+1, zt+1). Notice that mt+1 takes values as a function of the points over the grid for

kt+1, which implies that we base our guess on the grid points of kt+1.

With the initial guess for kt+2 = gk(kt+1, zt+1), we can solve for lt+1 using Newton's method by combining

(5), (6), and (7) as:

max{kt+2, (1− δ)kt+1 + φiss} − ezt+1F (kt+1, lt+1)− (1− δ)kt+1 + u
′−1

[
h′ (1− lt+1)

ezt+1Fl(kt+1, lt+1)

]
= 0. (12)

Notice that since kt+2 = gk(kt+1, zt+1), equation (12) is de�ned over (kt+1, zt+1) gridpoints. Therefore, a

solution for next period's labor is also de�ned over values of (kt+1, zt+1), i.e. lt+1 = gl(kt+1, zt+1). We can

construct (6) in terms of the next period's market resources mt+1, and pin down next period's consumption,

ct+1 = mt+1 −max{kt+2, (1− δ)kt+1 + φiss}. (13)

Next, we �nd current period consumption from (4), assuming the investment constraint (7) is slack, and

therefore λt = 0. As the utility function is separable in consumption and leisure, and using the initial guess

for λt+1 and the functions ct+1, lt+1 we found earlier, we can solve for ct directly from the Euler equation,

ct = u′−1[βEzt+1|ztu
′[gc(kt+1, zt+1)] [ezt+1Fk(kt+1, gl(kt+1, zt+1)) + 1− δ]− (1− δ)λt+1]. (14)

Then, it is easy to compute current period market resources mt from (10).

We then consider the case where λt ≥ 0 and (7) is binding. Using (4), the policy functions ct+1, lt+1, the

initial guess for λt+1, and the grid points for kt+1 and zt+1, we obtain:

λt = u′(cbind)− βEzt+1|zt [u
′(ct+1) [ezt+1Fk(kt+1, lt+1) + 1− δ]− (1− δ)λt+1], (15)

where cbind, de�ned over (kt+1, zt), is the current period consumption when the investment constraint is

binding. To �nd cbind, we �rst �nd the current-period capital kbind that solves

kt+1 − (1− δ) kbind − φiss = 0. (16)
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We are then able to �nd cbind, lbind jointly from equations (5) and (6) over values of (kt+1, zt). Notice that

kbind, cbind, and lbind can be found outside of the iterative cycle, with exact solutions over grid points when

constraint (7) is binding.

Our guess for kt+2 and λt+1 is then updated without �nding kt or lt and only using market resources, mt.

The main idea is that we can consider kt+1 a time-invariant function ofmt and zt, i.e. kt+1 = g̃k(mt, zt). This

implies that both kt+2 and λt+1 can be expressed as a function of next period's states, (mt+1, zt+1). We can

then interpolate both kt+2 and λt+1 on mt+1 using mt and zt (using piecewise cubic hermite interpolating

polynomials). With the resulting values for kt+2 and λt+1, we update our guess until a stopping criterion

is satis�ed. Once convergence is achieved with a solution, ct, we can �nd lt and kt jointly from (5) and (6)

with Christopher Sim's csolve.m routine.

In the �nal step, we need to �nd the actual policy functions. We �nd k∗t = min(kt, kbind). Then, we

recover c∗t and l∗t using values of k∗t , kt+1, and zt from (5) − (6) where we make use of Christopher Sim's

csolve.m routine once again. The actual λ∗t can be found similarly, using (15) from the �nal iteration. Below

we describe the GTI algorithm in further detail.

2.3 The GTI Algorithm

De�ne the grid points for future capital, Gk ≡ {k1, k2, ..., kM}, and use the Rouwenhorst (1995) approxi-

mation method to obtain the discretized stochastic process for the total factor productivity shocks, de�ned

with grid points Gzt ≡ {z1, z2, ..., zN} with the associated transition probability matrix. The steps of the

algorithm are given as follows:

1. Find the exact solutions for kbind from (7). Find cbind and lbind jointly from (5) and (6) over values of

(kt+1, zt) ∈Gkt+1×Gzt using Christopher Sim's csolve.m.

2. Set i = 0 and make a policy function guess kit+2 = g̃ik(mt+1, zt+1) = gik(kt+1, zt+1). We start with a

guess that sets kit+2 = (kss)α(lss)1−α for all state pairs (kt+1, zt+1) ∈Gkt+1×Gzt . Make a guess for the

multiplier such that λit+1 = g̃iλ(mt+1, zt+1) = giλ(kt+1, zt+1) = 0 for all (kt+1, zt+1) ∈Gkt+1×Gztand
initialize the current period market resources mi

t(kt+1, zt) = 0 for all (kt+1, zt) ∈Gkt+1×Gzt .

3. For each point of kit+2 and associated state (kt+1, zt+1) ∈Gkt+1×Gzt , solve the nonlinear equation for

lt+1 and ct+1 using Newton's method jointly from (5)-(7) (which is quite fast).10 Then �nd ct from

(4) over the grid points (kt+1, zt) using (4) for the case λt = 0. Using these decision rules, compute the

current and next period's market resources mi+1
t and mi+1

t+1, respectively. Then compute λt by treating

it as a residual in (4), with ct = cbind.

4. Check if supm,n|mi+1
t (km, zn)−mi

t(km, zn)| ≥ 1.0e−6. If convergence is not achieved, let i i+ 1 and

mi+1
t = mi

t. Update the decision rule for capital using interpolation. In particular, we use piecewise

cubic hermite interpolating polynomials (`pchip' in MATLAB) to interpolate g̃i+1
k (mt+1, zt+1) on mi+1

t+1

using mi+1
t .11 Conduct another interpolation step for g̃iλ(mt+1, zt+1). Go to step 2.

10Other alternatives for MATLAB such as fsolve and csolve (by Christopher Sims) appear to yield the same results but
require more computation time.

11Di�erent interpolation techniques are studied in detail in Judd (1998) pp. 216-235.
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5. If convergence is achieved, use ct to �nd lt and kt jointly from (5) and (6) with a nonlinear equation

solver. Here, we use Christopher Sim's csolve.m function in MATLAB. The resulting values from this

step can be used to �nd the actual policy function k∗t = min(kt, kbind) given (kt+1, zt). The states k
∗
t ,

kt+1, and zt enable us to �nd actual values for c∗t and l
∗
t from equations (5) and (6). Hence we �nd the

solution to the problem, ct = gc(k
∗
t , zt), lt = gl(k

∗
t , zt), and kt+1 = gk(k∗t , zt).

3 Policy Function Iteration (PFI)

The standard PFI is known to be a very powerful method for solving this class of models (see, e.g., Ljungquist

and Sargent (2012), pp. 106-107) as it provides convergence at a quadratic rate rather than a linear rate, as

in the case of value function iteration (Puterman and Brumelle (1979) and Santos and Rust (2003)). It is

also a natural benchmark for us since GTI relies on policy function iteration. In this section we will describe

how the current model with a labor-leisure choice can be solved with the PFI method. In order to iterate

on a policy function, we need to express the problem in recursive form.

De�ning kt+1 as our control variable and treating the intratemporal FOC (5) as an additional constraint,

we plug in (5) and (6) for lt and ct and express the period utility function for all values of zt, kt, and kt+1.

We thus de�ne the dynamic programming problem as follows:

V (kt, zt) = max
kt+1

s.t. kt+1≥(1−δ)kt+φiss

{
u(zt, kt, kt+1) + h(zt, kt, kt+1) + βEzt+1|ztV (kt+1, zt+1)

}
.

This problem can also be solved by de�ning the control variables as kt+1 and lt and using additional grids for

labor. However, the method performs poorly in terms of speed and accuracy and turns out to be a weaker

benchmark to compare against GTI.

We then pick a feasible policy function, kt+1 = gik(kt, zt), and compute the value associated with the

in�nite horizon problem using this policy,

Vi(g
i
k(kt, zt), zt+1) = E0

∞∑
t=0

βtu(kt, g
i
k(kt, zt)), (17)

with i = 0. Next, we consider the policy improvement step, where the policy function solves:

g̃i+1
k (kt, zt) = arg max

kt+1

{
u(zt, kt, kt+1) + h(zt, kt, kt+1) + βEzt+1|ztVi(g

i
k(kt, zt), zt+1)

}
, (18)

to �nd the actual policy function,

gi+1
k (kt, zt) = max[g̃i+1

k (kt, zt), (1− δ)kt + φiss], (19)

and the associated value function. Notice that this policy function gi+1
k (kt, zt) lies o� the grids when the

constraint is binding, so we pick the nearest gridpoint kt+1 for the resulting policy function. Then iterate

over i until convergence is obtained for steps (17) and (18).
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3.1 The PFI Algorithm

We de�ne the (current-period) grid points for capital, Gk ≡ {k1, k2, ..., kM}, and use the Rouwenhorst (1995)

approximation method to obtain the discretized stochastic process for the total factor productivity shocks,

de�ned with grid points Gzt ≡ {z1, z2, ..., zN} with the associated transition probability matrix. The steps

of the algorithm are described as follows:

1. For each triplet of productivity shock, today's and tomorrow's capital (zt, kt, kt+1) ∈Gk×Gk×Gz, we
construct the matrix u(zt, kt, kt+1)+h(zt, kt, kt+1). To do this, we solve the nonlinear equation resulting

from (5) and (6) for lt using Newton's method and �nd ct using (6), over the grid points (kt, zt).
12

2. Set i = 0 and construct the initial value function Vi(kt, zt). In order for this to be consistent with the

initial guess in GTI, we set Vi(kt, zt) = u(css) + h(1− lss) for all (zt, kt, kt+1) ∈Gk×Gk×Gz.

3. We �nd the decision rule gi+1
k (kt, zt) = arg max{u(zt, kt, kt+1)+h(zt, kt, kt+1)+βEzt+1|ztVi(g

i
k(kt, zt), zt+1)}.

4. We then need to compute the value of using this policy forever and solve forward the Bellman equation

in (18) to �nd the new value function Vi+1.

5. Check if supm,n |Vi+1(km, zn)− Vi(km, zn)| ≥ 1.0e−6. If convergence is not achieved, go to step 2 and

let i i+ 1.

6. If convergence is achieved, �nd lt = gl(kt, zt) using Newton's method and ct = gc(kt, zt) from the

resource constraint.

Even though the construction of u(zt, kt, kt+1) in step 1 of PFI is done only once, it requires the use of

a numerical solver Nk × Nk × Nz times. In GTI however, this procedure is repeated Nk × Nz times, for

each iteration when obtaining the labor decision rules in step 2. It requires a quantitative exercise to �nd

out which method is more time-consuming in this step. Our numerical experiments reveal that we need a

su�ciently large Nk to obtain more accurate results with PFI, and, in that case PFI is clearly slower than

GTI. The rest of the speed advantages in GTI can be attributed to the time-convention in the grid points

and the rede�nition of the state variable in terms of market resources.

4 Parameterization and Numerical Findings

Let the intertemporal discount factor be β = 0.9896 and the instantaneous utility function be given by

u(c) = θ ln c, h(1 − l) = (1 − θ) ln(1 − l) where θ = 0.357. This produces a steady-state value for labor of

0.31. We let F (k, l) = kαl1−α, where α = 0.4. Capital's depreciation rate is δ = 0.0196. Following Guerrieri

and Iacoviello (2015), the parameterization of φ = 0.975 implies that the investment constraint is binding

about 40% of the time. The TFP shock process takes the form zt = ρzt−1 + εt, where εt ∼ N
(
0, σ2

)
. The

�rst-order autocorrelation is set at ρ = 0.95 and the volatility at σ = 0.007. The TFP process is discretized

into nine states, as in Rouwenhorst (1995).

We follow the standard procedure in the literature (cf. Judd (1992) and Barillas and Fernandez-Villaverde

(2007)) to assess the accuracy of our solutions and calculate the normalized intertemporal Euler equation

12Christopher Sim's csolve function in MATLAB provides the same results at the expense of greater computation time.
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errors (denoted by EE) implied by the decision rules. The maximum and mean Euler equation errors from

the simulation of the model are reported for 10, 000 periods. The results are obtained with MATLAB

version R2018a on a PC with Intel(R) Core(TM) i7-7700 CPU 3.60 GHz (3.60 GHz). We use linearly-spaced

grids and consider the performance of both methods under a range of di�erent number of grid points with

k1 = 0.3kss and kM = 1.8kss, where kss is the steady-state level of capital. Identical grids are used when

comparing the two methods. Baseline calibration yields kss = 23.1 and iss = 0.45.

As shown in Table 1, the main advantage of the GTI algorithm is its speed. The accuracy remains robust

across all grid sizes as GTI involves mostly algebraic operations and nonlinear solvers. When the number

of nodes is 500, convergence is achieved in 345 iterations and 28.8 CPU seconds. The mean and maximum

intertemporal Euler equation errors (EE) are −3.78 and −3.31, respectively (in log 10 units). For PFI, the

other results seem rather mixed. The method produces relatively large maximum Euler equation errors, but

this is in part because, for comparability, the solution is found on an identical and linearly-spaced grid which

may be too coarse to accurately describe the policy function (particularly so in the presence of kinks in the

policy function). Accuracy improvements require �ner grid points, which comes at higher time costs. In

general, GTI dominates PFI mostly in terms of speed.

Table 1: Results

GTI

Grid points CPU time Mean EE error Max EE error Iterations

10 2.4s −3.72 −3.29 342

500 28.8s −3.78 −3.31 345

1, 000 57.0s −3.78 −3.38 345

2, 000 1m 47.5s −3.79 −3.29 345

PFI

10 .1s −2.80 −2.53 2

500 3m 28.5s −3.59 −1.22 11

1, 000 26m 4s −3.85 −1.43 11

2, 000 3h 35m 13.3s −3.98 −1.40 11

Note: We report the mean and maximum of absolute Euler equation errors (in log 10 units).

Errors are obtained from a stochastic simulation of 10,000 periods.

The GTI algorithm requires more iterations for convergence. However, the total time spent for the

solution of the problem shows that each iteration is completed faster compared to the time spent for each

iteration in PFI. The speed in GTI can be attributed to (i) the time convention of grid points such that

the grids are de�ned in terms of tomorrow's capital rather than today's capital, and (ii) that the solution

of capital and labor for the current period is made only once, and only at the end of the algorithm when

convergence is achieved. Figures 4-5 in the appendix plot the policy functions for GTI and PFI, respectively.

In addition to the simulation results under the benchmark parameterization presented in Table 1, it is

possible to see the range of Euler equation errors in Figure 1, where we depict the intertemporal Euler

equation errors (in log 10 units) for each method over 500 capital grid points and nine productivity shock

nodes.
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Figure 1: Intertemporal Euler equation errors (in log 10 units) from 500 capital grid points and nine productivity nodes under
the benchmark calibration.

5 Robustness Analysis

Here we compare GTI and PFI under di�erent scenarios. The baseline scenario considers the benchmark

parameterization as described above. In the remaining scenarios, we change one parameter at a time and

keep all other parameters at their baseline values. All experiments consider 500 grid points for capital and

nine grid points for the productivity shock. Table 2 (Table 3) summarizes the results for GTI (PFI).

Table 2: Robustness analysis for GTI

500x9 grid points

Experiments CPU time Mean EE1 error Max EE error Iterations

baseline 28.8s −3.78 −3.31 345

β= 0.96 15.4s −3.51 −2.91 161

β= 0.99 29.2s −3.79 −3.30 351

ρ= 0.99 28.3s −3.69 −2.94 338

ρ= 0.90 28.8s −3.85 −3.49 351

σ= 0.013 27.2s −3.55 −3.05 327

α= 0.3 24.8s −3.63 −3.07 287

α= 0.5 28.5s −3.97 −3.48 386

φ= 0 50.1s −3.19 −2.96 603

φ= 1 23.1s −3.80 −3.36 269

Note: We report the mean and maximum of absolute Euler equation errors (in log 10 units).

Errors are obtained from a stochastic simulation of 10,000 periods.

These results con�rm that the major advantage of GTI appears to be speed, as can be seen from various

experiments. GTI helps compute non-smooth decision rules more accurately than PFI. In particular, in

scenarios where the constraint is more likely to bind (e.g. φ = 1), GTI yields more accurate results.
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Table 3: Robustness analysis for PFI

500x9 grid points

Experiments CPU time Mean EE error Max EE error Iterations

baseline 3m 28.5s −3.59 −1.22 11

β= 0.96 3m 5.8s −3.66 −1.58 10

β= 0.99 3m 14.1s −3.56 −1.32 11

ρ= 0.99 6m 50.6s −3.48 −1.17 24

ρ= 0.90 2m 59.4s −3.15 −2.70 10

σ= 0.013 3m 46.7s −3.55 −1.10 13

α= 0.3 3m 22.7s −3.49 −1.26 11

α= 0.5 3m 5.5s −3.36 −1.27 11

φ= 0 4m 16.3s −3.65 −3.02 15

φ= 1 3m 17.2s −3.16 −1.37 11

Note: We report the mean and maximum of absolute Euler equation errors (in log 10 units).

Errors are obtained from a stochastic simulation of 10,000 periods.

6 Application: A Two-Country Heterogeneous-Agents Incomplete-

Markets Model with Progressive Taxes

In this section, we consider an application of the GTI method to a richer framework: a two-country

heterogeneous-agents incomplete-markets model with �at-rate capital gains taxes, progressive labor income

taxes, and government debt. The model can be useful for studying several questions, including topics of

�nancial globalization and wealth inequality (e.g. Mendoza et al. (2007) and Mendoza et al. (2009)) or

redistributive e�ects of taxation (including the work of Domeij and Heathcote (2004) and Heathcote et al.

(2017), among many others).

At the core of the model lies an Aiyagari (1994)-type production economy with uninsured idiosyncratic

labor income risk and borrowing constraints. In considering a role for government and the open-economy

aspects, the model comes closest to the one in Kabukçuo§lu (2017), which studies the redistributive e�ects

of tax reform in a similar framework. We extend the model of Kabukçuo§lu (2017) to include households'

labor-leisure choice, applying the GTI method to recover households' decision rules. Following Aiyagari

(1994) and Judd et al. (2017), the equilibrium interest rate is found using the bisection method.

6.1 The Model

The world economy consists of two countries, Country 1 and Country 2. For convenience, we present the

model for a given country, suppressing the country index i. Throughout this, household variables are denoted

by lowercase letters whereas country-level (aggregate) variables are denoted by uppercase letters.
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6.1.1 Households

In each country, households are subject to labor e�ciency (or productivity) shocks, εt ∈ E which are i.i.d.

across households and persistent over time. This is the only uncertainty in the model. In any given period,

households make decisions upon the realization of their productivity shock. Household productivity εt is

assumed to follow a Markov process captured by an m ×m transition probability matrix Π = [πij ], where

πij = Pr(εt+1 = εj |εt = εi). The probability distribution over E is given by pt ∈ Rm. Given an initial

distribution p0, the period-t distribution is given by pt = p0Πt.

Households' preferences are given by:

E0

[ ∞∑
t=0

βt[u(ct)− g(nt)]

]
, (20)

where u is a strictly increasing and concave function of ct and g is a strictly increasing and convex function

of nt. Both functions are also continuously di�erentiable. The discount rate is β ∈ (0, 1). In each period,

a household's consumption is denoted by ct and hours worked are denoted by nt. We assume identical

preferences and labor income processes for both countries.

A households' budget constraint can be written as:

ct + bt+1 + dt+1 + kt+1︸ ︷︷ ︸ ≤ τn(εtntwt)
ψ + [1 + (rkt − δ)(1− τk)]kt + [1 + rdt (1− τk)]dt + (1 + rt)bt︸ ︷︷ ︸ .

≡ at+1 ≡ (1 + rt)at

Accordingly, a household spends on consumption goods ct and invest in assets, at+1. Following Kabukçuo§lu

(2017), we de�ne three assets with a one-period, risk-free, real return: private bonds bt+1, which pays the

world interest rate rt, government bonds dt+1 with an interest rate rdt , and capital goods kt+1 with a rental

rate rkt . Capital depreciates at a rate δ ∈ [0, 1]. The only internationally traded asset is the private bond.

A household's pre-tax labor income is given by εtntwt, where wt is the wage rate. Households' after-tax

labor income is given by τn(εtntwt)
1−ψ with a two-parameter progressive labor income tax function as in

Heathcote et al. (2017). This tax function in general can be written as τ(y) = y− τny1−ψ where y = εnw

denotes pre-tax labor earnings, and ψ is a progressivity measure of the tax system (e.g. ψ = 0 implies a

�at-rate tax). The second parameter, τn, is associated with the average taxation of labor income. The tax

on capital income is assumed to be �at rate, τk ∈ [0, 1], implying an after-tax return of (rkt − δ)(1− τk). The

government bonds are taxed at the same rate as capital and their net return is given by rdt (1 − τk). Both

countries have an identical tax system, while the values of tax parameters may di�er.13 We abstract from

taxes on internationally traded bonds in the current framework.

The no-arbitrage condition is given by:

rt = rdt (1− τk) = (rkt − δ)(1− τk). (21)

13See Kabukçuo§lu (2017) for a discussion on the possibility of cross-country di�erences in taxation in a two-country model
and the underlying assumptions needed for this result.
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where rt is the world interest rate, common to both countries. Given that households are indi�erent as to

which asset to purchase in equilibrium, it is possible to state the household's problem without considering

the portfolio composition of assets. The budget constraint can be written as:

ct + at+1 ≤ τn(εtntwt)
1−ψ + (1 + rt)at. (22)

Households are also borrowing constrained, determined by an exogenous borrowing limit, a
	
:

at ≥ a. (23)

The possibility of having a series of low productivity shocks and the presence of the borrowing limit induces

a precautionary savings motive, as in the Aiyagari (1994) framework. It is possible to consider economies

with no net borrowing, a = 0, in which case any short position in an asset, e.g. private bonds, must be

matched with a long position of the same amount in another asset, e.g. government debt.

For the household problem, there are two state variables (at, εt), at any period t. Notice that each house-

hold's consumption, saving, or labor-leisure decisions throughout their lifetime are heterogeneous and depend

on the history of the idiosyncratic shocks and their initial conditions (a0, ε0). The dynamic optimization

problem is described as follows. Given the deterministic sequences of prices {wt, rkt , rdt , rt}∞τ=0, government

policy {τ(·), τk}, and initial conditions (a0, ε0), a household in a given country chooses at+1, ct, and nt to

maximize (20), subject to (22) and (23).

6.1.2 Firms

In each country, output Yt is produced by a representative �rm using aggregate capital Kt and labor Nt

according to a constant returns to scale production function, Yt = F (Kt, Nt). Taking prices (wt, r
k
t ) as given,

the �rm's problem in each country is to maximize pro�ts:

F (Kt, Nt)− rktKt − wtNt, (24)

by choosing factors both of which are internationally immobile. Perfectly competitive factor markets lead

to zero pro�ts in equilibrium.

6.1.3 Governments

Governments can raise revenues by issuing bonds, Dt+1, locally at an interest rate, rdt , and collecting taxes

from households to �nance a constant amount of government expenditures, G. The assumption of no

international mobility of government bonds allows us to pin down the aggregate amount of private bonds

(Bt) and public bonds (Dt) in equilibrium. We denote the aggregate tax revenues from progressive labor

income taxes τ(·) by TRt. With taxes on capital income and, given an initial government bonds D0, the

period government budget constraint can be written as:

G+ rdtDt = Dt+1 −Dt + TRt +Kt(r
k
t − δ)τk +Dtr

d
t τ
k. (25)
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6.2 Equilibrium Characterization and Solution

De�ne A as the set of all possible (household) endogenous states, A = [a
	
,∞]. Consider (A,A) and (E, E)

the measurable spaces where A denotes the Borel set that is the set of all subsets of A and E is the set of

all subsets of E. Then let (S,S) = (A × E,A × E) be the product space where S is the set of all possible

household states. The solution to the household's problem in Country 1 (and similarly in Country 2) provides

the decision rules for consumption, ct = c(at, εt), labor nt = n(at, εt) and asset holdings, at+1 = s(at, εt)

given the initial conditions (a0, ε0) and the history of shocks summarized by εt. These rules determine the

evolution of the distribution of agents over (at, εt). The joint (endogenous) distribution of households across

wealth and labor e�ciency is given by µt = µ(at, εt). A household with the state (at, εt) will have a state

vector in the set At+1 × Et+1 next period, given the current distribution and the decision rules. Starting

with an initial distribution µ(a0, ε0), households' distribution across wealth and productivity levels evolves

according to:

µ(at+1, εt+1) =
∑

εt+1∈E
Π(εt+1|εt)µ(at, εt). (26)

A general equilibrium under �nancial integration is characterized by the following conditions:

1. Household Euler equationL

uc(c
i
t) = βEεt+1|εt(1 + rt+1)[uc(c

i
t+1) + λ̃it+1], (27)

2. Household borrowing constraints, with the associated multiplier, λ̃it :

at ≥ ai, (28)

3. Household intratemporal FOC:

uc(c
i
t)τ
′(εtn

i
tw

i
t)εtw

i
t = un(nit), (29)

4. Aggregations: ∫
(a,ε)

citdµ
i
t = Cit ,

∫
(a,ε)

nitεtdµ
i
t = N i

t ,

∫
(a,ε)

ait+1dµ
i
t = Ait+1, (30)

5. Firm optimization and factor prices:

rkit = FK(Ki
t , N

i
t ), (31)

wit = FN (Ki
t , N

i
t ), (32)
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6. Asset market clearing condition:

A1
t +A2

t = K1
t +K2

t +D1
t +D2

t (33)

7. Government budget constraint:

Gi + rdit D
i
t = Di

t+1 −Di
t + TRit +Ki

t(r
ki
t − δ)τki +Di

tr
di
t τ

ki, (34)

8. No-arbitrage:

(rkit − δ)(1− τki) = FK(Ki
t , N

i
t )(1− τki) = rt. (35)

for all t. The sequence of distributions {µit}∞t=1 is consistent with the initial distributions µi0, individual

policies and idiosyncratic shocks as given by (26) and initial asset holding positions, Ai0, D
i
0, K

i
0 for all

countries i = 1, 2.

In addition, it is possible to de�ne investment It ≡ Kt+1−(1−δ)Kt, net foreign assets Bt ≡ At−Kt−Dt,

current account, CAt ≡ Bt+1 − Bt, net exports, NXt ≡ Bt+1 − Bt(1 + rt), and net factor payments,

NFPt ≡ rtBt, based on these aggregates.

6.3 Calibration and Numerical Solution

Focusing on the steady-state equilibrium, the solution of the problem involves two steps (i) an algorithm

that solves for the equilibrium prices and aggregate variables and (ii) the solution for households' decision

rules. The solution steps are explained in the appendix.

We use 6, 000 equally spaced asset grid points for policy functions and 120, 000 asset grid points for

ergodic distributions. The asset grid has a minimum value of −2 and a maximum value of 200.

Preferences and technology: We specify preferences as u(ct) =
c1−γt

1−γ , g(nt) = B nt
1+1/η

1+1/η , and technology as

Yt = F (Kt, Nt) = ZKα
t N

1−α
t . We let γ = 2 and η = 0.5 following Domeij and Flodén (2006). We set B = 60,

which yields an average hours worked of 32% and 27% of the time endowment in each country, respectively.

For the rest of the model, our calibration strategy is in line with Kabukçuo§lu (2017), where Country 1

and Country 2's parameters aim to match the US and rest of the OECD data (subject to availability),

respectively. Capital's share α is set as 0.36, and the depreciation rate δ is 0.06 for both countries. The

discount rate β is 0.971. Each country has a unit mass of population. We normalize the TFP parameter

Z2 = 1 and set Z1 = 0.6 to generate a realistic GDP share for the US, which is 34% in the model.

Borrowing limits: For each country we set a = 0.
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Labor earnings process: We consider a three-state Markov process, following the parameterization of

Domeij and Heathcote (2004). We set E = {εh, εm, εl} with εh = 4.74, εm = 0.847, and εl = 0.170, in both

countries. The transition probabilities are given by:

Π =

 Π11 1−Π11 0
1−Π22

2 Π22
1−Π22

2

0 Π11 1−Π11

=

 0.90 0.10 0

0.005 0.99 0.005

0 0.10 0.90

 . (36)

The implied stationary probability distribution is p∗ = [0.0455 0.9091 0.0455].

Government policy: The progressivity parameters are ψ1 = ψ2 = 0.151. We set labor and capital income

taxes, τn1 = 0.73, τn2 = 0.67, τk1 = 0.397, and τk1 = 0.425, respectively. Initial public debt-to GDP ratios

D1
0/Y

1
0 and D2

0/Y
2
0 are 0.70 and 0.94, respectively. The steady-state government budget constraint implies

that the government spending is determined by the calibration of the level of public debt.

6.4 Results

Steady-state equilibrium prices, allocations, and wealth distributions: The calibration of the model results in

a steady-state equilibrium world interest rate of 2.51%, with capital-to-GDP ratios of 3.54 (Country 1) and

3.47 (Country 2). The wage rates are given as 0.59 and 1.29, respectively. The resulting government spending

to GDP ratios are 51.4% (Country 1) and 73.6% (Country 2). Aggregate tax revenues are 47.3% (Country

1) and 68% (Country 2) of GDP. Finally, we obtain trade balances that are −1.69% and 0.81% of the GDP,

respectively, which are not targeted by any of the model parameters. The Gini coe�cients for wealth are 0.56

in both countries. The policy functions for asset holdings are de�ned as current period (endogenous) asset

holdings over next period's asset grids (and productivity levels) due to the use of endogeneous gridpoints.

In a �nal step, we use linear interpolation to switch to a more conventional de�nition of policy functions

and �nd next period's asset holdings over (currently de�ned) asset grid points. While this is not necessary

for computing the equilibrium, it is considered here for presentation purposes. Figure 2 plots these policy

functions.

GTI performance: We report the maximum and mean intertemporal Euler equation errors from a sim-

ulation of 10, 000 periods conducted for each country. For the current model, the Euler equation errors are

computed for the cases where a household's borrowing constraint is not binding. Accordingly, the CPU time

for the computation of steady-steady state equilibrium is 43m. 37.5s., where policy functions and ergodic

distributions are computed several times for each country. The computation of the equilibrium is achived in

148 iterations, spending approximately 17.6 seconds on average per iteration. The bisection method is known

to be sensitive to the choice of the initial guess on the real interest rate and thus the total computation time

varies signi�cantly. In the two-country model, the initial guess on the (world) real interest rate lies between

the autarky interest rates of the respective economies, which is below 1/β−1. The unit-free (absolute) mean

and maximum Euler equation errors are very close for the two countries, −3.79 and −1.61 (in log 10 units),

respectively. Figure 3 plots the intertemporal Euler equation errors (in log10 units) across 6,000 asset grid

points and three productivity shock nodes.
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Figure 2: Decision rules for the two-country heterogeneous-agents incomplete-markets model computed using three produc-
tivity shock nodes, 6,000 grid points for decision rules, and 120,000 grid points for asset distributions.
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Figure 3: Unit-free absolute intertemporal Euler equation errors (in log 10 units) from 6,000 asset grid points and three
productivity nodes for each country.
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7 Conclusion

The presence of multiple control variables in a dynamic programming problem may complicate the procedure 
that is used to �nd a global solution, which may a�ect its computational time and/or accuracy. Such cases 
arise in models where there is an endogenous labor-leisure choice in the well-known irreversible investment 
model. In this paper, we evaluate a generalized version of time iteration (GTI) and show that it yields similar 
accuracy results to the standard policy function iteration (PFI) and outperforms the PFI method in terms 
of speed. The applicability and performance of GTI are further illustrated in a richer heterogeneous-agents 
incomplete-markets model.
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Figure 4: Decision rules obtained under GTI with 500 capital grid points and 9 productivity nodes.
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8.2 Solving the Heterogeneous-Agents Incomplete-Markets Model with GTI

For each country, generate grid points on next period's assets and current period shocks, (a′, ε), where

a′εA = {a1, a2, ..., aN}. The borrowing limit can be selected slightly above a1. The borrowing limit is

occasionally binding while the upper limit of asset grid points aN never binds. De�ne ε ∈ E = {ε1, ..., εM}.

1. The interest rate is to be found based on the bisection method where we start with a guess on r, where

r ∈ (0, 1/β − 1). Also set values for D0 and D∗0 . From the no-arbitrage condition (35), compute the

implied K/N ratio and the remaining factor prices for both countries: rk1, rk2, w1, and w2.

2. Initialize the cumulative distributions of households over assets and shocks, Γ0(a′, ε) for each country.

3. Initialize next period's consumption policy functions, c0(a′, ε′) and do steps 4-9 for each country.

4. Assuming that the constraint is not binding, construct the right-hand side of the Euler equation for

all pairs of (a′, ε′) ε A× E, and solve for current-period consumption function c̃,

Uc(c̃) = β(1 + r)
∑
ε′εE

Π(ε′|ε)Uc(c0(a′, ε′)). (37)

5. Given c̃, using the intratemporal FOC (29), solve for ñ(a′, ε). The utility function in our example

yields an easy computation of the household labor supply, while in other cases the Newton method be

needed.

6. Using the budget constraint, compute current asset holdings ã(a′, ε) such that:

ã(a′, ε) = [c̃+ a′ − τn(ñwε)ψ]/(1 + r). (38)

Hence, we �nd current assets given next period asset holdings is a′ and today's productivity shock is ε.

Again, the current state ã(a′, ε) is not necessarily on the grids de�ned in A. We then consider two cases:

a. If ã(a′, ε) causes the borrowing constraint to bind next period, we compute c̃0(a′, ε) using piecewise

linear interpolation on the closest grid points ai and aj such that, ai < ā(a′, ε) < aj and using consumption

rules at c0(ai, ε) and c0(aj , ε). The corresponding labor supply values can be computed from (29).

b. If ã(a′, ε) causes the borrowing constraint not to bind next period, then set c̃0(a′, ε) = c̃ from step 6.

7. Check convergence for a small value of ε, based on the metric:

max{|c̃0(a′, ε)− c0(a′, ε)|} < ε. (39)

Iterate using steps 4− 6 until convergence.

8. Given the initial guess for distributions, Γ0(a′, ε), interpolate on grid points ai and aj to �nd the

distribution over the endogenous grid points, Γ(s−1(a′, ε)), ε) using the endogenous grids ã(a′, ε). Then

update the distribution using:
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Γ̃(a′, ε′) =
∑
ε

Π(ε′|ε)Γ0(ā(a′, ε), ε), (40)

and iterate until convergence.

9. Compute aggregate savings, labor, capital and the output level for each country. Find the implied

public debt level from the public debt-to-GDP ratio D/Y .

10. Check the asset market clearing condition (33). Update the interest rate, r using the bisection method.

11. Finally, compute the implied government expenditure, G, from (34).
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