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I. Introduction

Use of econometric models which pool microsamples has become more
frequent with the increasing availability of economic data in both times
series and cross-sectional form. One common approach to pooling is to
assume that all coefficients are constant, with variations in individual
and time series observations modeled in the specification of the
disturbance term. The variance-covariance structure of the disturbance in
this model typically includes different variances for each cross-sectional
unit and first-order autoregressive disturbances within each
cross—-sectional unit. The contemporaneous covariances of the disturbance
between pairs of cross-sectional units are typically assumed either to be
nonzero and different for each pair or uniformly equal to zero. The model
including all the covariance terms will be conveniently referred to as the
"full" model and the model excluding them as the "diagonal" model.

In this paper, we compare the efficiency of pooled estimation using
alternative restrictions on the disturbance variance-covariance matrix. In
addition to the full and diagonal models, we examine the properties of
estimators employing block covariance structures, in which'only some
contemporaneous disturbance correlations are assumed to equal zero.

Block covariance structures offer several potential advantages over the
other models. First, in data sets where the number of cross-sectional
units exceeds the number of time series observations, estimation cannot

proceed using the full model because the disturbance variance-covariance
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matrix is singular. In such cases, the diagonal model would normally be
appiied. However, block covariance structures can be devised which
preserve the nonsingularity of the disturbance variance-covariance matrix
while incorporating more information into the estimation than the diagonal
model, thereby potentially increasing efficiency.

Second, Monte Carlo results presented here indicate that in cases where
the disturbances are highly correlated for only some of the cross-sectional
units and the number of time series observations is relatively small,
estimators employing block covariance structures are substantially more
efficient than those using either the full or diagonal model.

These results, while generally applicable, may have special
significance in analyzing regional data. Because cross-sectional units,
particularly state-level observations, may have geographical similarities
not easily captured in right hand side variables, the disturbance is likely
to exhibit strong correlations between certain states and relatively minor
correlations between others. Furthermore, where observations are recorded
annually, it is unlikely that the number of time series observations would
equal or exceed the number of available cross-sectional observations.
Consequently, development of a block covariance structure may offer more
efficient estimation in many cases.

This paper is organized as follows. In Section II, we describe the
general model and present the computatiocnal difficulty which arises when
the number of cross-sectional units is greater than the number of time
series observations. Although this result has been asserted in passing

1/

eisewhere, a brief derivation is instructive.=" In Section III, we present
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a feasible GLS estimator using a block covariance structure and describe
its properties. Monte Carlo results are then described in Section IV, with

conclusions presented in Section V.

II. Computational Limitations of the Full Model

Consider the model

1) ¥ =X ,B+e

m,t  “m,t m,t*

where Y is the dependent variable, X is a 1xK vector of independent
variables, B is a Kxl vector of coefficients, e is the disturbance term, m
refers to the cross-sectional unit, and t denotes the time period.

The full disturbance variance-covariance structure for equation 1 often
incorporates cross-sectional heteroskedasticity, contemporaneous
correlation of disturbances over cross-sectional units, and first-order
autoregressive disturbances within cross-sectional units. For our
purposes, it is possible to simplify the discussion without altering the
results by dropping the consideration of autocorrelation. The full

disturbance variance-covariance structure can then be written as

2y E(e,

- 2 s —+.
1,s£j,t) = o for i=j and s=t;

Ui,j for i # j, s = t;

0 for s # t,

where i and j refer to individuals, and s and t denote time periods.
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With known variance matrix, the GLS estimator of B can be written
B 1 _1 —1 ) -1
3) B = (X (SNX!IT) X) X (QQIT) Y,

where Y is the time series for the dependent variable for all M individuals
stacked into a MTxl vector, X is of dimensions MTxK and contains the
corresponding stacked time series observations for the K independent
variables, @ is the covariance matrix of size M, and IT is the TxT identity
matrix.

When @ is unknown, the estimator in equation 3 must be replaced by the

feasible GLS estimator of B,
4) §= (x'(ﬁmT)'lelx'(fz@IT)“l Y.

Following Zellner (1962), elements of the feasible GLS variance-covariance
matrix are estimated using the residual vectar from OLS estimation of
equation 1. Asymptotically efficient estimates of each element of @ are
obtained by taking the cross product of the disturbance subvectors from
cross-sectional units i and j and dividing by the number of time series

observations. In matrix notation, ﬁ can be written as
A
= ! =
5) Q _E E/T, where E [gl gy .. gM}

and e, is the Txl subvector of the OLS residual vector corresponding to

cross section 1.
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A necessary condition for the feasibility of computing equation 4 is
apparent in equation 5. The matrix E is of dimension TxM. Consequently,
the maximum rank of E -- and therefore & -- is the minimum of T or M.
Clearly, the number of time series observations must be greater than or
equal to the number of cross-sectional units for ﬁ to have full rank. If
this condition is violated, ﬁ is singular and equation 4 cannot be
calculated.

Although this problem would not typically arise in the case of
seemingly unrelated regression models, around which much of the theoretical
and empirical work on the full disturbance variance-covariance structure
has been centered previously, data sets used in pooled estimation may often
violate this condition. Panel data sets often have fewer time series
observations than cross-sectional units, making the full model

2/

inappropriate.=

III. Block Covariance Structures

In cases where estimation using the full model is infeasible, the usual
practice has been to use the diagonal disturbance variance-covariance
structure, thereby insuring nonsingularity of 5. However, the diagonal
model sacrifices potential efficiency gains in cases where contemporaneous
disturbance covariances are nonzero.

A less restrictive approach is to include nonzero off diagonal elements
in ﬁ insofar as the singularity condition is not violated. In some cases
it might be difficult to determine which disturbance covariance terms

should be estimated and which should be assumed to equal zero. In most
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applications, however, priors are likely to exist regarding the
correlations of disturbances over cross-sectional units that lead to
natural groupings. Presumably, a hierarchy in correlations of disturbances
among cross-sectional units is likely to exist. By grouping
cross—sectional units together whose disturbances are Tikely to be highly
correlated, ﬁ can be formed as a block diagonal matrix defined by

) = o? for i=j and s=t;

6) E(

£, €.
i,s,Xx J,.t,z

Uij for i # j, s = t, x = z;

0 for s # t or x # 2,

where i and j refer to individuals, s and t denote time periods, and x and
z denote blocks. Assuming the cross-sections have been prearranged by

blocks, the resulting estimator of € can then be written as

A
4 0

where k blocks ére estimated. Note that when k=M, equation 7 collapses to
the diagonal structure, while setting k=1 yields the full model.

The choice of k requires judgement. Setting k to the smallest number
of blocks consistent with the nonsingularity of ﬁ would maximize the number

A
of nonzero parameters in Q. Using that strategy would imply estimating the
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full model whenever T exceeds M. As demonstrated below, however, there are
conditions under which grouping the cross sections by blocks is preferred
to the full specification. Although estimation using the maximum block
size is more efficient in large samples, it is not necessarily efficient in
small samples. For small samples, estimation of the maximum feasible
number of contemporaneous disturbance covariances can reduce the efficiency
of the estimate. In particular, when the correlation of the disturbance
among cross-sectional units is Tow, limited degrees of freedom may yield
imprecise estimates of those parameters. In such cases, more efficient
estimation often can be achieved by assuming a priori that the covariances

3/

are equal to zero.=

IV. Monte Carlo Results

. To examine the effect of choosing various block sizes on the efficiency
of pooled estimation, a series of Monte Carlo experiments were performed.
Monte Carlo experiments were used because of the difficulty involved in

deriving relative efficiency measures analytically under the general

conditions being evaluated. The model used is of the formi/

8) Y - 1+ 3X

m, + 5X + g

l,m,t Zm,t m,t’

The jndependent variables xl,m,t and x2,m,t were randomly drawn from
the uniform distribution aon the interval zero to one. The columns of the X
matrix are therefore assumed to be uncorre1ated.§/ The same X matrix was

used for all of the experiments.
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A design matrix for Q was specified as

Sa) o = ac?_l, where o> 1;
9b) 95 = [oiaj]ﬁlJ_il, where 0<g<l.

In equation 9a, the value of o determines the degree of cross-sectional

heteroskedasticity‘é/

Equation 9b specifies a decay in disturbance
correlations among cross-sectional units as the distance from the diagonal
increases, with the degree of decay determined by &. If &=1, all the
disturbance correlations are equal to one, whereas, if 8=0 , all the
disturbance correlations are equal ta zero.z/ The disturbance variances
were scaled by a constant to maintain a reasonable signal to noise ratio.g/

By varying 8, the expected efficiency gains to estimation using a block
diagonal variance-covariance structure can be jllustrated. As & falls, we
would expect estimation using block specifications to become more efficient
relative to estimation using the full model because of the expense involved
in estimating the relatively low disturbance covariance terms far off the
diagonal with a small number of time series observations.

The effects of & on efficiency gains were analyzed using 24
cross-sectional units with 12 time serijes observations and 12
cross-sectional units with 24 time series observations.g/ For each case
considered, a series drawn from the normal distribution with mean zero and
variance 1 was filtered through a transformation matrix to result in a
disturbance vector randomly drawn from a normal population with the

characteristics specified in eguations 9 for that case. The resulting
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disturbance vector was then added to XB to obtain a Y vector. Estimation
of the coefficient vector was then carried out using OLS and GLS with
various block sizes. The process was repeated 1000 times.lg/

The relative efficiencies of GLS estimation using different block sizes
are presented in the table. Relative efficiency is defined here as the
ratio of the trace of the estimated mean square error matrices from a GLS
procedure to that of the OLS procedure,ll/ The smaller this ratio, the
greater the efficiency gain.

Several interesting results appear in the table. First, GLS methods
uniformly register greater efficiency gains in the cases using 12
cross-sectional units and 24 time series observations than in those using
24 cross-sectional units and 12 time series observations. This finding 1is
consistent with previous analytical results derived in the framework of 2
cross-sectional units which demonstrate that the relative efficiency in
small samples of the seemingly unrelated regressions approach over
single-equation estimation increases as degrees of freedom increase [Mehta
and Swamy (1976)].

More importantly, the results show that block diagonal
variance-covariance structures can offer greater efficiency gains than the
diagonal model when estimation of the full model is infeasible. Estimation
of the full model was infeasible for the 3 cases using 24 cross-sectional
units and 12 time series observations. As shown in the table, with & set
to .55 of .9, a block size of 4 offers substantially greater efficiency
gains than those achieved using the diagonal model in these cases. Only

when the contemporaneous correlation of the disturbance drops off rapidly,
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when & equals .2, does the diagonal model shown in the first column of the
table offer the most efficient estimation.

Furthermore, the results indicate that use of less than the full
specification -~ even when the full model can be estimated -- leads to
greater efficiency gains in a variety of cases. Estimation using the full
model was feasible in the 3 cases using 12 cross-sectional units and 24
time series observations. The relative efficiency of the full model in
these cases is shown in the last column of the table. 1In none of the cases
does the full model show the highest efficiency gains. Even with & set at
.9, restricting some of the covariances to equal zero improves the
efficiency of the estimator. A block diagonal variance-covariance

structure offers the most efficient estimation with & set to .55 or .9.

V. Conclusions

When estimating a pooled regression model with a Targe number of
cross—sectional units and a relatively small number of time series
observations, restrictions placed on the disturbance variance-covariance
structure may yield substantial efficiency gains. As shown in this paper,
estimation of the full model is not possible when the number of
cross-sectional units exceeds the number of time series observations. In
such cases, however, it is not necessary to totally neglect information on
the disturbance covariances. Rather, strong efficiency gains can be
realized over OLS or the estimator incorporating cross-sectional
heteroskedasticity alene by using a block diagonal variance-covariance
structure which includes only those disturbance covariances which are most

1ikely to be significantly different from zero.
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Furthermore, bias toward estimating the full GLS specification where
such an estimator exists results in substantial efficiency losses in a
variety of settings. If the disturbances of only some of the
cross-sectional units are highly correlated and the number of time series
observations is not large, a block variance-covariance structure offers
greater efficiency gains as long as prior information can be used to group
cross—sectional units according to the magnitude of the correlations

between their disturbances.
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Footnotes

See Theil (1971), 310.

Computation of the full model in these cases should be infeasible.
However, we found that the procedure TSCSREG, available in SAS, still
produces coefficient estimates and t~statistics. By contrast, SHAZAM

does not provide estimates in these cases.

See Fomby, Hil1l, and Johnson {(1984), 164-66, for a general discussion

of this issue.

Choice of values for the B vector was arbitrary. Previous studies have
used the specification presented in Kmenta and Gilbert (1968,1970), but
as shown by Breusch (1980), properties of the estimators are invariant

with respect to the B vector.

As demonstrated by Zellner (1962), the efficiency gains of estimators
incorporating contemporaneous disturbance covariances are greatest when
the disturbances are highly correlated and the explanatory variables
are not. The correlation coefficient of Xl and X2 is =.009. This low

degree of multicollinearity highlights efficiency gains.

The degree of cross-sectional heteroskedasticity was kept constant

across different disturbance variance-covariance matrix dimensions by
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choosing « such that the ratio of c? to oﬁ was held equal to 9 as M

increased.

This particular specification of the design covariance matrix yields a

positive definite matrix.

The overall variance of the disturbance was set to yield an average R2

of 0.8.

The general pattern of results proved invariant to a variety of

settings on the number of cross-sectional and time series observations.

In addition to holding the X matrix constant, the same raw error stream

(12x24x1000 in size) was used in every experiment.

The estimated mean square error matrix for a given covariance

specification is defined as

" i ] 1
by'by  By'b,  by'by
t 1 1
/0 1bp'by By, by'by
] 1 1
by'hy  by'h,  bs'b,

where gi is an nx] vector with each element defined as the difference

A
between B, and B; Tn each experiment (n=1000). The relative efficiency
measure is the ratio of traces of these matrices. Other measures could

also be used, such as the ratio of the determinants of these matrices.
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TABLE: Monte Carlo Estimates of the Relative Efficiency of Various

Covariance Structures

Block Size
Cross Time
Sections Series 8 1x1 4x4 6x6 12x12
Number of Blocks: 24 6 4 2
2 727 .821 .865 .988
24 12 .55 771 .644 .695 .977
.9 .848 407 .503 .958
Number of blocks: 12 3 2 1
2 .635 .669 .715 .843
12 24 .55 .656 .490 .516 .644
.9 .708 .234 . 256 .392

Relative efficiency = trace(EMSEi)/trace(EMSEDLS), where EMSE is the

estimated mean square error matrix using the particular covariance
structure. Number of triais: 1000.
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