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Abstract Cointegration has often been used to model long-run equilibrium
relationship between nonstationary variables., However, there may be many
instances in which the presence of fixed costs of adjustment prevent
continuous adjustment towards the equilibrium, Thus, only when the system
gets too far from the equilibrium, does the system move back towards the
equilibrium, We model this discontinuous adjustment to a long-run
equilibrium as threshold cointegration. Here, the equilbrium error follows
a threshold autoregression that is mean reverting outside a given range and
a unit root inside this range. This process, while displaying unit root
behavior locally, is nonetheless asymptotically stationary. Traditional
tests for unit roots such as the Dickey-Fuller test while capable of
distinguishing between threshold stationarity and a unit root asymptotically
will often have low power against the threshold alternative. We examine the
long-run relationship between the Fed Funds rate and the Discount rate and
find that this relationship can be characterized as threshold cointegration.

*A previous draft of this paper was presented at the Southern Economic
Association Meetings, November 24-26, 1991, We wish to thank Herman Bierens,
Margarida Genius, Robert Kunst, Essie Maasoumi, Baldev Raj, and participants
of the SMU Econometrics Workshop for helpful comments. This paper In no way
represents the views of the Federal Reserve Bank of Dallas or the Federal
Reserve System. Of course, we are responsible for any errors.




I. Introduction
The concept of cointegration has been used to ecapture the notion that
nonstationary variables may mnonetheless possess long-run equilibrium
relationships: and, thus, have a tendency to move together in the long-run
{see Granger (1986) and Engle and Granger (1987). Cointegration has been
used to examine, among many others, the relationship between consumption and
income (Campbell (1987)), stock prices and dividends (Campbell and Shiller
(1987)), money demand (Johansen and Juselius (1990)), and purchasing power
parity (Corbae and OQuliaris (1988)). Granger (1983) showed that systems in
"which variables are cointegrated can be characterized by an error correction
model (ECM). This error correction model describes how the variables respond
to deviations from the equilibrium. One can think of the ECM as the
adjustment process ;ﬁrough which the long-run equilibrium is maintained.

Implicit in wmuch of the discussion of cointegration and Iits
corresponding error correction model (ECM) is the assumption that such a
tendency to move toward a long-run equilibrium is always present (for every
time period). Yet, it is possible to think of situations in which movement
toward the long run equilibrium does not occur in every period. For example,
the presence of fixed costs of adjustment may prevent economic agents from
adjusting continuously. Only when the deviation from the equilibrium exceeds
a critical threshold, do the benefits of adjustment exceed the costs and,
hence, economic agents act to move the system back towards the equilibrium.!

This type of discrete adjustment process has been used to describe many

1

This type of threshold behavior can be generated from control problems

where there are fixed and/or linear adjustment costs of control (see Dixit
(1991)). The (S,s), target zone, and reflecting barrier problems are examples

of control problems that can generate threshold-type behavior.
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economic phenomena including the behavior of inventories, money balances,
consumer durables, prices, and employment.? Even in efficient financial
markets, the presence of transaction costs may create a band in which asset
returns are free-to-diverge and in which arbitrage possibilities exist.

Discrete adjustment may equally apply to policy interventions. For
example, exchange rate management and commodity price stabilization are often
characterized by discrete interventions. For exchange rate target zones,
exchange rates are allowed to fluctuate freely within a given band, yet, when

exchange rates exceed the target band, central banks intervene in the foreign

exchange market. Similarly, for commodity price stabilization programs, only

when the market price gets too far from the target price does the government
intervene by buying or selling stocks or by changing the target price.
Another example might include the Federal Reserve control of the Fed Funds
rate and the Discount rate. If the spread between the two rates gets too
large, the Fed intervenes to change the Fed Funds rate or Discount rate or
both to prevent sending conflicting signals about monetary policy.

In this paper, we attempt to characterize thils discrete adjustment in
terns of threshold cointegration, 1In particular, we examine the case where
the cointegrating relationship is inactive inside a given range and then
becomes active once the system gets too far from the "equilibrium". That is,
once the system exceeds a certain threshold, cointegration becomes active.
The concept of threshold cointegration captures the essence of the nonlinear
adjustment process envisioned to hold for many economic phenomena, yet, as we

show below, allows one to use many of the tools developed for more

2

See, for example, Scarf (1959), Miller and Orr (1966), Bertola and
Caballero (1990), Sheshinski and Weiss (1983), and Bentolila and Bertola (1990).




traditional models of cointegration.

The remainder of this paper is organized as follows. 1In Section II we
formally describe two types of threshold colntegration models. One
corresponds ' to -a -threshold adjustment process that tends towards an
equilibrium point while the other corresponds to an adjustment process that
reverts to an equilibrium band or target zone. We discuss the properties of
the threshold models in Section III. While these processes behave like a
random walk inside the threshold range, they are, nonetheless, stationary
stochastic processes. In Section IV we examine the asymptotic and finite-
sample performance of standard time series methods such as the Dickey-Fuller
unit root test. In Section V we examine and describe what appears to be a
threshold cointegration relationship between the Fed Funds rate and the
Discount rate. In Section VI we suggest additional topics for further

research.

IT, A Model of Threshold Cointegration

The Basic Threshold Model

To be precise about what we mean by threshold cointegration, consider a

simple bivariate system (y,,X,) similar to that in Engle and Granger (1987)

with:
(1) y. + ax, = 2z, where z, = p z,, + e
( 2 ) }’t, + ﬂxt = Bt 2 Where Bt. = Bt‘l + €2t -

For simplicity let e;; and ¢, be iid, mean zero random variables with
variances o,? and o,? respectively.?® Equation (1) represents the equilibrium

relationship between y, and x,, where z, is the deviation from equilibrium and

3 In general, ¢;; and €, could be serially correlated.
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the cointegrating vector is given by (1,a). B, in equation (2), represents
the common stochastic trend of y, and x,.

Rather than a linear autoregression with constant parameters as in Engle
and Granger -(1987),-in our case the value of p‘'’ depends on past realizations
of z,. In particular,

pt = 1 if |2zegq| = 0

= p, with |p| <1 if |zp.q] > 8

where d is a positive integer. That is, departures from the equilibrium, z,,
follow a threshold autoregression (see Tong (1983)) where the threshold is
given by ¢.* As long as |zyg| < #, z, acts as if it had an unit root and,
consequently, there is no tendency for the system to drift back towards the
equilibrium relationship. Once jz,y4| > #, =2, becomes a stationary
autoregression that has a tendency to revert back to a constant mean {in the
example above, zero). Thus, if the equilibrium error is less than the
threshold wvalue, then y, and x, do not have a tendency to revert to some
equilibrium (i.e. are not cointegrated); if the equilibrium error is greater
than the threshold then y, and %; do tend to move towards some equilibrium
(i.e. are cointegrated). The integer d represents the delay in the error
correction process and reflects the possibility that economic agents or
controllers may react to deviations from the equilibrium with a lag.

An alternative way to represent the threshold cointegration idea is in
terms of an -error correction model. We can rewrite the system given by
equations (1) and (2) as

(3) Ay, = 7Pz, + vy

“ In general, there is no reason to restrict the threshold (or p) to be
symmetric. We do so here for notational ease.




(4) axy = 1 oz + vy

where 71,V = -(1-p")B/(B-a), v, = (L-pW)/(B-a), vie = [B/(B-a)]ey -
[a/(B-a)]ese, vz = [1/(B-a)] (e - €1.), and z,; = Yy + oX, ;. The error
correction - term,.. z;.;, represents the error- in or -deviation from the
equilibrium condition while the parameters 7,‘*’ and v,4) capture how y, and
¥, respond to deviatlions from the equilibrium relationship. As long as
deviations from the equilibrium condition are not greater than the threshold,
the error correction parameters v,4’ and v,‘*? are zero and y; and x, do not

respond to deviations from the equilibrium condition. Only if the deviations

~exceed the threshold are v,’ and 7;**’ nonzero and y, and x, respond to

deviations from the equilibrium,

In addition to the basie threshold model described above, there is a
related threshold model that is also of interest, In the basie threshold
model, the error correction model responds to the deviations from the
equilibrium relationship; the strength of the error correction effect
depends, in part, on how far the variable is away from the equilibrium
relationship. In a control context, it is as if the controller is trying to
return the controlled variable back to its equilibrium value. However, one
can conceive of situations where the controller is satisfied if the process
is within a band centered around the equilibrium, An example would ineclude
exchange rate target zones. In this case, the controller tries to return the
variable to within the target band and not necessarily back to an equilibrium
point,

In this case the error correction model responds to deviations from the
target band; the strength of the error correction term then depends on how

far the variable is from the equilibrium band. For this type of target zone




threshold modél, deviations from equilibrium are described by
(5) 2z = 2Z,; + €3, 1f |zy4| = ¢

= Zyq + (p-1)(Zp1 - ) + €y if jz,q] > 4
where 1) = 4 1f 2z, > 8 and-8%? = -g if 7,4 < -8. Thus, the series has a
tendency to revert back to the range [-#,f8) and not to zerc as in the
previous threshold model.

A special case of this target zone threshold model is a two-sided
barrier model in which the series is not allowed to exit the interval
[-6,8]. That is
(6) = - Zyy +  €q 1f |2y-y + €3] = 8

A if |2y + €3] > 6
where 10 = @ if (z,q + €1,) > 0 and 9 = -9 if (2, + €;;) < -8. Thus, the
series has a unit root as long as it is within the band, but it is not
aliowed to exit from the band, This is similar to the modified threshold
model when p = 0. A continuous time analog of the Barrier model is a

Brownian Motion on the interwval [-0,8] where * # are reflecting boundaries.

Generalization of the threghold cointegration model, .

We can describe the above threshold models in a somewhat more general
context. Consider the system:
(7) AW(1)X, = e
where A‘)(L) is a nxn polynomial lag matrix and X, is a nxl vector of
nonstationary variables. Suppose there are k cointegrating vectors. The
presence of cointegration reduces the rank of the A'’(1l) matrix. Threshold
cointegration in the general setting implies that A‘*)(1l) is of reduced rank

when |a’'Xe-q|; > 8; for the j-th cointegrating vector (L < j < k) and A*)(1)
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is of full rank when ja'X,.4|; < #; for all j. Here a' denotes the kxn matrix
of cointegrating vectors and #; is the threshold for the j-th cointegrating
relationship.

In terms of the error correction model, we can rewrite the general
system
(8) AXy, = C(L)AX, + &Wa'X., + v,
where §) is a nxk matrix containing the error correction parameters. Like
the simple example described above, the matrix of error correction parameters
has the following property:

§W = 0, if |a'X, 4]y < 0

M = 0, 1If |a'Xy 4l > 8y,
vhere §‘1); is the j-th column of error correction parameter matrix, §‘*?, that

corresponds to the j-th cointegrating vector.

ITT, Properties of the Threshold Cointegration Equilibrium Error

In this section we examine some of the stochastic properties of
threshold cointegrated variables. In particular, we focus on the behavior of
the equilibrium error, =z,.

As supggested above, the behavior of the equilibrium error, z,, depends
on which region the equilibrium error is in; if z, 4 is in the interval
[-8,8] then z, is a unit root process, if z,_ 4 is outside the interval then z
is a stationary, mean reverting process. This threshold model displays very
different "local" behavior as compared to its global behavior. During
substantial portions of the sample (i.e., when the series is inside the range
[-8,8]) the series behaves much like a random walk; yet, asymptotically, the

series has a stationary distribution.
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To see the distinction between the local and asymptotic (or global
behavior), consider the target zone threshold model given by equation (5).
Without loss of generality, we set the delay parameter, d, equal to one.
Thus, z, is given:-by
(9) =z = zZ4y + €4 if |Zeq| < 8

- d-p)0 + oz + ey if |2g-a| > 0
where ey, 1s 1id (0,0,2), and %) = ¢ {f 2, ; > 6 and V) = -9 1f 2., < -8.
Clearly as long as zy., is in the interval [-#,¢], 2, behaves like a random
walk.

However, asymptotically, z, is a stationary stochastic process. Starting
at t = 0 with |zy,|] < # and by recursively substituting, we obtain the
following equation for z, when |z;,| < f:

(10) z, = P zo &+ INE(E) [ SINCGEHi] (] ple(i)-r()])g(d)
+ TR (PNl ) ¢

+ pIMEIFL) ) GUTTNI] )
o seaE@HnES €y
' NE(t) is the number of times the process exited from [-8,8] in the time
interval [0,t]. r{(i) is the time of the i-th exit from [-4,9] while (i) is
the time of the i-th entrance into [-#,8) with x(0) = 0. The term x(i)-r(i)
is the time outside the boundary for the i-th exit, and, since |zy| = ¢,
k(i)-7(i) > 0. The term N(t) = ., ZFE®M) [k(i)-7r(i)] is the total time the
process has spent outside [-#,4] during the interval [0,t] while N; is the

time the process has spent outside [-§,#] during the first i exits.’

5 A similar description for z, can be derived for the case where z,., is

outside [-¢,f] and for the case where |z;| > §., Likewise, to obtain z; for the
basic threshold model, all one must do is set the #¢:) terms in equation (10)
equal to zero.
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The terms r(i), (i), N(t), and NE(t) are themselves random variables.
In general, these hitting times will be a function of the houndaries, the
degree of mean reversion outside of the boundaries, as well as realizations
of the random variable €,,. The expected first passage time to the boundaries
starting from z, inside the interval [-#,7) is approximately equal to
(8%2-z,2) /9,2, Thus, the size of the boundaries relative to the variance of e
plays an important role in the number of times the process crosses the
boundaries in the time interval [0,t].
For the z, process described in equation (10), note that the effect on
z, of z, (as well as hits on the boundary and ¢,; innovations early in the
sample) diminishes the more times the process exceeds the boundaries.
Because the boundaries are finite, the expected hitting time to the
boundaries from anywhere inside the region [-#,8] is finite. Furthermore,
since z, is mean reverting outside of the boundaries, the expected hitting
time to the boundaries from outside the region [-#,f] is also kinite.
Consequently, as t + «, NE(t) 85 «». Similarly, as t + =, N(T} 8+5 ». This
implies that corr(z,,z,) approaches zero as t goes to infinity. Essentially,
each time the process exceeds the boundaries, some of the memory of the
process is eliminated. Because the number of times the process will exit [-
#,0] in a given time interval goes to infinity as the time interval goes to
infinity, events that are separated by large time intervals are almost
independent. -This suggests that since none of the other parameters are time
dependent, z; will be a stationary stochastic process.
In principle, it is possible to solve for the stationary distributions
of z,. Unfortunately, because the time that the process spends outside of the

boundaries is stochastic, solving for the stationary asymptotic distributions
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of the above threshold processes is not in general practicable. However, in
Appendix A, we solve for the stationary distributions of continuous time
analogs of both the basic and the target zone threshold models. In general,
the unconditional -variance of the process depends on ¢,2 and on the value of

the boundaries.

IV, Unit root tests and threshold cointegration

In this section we examine how standard time series methods would work
in the presence of threshold cointegration (stationarity). We show that the
standard time series analyses used for linear cointegration are likely to be
valid asymptotically for the threshold colntegration case. However, in
finite samples, traditicnal linear methods such as the Dickey-Fuller test

will have lower power against the threshold alternative.

Proposition Consider the threshold cointegration system given by equations
(1) and (2).
(1) Consider the Dickey-Fuller regression given by

;an = =22l ZyZy [ pep® Zp-il.
As long as z, is "a-mixing", then p < plim ;mm < 1.
The term p is the autoregressive parameter when |z, 4| > 4.
(1i) As long as the boundaries, p, and Var{e;,) = 0,2 are such that the a-
mixing conditions in Phillips (1987) (Assumption 2.1) are satisfied for z.,
then

(a) for ; from Dickey-Fuller regressions for x, and y.,

plim T1"6(p-1) = 0, & > O,
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(b} and the least squares estimate of the cointegrating wvector, ;,

plim T %(a-a) = 0, & > O. m

Part (i) implies that the Dickey-Fuller regression is capable of
distinguishing between threshold stationarity and a unit root,
asymptotically, However, the estimated value of p understates the degree of
mean reversion outside of the boundaries. Parts (ii) and (iii) imply that
the super-consistency of least squares estimates of the Dickey-Fuller
coefficient for the unit root processes x, and y, (Phillips (1987)) as well
as the super-consistency of the cointegrating vector, «, (Stock (1987)) hold
in the threshold cointegration case. In summary, Proposition 1 suggests that
techniques designed to detect unit roots and cointegration in the linear case
should work, asymptotically, for the threshold case.

The memory condition for z; (a-mixing) in the Proposition is needed in
order to apply the Law of Large Numbers and Central Limit Theorems for a
serially correlated z,., As it turns out, this memory condition is very likely
to hold for threshold cointegration models in which 6 is bounded.® As we
pointed out above, each time the process exceeds the boundaries, some of the
memory of the process is eliminated. Indeed, for the basie threshold model
with p=0, the process essentially starts over again at zero every time it
exceeds the boundary. Whether the decay in the memory is fast enough for the

Central Limit Theorem to hold will depend on the value of # relative to o, and

on the parameter p. All the threshold processes considered in the Monte

8 See Appendix C for a more detailed discussion of the memory properties

of the threshold stationary models examined here.
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Carlo experiment conducted below appear to satisfy the Law of Large Numbers
and the Central Limit Theorem.

Given that the threshold models described above are in fact stationary,
perhaps it is -mot too surprising that standard time series methods such as
Dickey-Fuller tests are capable of detecting threshold cointegration
(stationarity). However, as we suggested above, since these threshold
processes sometimes behave locally as if they have a unit root, in finite
samples, traditional methods may have difficulty uncovering the presence of
threshold cointegration. In particular, traditional tests for mno
colntegration (or a unit root in the deviation from equilibrium) may have low

power against the alternative of threshold cointegration (or threshold

stationarity).
Finite Sample Performance of Dickey-Fuller Test.

To evaluate the finite sample performance of standard tests of no
cointegration/nonstationarity, we abstract from the problem of estimating the
cointegrating vector and assume that the cointegrating vector 1is known.
Thus, we need only consider how effective traditional methods such as the
Dickey-Fuller test are in distinpuishing the threshold models from unit root
processes.’

Three threshold models are generated: one corresponding to the basic

threshold model described in section II; one corresponding to the target zone

threshold model in which there is a tendency for the serles to return to a

?

threshold stationary models.

In a previous draft of this paper, we examined Cochrane (1988) variance
ratio as well as Bieren's (1992) test for stationarity. Like the Dickey-Fuller
test, both tests had difficulty distinguishing between the unit-root process and
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target band but not necessarily to an equilibrium point; and one
corresponding to a barrier process in which the process is not allowed to
exit the interval [-4,6]. 1In the Monte Carlo experiment all three models
have the same random innovations (i.e., they have the same ¢,.'s) but differ
with respect to the threshold behavior. The shocks, ¢;;, were drawn from a
N(D,1) distribution.

Three values of p were considered: (0.0, 0.4, 0.8). The value of p
captures how strong the attraction of the equilibrium is, with p = 0.0
representing the case of the strongest attraction and p = 0.8 the least
-attraction. We also considered three threshold values, # = 5, 10, and 20.
Given the random walk behavior when the series is within the threshold
boundary, the expected first hitting time given that =z, = 0 at t=0 is
approximately 02, Thus, starting from the equilibrium point (zero), the
expected hitting times for the thresholds 4 = 5, 10, 20 are 25, 100, and 400
respectively. Sample sizes of 100, 250, 500, and 1000 are considered. Each
experiment consists of 1000 replications.

Table 1 displays the power of the Dickey-Fuller t-test against the
alternative hypothesis of the various threshold models. The Dickey-Fuller
test has low power for small samples or for large threshold values. Indeed,
the sample size relative to the value of §%/0,% (which is the expected hitting
time starting from zerc) seems to be the key determinant of the power of the
Dickey-Fuller statistic.® Only when the sample size is substantially greater

than the expected hitting time does the Dickey-Fuller test have high power

8 In appendix A, we derive the asymptotic Dickey-Fuller coefficients for
continuous time versions of the above threshold models. From the continuous time
analysis, we show that these coefficient estimates are explicitly a function of
ratio 8%/0,2.



14
against the threshold alternmatives. Also, the Dickey-Fuller test have
substantially less power against the target zone threshold and the barrier

process alternatives than they do against the basic threshold alternative.

V. An Example Threshold Cointegration

In this section, we examine whether the relationship between the Fed
Funds rate and the Discount rate can be characterized by threshold
cointegration. The Discount rate is the interest rate at which member banks
can borrow from the Federal Reserve and is set by the Fed. The Fed Funds
rate 1s a market determined interest rate for overnight loans between banks,
While the Fed does not set the Fed Funds rate directly, it nonetheless can
influence this rate through open market operations. There are several
reasons why the Fed would not want the spread between the Fed Funds rate and
the discount rate to get too large. Too large a spread may cause substantial
swings in discount window borrowing--if the Fed Funds rate is too‘high
relative to the discount rate, banks may attempt to take advantage of the
interest rate spread by borrowing at the discount window--undermining the
window's lender-of-last-resort role. Furthermore, both Interest rates
reflect the stance of monetary policy. The Fed does not want the spread
between these rates to get too large since this would send conflicting
signals about the conduct of monetary policy.

Because the spread between the Fed Funds rate and the Discount rate is
the control variable of interest for the Federal Reserve in this example, we
look for stationarity in the spread as evidence of an equilibrium
relationship between the Fed Funds rate and the Discount rate. Therefore,

the cointegrating vector is taken as known and equal to (1, -1). The data
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are monthly and the sample spans from January 1955 to December 1990,

Before examining the spread between the Fed Funds and the Discount
rates, we need to determine the univariate time series properties of these
series, Both the Fed Funds rate and the Discount rate individually show
evidence consistent with unit roots; the augmented Dickey-Fuller t-statistics
(with 12 lags) for the Fed Funds and the Discount rates are -1.99 and -1.93,
respectively.® However, when the spread is examined, we can reject the null
hypothesis of a unit-root--the Dickey-Fuller t-statistic is -6.08. Thus, the
full sample suggests that Fed Funds and the Discount rate are cointegrated.
We next consider the possibility that the Fed Funds and the Discount rate are
threshold cointegrated.

We use the methodology suggested by Tsay (1989) to test for and model
the threshold autoregression for the spread. The Tsay threshold
autoregression procedure consists of several steps. First, a tentative AR
model of order p and a set of possible threshold variables (the spread at
t-d) is selected. An autoregression with 2 lags for the spread is sufficient
to reduce the residuals to white noise, so p is tentatively set equal to 2.
Because the Federal Reserve Open Market Committee typically meets about every
six weeks, we set the possible range for the threshold lag, d, from 1 to 4
months.

For each possible threshold lag variable (d = 1 to 4), the Tsay (1989)
test for threshold nonlinearity is conducted based on an arranged

autoregression. An arranged autoregression orders the data according to the

® We also considered the possibility that the Fed Funds and Discount rates
were themselves stationary threshold autoregressions. Using the procedure
outlined below, we found a single threshold for the Discount rate and two
thresholds for the Fed Funds rate. However, for both interest rate series, unit

roots appear to be present in all of the threshold regimes.
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value of the threshold wariable, The Tsay statistic for threshold
nonlinearity is the F-statistic from the regression of recursive residuals
from the arranged autoregression on lagged values of the series. Under the
null hypothesis of linearity, coefficients of lagged-values of the series
should be zerc. Thus, high F statistics are evidence against the null of a
linear autoregression. Because several observations (here 20 observations)
are used to start up the recursive analysis, we consider arranging the
autoregression from both low to high values of the threshold variable and
from high to low values. The threshold lag is determined by choosing the lag
d that yields the largest F statistic. - In this application, d = 1 1is the

chosen threshold lag. The Tsay tests for nonlinearity (with d = 1) are:

autoregression arranged from low to high-- F(3,409} = 13.47 (p = 0.0000)

autoregression arranged from high to low-- F(3,409) =~ 29.28 (p = 0.0000).

Therefore, the null of linearity is strongly rejected.

Once the threshold lag 1is chosen, we use the arranged autoregression
based on the chosen threshold variable (the spread at t-1) to identify the
possible threshold values (the #‘s). This is done by examining scatterplots
of the recursive t-statistics of the autoregressive coefficients and/or
recursive residuals. Since our focus is on the stationarity of the spread,
we examine the recursive Dickey-Fuller t-statistics implied by the arranged
autoregression. Figures 1 and 2 present scatterplots of the recursive
Dickey-Fuller t-statistics for arranged autoregressions against possible
threshold wvalues, Breaks or changes in direction in the plots suggest

candidate threshold values. Figures 1 and 2 suggest a clear break in the
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recursive t-statistics between values of 1.6 and 2.0 of the threshold
variable. A second change of direction appears to be present at or around
the threshold value of zero. Thus, there does indeed seem to be evidence of
two thresholds--the upper threshold in-the range 1.6 to 2.0 and the lower
threshold around zero.

To determine the actual threshold values, we estimate several threshold
autoregressions with possible lower threshold values of (-0.2, -0.1, 0.0,
0.1, 0.2) and upper threshold values of (1.6, 1.7, 1.8, 1.9, 2.0). The final
threshold values were those that minimized the sum of squared errors from the
threshold autoregression for the spread. Of the possible combinations of"
lower and upper threshold values, an upper threshold of 1.6 and a lower
threshold -0.2 minimized the sum of squared errors. Figure 3 plots the
spread between the Fed Funds and Discount rates and the identified threshold
values.

Table 2 presents estimates of the threshold autoregression for the
spread between Fed Fund rate and the Discount rate.l® The Augmented Dickey-
Fuller t-statistics Implied by the threshold autoregression are also
presented. From Table 2, it is clear that the relationship between the Fed
Funds and Discount rates can be characterized by threshold cointegration. As
long as the spread between the Fed Funds rate and the Discount rate is in the
range [-0.2, 1.6] there does not appear to be any mean reversion--the spread
has a unit root. However, when the spread is greater than 1.6 percentage
points or less than -0.2 percentage points there is strong evidence of mean

reversion. The estimated constant terms in the lower regime and upper regime

10

In all the autoregressions in Table 2, a lag length of 2 was sufficient

to eliminate any serial correlation in the residuals. Similarly, the residuals

of the error correction models in Table 2 were also white noise.
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suggest that the threshold model is more like the target zone threshold model
given by equation (5) than the basic threshold model--that is, the spread
tends to return to an equilibrium range rather than to an equilibrium point.

The estimated threshold error correction models for the Fed Funds rate
and the Discount rate are also consistent with threshold cointegration
between the Fed Funds and the Discount rates. For the Fed Funds rate, the
error correction term (the coefficient on spr,.;) is significant when the
spread at t-1 is outside the range [-0.2, 1.6]; thus when the spread is too
large (either positively or negatively) the Fed Funds rate adjusts to narrow
that spread. Inside this range, the Fed Funds rate does not respond to the
spread. The Discount rate does not appear to respond to the spread between
the Fed Funds and the Discount rate. This suggests that the cointegration
between the Fed Funds rate and the Discount rate appears to be in large part

due to adjustments in the Fed Funds rate.!!

VI. Summary and Further Research

Thus far, we have presented a model in which the cﬁintegrating
relationship between variables turns on and off. We modeled this on and off
behavior explicitly as a threshold model in which the series are cointegrated
if they get too far away from the equilibrium relationship but are not
cointegrated as long as they are relatively close to the equilibrium. While
standard time series methods should be able to detect threshold cointegration
asymptotically, in finite samples and for relatively large threshold values

these same methods may have trouble detecting threshold cointegration.

il

The fact that discount rate changes occur relatively infrequently may

also account for the lack of statistical significance of the error correction

term in the discount rate equation.
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In addition to presenting the general threshold model, we examine the
behavior of the Fed Funds rate and the Discount rate in light of possible
threshold cointegration. Using the threshold modeling strategy suggested by
Tsay (1989); we find significant evidence of threshold cointegration between
the Fed Funds rate and the Discount rate. As long as the spread between the
two interest rates is within a given range, there is no cointegration. But
when the spread is outside this range, the Fed Funds rate and the Discount
rate are cointegrated.

Several tasks remain to be done, Examining the properties of
‘multivariate procedures such as Stock and Watson (1988) or Johansen (1991) in
the presence of threshold cointegration needs to be considered. As we
suggested above, these methods are still likely to be asymptotically capable
of finding threshold cointegration but with a loss of power (or incorrect
size) relative to the basic linear model. Perhaps, the nonlinear attractors
approach of Granger and Hallman (1990) may be more effective at
distinguishing threshold cointegration from no cointegration than standard
linear methods.

In the application above, we took the cointegrating vector to be known.
However, in practice this assumption is rarely valid. Therefore, estimation
and inference for cointegrating wvectors in the threshold cointegration
context needs to be examined. The super-consistency of least squares
estimates of the cointegrating vector (Stock (1987)) will still hold.
However, in finite samples, the estimated cointegrating vector 1s likely to
be noisier for threshold cointegration than for conventional linear
cointegration.

In the example above, we used the Tsay (1989) procedure to estimate a
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threshold cointegration model. However, there are circumstances in which the
Tsay procedure may not be as useful or appropriate. While the Tsay threshold
modeling procedure is able to model threshold cointegration, given that the
cointegrating vector is already estimated, it may not be very useful if there
are only a few observations outside of the thresholds. 1In particular, the
Tsay threshold modeling procedure is unlikely to be able to detect and model
the two-sided Barrier process. In addition, we would like to consider
examining threshold cointegration in a systems context; univariate methods
may net be as efficient as a systems approach would be.

Finally, we would like to consider some additional economic examples in
which threshold cointegration might be present. There is a large literature
that uses cointegration to examine purchasing power parity (for example,
Corbae and Ouliaris (1988))., Perhaps, the rejections of purchasing power
parity are due to the relatively lower power of tests of cointegration in the
presence of threshold cointegration. Another example of interest would be
whether consumption, especially consumer durables, and income are
characterized by threshold cointegration. . Recently, Bertola and Caballero
(1990) have applied (S,s) techniques to model the purchases of consumer
durables. That 1s, consumers wait until their stock of durable purchases
reaches a given threshold (either upper and lower thresholds) before making
a durables purchase. This implies that at an individual level, consumer
durables and income are threshold cointegrated. Because of aggregation,
aggregate consumer durables and income may be modeled as a smooth transition

threshold model (Terasvirta (1990)).
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Appendices,
Appendix A. Continuous Time Threshold Models.

In continuous time, the threshold cointegration model is given by
(Al) yo + axg = -2
(A2) yp + PBx, = By,
vhere B, is a Brownian Motion and z; is the continuous time version of the
threshold autoregression. We consider continuous time versions of both the
basic threshold model and the target zone threshold model.

The basic threshold model would correspond to a Brownian motion that
"jumps"” back towards the equilibrium level whenever it hits the boundaries -4
and #. This process is described by a Brownian motion of the form
(A3) dzy, = odW,, -8 <z < 8
where W, 1s a Wiener Process with (Wi 4-W,) ~ N(O,k). When the process hits
the boundaries +(-)#, the process jumps to +(-)pf (0 < p < 1). The value of
p determines how far the process jumps back towards the equilibrium; for p =
0, the process jumps all the way back to the equilibrium.

We can also construct a continuous time version of target zone threshold
model in which the process drifts back to an equilibrium (or target) zone.

This process has the form

‘V(Zt + g)dt + wat for Z¢ < -f
(Aél-) dzt bl o‘th for -0 = Zy -
- (zb -8 ) dt + ath for Zy, > 8

Thus, the process is a Brownian Motion inside the region [-#,6] and an mean
reverting Ornstein-Uhlenbeck process outside that region. The parameter v
controls the strength (or speed) of the attraction to the boundaries; for »

small there is weak attraction while for v large there is strong attraction.
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In the absence of the boundaries, the distributicn of a uncontrolled
Brownian Motion (B.|By) 1s given by P(B, < B | By) = &((B-B,)/oft) where & is
the cumulative distribution function for the standard normal distributionm.
Note that  like - the -discrete time random walk, the variance of the
uncontrolled Brownian Motion érowa; linearly with time. However, the presence
of the boundaries causes both threshold process to have stationary

distributions, The "jump" process z, described in equation (A3) has a

stationary distribution described by the density function

0 for z = -#

(0 + 2)/[(1-p2)8?] for -0 < z < -p@
(AS) $(z) = 1/[(1+p) 8] for -pf < z < pé@,

(8 - z)/[(1-p%)82] for pt <z < @

0 for z = ¢

The asymptotic distribution of target zone threshold process described by
equation (A4) has the following density function:
{[2n02/(20) 1Y% + 2017 expl-(z+0)%/(e%/v)] for z < -4
(A6) ¢(z) = {[270%/(20) )22 + 29372 for -4 =2 9.
{[2r0?/(20) 112 4 20)7) exp[-(z-9)2/(a?/v)] for =z > 8
This process has two interesting limiting cases. As v - « the process
becomes a reflected Brownian Motion on [-#,#] which is equivalent to the two-
sided barrier process described above., The asymptotic distribution for this
process is a wuniform distribution. As # - 0, the process becomes an
Ornstein-Uhlenbeck process over the entire range of z and is the continuous
time analog of a mean reverting autoregressive process. This process has a
asymptotic distribution of N(0,¢2%/(2v)).

To find the stationary distribution, we use standard results from the
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diffusion processes literature (see Karlin and Taylor (1981)). For the basic
threshold model, z, is a Brownian motion in the interval [-#,#] that jumps to
* p# when the process hits the boundaries. For this process the stationary
limiting distribution ¢(z) will satisfy the following Kolmogorov forward
differential equation

a?p"(z)/2 = O for -0 <z < §.
(In the steady state 8¢/t = O, which yields the above differential
equation). On the boundaries and return points ¢(z) must satisfy

¢(8) = 0, $(-6) - 0,

¢'_(p8) = ¢'.(p8) - ¢'-(8), @' (-p8) = ¢'(-p0) + ¢'4(-8),

¢-(p8) = ¢,(pf), and $-(-p8) = $:(-pb),
where (-} indicates evaluated from below and (+) indicates evaluated from
above., Solving the above differential equation and imposing the boundary
conditions along with thé adding up constraint, -J‘ ¢(z) dz = 1, ylelds the
limiting distribution given in equation (AS).

S8imilarly, the limiting distribution of the continuous time process
..whose behavior is given by equation (A4) will sgatisfy the following

Kolmogorov forward differential equations:

0 = 024" (2)/2 + ¢'(z)v(z-0) + v(z) for z > ¢
0 = o%¢"(z)/2 for -4 <z < ¥4
0 = a%"(2)/2 + ¢' (z)v(z+0) + vé(z) for z < -¢.

In addition, the following boundary conditions will need to be satisfied
¢'-(8) = ¢':(8), ¢'4(-6) = ¢’ (-8),
$-(8) = $,+(8), and $+(-0) = ¢_(-8).

Finally, we have the adding up constraint .J ® ¢(2z) dz = 1. Solving the three

differential equations and imposing the various boundary and adding up
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constraints yields the limiting distribution given by equation (A6).

Appendix B Continuous Time Dickey Fuller Regressions

Consider- the continuous time version of the Dickey-Fuller regression
v - of T zy dzy / o T (2y)? 4t
where 2z, is a continuous time stochastic process and -v represents the
reversion or the strength of attraction to the equilibrium., If z;, is the

continuous time version of a unit root process, i.e. an uncontrolled Brownian

Motion, then v = 0,

Proposition Bl. For the Brownian Motion that returns to % p@ (0 < p < 1)
when it reaches the boundaries * # as given by equation (A3), the

plim -» = - 60%/[62(14p) (1+p2]) < O. n

Proposition Bl suggests that the linear Dickey-Fuller test should be
able to distinguish between the unit root process and the threshold-jump
process. The threshold model looks more like the uncontrolled Brownian
Motion the smaller process jumps back towards to the equilibrium (i.e. p is
larger). In addition, the smaller the ratio 02/8% (which is 1/E(r) where E(r)
is the expected hitting time of reaching the boundary starting from zero),
the closer ; is to zero. As o? falls relative to §%, the thresholds are
reached less often; hence, the threshold process looks more like an

uncontrolled Brownian Motion.

Proposition B2. CGonsider the threshold process given by equation (A4) in

which the process drifts back to the target range [-4,4].
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-v < plim -¥ _ | wol/[ o + 2v8%/3 + 20(0% + 2v(ma?/v)-3)/IC | < O,

where IC = [no?/v]1/2 + 24, n

Thus, as in the case of the threshold jump process, the standard Dickey-
Fuller regression can distinguish the target zone threshold process model
from the random walk., However, the Dickey-Fuller regression understates the
degree of mean reversion outside of the range [-#,6]. Note, that as o¢2%/#?
gets small the process becomes more like an uncontrolled Brownian Motion
(i.e. as 0%/62 > 0, plim -» - 0), while as 02/0% gets large the process becomes
more like a mean reverting Ornstein-Uhlenbeck process (as ¢2/8% + «, plim -3
=+ -¥). For the special case of the reflecting Brownian Motion (v = =), plim

- approaches -(3/2)(c%/6%).

Proof of Proposition Bl.

Note that for this process the unconditional mean and variancel!? equals
E(z) = 0 and E(z%) = (1+p2)82%/6.
Furthermore, because of symmetry of the boundaries and return points, the
expected first passage time to the boundaries starting from either return
point is E(r) = (1-p%)8%/0%.
Recall the continuous time analog of the Dickey-Fuller regressioq'is
v - of T zydz, / of T (2,)? dt.
Note that for the above jump process, when the process in the interior
E(z.dz,) = 0. When the process hits the boundary and jumps bank into the

interior, z,dz, = [F8][{p-1)(8)] = (p-1)6%2. Thus,

12 Robert Kunst pointed cut an algebraic error in a previous version of the

paper.
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plim T z,dz /T = (p-1)82 plim N(T)/T,
where N(T) is the number times that the process hits the boundaries in the
[0,T] time interval.

Because of the recursive nature of the above regulated Brownian Motion,
the hitting times are independent and identically distributed with the
exception of the first hitting time whose distribution depends on the
starting value of z. As a consequence, from Renewal Theory,

plim N(T)/T = 1/E(r) = o%/[(1-p%)6?],

(see Ross (1983)). Note, lim q., Var(N(T))/T = Var(r)/E(r)3).

Furthermore, since z(t) has a stationary limiting distribution
plim of T (z;)? dt/T » E(2?) = (1l4p%)82/6.

Therefore,

plim -» = - 602/[8%(1+p) (L+p2)].

Proof of Proposition B2,

For the threshold model given by equation (B&),

-v(z? + fz) dt z < -4
-v(z? - g2) dt 8 <=z

Recall, that the limiting stationary distribution, ¢(z), for this threshold
is given by equation (12). Thus,
plim of T zdz, /T = _J° E[z,dz.|z.=z]¢(z) dz
= 7% -v(z%+82)¢(2) dz + o ° -v(z2-02)¢(z) dz
= -vo?/(2v).
plim of T (2,)2dt/T = E[223] = J° z% ¢(z) dz

= o%/(2w) + 82/3 + 20[0%/(2v) + 8(na?/v)/3]/1C,
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where IC = [no2/v]}Y/2 + 24,
Therefore, after some rearranging, it can be shown that
plim v - plim of T z,dz,/T] / plim /T (z,)2dt/T
= - wolf[o? + 2v0%/3 + 28(0®* + 2w(xd?/v)-F)/IC] < 0,

where IC =~ [no?/v]Y/2 4+ 24.

Appendix C, Proof of Proposition.

(i) We prove the proposition for the case of d = 1 and the target zone
threshold model. Furthermore, ¢,; is assumed to be iid with mean zero and
variance ¢;2. Recall that the modified threshold model is given by:

Zy = Zpq + €y if |zpq) = 8

= Zygg + (p-1)(Z¢q - 0YY) + €y if |zg-,| > 8

vhere §4) = ¢ if z,.; > # and 94 = - if z,, < -#. The basic threshold model
is just a special case where 417 = Q.

The least squares estimator of the autoregressive coefficient, p, from
the Dickey-Fuller regression is given by

;’DFz = { 28" 2ZpZp-1 M 1meET (2¢1)? ).
Using the above threszhold model, we can write

=25 ZeZpog = gepD (Zge1)? 4 (p-1)5aZT (2p0y-1 - #2005

+ t=2S' €14Z¢-1,

where N(T) is the number of times that the series is outside of the threshold
range and (i) is the time period of the i-th exit from inside the threshold
range. Since for starting values anywhere inside the finite interval [-4,4]
the expected hitting time to the boundaries is finite, as T + =, N(T) 2+% w,
N(T)/T is the proportion of the sample in which the process is outside of the

threshold range. For finite boundaries, as T + = this proportion will be
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strictly positive and less than one. This can be seen from the continuous
time results derived above. For the continuous time modified threshold model
plim N(T)/T = P(jz| > 8) = 1 - 28/[(mxa®/v)/2 + 24] while for the basic
threshold model or "jump" process plim N(T)/T = o2/[(1-p%)82%)].

Because z; is assumed to satisfy the "a-mixing" conditions and e, is
independent of =z, ; then

plim 2T €3,2,y/T = O and plim 3T (2,1)2/T = 0,2 < «,
Furthermore, since

=12 (21 - 09)2,3y1 S BT (2p-)?
and plim N(T)/T < 1, we have

PUE [ (Z,1ym = 09 2Z004)-1/T] / Plim [4ug=T (2,-1)%/T] < 1.
Finally, since |Z,gy-1] > |0Y)] and 0 < plim N(T)/T < 1,
Plim [ (@Y (2,451 - 0)2,(4y-1/T )

= plim [ {;Z¥D (2,41 - 69)2,4, 1/N(T)) N(T)/T ] > O.
Hence,
plim ppg, = 1 + (p-1) plim (1 Z" T (Zp015-1 = 817)24¢4y-0/T] / Plim 5T (2,-1)%/T.
which in turn implies that

p < plim PDFz < 1.

For parts (ii) and (iii}) of the Proposition, given that z, is stationary and
is assumed to satisfy the mixing conditions, then the results of Phillips

(1987) and Stock (1987) will hold for the threshold case.
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Appendix D. Threshold models and e-mixing,

The a-mixing condition is needed so that Law of Large Numbers and

Central Limit Theorems hold for 2z, which is serially correlated.
Essentially, a-mixing implies that the serial dependence dies out as the time
interval between observations increases. In this section, we argue
heuristically that the LLN and CLT are likely to apply to the threshold
models considered in this paper.

Consider the definition of a-mixing (Bierens (1992)). Define F as the
Borel Field generated by e€j;,,€34-7,€10-2, ..., and Fp, as the Borel Field
generated by €ipin, €1t4mi1s €1t4mizs -+ . Define for m 2 0

a(m) = Supy SUPaert,, BeRf,, |P(ANB) - P(A)E(B)|
If limye e(m) = O, then z, is called a strong (or a-) mixing process. Thus,
a(m) measures the dependence between events separated by m time periods.

Recall that from equation (10) in the text, the effect on z, of starting
at z, and of hits on the boundary and ¢;, innovations in the distant past
diminishes the more times the process exceeds the boundaries, As t -+ @, the
-mumber of time the process exceeds the boundaries almost surely approaches
infinity. This suggests that as t + =, z, and z, become independent and,
hence, z, is likely to be a-mixing.

To see this more clearly, consider the case where the process jumps back
towards zero (i.e. the basic threshold model). TFor this model, p = 0 and
(i) = 0 for all i; hence, from equation (1Q)

(C1) z¢ = jecomceryn®" €q5.
Thus, once the boundary is hit, z, does not depend on z,. In fact, z; is like
a finite moving average, but one in which the order of the moving average is

determined randomly by the probability of hitting the boundary.
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For an informal demonstration that a-mixing is likely to hold for the
threshold process, consider the case where the process hits the boundary and
Jumps back towards zero. Define the random variable
a = I{{zy,2¢-1,2Zp-2; V€ A)] and by = I[{Zytm: Zesmtis Zeamtzs - --) € B], where
I[]) is an indicator function. Define the random variable G, to be 1 if the
process hits the boundary between t and t+m and zero otherwise. Consider the
joint probability distribution of a and b,, P(a,b,). For the case of the
basic threshold model with p =~ 0, once the boundary is hit the random
variables a and b, Dbecome independent; thus, P[a,bhlédnl] -
Pla|Gy=1]P[by|Gy=1].
Now,
Fla,b,] = P[a,b,|G=1] P[G=1] + P[a,by[G=0] P[Gy=0]

= Pfa|G=1] P{by|Gy=l] P[Gy=1] + P[a,by|Gy~0] P[Gy=0]

= {P[a] - P[a]|Gy,~0] P[Gy=0]) {P[b,] - P[bylG,=C] P[G;=0]) / P[Gy=l]

+ Pla,by]Gy=0] P[Gy~=0]
= P[a])P[by] + (P[a]P[by,] - P[a|Gy=0])F[b,] - P[a]P[by|Gy=0]}P[Gy=C]/P[Cx=1]
+ P[a|G=0] P[by|Gy=0] P[G=0]2%/P[G=1] + P[a,by|G=0] P[G~0]

= P[a]P[b,] + O( - P[G=0]/P[Gy=1] + P[Gy=0]2/P[Gy=1] + P[G,=0] )

- Pla]P[by] + O(P[Gg=0])
Thus, a{m) = O(P[G=0]). Since P[Gy=0] - 0 as m -» =, 2z, is a-mixing. The
rate of decay in a(m) depends on how fast P[G,~0] goes to zero. For the
general model, the degree to which a(m) decays will depend on the relative
values of # and o0, which, in part, determine the frequency with which the
boundary is hit, on whether the process jumps back towards an equilibrium

value or whether the process drifts back to the [-4,8], and on the wvalue of

P.
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As an additional check that the z, process satisflied conditions needed
for the Law of Large Numbers (LLN) and Central Limit Theorem {(CLT), we
verified whether the LLN and the CLT held for the threshold models used in
Table 1. We generated one thousand replications of the threshold series and
calculated for each replication the following statistiecs:
1%t Zo/T, 1mZ' 2,2/T, and 37 z,/(TV2).
If LLN holds for z,, the first two statistics tend towards a constant as T -+
«, while if the CLT holds for 2z, the distribution of the last statistic
converges to a normal distribution as T + =, We consider sample sizes of T
= 100, 250, 500, 1000, and 5000, For all the combinations considered in
Table 1, the threshold model appears to satisfy both the LLN and the CLT;
however, for cases where the threshold boundaries are large, sample sizes

must be quite large before the CLT is approximated.
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Table 1
Power of Dickey-Fuller t-statistic for Various Threshold Models

p = 0.0
Confidence Basic Threshold Target Zone Thresh., Barrier Process
level ¢ = 8 = g =
T=100 5 10 -~ 20~ 5 10 20 5 10 20
5% 71.0 9.0 5.0 18.0 8.0 5.0 15.0 8.0 5.0
10% 88.0 20.0 11.0 27.0 15,0 11.0 25.0 15.0 11.0

T=250
o% 10¢6.0 39.0 7.0 37.0 12.0 6.0 42.0 12.0 6.0
10% 100.0 60.0 14.0 64.0 24.0 12.0 68.0 22.0 12.0
T=500
5% 100.0 97.0 15.0 99.0 19.¢ 10.0 100.0 19.0 10.0
10% 100.0 99.0 28.0 100.0 30.0 17.0 100.0 28.0 17.0
T=1000

5% 100.0 100.0 48.0 100.0 47.0 15.0 100.0 50.0 14.0
10¢ 100.0 100.0 68.0 100.0 79.0 24,0 100.0 80.0 23,0
g = 0.4
Confidence Basic Threshold Target Zone Thresh. Barrier Process
level 6 - g = g =
T=100 5 10 20 3 10 20 5 10 20
5% 33.0 11.0 5.0 15.0 7.0 5.0 15.0 8.0 5.0
10% 51.0 20.0 11.0 24,0 14.0 11.0 25.0 15.0 11.0
T=250
5% 99.0 22.0 8.0 26.0 12.0 6.0 42.0 12.0 6.0
10 100.0 35.0 16.0 47.0 22.¢ 12.0 68.0 22.0 12.0
T=500
5% 100.0 65,0 17.0 87.0 192.0 10.0 100.0 12,0 10.0
10¢ 100.0 91.0 25.0 100.0 28.0 17.0 100.0 28.0 17.0
T=1000
5% 100.0 100.0 25,0 100.0 36,0 14.0 100.0 50.0 14.0C
10 100.0 100.0 38.0 100.0 67.0 24.0 100.0 80.0 23.0
p =0.8
Confidence Basic Threshold Target Zone Thresh. Barrier Process
Level g = = ¢ =
T=100 5 10 20 5 10 20 5 10 20
5% 17.0 8.0 5.0 11.0 6.0 5.0 15.0 8.0 5.0
10% 28.0 16.0 11.0 19.0 13.0 11.0 25.0 15.0 11.0
T=230
o% 50.0 16.0 6.0 17.0 10.0 6.0 42.0 12.0 6.0
10% 79.¢  27.0 13.0 30.0 19.0 11.0 68.0 22.0 12.0

T=500
5% 100.0  23.0 12.0 53.0 17.0 9.0 100.0 19.0 10.0
10% 100.0 36.0 20.0 82.0 25.0 16.0 100.0 28.0 17.0

T=1000
5% 100.
10% 100.

14.0
23.0

83.0 18.0 100.
99.0 29.0 100.

24.0 13.0 100.0 50.
45.0 22.0 100.0 80.

o o
(=N
oo

Notes: 1000 replications.




Table 2
Threshold Autoregressions for the Spread Between
the Fed Funds Rate and the Discount Rate

Threshold autoregression for the spread (spry = ff, - dry)
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-0.193 + 0.696 spry, - 0.102 spr,, + e if spr,., < -0.2
(0.087) (0.101) {0.056) (0.38)

Spr, = 0.013 + 1.411 spr,.;, - 0.406 spri., + e if -0.2 = spry.; = 1.6
(0.020) (0.068) (0.059) (0.26)
1.358 + 0.985 spry-; - 0.547 spry, + e if spry., > 1.6
(0.346) {G.151) (0.149) (0.99)

Dickey-Fuller T-Stats in the Different Threshold Regimes

Threshold Regime T-Stat Sample Size
Sprp-; < -0.2 -3.702 T = 78
-0.2 < spr,, < 1.6 0.166 T = 278
6pTy; > 1.6 -4.720 T =74

Thresheld Error Correction Models:

-0.21 + 0.30 Aff,, - 0.02 Adry, - 0.37 spre-1+ e if
{0.09) (0.06) (0.19) (0.12) (0.41)

 Aff, = 0.02 + 0.73 Aff,, - 0.07 Adr,, + 0.01 spry; + e, if
(0.03) (0.08) (0.13) (0.04) (0.33)

1.54 + 0.50 Aff,, + 0.71 Adry, - 0.64 spry,+ e if
(0.37) (0.17) (0.62) (0.13) (1.06)

"0.01 + 0.20 Afft'l + 0.22 Adrt..l 4+ 0.01 Sprt-l + et. if
(0.03) (0.02) {0.06) {0.04) (0.13)

Adr, = 0.01 + 0.33 Aff, ;, + 0.20 Adry; + 0.01 8prey + & if
(0.01) (0.,04) (0.07) (0.02) (0.17)

0.19 + 0.09 Aff,, + 0.13 Adry, - 0.05 spry1+ e if
(0.08) (0.03) (G0.13) (0.03) (0.22)

Notes: Standard errors are in parentheses.

apryy < -0.2

-0.2 < spry;
< 1.6

spry-; > 1.6

SpPEi-1 < 0.2

-0.2 < spr,y
=< 1.6

8pr,-; > 1.6
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