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Abstract

In this paper, I combine disappointment aversion, as employed by Rout-
ledge and Zin [28] and Campanale, Castro and Clementi [9], with rare dis-
asters in the spirit of Rietz [27], Barro [4], Gourio [16], Gabaix [15] and
others. I find that, when the model’s representative agent is endowed with
an empirically plausible degree of disappointment aversion, a rare disaster
model can produce moments of asset returns that match the data reason-
ably well, using disaster probabilities and disaster sizes much smaller than
have been employed previously in the literature.

This is good news. Quantifying the disaster risk faced by any one
country is inherently difficult with limited time series data. And, it is
open to debate whether the disaster risk relevant to, say, US investors is
well-approximated by the sizable risks found by Barro [4] and co-authors
[6, 7, 26] in cross-country data. On the other hand, we have evidence (see
[30], [8], or [11]) that individuals tend to over-weight bad or disappointing
outcomes, relative to the outcomes’ weights under expected utility. Rec-
ognizing aversion to disappointment means that disaster risks need not be
nearly as large as suggested by the cross-country evidence for a rare disas-
ter model to produce average equity premia and risk-free rates that match
the data.

I illustrate the interaction between disaster risk and disappointment
aversion both analytically and in the context of a simple Rietz-like model of
asset-pricing with rare disasters. I then analyze a richer model, in the spirit
of Barro [4], with a distribution of disaster sizes, Epstein-Zin preferences,
and partial default (in the event of a disaster) on the economy’s ‘risk-free’
asset. For small elasticities of intertemporal substitution, the model is able
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to match almost exactly the means and standard deviations of the equity
return and risk-free rate, for disaster risks one-half or one-fourth the esti-
mated sizes from Barro [4]. For larger elasticities of intertemporal substi-
tution, the model’s fit is less satisfactory, though it fails in a direction not
often viewed as problematic—it under-predicts the volatility of the risk-
free rate. Even so, apart from that failing, the results are broadly similar
to those obtained by Gourio [16], but with disaster risks one-half or one-
fourth as large.

Keywords: Rare disasters, disappointment aversion, asset pricing
JEL: E43, E44, G12

1 Introduction

In the nearly 30 years since Mehra and Prescott [23] and others1 first high-
lighted the problematic relationship between the data on aggregate consump-
tion growth and asset returns, the literature on equilibrium asset-pricing has
gone from having essentially no good models to rationalize those data to hav-
ing several more or less successful candidates to choose from. Within the class
of representative agent models, responses to the equity premium (and related)
puzzles have tended to fall into two broad categories: models that modify the
agent’s preferences—including habit formation [10], disappointment aversion
[28, 9], or state-dependent preferences [25]—or models that modify the aggre-
gate consumption process—moving from i.i.d. or near-i.i.d. log-normal models
of consumption growth to models that feature disaster risk [27, 4, 16, 15] or
persistent movements in the conditional mean of consumption growth [3].2

In this paper, I focus on—and combine—two of these candidates: disap-
pointment aversion and disaster risk. Routledge and Zin [28] show that pref-
erences displaying disappointment aversion—generalized to allow some flexi-
bility over which outcomes are disappointing—are capable of closely matching
both the first and second moments of the equity return and the risk-free rate
in a model using Mehra and Prescott’s aggregate consumption process. On
disaster risk, Gabaix [15] argues that rare disasters are capable of resolving a
number of asset-pricing anomalies. Gourio [16], for example, writes down a
model with Epstein-Zin preferences and disaster risk calibrated according to
Barro’s [4] estimates of the size and frequency of disasters. When he allows
for time-variation in the probability of disaster, his model can match reason-
ably well first and second moments of returns data, as well as some aspects of
time-series variation in returns and price-dividend ratios.

Why combine disappointment aversion and disaster risk? Disaster risk is
inherently difficult to quantify with limited time series data—even a hundred
years’ worth of observations is insufficient to say with any precision whether

1As Cochrane [12] notes, the essence of Mehra and Prescott’s equity premium puzzle was also
present in Shiller [29], Grossman and Shiller [17], and Hansen and Singleton [20].

2Another class of responses dispense with the representative agent assumption altogether; see,
for example [14], [19], or [31].
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disasters occur a couple times every hundred years or once every couple hun-
dred years. The use of cross-country evidence—pioneered by Barro in [4] and
refined by Barro and co-authors in various papers—provides more observa-
tions, but is applicable only if we accept that all countries draw disasters from
a common distribution. It is open to debate whether the commonly used esti-
mates from Barro’s cross-country sample—a sizable 1.7% per annum chance of
an average 29% real output decline—are a good representation of the disaster
risk faced by an economy such as the US. If the relevant disaster risk is only a
half or a fourth as large, do rare disasters then lose their potential to explain US
data on consumption and asset returns? This is where disappointment aver-
sion figures in.

There is abundant experimental and field evidence indicating that individ-
uals are averse to loss or disappointment, or at the very least over-weight ad-
verse outcomes relative to what expected utility would suggest (see, for ex-
ample, the data analyzed by Camerer and Ho [8], the experimental results in
Choi, Fisman, Gale and Kariv [11], or the evidence surveyed by Starmer [30,
pp. 357–366]). To be sure, the calibration of preferences from laboratory exper-
iments or field data is fraught with its own set of measurement issues—for ex-
ample, whether to treat laboratory choices in isolation from a subject’s wealth
or background risk—but it nevertheless seems plausible to endow our agents
with preferences embodying some degree of disappointment aversion.

Once we allow agents to have some aversion to disappointment, it’s possi-
ble for the rare disaster model to generate realistic asset returns—returns with
first and second moments that come close to matching what we see in the
data—with disasters that are much rarer or much smaller than those typically
assumed in the literature.

An overview of the organization of the paper—and a synopsis of the main
results—is as follows. The next section, 2, offers some background on asset
pricing with rare disasters and disappointment aversion, and establishes some
notation. Given that models of disaster risk are more common in the litera-
ture, I devote relatively more time in section 2 to discussing disappointment
aversion—including the intuition for its impact on the utility value of rare
events, considerations as to what degrees of disappointment aversion could
be considered reasonable, and the form of the stochastic discount factor under
disappointment aversion.

Section 3 then combines disappointment aversion and disaster risk in a sim-
ple variant of Rietz’s model—a model with a single disaster state, a completely
risk-free bond, and preferences that (in the absence of disappointment aver-
sion) would collapse to the standard CRRA time-separable form. The exercize
is mainly intended to highlight the trade-off between the probability of disas-
ter (or its size) and the strength of aversion to disappointment. In that model,
I show that one can easily substitute a reasonable amount of disappointment
aversion for a reduction in disaster risk, while still maintaining the model’s
asset return implications. The first and second moments of returns implied,
for example, by a 2.5% chance (per year) of a 25% consumption decline are
roughly the same as those implied by a probability of disaster one-fourth as
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large (0.625%) if the representative agent’s preferences embody an amount of
disappointment aversion well within the bounds of the experimental evidence.

While the simple model of section 3 illustrates the mechanisms at work,
the match between the model-implied moments and the data is less than ideal.
In section 4, which contains the paper’s main results, I examine a much richer
model. To begin with, I relax the link between the agent’s elasticity of intertem-
poral substitution and coefficient of relative risk aversion, taking full advan-
tage of the Epstein-Zin aggregator that describes the evolution of the agent’s
lifetime utility. Following Barro [4], I also assume a distribution of possible
disasters, and calibrate their relative sizes and frequencies using Barro’s data.
As in Barro [4] and Gourio [16], I also allow for partial default on the model’s
‘risk-free’ asset in the event of disaster, addressing one of Mehra and Prescott’s
[24] criticisms of Rietz’s proposed resolution to their puzzle.

The quality of the richer model’s fit depends importantly on the value as-
sumed for the agent’s elasticity of intertemporal substitution. If we assume
a small value for the intertemporal substitution elasticity, the model is capa-
ble of matching almost exactly the means and standard deviations of the risk-
free rate and equity return. This is true for disaster probabilities and average
disaster sizes one-half or one-fourth the values from Barro’s [4] sample. The
model accomplishes this without assuming either an excessive degree of dis-
appointment aversion, an extreme value for the agent’s relative risk aversion
(curvature) parameter, or a utility discount factor greater than one.

For larger values of the elasticity of intertemporal substitution—I look at
values of 1 and 1.5—the results are less satisfactory. However, the main failing
of the model—the dimension along which our results depart most significantly
from the data—is a failing not normally viewed as problematic: the model
produces a risk-free rate that is not sufficiently volatile.3

Also, with elasticities of intertemporal substitution greater than one, reduc-
tions in disaster risk—in particular reductions in average disaster size—can
only be compensated for by degrees of disappointment aversion at the upper
end of the range consistent with the experimental evidence.

Nevertheless, the model can still match the first moments of returns quite
well, and apart from the too-low volatility of the risk-free rate, the model
moments—across varying degrees of disaster risk—are broadly similar to those
obtained by Gourio [16] using the disaster probability and average (effective)
disaster size consistent with the estimates of Barro [4].

I offer some conclusions and directions for further work in section 5.
Some details of the solution method are provided in an Appendix.

3Cf. Campbell and Cochrane [10], who set out to design a model with a constant risk-free rate.
Also, any rare disaster model in which normal times are described by i.i.d. lognormal consumption
growth, and in which the disaster probability is constant, will produce a constant risk-free rate in
non-disaster samples.
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2 Background

In this section, I briefly review the two strands of the literature that come to-
gether in this paper. I devote a bit more time to disappointment aversion, as it
is somewhat less well known and more difficult to convey without at least writ-
ing down some pieces of a model. In addition to providing background and
establishing notation, I also illustrate the potential for disappointment aversion
to substitute for disaster risk (section 2.3.1) and address the question of what
constitutes a plausible amount of disappointment aversion (section 2.3.2).

2.1 Disaster risk

Rare consumption disasters were among the earliest responses to Mehra and
Prescott’s puzzle. Rietz [27] added a disaster state to Mehra and Prescott’s
Markov chain, and showed calibrations of the model (varying the disaster size
and probability, and the representative agent’s risk aversion and discounting
parameters) that came close to matching the mean returns on equity and a risk-
free asset, as calculated by Mehra and Prescott.

Disaster risk provides a potential resolution to Mehra and Prescott’s puzzle
by providing a channel for holding down the risk-free rate as risk aversion is
increased. For example, in an environment where consumption growth is log-
normal and a representative agent has standard, additively separable, power
utility preferences, we know that the log risk-free rate obeys

R f = − log(β) + αγ− α2σ2

2
(1)

where β is the utility discount factor, α is the coefficient of relative risk aversion,
and γ and σ are the mean and standard deviation of log consumption growth.
As is well-known, for typical estimates of γ and σ, the first-order term αγ in
(1) dominates as α increases, up to extremely large values of α. A high value
of α, necessary to get a non-negligible equity risk premium, thus produces a
counterfactually high risk-free rate.

Let a disaster add log(1− b) < 0 to log(ct+1/ct), and occur with probability
p (independently of the log-normal component). Then, the log risk-free rate
becomes

R f = − log(β) + αγ− α2σ2

2
− log(1− p + p(1− b)−α). (2)

For typical values of γ and σ, and for small values of p, (2) can generate low
values of R f even for large values of α.

Mehra and Prescott [24] responded to Rietz’s resolution with a number of
criticisms—concerning Rietz’s calibrations of the size and frequency of disas-
ters; the values of the risk aversion parameter and the utility discount factor
needed to resolve the puzzle; and the assumption that the model’s risk-free as-
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set would remain risk-free in the event of a disaster—and for a while work on
disaster risk as a potential resolution to asset-pricing puzzles was scant.4

Following the work of Barro [4], however, there has been renewed inter-
est in disasters. Barro looked over time and across countries to provide new
evidence on the size and frequency of disasters. Barro [4, 5], Gabaix [15], and
Gourio [16] also made some modeling advances, relative to Rietz, including the
use of Epstein-Zin preferences, and the possibility that the model’s ‘risk-free’
asset is subject to default risk in disaster states.5

Estimates of the frequency and size of disasters were further refined by
Barro and co-authors: Nakamura, Steinsson, Barro, and Ursúa [26], Barro and
Ursúa [7], and Barro and Jin [6].

Barro [4] identified disasters with declines in per capita real GDP of at least
15 percent; the frequency of these events—in a sample of 35 countries over 100
years—was 1.7 percent per year. The average size of a disaster in Barro’s sam-
ple is a 29 percent decline, though as Barro notes, “[b]ecause of diminishing
marginal utility of consumption, larger contractions count more than smaller
ones; hence, the effective average value of b [the disaster size] exceeds 0.29.” In
the simulations of his model, Barro uses the frequency distribution of disasters
(in contrast to the single disaster state in Rietz’s original formulation). Gourio
[16] replaces Barro’s distribution of disasters with a single disaster state that
occurs with 1.7 percent probability and entails a 43 percent consumption de-
cline.6

As noted in the introduction—and readily conceded by Barro and co-authors
[26, p. 37]—looking at the experience of multiple countries provides more data
with which to estimate the parameters governing disaster risk, but also as-
sumes that all countries draw disaster events from a common distribution.

2.2 Disappointment aversion

Similar to the standard Epstein-Zin formulation, preferences embodying dis-
appointment aversion reduce random lifetime utility from tomorrow onward
to a certainty equivalent value and combine that certainty equivalent with cur-
rent consumption to obtain lifetime utility as of today. Aversion to disappoint-
ment is embodied in the certainty equivalent operator, where disappointing
outcomes are given greater weight relative to non-disappointing outcomes.

Which outcomes are disappointing? In Gul’s [18] original formulation, the
certainty equivalent obeys a consistency requirement—the threshold for dis-

4Kocherlakota’s [21] survey on the equity premium puzzle in the Journal of Economic Literature,
for example, published 11 years after Mehra and Prescott’s original article, mentions disasters only
passingly, in a single footnote.

5Gourio also added time-variation in the probability of disaster. Using average size and fre-
quency numbers from Barro, he gives calibrations of the model that come close not only to first
and second moments of asset returns, but also to regression coefficients—estimated by Cochrane
[13]—relating asset returns to price-dividend ratios. More recently, Wachter [32] also examines a
model with time-varying disaster risk.

6This is also roughly the value that would be needed in Gabaix’s [15] model if his distribution
of disaster sizes were collapsed to a single state.
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appointment is the certainty equivalent value itself (so the certainty equivalent
is defined only implicitly).7 In a very rough sense, a disappointment-averse
agent takes expectations overweighting outcomes that would fall below ex-
pectations.

Routledge and Zin [28] showed how to adapt Gul’s notion of disappoint-
ment aversion to an asset-pricing framework, while at the same time gener-
alizing it to allow some control over which outcomes are disappointing. De-
pending on a parameter, only sufficiently bad outcomes may disappoint, and
the set of disappointing outcomes may vary with the state of the economy.
They dubbed their framework ‘generalized disappointment aversion.’ Their
model—like all those I will consider here—is a representative agent exchange
economy in the sense of Lucas [22].

Campanale, Castro, and Clementi [9] hew more closely to Gul’s original
conception, but also incorporate a form of production and physical capital ac-
cumulation.

The preferences I will employ in this paper are similar to those used by
Campanale et al. While the performance of the model here could no doubt be
marginally improved by allowing for generalized disappointment aversion à
la Rouledge and Zin, the model moments I will report in section 4 are already
quite close to the data. Generalized disappointment aversion would simply
complicate the exposition without much offsetting gain in terms of the model’s
performance.

2.3 Some formalism

Our representative agent’s intertemporal preferences have the Epstein-Zin form

Ut = [(1− β)c1−ρ
t + βµt(Ut+1)

1−ρ]1/(1−ρ) (3)

for ρ ≥ 0, ρ 6= 1.8 The agent’s elasticity of intertemporal substitution (over
deterministic consumption paths) is 1/ρ, and β ∈ (0, 1) is the utility discount
factor.

Disappointment aversion is captured in the conditional certainty equiva-
lent operator µt( · ). For the moment, set aside the source of the conditionality
in µt; eventually, this will come from the model’s Markov chain structure for
consumption growth. For now, though, I will drop the subscript t, to avoid
confusion.

Let z be a discrete random variable taking the value zi with probability pi
(given the state at t). The certainty equivalent of z is defined implicitly by

f (µ(z)) = ∑
i

pi f (zi)− θ ∑
i

pi[ f (µ(z))− f (zi)]I (zi < µ(z)) . (4)

In (4), I( · ) is an indicator function, taking the value one when zi < µ(z)—
that is, if zi is disappointing—and zero otherwise. θ ≥ 0 is a parameter. The

7Thus, these risk preferences are in the Chew-Dekel class; see Backus, Routledge, and Zin [2].
8For the case of ρ = 1, we set Ut = c1−β

t µt(Ut+1)
β.
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function f has the form

f (x) =
x1−α

1− α
(5)

for α ≥ 0, α 6= 1.9

With f taking the form in (5), the certainty equivalent can also be written
(still only implicitly) as

µ(z)1−α =
∑i piz1−α

i [1 + θ I (zi < µ(z))]
1 + θ ∑i pi I (zi < µ(z))

(6)

Note that the certainty equivalent operator is positively linearly homoge-
neous: µ(kz) = kµ(z) for any random variable z and any real number k > 0.
This feature will be useful for the transformation of lifetime utility I employ in
solving the model.10

The parameter θ most directly influences the strength of disappointment
aversion—higher values of θ increase the weight that µ places on disappointing
outcomes.11 When θ = 0, there is no disappointment aversion, and preferences
revert to the standard Epstein-Zin form. If also α = ρ, time-additive expected
utility obtains.12

2.3.1 Disappointment aversion and low-probability events

To see how disappointment aversion might interact with rare disasters, imag-
ine that in some state today, the only disappointing state tomorrow is the dis-
aster state. For the moment, I am going to be somewhat vague about what
constitutes a disaster; it’s enough to think of a disaster as a low-probability
state that corresponds to the lowest realization of z in µ(z).

Let i = 1 be the disaster state. Then, from (6) we have

µ(z)1−α =
1 + θ

1 + θp1
p1z1−α

1 +
1

1 + θp1
∑
i 6=1

piz1−α
i

9For α = 1, we take f (x) to be log(x).
10See equation (9) below.
11Note, though, that changing θ can change the set of disappointing outcomes as well as the

strength of disappointment aversion.
12Routledge and Zin’s generalized disappointment aversion introduces another parameter, δ, in

the implicit definition of the certainty equivalent operator. For δ ≤ 1, the expression (6) becomes:

µ(z)1−α =
∑i piz1−α

i [1 + θ I (zi < δµ(z))]
1 + θδ1−α ∑i pi I (zi < δµ(z))

.

Varying δ allows some control over which states are disappointing. Consider the case of two
outcomes, z1 < z2. If δ = 1, it is always the case that z1 < µ(z) < z2—the worse of the two
outcomes is always disappointing. For δ < 1—assuming α ≥ 0—it’s possible for neither outcome
to be disappointing. Routledge and Zin exploit this property within a two-state, Mehra-Prescott
environment, calibrating preferences so that no outcome is disappointing if the current state is the
high-growth state, while the low-growth state disappoints if today’s state is the low-growth state.
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This is precisely the form of a standard, Epstein-Zin certainty equivalent, with
distorted probabilities p̂,

p̂1 =
p1 + θp1

1 + θp1
(7)

p̂j =
pj

1 + θp1
(j > 1) (8)

Assuming state 1 remains the only disappointing state as we vary p1 and θ—
at least within some range of values—there is a clear trade-off between the
strength of aversion to disappointment and the probability of disaster: we will
obtain the same certainty equivalent value with, for example, a one percent
disaster probability (p1 = .01) and some disappointment aversion (θ = 1) as
we would with a two percent probability (p1 = .02) and no disappointment
aversion (θ = 0).

The actual workings of the model(s) below are more complex than this sim-
ple example; in particular, the disaster states are not always the only disap-
pointing states, though they are always disappointing. Nevertheless, disap-
pointment aversion succeeds in assigning more weight to the disastrous out-
comes (both in the certainty equivalent and the resulting stochastic discount
factor) than would obtain in the case with no disappointment aversion.

2.3.2 How much disappointment aversion is reasonable?

I have claimed above—and will show below—that one can get reasonable mo-
ments of asset returns from models incorporating disaster probabilities (and
disaster sizes) much smaller than commonly assumed in the literature when
agents are endowed with a reasonable amount of disappointment aversion.
How much disappointment aversion is reasonable? I use experimental data to
discipline the range of θ values I consider.

Camerer and Ho [8] and Choi et al. [11] both give estimates of θ based on
experimental results. Camerer and Ho synthesize the data from nine separate
experimental studies of choice under uncertainty. Treating the observations as
generated by the choices of a representative agent, they estimate θ to be around
3.13 Choi et al. perform an experiment in which subjects make a large number
of portfolio choices at different state prices, and estimate θ’s for each individ-
ual. They find considerable heterogeneity in the individual θ’s. The estimated
values have a mean of 0.315 across subjects, with a standard deviation of 0.493.

Based on these estimates, I restrict θ to lie between 0 and 3 in all the nu-
merical simulations below. Only for the model of section 4, when we assume a
high elasticity of intertemporal substitution (section 4.2.3), does the constraint
θ ≤ 3 prove binding. More common values for θ—which I choose based on
model fit, subject to θ ∈ [0, 3]—are between 1 and 2.

13They also estimate θ’s separately for each study; those estimates are mostly in the range of 1 to
10.
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How does the assumption of θ ∈ [0, 3] compare with calibrations of this pa-
rameter in other applications of disappointment aversion to asset-pricing? The
range I am allowing encompasses larger values than those used by Campanale
et al. [9], though much smaller values than those considered by Routledge and
Zin [28].

Basing their calibration only on the results in Choi et al., Campanale et al.
consider values of θ between 0 and 0.4. Routledge and Zin use θ values rang-
ing from 9 (the most frequent choice) to 24 (in one case) [28, Tables I, II]. Note,
though, comparisons to Routledge and Zin are complicated by the fact that
they are assuming a generalized version of disappointment aversion, with an
additional parameter controlling the set of disappointing states. What the ex-
perimental evidence implies for a plausible choice of θ in that framework is
unclear.

One can get some sense of where, effectively, my allowance of any θ ∈
[0, 3] lies relative to the choices in these other papers by considering again the
‘distorted probabilities’ example of section 2.3.1. A 1% probability of the rare
state and θ = 3 lead to a distorted probability—from equation (7)—of 3.9%.
The same 1% probability with θ = 0.4 implies a distorted probability of the rare
event equal to 1.4%. Thus, even though my upper bound on θ is 7.5 times the
upper bound in Campanale et al., for a very low probability event, the effect is
not quite 3 times as large. For θ = 9, the distorted probability of the rare event
is 9.2%. Compared with Routledge and Zin’s θ = 9, then, the impact of setting
θ = 3 is about 4/10 as large.

2.3.3 Disappointment aversion and asset-pricing

To see the potential channels through which disappointment aversion affects
asset-pricing, it’s enough to consider the stochastic discount factor implied by
preferences of the form given by (3) and (4) or (6). This section does that; read-
ers familiar with either [9] or [28] may wish to skip ahead to section 3.

Imagine an environment in which aggregate log consumption growth,

log(ct+1/ct) ≡ xt+1,

follows a Markov chain {x1, x2, . . . , xn; P}, with Pi,j = Pr{xt+1 = xj : xt =
xi}. Let φt denote a representative agent’s lifetime utility from date t onward,
scaled by consumption ct—i.e., φt = vt/ct, where vt is the (equilibrium) value
of lifetime utility. φt, which will enter into the model’s stochastic discount
factor (SDF), obeys the Bellman-like equation

φt = [1− β + βµt(φt+1ext+1)1−ρ]1/(1−ρ), (9)

which we obtain from evaluating the utility process (3) at the equilibrium con-
sumption stream and dividing both sides by the level of current consumption.

I’ll focus on environments in which assets are priced by a representative
agent’s stochastic discount factor. If qt is the price of a claim that pays a sure F
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units of consumption at date t + 1, then

qt = Et(mt+1F)

where mt+1 is the stochastic discount factor. If pc
t denotes the price of an equity

claim to the aggregate consumption stream, then

pc
t = Et(mt+1(pc

t+1 + ct+1))

and so forth, in similar fashion, for other types of claims.
Let µi(v) denote the certainty equivalent of v, conditional on state i, and let

Ii,j ≡ I[vj < µi(v)]

= I[φje
xj < µi(φex)] (10)

The stochastic discount factor under disappointment aversion can then be writ-
ten as

mi,j = βe−ρxj

(
φje

xj

µi(φex)

)ρ−α
1 + θ Ii,j

1 + θ ∑j Pi,j Ii,j
, (11)

which is similar to the version given by Campanale et al. [9].14 If θ = 0, we’re
back to a standard Epstein-Zin SDF,

mi,j = βe−ρxj

(
φje

xj

µi(φex)

)ρ−α

.

If also α = ρ—i.e., expected utility—we obtain Mehra and Prescott’s (and Ri-
etz’s) SDF,

mj = βe−ρxj ,

which is independent of the current state.
With this background in mind, I now proceed to flesh out one version of

a model incorporating both disappointment aversion and disasters, similar to
the model of Rietz. This simple setting will prove a useful laboratory for il-
lustrating the trade-off—in terms of asset return implications—between risk of
disaster and aversion to disappointment.

3 Illustrating the mechanics: A Rietz-like example

In this section I consider a simple three-state Markov chain model in the spirit
of Rietz. For the calculations here, I assume α = ρ, so that, absent disappoint-
ment aversion (if θ = 0), the representative agent’s preferences are of the stan-
dard time- and state-separable CRRA form.

14Routledge and Zin follow the equivalent method of defining the stochastic discount factor in
terms of the return on the representative agent’s wealth.
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As in Rietz, my starting point is Mehra and Prescott’s two-state Markov
chain for consumption growth. Recall that Mehra and Prescott specified gross
consumption growth ct+1/ct = ext+1 ≡ yt+1 as

yt+1 ∈
[

yL
yH

]
=

[
0.982
1.054

]
(12)

with the transition matrix

Q =

[
QLL QLH
QHL QHH

]
=

[
0.43 0.57
0.57 0.43

]
. (13)

Gross consumption growth has an unconditional mean of 1.018 and a standard
deviation of 0.036. Mehra and Prescott’s transition matrix implies a slight neg-
ative autocorrelation in consumption (−0.14).

To this, I add a ‘disaster’ outcome yD and modify the transition matrix as
follows. As in Rietz, I assume that if the state today is either L or H, then the
D state occurs with probability p. If today’s state is the disaster state, growth
returns next period to {yL, yH} according to the long-run probabilities associ-
ated with Q—i.e., with probabilities {1/2, 1/2}. There is zero probability of
remaining in the disaster state.

The modified Markov chain is thus given by the set of states

yt+1 ∈

yD
yL
yH

 =

 yD
0.982
1.054

 (14)

and the transition matrix

P =

0 1/2 1/2
p (1− p)QLL (1− p)QLH
p (1− p)QHL (1− p)QHH

 =

0 1/2 1/2
p (1− p)0.43 (1− p)0.57
p (1− p)0.57 (1− p)0.43

 .

(15)
The long-run (invariant) probabilities associated with P are

π∗ =

[
p

1 + p
,

0.5
1 + p

,
0.5

1 + p

]
. (16)

Note that I take the Mehra-Prescott Markov chain as a description of con-
sumption growth in ‘normal,’ non-disaster states. This is in contrast to Rietz’s
approach. Recall that, for each given disaster size and probability, Rietz re-
calibrated yL, yH , and Q so that the resulting three-state Markov chain matched
Mehra and Prescott’s empirical estimates of the mean, standard deviation, and
autocorrelation of consumption growth.

In the calculations I make below, I focus on moments of asset returns con-
ditional on being in the non-disaster states. Keeping the consumption process
in non-disaster states constant as I vary the probability of disaster makes for a
cleaner interpretation of the results.
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I consider claims to a one-period riskless asset, paying one unit of con-
sumption next period, and two forms of ‘equity.’ One is the standard claim
to aggregate consumption and the other, meant to represent a dividend claim,
is a claim to a process whose log growth rate is a multiple of log consumption
growth. Letting yd

t+1 denote gross dividend growth from t to t + 1,

yd
t+1 = (yt+1)

λ, (17)

where λ ≥ 1 is the “leverage” parameter. This formulation is by now quite
standard.15

If wc and wd denote the price-dividend ratios for the two equity-like claims,
then the key pricing equations are

wc
t = Et

[
mt+1yt+1

(
1 + wc

t+1
)]

(18a)

wd
t = Et

[
mt+1yd

t+1

(
1 + wd

t+1

)]
, (18b)

where mt+1 is the model’s stochastic discount factor. The price of the one-
period riskless claim to one unit of consumption, qt, of course obeys

qt = Et [mt+1] . (19)

Gross asset returns are defined in the standard way. For Markov states i today
and j tomorrow:

R f
i =

1
qi

(Risk-free rate)

Rc
i,j =

yj(wc
j + 1)

wc
i

(Consumption claim return)

Rd
i,j =

yd
j (w

d
j + 1)

wd
i

(Dividend claim return)

Of the consumption and dividend claims, in what follows I will mostly
focus on the dividend claim, and I will refer to its return as the ‘equity return.’

For a given stochastic discount factor, the model can be solved in standard
fashion. Equations (18a), (18b), and (19) are solved for the price-dividend ra-
tios wc and wd, and the price q. Under the Markov chain assumption, these are
vectors in R3, and solving for the price-dividend ratios involves a simple ma-
trix inversion. Deriving the model’s stochastic discount factor is complicated
only slightly by the presence of disappointment aversion—evaluating certainty
equivalents entails an additional fixed point calculation. I give details of the
solution method in the Appendix.

15The formulation originates with Abel [1] and is employed, notably, in Bansal and Yaron [3], as
well as in Gourio [16].
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3.1 The trade-off between disaster probability and strength of
disappointment aversion

In this section, I’m primarily interested in the trade-off between the strength of
disappointment aversion and the probability of disaster. In the computations
that follow, I will vary both p, the probability of disaster, and θ, the strength of
aversion to disappointment.

I fix the size of the disaster at a 25% drop in consumption, or yD = 0.75. The
leverage parameter λ is set to 3 throughout, a typical value.16 In setting the
other preference parameters, I focus on the case of α = ρ—absent disappoint-
ment aversion, these preferences collapse to the constant relative risk aversion
form employed by Rietz. I set α = 5 (the upper end of the range Mehra and
Prescott considered admissible), and I set the utility discount factor β = 0.97,
another standard choice. Table 1 summarizes these basic parameter settings.

α ρ−1 β λ yD

5 0.20 0.97 3 0.75

Table 1: Basic parameter settings for Rietz-like model. These parameter val-
ues are used throughout this section. Other parameters of the consumption
process are as given in equations (14) and (15).

As a reference point, Table 2 shows the first and second moments of asset
returns from the model without disappointment aversion, for disaster prob-
abilities of 0 (no disasters) and 2.5%. These are moments conditional on be-
ing outside the disaster state—i.e., the average behavior of the model in the
non-disaster states. The data in the last row, for comparison, are from Gou-
rio [16], based on the same 1926–2004 sample in Cochrane [13]. The results in
the table simply confirm what we know from Mehra-Prescott and Rietz—the
shortcomings of the time-additive, expected utility specification, in particular
its too-high risk-free rate, can be remedied by introducing a small probability
of a severe decline in consumption.

Analogous results for the effect of disappointment aversion alone—setting
p = 0—are shown in Table 3. Given the other parameters, the value of θ = 2.44
reported in the table is simply the value that minimizes the (weighted) Eu-
clidean distance between the four model moments and the data.17 For that
value of θ, the disappointing states are the disaster and low growth states, re-
gardless of the state today.

16This is the value used, for example, by Bansal and Yaron [3]. For technical reasons, Gourio [16]
uses a value of 2.5, though he describes 3 as the ‘standard’ value.

17That is to say, the measure of fit is a weighted sum of squared errors. Any choice of weights is
somewhat arbitrary, but generally speaking, being off by a percentage point on the average equity
return is obviously very different from being off by the same amount on the average risk-free rate,
given their very different magnitudes. To at least account for the different relative magnitudes
of the four moments, I use weights that are inversely proportional to the squares of the estimates
from the data. In effect, the loss function minimizes the average squared percentage deviations of
the model moments from their values in the data.
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E(R f ) E(Rd) σ(R f ) σ(Rd)

p = 0.025 1.72 10.67 2.23 12.74
p = 0.0 10.69 12.90 2.71 13.03
Data 1.03 8.91 4.36 15.04

Table 2: Asset returns with and without disasters; no disappointment aver-
sion. Disappointment aversion strength θ = 0. Other parameters are as given
in Table 1. Model moments are for a sample with no disasters. Expected re-
turns are in percent, and their standard deviations are in percentage points.
Data are from Gourio [16].

E(R f ) E(Rd) σ(R f ) σ(Rd)

θ = 2.44 1.06 9.02 1.59 12.28
θ = 0.0 10.69 12.90 2.71 13.03
Data 1.03 8.91 4.36 15.04

Table 3: Asset returns with and without disappointment aversion; no dis-
asters. Disaster probability p = 0. Other parameters are as given in Table 1.
Model moments are for a sample with no disasters. Expected returns are in
percent, and their standard deviations are in percentage points. Data are from
Gourio [16].

I now illustrate the trade-off between p, the probability of disaster, and θ,
the strength of disappointment aversion. Table 4 shows the results. I begin
with p = 0.025 and consider, in turn, probabilities that are 1/2, 1/4, and 1/8 as
large. The first and last rows recapitulate cases we’ve already seen—disaster
risk without disappointment aversion, and disappointment aversion without
disaster risk.

As the first two rows of Table 4 show, when p = 0.025, adding a small de-
gree of disappointment aversion lowers the average risk-free rate with only a
negligible impact on the other moments. In all the calibrations—as was the case
as well in Tables 2 and 3—the model combining disappointment aversion and
disaster risk tends to under-predict the volatility of the riskless rate, but other-
wise performs quite well.18 With a small disaster probability (just 0.625%) and
a plausible amount of disappointment aversion (θ = 1.22), the model first mo-
ments and the second moment of the equity return all come reasonably close
to the data.

It’s worth pointing out that—at least for the simple model of this section—
both disappointment aversion and disaster risk are essential to the reason-
able fit in the middle rows of Table 4. The two mechanisms are, in a sense,
complements—a small amount of either factor, on its own, makes little im-

18Is the too-low volatility of the riskless rate a serious problem? Too much volatility—as, for
example, characterized early habit models—has generally been viewed as a serious problem. Too
little volatility, on the other hand, seems to raise few concerns, as discussed in footnote 3 above.
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E(R f ) E(Rd) σ(R f ) σ(Rd)

p = 0.025 θ = 0.00 1.72 10.67 2.23 12.74
p = 0.025 θ = 0.06 1.04 10.42 2.17 12.70
p = 0.0125 θ = 0.63 1.04 9.87 1.94 12.56
p = 0.00625 θ = 1.22 1.05 9.50 1.78 12.44
p = 0.003125 θ = 1.70 1.05 9.28 1.69 12.37
p = 0.0 θ = 2.44 1.06 9.02 1.59 12.28
Data – 1.03 8.91 4.36 15.04

Table 4: The trade-off between disaster probability and strength of disap-
pointment aversion. The (non-zero) θ values minimize the weighted distance
between the model moments and the data, for each value of p. Disaster size is
25% (yD = 0.75). Other parameters are as given in Table 1. Model moments
are for a sample with no disasters. Expected returns are in percent, and their
standard deviations are in percentage points. Data are from Gourio [16].

provement in the model’s performance, but does improve the model’s fit in
the presence of the other. The combination of p = 0.00625 and θ = 1.22 in
the fourth row of Table 4 illustrates this point well. Table 5 contrasts the per-
formance of the model with p = 0.00625 and no disappointment aversion;
θ = 1.22 and no disasters; and the combination of the two together. Clearly,
neither alone is sufficient.

E(R f ) E(Rd) σ(R f ) σ(Rd)

p = 0.00625 θ = 1.22 1.05 9.50 1.78 12.44
p = 0.00625 θ = 0.0 8.30 12.32 2.58 12.95
p = 0.0 θ = 1.22 3.89 10.26 2.05 12.58

Table 5: Complementarity between disaster probability and strength of dis-
appointment aversion. Disaster size is 25% (yD = 0.75). Other parameters are
as given in Table 1. Model moments are for a sample with no disasters. Ex-
pected returns are in percent, and their standard deviations are in percentage
points.

3.2 The trade-off between disaster size and aversion to disap-
pointment

There is also a trade-off between the strength of disappointment aversion and
the disaster size, for a given disaster probability. To illustrate this, I fix p =
0.01, and let yD vary from 0.64 to 0.98—i.e., disaster sizes from 36% down to
2%. The latter value, of course, is no real disaster at all, and is just a slightly
worse outcome than the low-growth state in ‘normal times.’ I keep the other
parameters the same—the remaining parameters of the Markov chain are given
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in (14) and (15), β = 0.97, α = ρ = 5, and leverage λ = 3.
As in the construction of Table 4, for each yD I choose the value of θ to

minimize the weighted distance between the model first and second moments
and the data. These θ values range from θ = 0.04 when the disaster size is 36%
to θ = 2.4 when the disaster size is 2%.

In the top two panels of Figure 1 I’ve plotted the model’s average risk-free
rate (Panel A) and average equity return (Panel B) against the size of disaster—
note that the disaster sizes on the horizontal axes are in descending order.
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Figure 1: The trade-off between disaster size and disappointment aversion.
Panel A: The average risk-free rate as the disaster size decreases from 36% to
2%, for a fixed probability of disaster p = 0.01. Under disappointment aversion
(red circles), θ is set at each yD to minimize the distance between model first
and second moments and the data. Without disappointment aversion (blue
triangles), θ is held fixed at zero as yD varies. Panels B–D: Analogous plots for
the average equity return, E(Rd), and the standard deviations of the risk-free
rate, σ(R f ), and equity return, σ(Rd).

With the strength of disappointment aversion adjusted as the disaster size
shrinks, the model produces a low risk-free rate across all disaster sizes. For
comparison, in Panel A of Figure 1 I’ve also plotted the model’s average risk-
free rate absent disappointment aversion—i.e., assuming θ = 0. In that case,
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the risk-free rate quickly rises to unreasonable levels as the size the disaster
falls.

As the disaster size decreases and θ is adjusted in response, the model’s
average equity return—the red circles in Panel B—declines slightly, but is es-
sentially flat for disaster sizes below about 25%. With θ fixed at zero (the blue
triangles), the average return increases by about 2.5 percentage points.

Varying the disaster size has less pronounced effects on the standard devia-
tions of returns, shown in Panels C and D, and the effects are similar regardless
of whether disappointment aversion is present or not.

4 Main results: A richer model with multiple disas-
ter states

In this section, which contains the main results of the paper, I work with a
richer model along the lines of Barro [5]—disentangling intertemporal substi-
tution from risk aversion, incorporating a richer set of disaster states, and al-
lowing for default, in disaster states, of the otherwise-risk-free asset. I discuss
each of these modifications in turn, before moving to the model calibration and
results.

The calculations in the previous section did not take full advantage of the
Epstein-Zin aggregator (3); rather, they imposed ρ = α, so that in the special
case of no disappointment aversion, the representative agent’s preferences col-
lapse to the standard form used in Mehra and Prescott [23] and Rietz [27]. As
we’ll see, divorcing intertemporal substitution from risk aversion—allowing
ρ 6= α—makes possible a much closer fit of the model’s moments to the data.

A second important difference here from the model of section 3 is that, fol-
lowing Barro [4] and Gabaix [15], the consumption process in this section fea-
tures multiple disaster states. I will use the Barro’s distribution [4, Figure I.A,
p. 832] to calibrate the relative frequencies of those states and the relative sizes
of the associated disasters.

I will continue to let consumption growth in normal times be given by the
Mehra-Prescott Markov chain from (12) and (13). As before, the probability of
transitioning from states L or H today to states L or H tomorrow is given by
(1− p)Q, while with probability p tomorrow’s state is one of N disaster states.
The probability of disaster state i ∈ {1, 2, . . . , N} is pi = p fi, where fi is the
relative frequency (among disaster states) of state i (so fi ≥ 0, ∑i fi = 1). I will
write gross consumption growth in disaster state i as

yD,i = 1− bzi,

where the relative disaster sizes zi obey ∑i fizi = 1; thus, the average disaster
size will be b.

As in the model of the previous section, if the economy is in one of the
disaster states today, then tomorrow’s state is either L or H according to their
long-run probabilities from Q—i.e., 1/2 and 1/2. The probability of staying in
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today’s disaster state or transitioning to one of the other N − 1 disaster states
is assumed to be zero.

Under those assumptions, the Markov chain for the model of this section
can be written as follows. The set of gross consumption growth rates is:

yt+1 ∈

1− bz
yL
yH

 (20)

where 1 is an N× 1 vector of ones, and z is the N× 1 vector of relative disaster
sizes zi. The state transition matrix is:

P =

[
0 1

2 [1, 1]
p[f, f]> (1− p)Q

]
(21)

where 0 is an N× N matrix of zeros, and f is the N× 1 vector consisting of the
relative frequencies fi.

A last important difference from the model of section 3 is that, following
Barro [4], Gourio [16] and others, I allow for partial default on the ‘riskless’ in
the event of a disaster. Rather than adding one more layer of uncertainty to
the model, though, I assume for simplicity—and in contrast to the implemen-
tations by Barro and Gourio—that partial default occurs with probability one
conditional on a disaster occurring. In particular, I assume there is a one-period
zero-coupon bond (in zero net supply) whose price at t is again qt and whose
payoff at t + 1 is Ft+1, where

Ft+1 =

{
1− ηi if yt+1 = yD,i

1 if yt+1 ∈ {yL, yH}
(22)

The bond is priced according to

qt = Et(mt+1Ft+1).

I will still use the notation R f to denote the return on this asset, but in order
to avoid confusion with a truly risk-free asset, I will henceforward refer to that
return as the model’s bill rate.

Dividend growth continues to be represented by a leveraged version of con-
sumption growth, as given in (17), and the key pricing equations for the equity
claims are again the price-dividend relationships (18a) and (18b).

4.1 Model calibration

In the numerical experiments that will follow, I will vary the disaster probabil-
ity p and average disaster size b, holding fixed the relative frequencies fi and
relative sizes zi. I will calibrate those relative frequencies and sizes according
to Barro’s data; those parameters (along with Barro’s data) are summarized in
Table 6.
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Disaster size 0.17 0.22 0.27 0.32 0.37 0.42 0.47 0.52 0.57 0.62
Frequency 20 13 3 9 5 0 2 3 3 2

zi 0.59 0.77 0.94 1.11 1.29 1.46 1.63 1.81 1.98 2.16
fi 0.33 0.22 0.05 0.15 0.08 0.00 0.03 0.05 0.05 0.03

Table 6: Distribution of disaster sizes. The data in the first two lines are from
Barro’s histogram of 60 episodes [4, Figure I.A, p. 832], taking the sizes to be
the midpoints of Barro’s bins. The zi’s and fi’s are the implied relative sizes
and frequencies, as described in the text.

In the previous section, the probability of disaster and the disaster size—
variations on a 2% probability of a 25% consumption decline—were rather ar-
bitrary choices. In the calculations below, I focus on the frequency of disaster
and average disaster size from Barro’s [4] study: a 1.7% per year chance of a
29% output decline.19 In terms of the model outlined above, setting p = 0.017
and b = 0.29 corresponds to the case considered by Barro.20

The calculations will examine—separately and in combination—disaster
probabilities and sizes that are either 1, 1

2 , or 1
4 times as large as those aver-

ages. That is, I will consider values of p such that

p ∈ {0.017, 0.017/2, 0.017/4}

and values of b such that

b ∈ {0.29, 0.29/2, 0.29/4}.

The various choices of p and b will define the experiments I perform in this
section. We’ll see that with appropriate choices of the curvature parameter, α,
and the strength of disappointment aversion, θ, the model can come quite close
to matching exactly the first and second moments of asset returns. The values
of α and θ that maximize the model’s fit are, moreover, all of plausible size: I
restrict α ≤ 5 and, based on the empirical evidence discussed in section 2.3.2,
θ ≤ 3.

Other parameter values that will remained fixed throughout the experi-
ments include the leverage parameter, λ, and the discount factor β. I will con-
tinue to set λ = 3 and β = 0.97.

The new parameters ηi introduced in equation (22)—the default losses on
the otherwise riskless asset in disaster states—I take to be proportional to the

19In [4], Barro defines a disaster as a decline in real output per capita of 15% or more; such events
occur with a frequency of 1.7% per year in his sample (60 episodes out of 3500 country-years). The
average size of a decline is 29%.

20While 1.7% and 29% may appear to be not too far from the 2% and 25% benchmarks of the pre-
vious section, the similarity is superficial: the 29% average disaster size does not capture the long
left tail in the distribution of disaster states in the present model, and those tail outcomes matter a
great deal in the representative agent’s preferences (with or without aversion to disappointment).
Gourio [16], for example, proxies Barro’s distribution of disasters with a single disaster state in-
volving a 43% drop in consumption.

20



disaster sizes bzi. In line with Gourio’s [16] specification,21 I set ηi = 0.4bzi.
Finally, given these parameter choices, the data favor very low elasticities

of intertemporal substitution. Rather than look for choices of ρ, α, and θ which
produce the best fit to the data, I will initially fix ρ−1 (the elasticity of intertem-
poral substitution) at 0.1. Over the range of disaster sizes and probabilities I
consider, this is close to an optimal choice, and even with this constraint in
place, there are a range of choices of α and θ which, to practical purposes, pro-
duce moments that essentially match the data. Section 4.2.1 presents the results
for the model with a low elasticity of intertemporal substitution.

We know, however, that if we look beyond the means and standard de-
viations of asset returns, there are reasons to prefer larger elasticities of in-
tertemporal substitution. Barro [5], for example, notes that elasticities greater
than one are necessary if we want greater disaster risk to result in lower eq-
uity prices. Gourio [16] also shows that an elasticity of intertemporal substi-
tution greater than one is necessary for replicating certain facts about the time
series predictability of returns—namely that dividend yields forecast equity
returns and excess equity returns with regression coefficients of identical (pos-
itive) sign.22

Hence, I will also examine the standard case of ρ−1 = 1 and the (increas-
ingly standard) case of ρ > 1 (in particular, ρ−1 = 1.5). Those results are
presented in section 4.2.3.

All of these basic parameter choices are summarized in Table 7.

ρ−1 β λ ηi ( fi, zi)

{0.1, 1.0, 1.5} 0.97 3 0.4bzi Values in Table 6

Table 7: Basic parameter settings for the model. These parameter values are
used throughout this section. b is the average disaster size, which will be var-
ied, while the zi’s are the fixed relative disaster sizes. Other parameters of the
consumption process (20)–(21) are the values of Q, yL, and yH given in expres-
sions (12)–(13).

4.2 Numerical results

The experiments vary the disaster probability p and average disaster size b,
holding fixed the relative size distribution of disaster states. Given values of p
and b, I ask what values of the certainty equivalent parameters α and θ bring
the model’s predictions for the moments of asset returns close to the data. In
particular, I’m interested in whether modest disaster risks—p and b much less

21Gourio assumes a 40% chance of default equal to disaster size; as noted above, I will treat the
partial defaults as certain conditional on a disaster occurring.

22The same forces—essentially, the need for heightened rate of return risk to reduce asset
demands—motivated Bansal and Yaron [3] to consider intertemporal substitution elasticities
greater than one.
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than 0.017 and 0.29—when faced by an agent with a plausible amount of dis-
appointment aversion—restricting θ ≤ 3—can produce return moments that
match the data.

As in section 3, my choices of θ and α here attempt to minimize the (weighted)
distance between the model moments and the data. Footnote 17 describes the
loss function in more detail. Rather than solve for highly precise minimizers—
realistically, we can never hope to have evidence that distinguishes between,
say, θ = 0.5 and θ = 0.51, or between α = 2.2 and α = 2.24—I work on small
discrete grids:

θ ∈ {0, 0.1, 0.2, . . . , 2.9, 3}

and
α ∈ {0, 0.1, 0.2, . . . , 4.9, 5}.

Also as in section 3, the moments I report are what one would obtain for
a sample in which there were no disasters—i.e., they summarize the model’s
average behavior in ‘normal’ times.

4.2.1 Low elasticity of intertemporal substitution

As noted above, the best fit to the four moments of the data is obtained when
the intertemporal elasticity of substitution is low. Table 8 shows results for the
model when ρ−1 = 0.1

Line 1 of the table shows results using Barro’s [4] probability of disaster and
average disaster size. Lines 2–3 reduce the probability of disaster to one-half
and one-fourth the size in Line 1, holding fixed the average disaster size. Lines
4–5 perform a similar exercise on the average disaster size, holding the disaster
probability fixed, while Lines 6–7 reduce both the average size and probability.
Line 8 gives results for the model with no disasters.

The first thing to note about the results are the generally close matches be-
tween the model moments and the data—the biggest misses are on the order
of 0.7–0.8 percentage points, mainly in the average equity return and the stan-
dard deviation of the bill rate. Of these, only the lowest values of the standard
deviation of the bill rate may represent significant departures from the data.23

Also, only in two instances—namely, the case with a disaster probability
of 0.425% and average disaster size of just 7.25% (Line 7) plus the case with
no disaster risk at all (Line 8)—do we come near our upper bound of 3 on the
strength of disappointment aversion parameter θ. And, in all cases the values
for α, the curvature parameter in the certainty equivalent, are well below their
upper bound of 5.

23If returns were normally distributed in the data (they are not), then a two-standard-error band
around the 4.36 estimate of the standard deviation of the bill rate—based on 78 years’ worth of
data—would be roughly [3.6, 5.1].

22



Line p b θ α E(R f ) E(Rd) σ(R f ) σ(Rd)

1 0.01700 0.2900 0.3 2.9 1.02 9.58 4.37 15.17
2 0.00850 0.2900 0.9 2.8 1.01 9.33 3.97 14.81
3 0.00425 0.2900 1.6 2.1 1.04 9.09 3.71 14.55
4 0.01700 0.1450 1.2 3.3 1.04 9.32 3.75 14.64
5 0.01700 0.0725 1.9 1.5 1.06 9.04 3.56 14.42
6 0.00850 0.1450 1.7 2.6 1.04 9.21 3.62 14.51
7 0.00425 0.0725 2.4 0.3 1.03 8.97 3.52 14.37
8 0 0 2.5 0.5 1.04 9.07 3.50 14.36

Data – – – – 1.03 8.91 4.36 15.04

Table 8: Results for the model with multiple disaster states and ρ−1 = 0.1.
The parameters p and b are the disaster probability and average disaster size.
θ and α are selected to minimize the distance between the model moments
and the data. Other model parameters are as given in Tables 6 and 7. Model
moments are for a sample with no disasters. Expected returns are in percent,
and their standard deviations are in percentage points. Data are from Gourio
[16].

4.2.2 The trade-off between curvature and strength of disappointment aver-
sion

Comparing the α values in Lines 1, 4, and 5 of Table 8—experiments which
hold p at 0.017 while setting b equal to 0.29, 0.145, and 0.0725—presents an ap-
parent puzzle. While θ increases monotonically as the disaster size is reduced,
α increases from 2.9 to 3.3, then falls to 1.5.

The non-monotonicity in α across these three cases is a reflection of a close
substitutability between α and θ. For most of the cases recorded in Table 8,
it’s possible to alter the strength of disappointment aversion somewhat, while
compensating with a change in the curvature parameter, and achieve results
nearly as good as the optima presented in the table. In other words, there’s a
locus of α–θ pairs on which the loss function being minimized is nearly flat.
The loss-minimizing choice of (θ, α) at (p, b) = (0.017, 0.0725) happens to have
θ = 1.9 and α = 1.5, but the model’s fit is almost at good at, for example,
θ = 1.8 and α = 2.3.

To illustrate this substitutability, Table 9 gives results for the case of (p, b) =
(0.017, 0.0725)—the environment from Line 5 of Table 8—as θ varies from 1.5
to 2.0. The corresponding α values are best, given the values of θ. The re-
sulting sets of moments are barely distinguishable from one another; any of
them might, in fact, might have been optimal if our loss function used slightly
different weights.24

There are limits to the trade-off: for θ greater than 2.0, we would run into
the α ≥ 0 constraint, while for θ less than 1.5, we would violate our α ≤ 5

24For example, if we placed a bit more weight on the average equity return relative to the average
bill rate.
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θ α E(R f ) E(Rd) σ(R f ) σ(Rd)

1.5 4.9 1.05 9.60 3.56 14.57
1.6 4.0 1.06 9.45 3.56 14.52
1.7 3.2 1.02 9.29 3.55 14.48
1.8 2.3 1.06 9.17 3.56 14.45
1.9 1.5 1.06 9.04 3.56 14.42
2.0 0.8 1.01 8.89 3.53 14.36

Data 1.03 8.91 4.36 15.04

Table 9: Trade-off between θ and α. Results for the model with ρ−1 = 0.1,
p = 0.017 and b = 0.0725. The α values give the best fit at each value of θ.
Other aspects of the calculations are as described in the notes to Table 8.

constraint.25 The limits on the substitutability of θ and α of course depend on
the disaster risk specification (p, b). For example, when both the disaster size
and probability are one-fourth their original values from Barro—i.e., (p, b) =
(0.00425, 0.0725), as in Line 7 of Table 8—the α ≤ 5 constraint binds for θ < 1.9,
the α ≥ 0 constraint binds for θ > 2.4.

It’s important to note that the substitutability between the curvature and
disappointment aversion parameters is with respect to the small set of mo-
ments we are focusing on in these experiments. Given a rich enough set of
securities, (θ, α) = (2.0, 0.8) and (θ, α) = (1.5, 4.9) can be expected to produce
different pricing implications for at least some of the securities.

To illustrate this possibility, Figure 2 plots the logarithms of normalized
conditional state price vectors for the environments corresponding to the first
and penultimate lines in Table 9—i.e., for (θ, α) = (1.5, 4.9) and (2.0, 0.8). The
state price vectors are normalized by the state price vector for an agent with
the same elasticity of intertemporal substitution, but no aversion to risk or dis-
appointment, (θ, α) = (0, 0). Panel A shows the log normalized state prices
conditional on being in the low-growth (yL) state today; the prices in Panel B
are conditional on being in the high-growth (yH) state.26

The disaster states D1–D9 in the Figure are the nine disaster states that have
non-zero frequencies in the distribution summarized in Table 6. With an av-
erage disaster size of 7.25%, the smallest (D1) and largest (D9) consumption
declines are 4.3% and 15.7%, respectively.

Relative to the state prices that would obtain with a risk-neutral agent, con-
sumption in any of the disaster states is more valuable under the prices for

25Recall that we are are choosing values of θ and α from discrete grids, with points spaced 0.1
apart. Increasing θ from 2.0 to 2.1 results in α = 0.0, while lowering θ from 1.5 to 1.4 results in
α = 5.0.

26If ψi,j denotes the price in state i today of a unit of consumption in state j next period, then—as
usual—ψi,j = Pi,jmi,j. The normalized state prices plotted in the figure are log(ψi,j/ψ̂i,j), where ψ̂i,j

are state prices for an agent with no (timeless) risk aversion (θ = α = 0). The matrix of ψ̂ values is
approximately βP. N.B., the similarity in terminology notwithstanding, the state prices ψ̂ obtained
from a risk-neutral agent are not the risk-neutral prices for these environments.
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Figure 2: Normalized state price vectors for two different combinations of
curvature and disappointment aversion. Log normalized state price vectors
for environments defined by (θ, α) = (1.5, 4.9) and (2.0, 0.8) from Table 9. D1
through D9 are disaster states; L and H are ‘normal’ times. Panel A: State prices
conditional on state L today. Panel B: Conditional on state L today. See text,
particularly footnote 26, for details.
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an agent with either (θ, α) = (1.5, 4.9) or (2.0, 0.8). In the case with relatively
more disappointment aversion and less curvature—that is, (θ, α) = (2.0, 0.8)—
the effect is remarkably uniform (in percentage terms) across all the disas-
ter states. With relatively less disappointment aversion and more curvature,
(θ, α) = (1.5, 4.9), the increased value (relative to risk neutrality) is bigger for
deeper disasters.

Thus, while the two (θ, α) pairs produce nearly identical first and second
moments of asset returns, there are conceivable securities that would be priced
quite differently in the two environments—for example, types of size-contingent
disaster insurance.

One thing these results do suggest, though, is that attempting to estimate
the model’s preference parameters using data on consumption growth and a
pair of asset returns is likely to run into identification problems. The likelihood
function implied by the model will be nearly flat along a locus of (θ, α) pairs.

4.2.3 Results for larger elasticities of intertemporal substitution

While the best fit of the model to the observed means and standard deviations
of returns is obtained for a low value of the intertemporal elasticity of sub-
stitution, there are other considerations—such as the relationship between the
amount of disaster risk and asset values (as in [5]) or the time series properties
of returns and asset prices (as in [16])—that point to larger values.

In this section, I will consider larger values of the elasticity of intertemporal
substitution, namely ρ−1 = 1 (which corresponds to a logarithmic Epstein-Zin
aggregator) and ρ−1 = 1.5 (an increasingly common choice, since Bansal and
Yaron’s analysis in [3]). In the process, the results illustrate why the model
favors a low substitution elasticity. In a nutshell, at larger values of the in-
tertemporal elasticity of substitution, the model produces an unrealistically
small volatility for the bill rate. The problem is not unique to the combina-
tion of disaster risk and disappointment aversion—it’s present as well if we
assume no aversion to disappointment.

In a model like Barro’s [5], with i.i.d. ‘normal’ consumption growth and
a constant (independent) disaster probability, the bill rate is constant on non-
disaster samples, regardless of the elasticity of intertemporal substitution. Anal-
yses based on such models do not attempt to match the volatility of the bill rate,
and hence would not notice this departure from the data. In Gourio [16] and
Gabaix [15], time-variation in the probability of disaster—not present in our
model—accounts for all the variation (over non-disaster samples) in the bill
rate.

Table 10 presents some results from the model with larger values of the
intertemporal elasticity of substitution. Results for ρ−1 = 1 are in the top panel
of the table, those for ρ−1 = 1.5 in the bottom panel. Compared with the
results of section 4.2.1, the results in Table 10 are generally worse, with the most
notable failing of the model being the uniformly low values for the standard
deviation of the bill rate.
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Panel A: ρ−1 = 1

Line p b θ α E(R f ) E(Rd) σ(R f ) σ(Rd)

1 0.01700 0.2900 0.0 4.0 1.02 10.22 0.41 10.73
2 0.00850 0.2900 0.0 4.8 1.13 9.88 0.41 10.70
3 0.00425 0.2900 0.7 5.0 1.13 10.60 0.29 10.93
4 0.01700 0.1450 3.0 5.0 1.74 11.83 0.19 11.38
5 0.01700 0.0725 3.0 5.0 2.23 10.62 0.24 11.15
6 0.00850 0.1450 3.0 5.0 2.06 10.96 0.23 11.21
7 0.00425 0.0725 3.0 5.0 2.35 10.18 0.26 11.05

Data – – – – 1.03 8.91 4.36 15.04

Panel B: ρ−1 = 1.5

Line p b θ α E(R f ) E(Rd) σ(R f ) σ(Rd)

1 0.01700 0.2900 0.0 4.0 1.11 10.23 0.25 10.58
2 0.00850 0.2900 0.0 4.8 1.07 9.74 0.24 10.52
3 0.00425 0.2900 0.8 5.0 1.14 10.89 0.14 10.86
4 0.01700 0.1450 3.0 5.0 2.14 12.20 0.12 11.33
5 0.01700 0.0725 3.0 5.0 2.48 10.84 0.16 11.08
6 0.00850 0.1450 3.0 5.0 2.35 11.21 0.14 11.14
7 0.00425 0.0725 3.0 5.0 2.55 10.32 0.17 10.97

Data – – – – 1.03 8.91 4.36 15.04

Table 10: Results for the model with multiple disaster states and larger in-
tertemporal elasticities of substitution. The parameters p and b are the dis-
aster probability and average disaster size. θ and α are selected to minimize
the distance between the model moments and the data. Other model parame-
ters are as given in Tables 6 and 7. Model moments are for a sample with no
disasters. Expected returns are in percent, and their standard deviations are in
percentage points. Data are from Gourio [16].

Apart from the low volatility of the bill rate, though, the results are broadly
similar to the results obtained by Gourio [16, Table 3] for similar values of the
elasticity of intertemporal substitution and long-run average disaster risk com-
parable to the estimates from Barro [4]—a probability of 1.7% and a single dis-
aster state of size 43%. The average returns across all our (p, b) specifications
are at least as close to the data as they are in Gourio’s results, and the misses
in the volatility of our equity return are of comparable size to the misses in
Gourio, though in the opposite direction.27

Moreover, the relatively high values of the bill rate—above 2% in a number
of cases—are not especially a cause for concern, since they can be remedied
with an appropriate choice of the utility discount factor β. To this point, I’ve

27To be sure, Gourio is trying to fit his model—which incorporates time-varying disaster risk—to
a larger set of moments, including time series properties of the returns data.
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simply fixed β at 0.97, a somewhat arbitrary choice. Calibrating β to achieve
a particular average interest rate is a standard practice in much of macroeco-
nomics; in fact there is little other basis for choosing β.28 Increasing β lowers
the average bill rate and equity return, with little effect on their volatilities. For
example, keeping all other parameters the same as described in Table 8, set-
ting β = 0.984 in the environment of line 5 of Panel B produces the following
moments (with the original line 5 shown for comparison):

p b θ α E(R f ) E(Rd) σ(R f ) σ(Rd)

β = 0.970 0.01700 0.0725 3.0 5.0 2.48 10.84 0.16 11.08
β = 0.984 0.01700 0.0725 3.0 5.0 1.03 9.25 0.15 10.91

Data – – – – 1.03 8.91 4.36 15.04

Table 11: Adjusting β to target the bill rate. The line for β = 0.97 simply
replicates line 5 of Panel B from Table 8. The line for β = 0.984 keeps all
parameters the same except for the choice of β. See notes to Table 8 for details
of calculations.

In addition to the uniformly low volatilities of the bill rate, another notable
feature of the results for larger elasticities of intertemporal substitution is the
choice of θ and α. If the average disaster is size 0.29 (Lines 1–3 in either panel),
the best fits involve either a small amount of disappointment aversion (when
p = .00425) or none at all (p = 0.017 or 0.0085). In those cases, α is at or just
below its upper bound of 5.0. In contrast, for the smaller average disaster sizes
(0.145 or 0.0725), the optimal θ and α are both at their upper bounds.29 For
the model with a very small elasticity of intertemporal substitution, the best
choices of θ and α varied more smoothly with the amount of disaster risk.

Finally, we note that the choice of ρ−1 = 1.0 or 1.5 makes little difference for
the results, as can be seen in a comparison of Panels A and B of the table. Note,
too, that an elasticity of intertemporal substitution equal to one is in no sense a
critical value for the performance of the model (in terms of the four moments
considered here). Additional simulations (not reported) show that most of the
deterioration in the model’s fit, relative to the ρ−1 = 0.1 case, occurs between
ρ−1 = 0.1 and 1.

5 Conclusions and directions for further work

Models featuring rare consumption disasters have recently proven successful
at rationalizing many aspects of the data on consumption growth and asset

28One might argue introspectively that β should be less than one: If expecting the same con-
sumption next period as this period, would one voluntarily trade a unit of today’s consumption
for less than a unit next period? I suspect most people would answer no.

29Both constraints θ ≤ 3 and α ≤ 5 do bind, but relaxing those constraints—even by large
amounts—produced only marginal improvements in the model’s fit.
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returns. The empirical frequency of disasters, however, is subject to consid-
erable uncertainty. Using the experiences of many countries—as Barro [4] did,
effectively jump-starting a literature that had been dormant—provides enough
observations to make more precise inferences, but only if those experiences re-
flect a distribution of disaster risk common to all countries. It’s natural to be
skeptical of whether the very sizable disaster risks documented by Barro and
co-authors using cross-country data are a good characterization of risks faced
by investors in any single country, particularly investors in the US or other
developed economies.

The message of this paper is that disaster risks do not have to be nearly
as great as commonly assumed in the literature, once we allow agents in rare
disaster models to display an empirically plausible degree of aversion to dis-
appointment. Experimental evidence indicates that individuals tend to over-
weight bad outcomes relative to expected utility; disappointment aversion rep-
resents a form of risk preferences that have that feature. I impose empirical
discipline on the model by restricting the strength of disappointment aversion
to be in the range of estimates from the experimental studies of Choi et al. [11]
and from Camerer and Ho [8].

The main results of the paper are in Tables 8 and 10, which present simu-
lated moments of asset returns for a model incorporating many of the features
common to the rare disaster literature—a distribution of possible disaster sizes,
partial default (in the event of disaster) on the economy’s otherwise riskless as-
set, and levered equity.

For a low value of the elasticity of intertemporal substitution, the model
is able to almost perfectly match the means and standard deviations of the bill
rate and equity return, for disaster risks one-half or one-fourth the size implied
by the cross-country data. For larger elasticities of intertemporal substitution,
the results are less satisfactory, but still—apart from a too-low standard devia-
tion of the model-implied bill rate—broadly similar to other results in the rare
disaster literature [16]. These results, too, are for disaster risks much smaller
than commonly assumed.

These results are encouraging, especially if one is skeptical about estimates
of the magnitude of disaster risk.30 Still, there are obvious directions for further
work.

I have not employed generalized disappointment aversion—the form de-
veloped by Routledge and Zin [28]—largely on the strength of the model’s
results for a low elasticity of intertemporal substitution in section 4.2.1. The
model moments in Table 8 are already so close to the data, any improvement
in fit that could be gained with generalized disappointment aversion would
seem to hardly justify the added complexity or the introduction of one more
preference parameter. The results for the larger elasticities of intertemporal
substitution, however, are a different story. There is certainly ample room for

30A common rejoinder is that one may well be skeptical about the experimental results used to
calibrate risk preferences. There is an important difference, though—we can, in principle, run as
many experiments as we need to sharpen those parameter estimates; on disaster risk, we’re stuck
with the limited data we currently have.
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improvement in the results reported in Table 10. Whether having additional
control over the set of states viewed as disappointing is useful in that context
is a question worth exploring.

Incorporating a time-varying disaster probability is also a natural direction
for further work, but poses its own particular challenges, not the least of which
is calibrating that unobserved process. Moreover, my point in this paper has
been to show that a plausible degree of aversion to disappointment reduces the
amount of disaster risk necessary for the rare disaster model to produce real-
istic asset-pricing implications. The numerical experiments therefore took the
form of varying the disaster risk environment, summarized by the parameters
(p, b). A similar set of experiments in a model with a time-varying disaster
probability would require specifying how changes in (p, b)—understood now
as parameters of the long-run distribution—affect the other parameters of the
disaster probability process, a specification with little empirical guidance.31

Following the approach of Wachter [32]—who uses the observed persistence
of the price-dividend ratio and the volatility of stock returns to back out the
persistence and volatility of the disaster probability process—would be one
possible way of addressing this ambiguity.

Finally, for simplicity—to keep the exercise as straightforward as possible—
I have focused on changes only in the probability of disaster and the average
size of disaster, while maintaining the relative frequencies and relative sizes as
in Barro’s [4] data. Exploring the interaction, if any, between disappointment
aversion and changes in the shape of the distribution of disasters also seems a
natural avenue for further work.
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Appendix: Solution method

Given parameter values (including a Markov process for consumption growth),
solving the model involves finding the normalized value function φ and cer-
tainty equivalent µ that satisfy versions of (9) and either (4) or (6), appropriate
to the Markov chain environment.

With n Markov states, both φ and µ are n-vectors. The Markov chain ver-
sion of (9) is

φi = [1− β + βµ
1−ρ
i ]1/(1−ρ) (23)
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where µi satisfies a version of (4)

f (µi) = ∑
j

Pi,j f (φje
xj)− θ ∑

j
Pi,j
[

f (µi)− f (φje
xj)
]

Ii,j, (24)

where f (w) = w1−α/(1− α), and I is defined analogously to (10)

Ii,j = I[φje
xj < µi] (25)

The solution strategy is to iterate on φ using (23)–(25). Given an initial φ0,
use (24) and (25) to find the vector of µi’s that enter into the right-hand side of
(23), calculate φ1 as the value of the right-hand side of (23), and repeat with φ1

in the role of φ0.
At each iterate φj, I solve for the certainty equivalent µ using a dichotomy

(i.e., bisection) algorithm applied to (24) and (25). More precisely, let Ai =
f (µi) and ξ j = f

(
φje

xj
)
. Given this notation, what we seek is the vector A =

{Ai}n
i=1 such that

Ai = ∑
j

Pi,jξ j − θ ∑
j

Pi,j
[
Ai − ξ j

]
I
(
ξ j < Ai

)
(26)

Because f (w) = w1−α/(1− α) is monotone increasing, this is equivalent to (24)
and (25). Given an A that satisfies (26), we then get µi = f−1(Ai).

Fix today’s state i, and let

V(Ai) = Ai − {the right-hand side of (26)}.

To justify the dichotomy approach, we will show that V(Ai) is strictly increas-
ing in Ai, that V(min{ξk}) < 0, and that V(max{ξk}) > 0. It will then follow
that dichotomy beginning on the interval [min{ξk}, max{ξk}] converges to an
Ai such that V(Ai) = 0.

That V(Ai) is strictly increasing in Ai is fairly obvious: each non-zero term
in

θ ∑
j

Pi,j
[
Ai − ξ j

]
I
(
ξ j < Ai

)
is increasing in Ai and strictly positive. Increasing Ai will either leave the num-
ber of terms in the sum the same or add more strictly positive terms.

It also follows that
V(Ai) ≥ Ai −∑

j
Pi,jξ j,

so V(max{ξk}) > 0 is immediate.
To show that V(min{ξk}) < 0, it’s enough to note that I

(
ξ j < min{ξk}

)
=

0 for all j, so that

V(min{ξk}) = −∑
j

Pi,j
(
ξ j −min{ξk}

)
< 0.
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